E% ERA, 31(2): 793-811.
ey Electronic DOI: 10.3934/era.2023040

%5 Research Archive Received: 07 October 2022
o Revised: 10 November 2022

Accepted: 18 November 2022
Published: 01 December 2022

http://www.aimspress.com/journal/ERA

Research article

An adaptive preference retention collaborative filtering algorithm based

on graph convolutional method

Bingjie Zhang!, Junchao Yu!, Zhe Kang!, Tianyu Wei!, Xiaoyu Liu! and Suhua Wang?*

! Information Science and Technology, Northeast Normal University, Changchun 130117, China
2 Computer Department, Changchun Humanities and Sciences College, Changchun 130117, China

* Correspondence: Email: wangsuhua@ccrw.edu.cn; Tel: +8643184536330;
Fax: +8643184536330.

Abstract: Collaborative filtering is one of the most widely used methods in recommender systems.
In recent years, Graph Neural Networks (GNN) were naturally applied to collaborative filtering
methods to model users’ preference representation. However, empirical research has ignored the
effects of different items on user representation, which prevented them from capturing fine-grained
users’ preferences. Besides, due to the problem of data sparsity in collaborative filtering, most GNN -
based models conduct a large number of graph convolution operations in the user-item graph,
resulting in an over-smoothing effect. To tackle these problems, Adaptive Preference Retention
Graph Convolutional Collaborative Filtering Method (APR-GCCF) was proposed to distinguish the
difference among the items and capture the fine-grained users’ preferences. Specifically, the graph
convolutional method was applied to model the high-order relationship on the user-item graph and
an adaptive preference retention mechanism was used to capture the difference between items
adaptively. To obtain a unified users’ preferences representation and alleviate the over-smoothing
effect, we employed a residual preference prediction mechanism to concatenate the representation
of users’ preferences generated by each layer of the graph neural network. Extensive experiments
were conducted based on three real datasets and the experimental results demonstrate the
effectiveness of the model.

Keywords: collaborative filtering; recommender system; users’ preference; graph neural network

794

1. Introduction

Recommender systems have attracted considerable attention from both the industry and
academia [1,2]. Collaborative filtering (CF) is among the most important recommendation method and
depends on a basic assumption that people with similar purchasing experiences in the past will make
similar decisions in the future [3]. With the development of graph neural networks (GNN) [4,5], the
application of GNN in recommender systems has become increasingly mature [6,7]. In recent years,
the history of user-item interactions has been modeled as a user-item graph [8] and applied to
knowledge graphs [9,10], heterogeneous graphs [11,12], and social recommendations [13]. In
addition, the graph convolutional network (GCN) [14] has been applied extensively to recommender
systems [15—19] and delivered promising performance. Compared with the traditional CF methods,
the graph neural network has powerful feature extraction and learning capabilities. The graph
convolution can capture the high-order neighborhoods information and the complex interaction
relationship on the user-item graph, and generate the feature information of the local graph
neighborhood of the user/item. First-order neighborhoods are the user’s direct neighbors, second-order
neighborhoods are the neighbors of the user’s neighbors, and so on. Higher neighborhoods than first-
order are called high-order neighborhoods. Meanwhile, GNN combines the target nodes own
representation with it’s neighborhood information to update the new representation of the target node.
The graph convolutional method stacks multiple graph convolutional layers and can aggregate features
of users and items. Furthermore, exploiting high-order relationships on the user-item graph can
alleviate the problem of data sparsity in collaborative filtering [20].

Despite their enormous success, these methods assumed that all interactive items could be used
to model user preferences, in which each item contributed the same in generating user preferences.
However, the distinctions among the items determine the purchasing behaviors of users. For instance,
different items have different attributes, such as functionality and appearance. When users purchase
an item, some of them prefer functionality while others prefer its appearance. This prompts us to
capture fine-grained preference. A more detailed and specific description of the users’ preferences
for the item, namely user fine-grained preferences. Similarly, item fine-grained preferences mean
more granular features of items, for example, goods will be preferred by users because of their price
or quality advantages.

