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Abstract: We study positive solutions to the two point boundary value problem:

Lu = −u′′ = λ
{ A

uγ
+ M
[
uα + uδ

]}
; (0, 1)

u(0) = 0 = u(1)

where A < 0, α ∈ (0, 1), δ > 1, γ ∈ (0, 1) are constants and λ > 0,M > 0 are parameters. We prove that
the bifurcation diagram (λ vs ∥u∥∞) for positive solutions is at least a reversed S-shaped curve when
M ≫ 1. Recent results in the literature imply that for M ≫ 1 there exists a range of λ where there
exist at least two positive solutions. Here, when M ≫ 1, we prove the existence of a range of λ for
which there exist at least three positive solutions and that the bifurcation diagram is at least a reversed
S-shaped curve. Further, via a quadrature method and Python computations, for M ≫ 1, we show that
the bifurcation diagram is exactly a reversed S-shaped curve. Also, when the operator L is replaced by
a p-Laplacian operator with p > 1, as well as p-q Laplacian operator with p = 4 and q = 2, we show
that the bifurcation diagram is again an exactly reversed S-shaped curve when M ≫ 1.

Keywords: two-point boundary value problems; infinite semipositone reaction terms; positive
solutions; multiplicity results; reversed S-shaped bifurcation curves
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1. Introduction

We consider the two-point boundary value problem

Lu = −u′′ = λ f (u) = λ
{ A

uγ
+ M
[
uα + uδ

]}
; (0, 1)

u(0) = 0 = u(1)
(1.1)

where A < 0, α ∈ (0, 1), δ > 1, γ ∈ (0, 1) are constants and λ > 0, M > 0 are parameters. Note
that lim

s→0+
f (s) = −∞ and such problems are referred in the literature as infinite semipositone problems

(when f (0) < 0 and finite they are referred as semipositone problems). Recent results in [1] imply that
for M ≫ 1, there exists λi > 0 ; i = 1, 2, 3 with λ1 < λ2 < λ3 such that (1.1) has a positive solution
for λ ∈ (0, λ3) and at least two positive solutions for λ ∈ (λ1, λ2) conjecturing the following bifurcation
diagram (λ vs ∥u∥∞) (which turns back to the left).

Figure 1. Bifurcation diagram for positive solutions to (1.1) based on the results in [1].

In [1] the authors studied more general classes of such problems (infact, systems of equations with
weights in the reaction term). However, here in the autonomous single equation case, we will show
that for M ≫ 1, the bifurcation diagram not only bends back to the left, but will again bend forward to
the right (see Figure 1.2). Namely, we prove:

Theorem 1.1. Let α ≥ γ and αδ < 1. Then for M ≫ 1, there exists µi > 0 ; i = 1, 2, 3, 4 with
µ1 < µ2 < µ3 < µ4 such that (1.1) has a unique positive solution for λ ∈ (0, µ1), at least one positive
solution for λ ∈ (0, µ4), no positive solution for λ > µ4, and at least three positive solutions for
λ ∈ (µ2, µ3).

Corollary 1.1. For M ≈ 0, there exists µ∗ > 0 such that (1.1) has a unique positive solution for
λ ∈ (0, µ∗] and no positive solutions for λ > µ∗.

Clearly the bifurcation diagrams corresponding to Theorem 1.1 are reversed S-shaped curves as fol-
lows:
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Figure 2. Bifurcation Diagrams for positive solutions to (1.1) based on our results.