Meanwhile, when the graph convolution operation generates the user’s representation, it suffers
from an over-smoothing effect on the high-order neighborhood. Therefore, when modeling user
preferences, it is important to consider the difference between items to capture the fine-grained
preferences of users/items and alleviate the over-smoothing on the user-item graph.

As is shown in Figure 1. Different ratings of items indicate their different contributions to user
preferences. If items are similar in terms of importance, it is unclear whether the user assigns an item
a high or low rating. However, if we consider differences between items, we may find that assign a
high rating because the attributes are more consistent with the characteristics of a career. Hence, failing
to discern the differences between items may limit the performance of the recommender system. It is
therefore desirable to design a recommender system to adaptively identify differences among items to
acquire fine-grained user preferences.

Although it is useful to distinguish the differences among items, three challenges are outstanding
in this context. The first challenge stands in the large and complex user-item graph, which makes it
difficult to capture the differences between items in the user-item graph. The second challenge involves

Electronic Research Archive Volume 31, Issue 2, 793—811.

795

ways to incorporate the differences between items into modeling user preferences. It is also difficult

to identify items that are important for modeling user preferences from among the large number with

which he/she interacts. Besides, the user-item graph usually suffers from the problems of data sparsity
and over-smoothing due to the cold start issue inherent in recommender systems. Hence, the third
challenge pertains to the means of solving these problems in the user-item graph.

In this paper, we proposed an Adaptive Preference Retention Graph Convolutional Collaborative
Filtering Method (APR-GCCF), which is an end-to-end model that differentiates distinctions between
items to model user preferences. To address the first two challenges, we proposed an adaptive
preference retention mechanism. It contains two important elements. First of all, when users interact
with different items, the contributions of different items to the user’s representation are different. So,
we adopted a trainable weight pair for different neighborhoods that generated corresponding scores
and then assign them to capture neighborhoods to the user’s local interest. Moreover, when we used
GNN to aggregate neighborhoods of user nodes, different neighborhoods would carry different item
node information. So, we modeled the user and item preferences through two trainable mapping
vectors to capture fine-grained user and item preferences. To address the third, we exploited a residual
preference prediction mechanism. Among them, to alleviate the problem of data sparsity, we used a
multi-layer GNN to aggregate higher-order neighbors. However, similar to previous work [21], multi-
layer GNNs can cause an over-smoothing problem. The essence of over-smoothing is that too much
information about the other nodes suppress the information of the nodes themselves. By using the
residual network, we connected its embedding and the aggregated new vector when updating the node
embedding. This implemented the decoupling of neighborhoods and their information; thus the
problem of over-smoothing could be relieved.

The contributions of this paper are as follows:

e We use a residual preference prediction mechanism that exploits high-order relationships and the
residual network, which can alleviate the problems of data sparsity and over-smoothing generated
by the user-item graph.

e To distinguish the different contributions made by different items to user embedding, we design
an adaptive preference retention mechanism to adaptively identify different types of information
provided by different items, thus capturing a fine-grained representation of the user’s preference.

e Weuse LO regularizers to address the overfitting problem and apply a weighted random sampling
strategy to select items that are important for user preference modeling. We validate the
effectiveness of the proposed framework (APR-GCCF) on three empirically acquired datasets:
Amazon, FilmTrust, and Yelp.

The following parts of this paper were organized as follows: In Section 2, relevant works related
to collaborative filtering and graph convolution neural networks were reviewed. In Section 3, we
defined the formulations of the recommendation problem in our paper. The framework proposed was
presented in Section 4 and three empirically acquired datasets were verified in Section 5. Finally, we
summarize our work here and suggested directions for future research in the area in Section 6.

Electronic Research Archive Volume 31, Issue 2, 793—811.

796

U, u,

) LR .
Musician Musician

» | =

High ratings

Figure 1. The impact of items on users when they purchase them.
2. Related works

This section focuses on two areas of research directly related to our study: collaborative filtering
and graph neural networks.

2.1. Collaborative filtering

Collaborative filtering (CF) assumed that users with similar behaviors would have similar
preferences for items. Most collaborative filtering algorithms that have been proposed in recent years
used matrix factorization (MF) for the recommendation. Matrix factorization (MF) involved mapping
users and items into a shared latent space and learning vector information to make recommendations.
The PMF [22] utilized Gaussian distribution to model latent factors related to users and items, and then
used their product to predict item ratings. BiasedMF [3] improved the PMF by combining user/item
bias and a global bias. SVD++ [23] utilized implicit feedback (such as the number of clicks and
identification of items by users as their favorite) to model user preferences. Deep learning models have
yielded impressive performance in recommender systems in recent years. [24] combined collaborative
filtering and neural networks to solve the cold start problem. NCF [9] employed deep learning to learn
complicated internal interactions between users and items. AutoRec [25] utilized an encoder layer to
project the user’s/item’s observed ratings into a latent space and reconstructs them using a decoder
layer. Another relevant method involved modeling the history of user-item interactions as a user-item
graph [8] to predict user preferences. The NGCF [26] adopted graph neural networks to capture higher-
order connectivity and extracted a collaborative signal for a user-item graph. The LR-GCCF [27]
exploited the residual network to solve the problem of over-smoothing in the user-item graph, and
eliminated the nonlinearity in the GNN to improve recommendation performance. The MCCF [28]
decomposed the user’s motivations for purchasing items. Meanwhile, MCCF used node-level and
component-level attention mechanisms to generate user/item preferences.

Electronic Research Archive Volume 31, Issue 2, 793—811.

797

2.2. Graph neural networks

Graph neural networks were first proposed by [29—31]. The graph convolutional network (GCN)
has lately achieved remarkable success in various tasks of graph-based analysis. It aggregated features
derived from neighbors of the target node and propagated the information related to it in the graph to
update new node embeddings. While different from the GCN, GraphSAGE [32] also aggregated
features from local neighbors and used uniform sampling to generate a node embedding. The GAT [33]
employed an attention mechanism [34] to adaptively assign weights to a node’s neighbors when
performing an aggregate operation. The GIN [35] operated through an injection-based neighborhood
aggregation scheme. It applied a learnable mechanism of combining features to preserve the local
graph structure and features of the nodes. The HAN [36] has considered the difference in importance
among nodes in the convolution process, and the SGC [37] reduced the complexity of the GCN by
removing feature transformations and nonlinear activations. It was used as a low-pass filter in the
spectral domain to reduce the effects of over-smoothing as well. The developers of the DAGNN [38]
claimed that the effects of entanglement of representational transformation and information
propagation primarily affected the performance of the GNN and devised an adaptive fusion weight to
adjust the effect of over-smoothing on it.

3. Preliminaries

In this section, we will introduce the notation used in this paper. We classically modeled the
history of user-item interactions as a user-item graph G = {U,V,R,E} [28]. Let U = {uy, uy, ..., un}
and V = {vq,V,, ..., v, } denoted the sets of users and items, respectively, where n was the number of
users and m was the number of items. We assumed that R € R™™ was the user-item graph and may
contain several ordinal rating levels {1,...,R}. Each edge e = (ui, vj, ri]-) € E showed that user
u; assigned rating rj; to item vj. If u; assigned a rating to vj, rj; is the rating, otherwise, rj; = 0.
Generally, we let Ry, be the set of items that have interacted with the user u, RV]. be the set of users
who v; have interacted with. We used an embedding vector s*i € RY and an embedding vector hVi €
RY to denote a user u; and an item vj, respectively, where d was the dimension of the embedding
vector. The mathematical notations used in this paper are given in Table 1. Then the task of rating
prediction can be formulated as:

Input: The user-item interaction matrix R.

Output: Each user’s missing rating for the item.

Electronic Research Archive Volume 31, Issue 2, 793—811.

798

Table 1. Notations.

Notations Description

u; User i

u; Item j

shi The embedding of user u;.

b The embedding of item v;.

Ry, The set of items with which user u; interacts.

RVi The set of users who have interacted with item v;.

ey The new aggregated representation of user u;, obtained by combining the
neighborhood of u; with its own features.

ey, The new aggregated representation of item vj, obtained by combining the
neighborhood of v; and its own features.

ali The preference retention score of user u;.

aY The preference retention score of item ;.

Al Preference representation of user u;.

AYi Preference representation of item v;.

K The number of GNN layers.

g}; User preference for the k-th layer.