We will establish Theorem 1.1 via the quadrature method discussed in the [2, 3]. Further, via Python
computations, we note that the reversed S-shaped curves in Figure are infact exact. We also consider
the following two problems:

−(|u′|p−2u′)′ = λ
{ A

uγ
+ M
[
uα + uδ

]}
; (0, 1), p > 1

u(0) = 0 = u(1)
(1.2)

and

−(|u′|p−2u′)′ − (|u′|q−2u′)′ = λ
{ A

uγ
+ M
[
uα + uδ

]}
; (0, 1), p = 4, q = 2

u(0) = 0 = u(1).
(1.3)

Via quadrature methods and Python computations, we obtained bifurcation diagrams of (1.2) and (1.3)
which again are exactly reversed S-shaped for M ≫ 1. For (2.1), based on our computational results,
we conjecture that the critical value of M = Mc beyond which the bifurcation curve is revered S-
shaped, is a decreasing function of p. See also [4] where another example with reversed S-shaped
bifurcation diagram was discussed via the quadrature method, and [7–9] for results on existence and
multiplicity of positive solutions for semilinear elliptic equations with singular non-linearities.
The rest of the paper is organized as follows: In Section 2, we will recall the quadrature method
discussed in [2, 3]. In Section 3, we will establish Theorem 1.1 and Corollary 1.1. In Section 4 and 5,
we will obtain exact bifurcation diagrams of (1.1) and (1.2) respectively, via the quadrature method
and Python computations. Finally, in Section 6, we will obtain exact bifurcation diagrams of (1.3) via
the quadrature method described in [5] and Python computations.

2. Preliminaries

Here we recall the quadrature method first introduced in [3]. Note that if u is a positive solution
of (1.1) then u must be symmetric about t = 1

2 , u′ > 0 ; (0, 1
2 ) and u′ < 0 ; ( 1

2 , 1). Multiplying the
differential equation in (1.1) by u′, we obtain

−
[ (u′(t))2

2
]′
= λ(F(u(t)))′
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Figure 3. Graphs of functions f and F.

where F(u) =
∫ u

0
f (s)ds. Let β and θ > 0 be the unique positive zeros of f and F respectively.

Further, integrating we obtain

u′(t) =
√

2λ[F(ρ) − F(u(t))] ; t ∈ (0, 1
2 ) (2.1)

where ρ = u( 1
2 ) = ∥u∥∞. By (2.1) we get u′(0) =

√
2λF(ρ). This implies ρ ≥ θ. Integrating (2.1) again

and setting t → 1
2
− we obtain

G(ρ) =
√
λ(ρ) =

√
2
∫ ρ

0

ds√
F(ρ) − F(s)

. (2.2)

It was established in [3] that G is well defined and continuous on D = {ρ > 0| f (ρ) > 0, F(ρ) > F(s) :
s ∈ [0, ρ)}. Further, it was established that if (λ, ρ) satisfy (2.2) then (1.1) has a positive solution with
u(1

2 ) = ∥u∥∞ = ρ. Also, in [2], authors proved that G(ρ) is differentiable in D and its derivative is given
by

dG(ρ)
dρ

=
√

2
∫ 1

0

H(ρ) − H(ρv)
[F(ρ) − F(ρv)]3/2 dv (2.3)

where H(s) = F(s) − 1
2 s f (s). We will deduce information on the nature of the bifurcation curve by

analysing the sign dG(ρ)
dρ . Note that dG(ρ)

dρ has the same sign as dλ(ρ)
dρ . From (2.3), a sufficient condition for

dG(ρ)
dρ to be positive is:

H(ρ) > H(s) for all s ∈ [0, ρ)

and a sufficient condition for dG(ρ)
dρ to be negative is:

H(ρ) < H(s) for all s ∈ [0, ρ).

3. Proofs of Theorem 1.1 and Corollary 1.1

Proof of Theorem 1.1: First we note that lim
ρ→∞

√
λ(ρ) = 0 since lim

s→∞

f (s)
s = ∞ (superlinear) (see [3,4,6]).

Next we note that there exists a unique θ such that F(θ) = 0 since lim
s→0+

f (s) = −∞ and f ′(s) = − Aγ
sγ+1

+ M
[ α

s1−α + δsδ−1] > 0, and D = (θ,∞). It is sufficient to show that H has the shape as shown in the
Figure 4, namely:
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Figure 4. Graph of function H for M ≫ 1 .

(a) If α ≥ γ then there exists ϵ > 0 such that H′(s) < 0 for all s ∈ [0, θ + ϵ) (this implies
d
√
λ(ρ)

dρ < 0
for ρ ∈ (θ, θ + ϵ)).