W, b Weight and bias in the MLP.

@ The concatenation operator of two vectors.

I The predicted rating of item v; by user u;.

A The regularized penalty coefficient.

4. Adaptive preference retention collaborative filtering algorithm based on

convolutional method

4.1. Overview

graph

In this part, we proposed Adaptive Preference Retention Graph Convolutional Collaborative
Filtering Method (APR-GCCF) which was a general graph neural network based on the CF model for
the recommendation. The general framework of the APR-GCCF was shown in Figure 2. APR-GCCF
consisted of two major components. The first component, an adaptive preference retention mechanism,
is shown in the red dotted line and blue dotted line of Figure 2 used the GNN to assemble the
user’s/item’s neighborhood to learn the user/item embedding and took the user of a trainable mapping

vector m;/m, that was shared between layers of the GNN generated retain scores a°,...,a¥ to

Electronic Research Archive

Volume 31, Issue 2, 793—811.

799

differentiate among users/items. The second component was a residual preference prediction
mechanism as shown in the black dotted line of Figure 2. It utilized a residual network to concatenate
user’s/item’s preferences representations from an adaptive preference retention mechanism. Finally,
the user-item interaction ratings were predicted through MLP.

____1 adaptive preference retention mechanism

(" ”"7) residual preference prediction mechanism

———

@ concatenate

DIIII:A"/"" llLLEL A ,}J,'LAL\ A" L}L'IKL A"
oD — 8B - 8 | @B

a a’ =
0 1 | 2 k
. e s N e N e
g i 7 vi x vi 7 vi
]
v
P > > > - >
@ @

Figure 2. The framework of APR-GCCF.

4.2. Adaptive preference retention mechanism

In this paper, we aimed to learn the fine-grained preference A, of user u; and representation
Ay, of item v; from user-item graph. It was claimed that user u;’s preference relied on his/her
characteristics s% and neighborhood h®K, where a € Ry;. So, we combined u;’s characteristics

with features of u;’s neighborhood through an aggregation function Aggres.r- When aggregating the
features of the user to generate item v;’s embedding, a similar aggregation function Aggreje,, was

used. The aggregation process as follows:
el = Aggre,ser (U, acr, h*) (M
el\ﬁj“ = Aggrejiem (W7, ZbERVj sPk))

where eﬁi“ denoted the user u;’s embedding of GNN at layer k that is generated by user aggregation
function Aggreyser. k € (1, ..., K) indicated the number of layers in GNN. Ry, was the set of items
that user u; has interacted with. Ry, represented the set of users that have interacted with the item
vj, sUk denoted the vector of user u; at k-th layer. h"iX was the vector of item vj at k-th layer.

Then we will discuss how to define aggregation functions Aggre,c.r and Aggrejiem.
We adopted aggregation functions that is different from the traditional graph convolutional

Electronic Research Archive Volume 31, Issue 2, 793—811.

800

networks on the user-item graph to capture the user’s/item’s representations. To be specific, the
attention mechanism was applied to aggregate the neighborhood of user/item, as below:

eh:—l = Relu(Wuser) (Sui'k @ ZaERui O(i,aha'k) + buser) (3)
et = Relu(Wiem * (07" @ ver,, 5") + bicem) “)

where «;, denoted the attention coefficient of items in the user’s neighborhood when characterizing
user Uu;’s representation from the user-item interaction history Ry,. a;;, denoted the attention weight
of users in the item v;’s neighborhood when characterizing item v;’s representation from the item-
user interaction history RV]. . Relu() was the Relu activate function. Wysers / Witems and

byuser/bitem Were weight and bias of aggregation functions, respectively. @ is the concatenation
operation. Take the aggregation function of user u; as an example, we took user u;’s representation
sUK and features of item interacted with user u; as input, then use the Softmax function to produce
the attention coefficient «; , as:

exp (Relu(Wi‘]--(s“i'k@ha.k)))
ZaeRui exp (Relu(Wi'j-(sui'k@ha,k)))

Ajaq =

)

exp (Relu(Wj‘i-(s“i'k@ha,k)))
ZbeRy, exp (Relu(Wj;(s"r*@haky))

(6)

(X]"b =

where W;; and W;; were the attention weight of a;, and ap,.

The GNN can capture information on the neighborhood of a given node through the feature
propagation mechanism. The nodes were assumed to contribute similarly to the neighborhood
aggregation process, which led to the inevitable loss of fine-grained user preference-related
information. In practice, the purchasing behavior of the user was usually determined by differences
among items. Therefore, different items should make different contributions to generate user
embedding. This motivated us to design an adaptive preference retention mechanism to adaptively
identify different kinds of information provided by different items.

By taking original user embedding generated by the GNN as input, we took advantage of a
trainable mapping vector shared between layers of the GNN to learn the differences among items, and
to output their preference retention scores, such as a%K and aV’. These preference retention scores
were used for representations that carried information on the differences among items in
neighborhoods spanning a variety of ranges, and also for measuring the feature-related information of
the items to identify their contributions as follows:

a%K = Relu (m1 . e{ji + nl) (7)

a"’* = Relu (m2 . eléj + nz) (8)

k k

where a' was the preference retention scores of the user u; at k-th layer, and a“* was the
preference retention scores of v; same as u;. m; and m, indicated trainable mapping vectors
shared by the processes of user and item preference modeling, respectively, and n; and n, were
biases. ellji and eléj are user’s/item’s embeddings generated by GNN at the k-th layer.

Finally, we confirmed differences among the items by using the preference retention scores and
preserving the differences in user embeddings automatically to model fine-grained user preferences.
The generated user/item preference embeddings A%K/AVi® were as follows:

Electronic Research Archive Volume 31, Issue 2, 793—811.

801

AUk = quik ©) e]lii 9)
AV =ak O e (10)

where (© represented element-wise multiplication, and AYKand AYi’* were the preference
embeddings of the user and the item in layer k.

When users interact with different items, the contributions of different items to the user’s
representation are different. As shown in Figure 1, the user’s current preference is shoes, so shoes are
critical to modeling user preferences, and the contribution of musical instruments to the user’s
representation will be much smaller, therefore, the user’s rating of shoes is higher than that of musical
instruments. We have added an attention mechanism to the aggregation process of the graph neural
networks, namely Eqgs (5) and (6), and model the user’s representation by assigning corresponding
preference scores a;, and «;;, to different items. At the same time, we regard the user’s neighbors
of different levels of user interaction as the user’s local interest. We believe that the local interest also
plays a vital role in determining the final user’s preferences, so we adopt a trainable weight pair for
different neighborhoods generate corresponding scores, namely Eqs (7) and (8), and assign them to
each neighborhood to generate the final user representation.

When we used GNN to aggregate the high-order neighborhoods of user nodes, different
neighborhoods would carry different item node information. We modeled the user and item preferences
through two trainable mapping vectors m; and m,. We use the adaptively adjusted weight m;/m,
shared between GNN layers was used to generate retention scores for different neighborhoods. These
retention scores were applied to the user’s/item’s multi-level neighborhood to save the difference of
the item/user nodes in each level of the user’s/item’s neighborhood. When modeling user preference,
we considered the impact of the differences among items for user preference, i.e., the user’s
purchasing behavior was affected by the attributes of the items. Hence, we utilized m, to adaptively
identify the differences in items and retain their different features. Similarly, when modeling item
preference, we thought that it was different decision-making procedures that determined a user’s
decision to buy an item. We thus used m, to distinguish among these procedures to capture fine-
grained item preferences.

With the adaptive preference retention mechanism, APR-GCCF enabled the adaptive identification
of differences between items and generated a fine-grained representation of users’/items’ preferences.

The preference embeddings for the user and the item have been introduced in the previous part.
Next, we will show how the residual preference prediction mechanism was used to generate predictions.

4.3. Residual preference prediction mechanism

With a predefined depth K, the traditional GNN-based recommender systems stop at the k-th layer,
where output of the user embedding was regarded as ek and that of the item embedding was e}‘. In

practice, e and e]k can catch the fine-grained preferences of user and item. Their inner product was
used to predict the ratings Tj; as follows:

B =ef Oef (11)

where (O denoted element-wise multiplication.
Most GNN-based recommendation models won’t achieve the best performance until k =2 or k
=3 (He et al., 2020; Xiang Wang, He, Wang, et al., 2019; Ying et al., 2018). The performance dropped

Electronic Research Archive Volume 31, Issue 2, 793—811.