(b) Further, if αδ < 1 then H(1) > 0 for M ≫ 1 and hence there exist some ρ∗ ∈ (θ, 1) such that

H(ρ∗) > 0 and H(ρ∗) > H(s) for all s ∈ (θ, ρ∗) (this implies
d
√
λ(ρ)

dρ > 0 at ρ = ρ∗).
(c) There exists a unique solution of (1.1) for λ ≈ 0.

Proof of (a): F(s) = A
( s1−γ

1 − γ

)
+ M
( sα+1

α + 1
+

sδ+1

δ + 1

)
< 0 on (0, θ) gives

A
sγ
< −

(1 − γ)Msα

(1 + α)
−

(1 − γ)Msδ

(1 + δ)
. (3.1)

By combining (3.1) with

H′(s) =
A(1 + γ)

2sγ
+

M
2
[
(1 − α)sα + (1 − δ)sδ

]
, (3.2)

we obtain

H′(s) <
Msα

2

(
γ2 − α2

1 + α

)
+

Msδ

2

(
γ2 − δ2

1 + δ

)
< 0 on (0, θ) for α ≥ γ.

Note that lim
s→0+

H′(s) = −∞. Thus H′(s) < 0 on [0, θ) for α ≥ γ. Next, we will prove that H′(θ) < 0.
Assume to the contrary that H′(θ) = 0. Now (3.2) gives

A +
M

1 + γ
θγ
[
(1 − α)θα + (1 − δ)θδ

]
= 0 (3.3)

and F(θ) = 0 gives

A + M(1 − γ) θγ
[
θα

α + 1
+
θδ

δ + 1

]
= 0. (3.4)

By (3.3) and (3.4) we obtain

Mθγθα
[ (α − γ)(α + γ)

(1 + α)(1 + γ)
+

(δ − γ)(δ + γ)
(1 + γ)(δ + 1)

θδ−α
]

︸                                            ︷︷                                            ︸
> 0

= 0
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This is a contradiction since θ > 0,M > 0, δ > 1, 0 < γ < 1 and for α ≥ γ. Thus H′(θ) < 0. Hence by
continuity, there exists ϵ > 0 such that H′(s) < 0 ; s ∈ [0, θ + ϵ).

Proof of (b): H(1) =
A (1 + γ)
2(1 − γ)

+
M (1 − αδ)

(α + 1) (δ + 1)
> 0 when αδ < 1 and for M ≫ 1. Now by part (a),

we see that θ < 1 for M ≫ 1. Hence for M ≫ 1 there exist some ρ∗ ∈ (θ, 1) such that H(ρ∗) > 0 and
H(ρ∗) > H(s) for all s ∈ [0, ρ∗).

Proof of (c): lim
s→∞

H′(s) = lim
s→∞

A(1 + γ)
2sγ

+
M
2
[
(1 − α)sα + (1 − δ)sδ

]
= −∞ implies

d
√
λ(ρ)

dρ
< 0 for

ρ ≫ 1. Thus there exists a unique solution for λ ≈ 0.

Proof of Corollary 1.1: Here it is sufficient to prove that

H′(s) =
A(1 + γ)

2sγ
+

M
2
[
(1−α)sα− (δ−1)sδ

]
< 0 for all s > 0 for M ≈ 0. Let A, γ, α and δ be fixed. Let

p(s) = (1 − α)sα − (δ − 1)sδ. It is easy to see that p(0) = 0, lim
s→∞

p(s) = −∞ and lim
s→0+

p′(s) = lim
s→0+
α(1 −

α)sα−1−δ(δ−1)sδ−1 > 0. Moreover, p is concave since p′′(s) = α(1−α)(α−1)sα−2−δ(δ−1)2sδ−2 < 0 for
s > 0. Thus p achieves unique positive maximum at s1 =

[α(1−α)
δ(δ−1)

] 1
δ−α and unique zero at s∗ =

[ (1−α)
(δ−1)

] 1
δ−α .