802

quickly when K continued to increase. We think that the reason was that the embedding of each
user/item node was smoothed by higher-order neighbors in the user-item graph. Thus, it was the
problem of over-smoothing. In the collaborative filtering task, there was few user-item interactions,
and consequently rendered the effect of over-smoothing severe. To solve these problems, a residual
preference prediction mechanism was proposed. We performed a concatenation operation on user and
item preference embeddings AWK and AiX generated by the adaptive preference retention
mechanism in layer k as follows:

gij = AU @ AT (12)

where @ was the concatenation operation, k was the layer number of GNN. The residual preference
prediction mechanism could help alleviate effect of over-smoothing by using deeper GNN layers to
enhance the expressiveness of user preference. Hence, we used residual preference prediction
mechanism to connects all layers of the results of prediction:

gi=g) Dgi® - D g (13)

where g;; denoted the concatenation of preference-related predictions in all layers, g?j represented
the initially predicted preference used as input for the user and the item, and €@ denoted the
concatenation operation of the embeddings. The previous process was reasonable in that each user’s
neighbors were different, and thus the practice that integrating each layer’s representation to generate
the final user preference was advantageous.

The residual preference prediction mechanism connected the user representations generated by
the GNN of each layer with different neighborhood information to produce the final unified embedding
of the user. At the same time, we obtained the final unified embedding of the item through the same
operation, and combined the embedding of the user and the item to generate a prediction.

Equation (9) was equivalent to embedding the nodes with differences in each layer to generate a
new embedding. This was quite reasonable because the user-item interaction subgraph was different.
As aresult, the nodes in its neighborhood were different, and the contribution to the final representation
of the node was different as well. Therefore, we integrated the representations of each layer to generate
the final user/item embedding which contained richer information.

Once the final preference has been obtained, we used it as input to the MLP to predict the rating
rj from ujto vj as:

C2 = Relu (chl + bz) (15)
f.ij = W1C1_1 + bl (16)

where W, was a weight vector, b; was a bias vector, and [was the hidden layer index. As we can see,
the layer-wise aggregation was the main operation. For the k-th GNN layer, the aggregation function
has computational complexity O(nm X d), where n was the number of users and m was the
number of items, and d was the dimension of embedding vector.

We used a graph convolution operation in the user-item graph to aggregate the user’s
representation. By obtaining the user’s high-level neighborhood information, we could mine hidden
user-item interaction relationships, which can increase the density of the data to a certain extent.

Electronic Research Archive Volume 31, Issue 2, 793—811.

803

However, aggregating the high-level neighborhood information through multi-layer GNN will cause
the problem of over-smoothing. The essence of over-smoothing is that too much information about the
other nodes suppress the information of the nodes themselves. A residual network was used to inject
the user’s previous information into the high-order neighborhoods. Specifically, we connected its
embedding and the aggregated new vector together when updating the node embedding. This
implemented the decoupling of neighborhoods and their information; thus the problem of over-
smoothing could be relieved.
In the following section, some optimization strategies will be discussed.

4.4. Optimization

Objective function: We focused on the task of predicting ratings. The ultimate goal was thus to
minimize the difference between the predicted rating and the ground-truth rating:

1 ~ 2
L. = mZ(i,j)eo (f5 —1y) (17)

where O was the set of users and items, and Tj; and rj; were the predicted ratings and the ground-

truth ratings.
L0 regularization was used to alleviate the problem of overfitting. The final objective function was:

minL = L. + 1110 llg (18)

where A is the LO regularization parameter and 0 represented the set of model parameters.

Weighted random sampling strategy: To model the representation of user/item, the
user’s/item’s neighborhoods were aggregated by applying GNN. However, a large number of
interactions occurred between items and users. So, we usually understood user preferences using only
some items with what he/she interacted. In Eq (1), we did not aggregate all of the items that interacted
with the user because highly-rated items better-reflected user preferences. Hence, we adopted a
weighted random sampling strategy to emphasize more on such items.

We regarded the average degree of the node N; (N;) of the user (item) as the threshold. When the
number of nodes neighboring a given node exceeded the threshold, we chose neighborhoods using a
random weighted sampling strategy; otherwise, all neighborhood nodes would be retained. The
procedure was as follows:

w = Random (0,1) (19)

S =wr (20)

where w was a random number in (0, 1), r was the rating, and s indicated a generated weighted
sampling score. We sampled all nodes in the neighborhood, arranged them in descending order, and
took the highest N; (N;) as the neighborhood of the user/item.

5. The proposed method

We conducted experiments on three empirically acquired datasets to verify the effectiveness of
our proposed model and answered the following questions:
e QI: How does the performance of our model compare with state-of-the-art collaborative filtering
models?

Electronic Research Archive Volume 31, Issue 2, 793—811.

804

e Q2: How effective is the preference learned from the adaptive preference retention mechanism?
Can it be used for residual preference prediction?
e Q3: How do different hyperparameters affect the model?

5.1. Datasets

We used three empirically acquired datasets to validate our model: Amazon, FilmTrust, and Yelp.
Their main properties were listed in Table 2. We took 80% of each dataset as the training set and the
other 20% as the test set.

e Amazon: The Amazon is a widely used product recommendation dataset containing 65,170
ratings from 1000 users on 1000 items.

e FilmTrust: FilmTrust is a movie sharing and rating website containing 35,497 ratings from 1508
users on 2071 items.

e Yelp: This is a dataset to recommend local businesses containing 30,838 ratings from 1286 users
on 2614 items.

5.2. Baseline

To verify the effectiveness of our model, we used the following methods for comparison:

e PMF [22]: This is the most popular matrix factorization model for a CF-based recommender
systems.

e BiasedMF [3]: This is a factorization model that considers biases to model user and item
preferences.

e SVD++ [23]: It utilizes implicit feedback to capture fine-grained user preferences.

e AutoRce [25]: It utilizes an encoder layer to project the user’s/item’s observed ratings into a latent
space, and then reconstructs them using a decoder layer.

e NGCEF [26]: It is a deep learning method that uses the GNN to extract higher-order connectivity
for recommendation.

e LR-GCCF [27]: The model uses a residual network to alleviate over-smoothing in the user-item
grap.

e MCCF [28]: It decomposes the user’s motivation for purchasing, and uses node-level and
component-level attention mechanisms to generate user/item preferences.

Table 2. The statistics of the datasets used in this study.

Dataset #User #Items #Interactions Density Rating Scale
Amazon 1000 1000 65,170 6.5175% 1-5
FilmTrust 1508 2071 35,497 1.136% 0.5-4

Yelp 1286 2614 30,838 0.917% 1-5

Electronic Research Archive Volume 31, Issue 2, 793—811.

805

Table 3. Comparison of performance of recommendation algorithms on three empirically
acquired datasets with seven baselines. The best performances were presented in bold, and
the underlined scores represented the second-best performances.

Data Metrics PMF Biased SVD++ I- NGCF LR- MCCF APR- Improve
sets MF AutoRec GCCF GCCF

Ama RMSE 0.9636 0.9446 0.9430 0.9582 0.9318 0.9467 0.9325 0.8986 3.6%
zon MAE 0.7354 0.7257 0.7132 0.7324 0.6944 0.7155 0.6827 0.6664 2.4%
Fiim RMSE 1.0145 009129 009177 0.9307 0.9064 0.9151 0.8977 0.8859 1.3%
Trust MAE 0.7263 0.7010 0.7265 0.7188 0.6989 0.6917 0.7053 0.6809 1.6%
RMSE 0.3909 0.3636 0.3625 0.3402 0.3767 0.3860 0.3341 0.3253 2.6%
MAE 0.1881 0.1509 0.1548 0.1422 0.1352 0.1669 0.1973 0.0879 35%

Yelp

5.3. Implementation

We adopted two widely used evaluation metrics, respectively, the RMSE (root mean squared error)
and MAE (mean absolute error) to assess the predicted ratings of items. We set the number of layers
of the graph neural network to {1,2,3,4,5} and the number of dimensions of the embedding d to
{16,32,64,128,256}. We randomly initialized the model parameters using a Gaussian distribution N
(0, 0.1) and took Adam as the optimizer. The batch used for training was {64, 128,256,512} and the
learning rate was {0.00005,0.0001,0.0005,0.001,0.01} . The dropout rate was
{0.1,0.2,0.3, 0.4, 0.5}. We used LO regularization and the regularization parameters from [39].