Since δ > α it is easy to see that s∗ > s1. Now choosing M so that

∣∣∣∣∣A(1 + γ)
2sγ

∣∣∣∣∣ > M
2

p(s1) ; s ∈ (0, s∗),

we conclude that H′(s) < 0 for all s > 0 for M ≈ 0. Hence by (2.3) we obtain
d
√
λ(ρ)

dρ < 0 for ρ ∈ (θ,∞)
when M ≈ 0 and the corollary is proven.

Remark 3.1. In [1] it was established that for M ≫ 1 there exists a range of λ where there exist two

positive solutions for (1.1). This implies there must exists a ρ∗ > θ such that
d
√
λ(ρ)

dρ > 0 when ρ = ρ∗.

Combining this fact,
d
√
λ(ρ)

dρ < 0 for ρ ∈ (θ, θ + ϵ) and lim
ρ→∞

√
λ(ρ) = 0 we can also conclude that the

bifurcation diagram is at least a reversed S-shaped curve for M ≫ 1. This indirect approach (using
the result in [1]) does not require αδ < 1 for the bifurcation curve to be at least a reversed S-shaped
curve when M ≫ 1. Note that in the proof Theorem 1.1, αδ < 1 was used only in the proof of part (b).

4. Computational result of (1.1)

Using (2.2) and Python computations we obtain the following exact bifurcation curves of (1.1)
when γ = 0.3, α = 0.32, δ = 3.05 and A = −4.
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Figure 5. Evolution of bifurcation diagrams for positive solutions to (1.1) when M varies.

5. Computational results of (1.2)

It follows easily that if u is a positive solution of (1.2), then u must be symmetric about t = 1
2 ,

u′ > 0; (0, 1
2 ), u′ < 0; (1

2 , 1) and u( 1
2 ) = ∥u∥∞ := ρ. Now we recall the quadrature method described

in [4]. Multiplying the differential equation in (1.2) by u′ and integrating, we obtain

( p − 1
p
)
(u′(t))p = λ(F(ρ) − F(u)) ; t ∈ (0,

1
2

).

where F(s) =
∫ s

0
f (z)dz. Further integrating from 0 to 1

2 , we obtain

Gp(λ, ρ) := λ
1
p − 2
( p − 1

p
) 1

p

∫ ρ

0

ds

(F(ρ) − F(s))
1
p

= 0. (5.1)

It can be shown that that for λ > 0 and ρ ≥ θ, Gp(λ, ρ) is well defined and the bifurcation diagram for
positive solutions to (1.2) is given by:

S =
{
(λ, ρ) | λ > 0, ρ ≥ θ & Gp(λ, ρ) = 0

}
.

Using (5.1) and Python computations we obtain the following bifurcation curves for positive solutions
for (1.2) when γ = 0.3, α = 0.32, δ = 3.05 and A = −4 for multiple values for p and M.
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Figure 6. Evolution of bifurcation diagrams of positive solutions to (1.2) when M and p
vary.

Remark 5.1. Our computational results show that the critical value of M = Mc beyond which the
bifurcation curve is reversed S-shaped, is a decreasing function of p.

6. Computational results of (1.3)

In this section, for the case when p = 4 and q = 2 of (1.3), namely for the two-point boundary value
problem:

−[(u′)3]′ − [(u′)]′ = λ
{ A

uγ
+ M
[
uα + uδ

]}
; (0, 1)

u(0) = 0 = u(1),
(6.1)

we compute the bifurcation diagram for positive solutions. It follows easily that if u is a positive
solution of (6.1), then u must be symmetric about t = 1

2 , u′ > 0; (0, 1
2 ), u′ < 0; (1

2 , 1) and u( 1
2 ) = ∥u∥∞ :=

ρ. Now we recall the quadrature method described in [5]. Multiplying the differential equation in (6.1)
by u′ and integrating we obtain

−
3
4

[(u′)4]′ −
1
2

[(u′)2]′ = λ(F(u))′ in (0, 1)
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where F(s) =
∫ s

0
f (z)dz. Further integrating we obtain

3[u′(t)]4 + 2[u′(t)]2 = 4λ[F(ρ) − F(u(t))] ; t ∈ [0, 1
2 ]

and hence

u′(t) =

√[
1 + 12λ(F(ρ) − F(u(t)))

] 1
2 − 1

√
3

; t ∈ [0, 1
2 ]. (6.2)

Noting that u′(0) =

√
[1+12λF(ρ)]

1
2 −1

√
3

. This implies ρ ≥ θ. Integrating (6.2) from 0 to 1
2 , we obtain

G(λ, ρ) :=
∫ ρ

0

ds√[
1 + 12λ(F(ρ) − F(s))

]1
2 − 1

=
1

2
√

3
. (6.3)

It can be shown that that for λ > 0 and ρ ≥ θ, G(λ, ρ) is well defined and the bifurcation diagram for
positive solutions to (6.1) is given by:

S =
{
(λ, ρ) | λ > 0, ρ ≥ θ & G(λ, ρ) = 1

2
√

3

}
.

Thus using (6.3) and Python computations we obtain the following bifurcation curves of (1.3) when
γ = 0.3, α = 0.32, δ = 3.05 and A = −4 as M varies.

Figure 7. Evolution of bifurcation diagrams of positive solutions to (1.3) when M varies.

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. D. D. Hai, R. Shivaji, Existence and multiplicity of positive radial solutions for singular su-
perlinear elliptic systems in the exterior of a ball, J. Differ. Equ., 266 (2019), 2232–2243.
https://doi.org/10.1016/j.jde.2018.08.027

Electronic Research Archive Volume 31, Issue 2, 1147–1156.

http://dx.doi.org/https://doi.org/10.1016/j.jde.2018.08.027


1156

2. K. J. Brown, M. M. A. Ibrahim, R. Shivaji, S-Shaped bifurcation curves, Nonlinear Anl., 5 (1981),
475–486.

3. T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana
Univ. Math. J., 20 (1970), 1–13.

4. E. Ko, E. K. Lee, R. Shivaji, On S-shaped and reversed S-shaped bifurcation curves for singular
problems, Electron. J. Qual. Theo., 31 (2011), 1–12. https://doi.org/10.14232/ejqtde.2011.1.31

5. U. Das, A. Muthunayake, R. Shivaji, Existence results for a class of p-q Lapla-
cian semipositone boundary value problems, Electron. J. Qual. Theo., 88 (2020), 1–7.
https://doi.org/10.14232/ejqtde.2020.1.88

6. A. Castro, R. Shivaji, Non-negative solutions for a class of non-positone problems, P. Roy. Soc.
Edinb. A, 108 (1988), 291–302. https://doi.org/10.1017/S0308210500014670

7. A. C. Lazer, P. J. McKenna, On a singular nonlinear elliptic boundary value problem, P. Am. Math.
Soc., 111 (1991), 720–730. https://doi.org/10.2307/2048410

8. Z. Zhang, On a Dirichlet problem with a singular nonlinearity, J. Math. Anal. Appl., 194 (1995),
103–113. https://doi.org/10.1006/jmaa.1995.1288

9. Y. Miaoxin, J. Shi, On a singular nonlinear semilinear elliptic problem, P. Roy. Soc. Edinb. A, 128
(1998), 1389–1401. https://doi.org/10.1017/S0308210500027384

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 31, Issue 2, 1147–1156.

http://dx.doi.org/https://doi.org/10.14232/ejqtde.2011.1.31
http://dx.doi.org/https://doi.org/10.14232/ejqtde.2020.1.88
http://dx.doi.org/https://doi.org/10.1017/S0308210500014670
http://dx.doi.org/https://doi.org/10.2307/2048410
http://dx.doi.org/https://doi.org/10.1006/jmaa.1995.1288
http://dx.doi.org/https://doi.org/10.1017/S0308210500027384
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Proofs of Theorem 1.1 and Corollary 1.1
	Computational result of (1.1)
	Computational results of (1.2)
	Computational results of (1.3)