5.4. Baseline comparison (Q1)

We compared the performance of all methods. Table 3 shows the errors incurred by all of them in
the experiments.

We have the following observations: 1) Our model, the APR-GCCEF, generally outperformed all
the other baselines in terms of the RMSE and MAE, which showed its superiority in the
recommendation. 2) The APR-GCCF further improved recommendation performance compared with
the NGCF and MCCEF. This suggested that considering the differences among items when modeling
user preferences helped improve recommendation performance. 3) Our method consistently
outperformed the LR-GCCEF. Although the LR-GCCEF used a residual network to predict user interest,
it neglected the varying contributions of items to this outcome. 4) The APR-GCCF achieved better
performance than the PMF, BiasedMF, and SVD++. Because these three methods were based on the
MEF, whereas the APR-GCCF was based on the graph neural networks, and took the user-item graph as
input to model the user preference. 5) Of the baselines, the NGCF, LR-GCCF, MCCF, and APR-GCCF
belonged to graph neural network-based methods, which indicated that graph neural networks were
powerful in terms of learning representations for the user-item graph.

Electronic Research Archive Volume 31, Issue 2, 793—811.

806

1.00 0.85 1.20 11 0.400 0.
[- RUSE W e
. WAE 1.15 - AE 0.375 e

0.350
0.325

g 03001

0.250

0.225

0.75 0.55 0.75 0.6 0.200
APR=al | APR-residual APR-retain APR-GOCF APR-al | APR-residual APR-retain APR-GOCF APR-all APR-res APR-retain APR-GCCF

(a) Amazon (b) FilmTrust (c) Yelp

Figure 3. Comparison of performance of variants of the APR-GCCF model.

- PR - PR
W APRAATT

RMSE

0.0
Amazon Yelp FilmTrust Amazon Yelp FilmTrust

(a) RMSE (b) MAE
Figure 4. Performance of the APR-GCCF and APR+ATT in terms of the RMSE and MAE.
9.5. Ablation study (Q2)

We designed three variants of the proposed model: APR-all, APR-residual, and APR-retain. APR-
residual and APR-retain involved the proposed method without the residual preference mechanism and
the adaptive preference retention mechanism, respectively, and APR-all consisted of the proposed
method without both. We conducted experiments using them on the three empirically acquired datasets
and compared the results with those of our proposed model.

The experimental results were shown in Figure 3.

Figure 3 illustrated that APR-all, APR-residual, and APR-retain delivered worse performance
than the proposed method in varying degrees on the three datasets. There were three reasons. First,
when we removed the adaptive and the residual preference prediction mechanisms, our model
degenerated into a normal GNN that yielded poorer performance in terms of collaborative filtering.
Second, the GNN treated the contributions of all items as the same because it did not have the adaptive
preference retention mechanism, and thus could not distinguish among the items. Finally, when the
residual preference prediction mechanism was removed, the GNN could not handle the problem of
over-smoothing, so this degraded its performance.

Effectiveness of adaptive preference retention mechanism: APR-residual delivered worse
results than APR-GCCF, which indicated that considering the differences among items is important for
learning user preferences and improving recommendation-related performance.

Electronic Research Archive Volume 31, Issue 2, 793—811.

807

To distinguish the adaptive preference retention mechanism and the attention mechanism, we
designed an attention-based variant of the proposed method called APR+ATT, i.e., we used an attention
mechanism instead of the adaptive preference retention mechanism. We experimented it on three
datasets and compared its results with those of the proposed APR-GCCEF, as shown in Figure 4.

The APR+ATT was inferior to our model on both evaluation metrics on the three datasets. This is
because the attention mechanism usually pays more attention to items with larger weights, and cannot
effectively retain the difference information between items. Besides, using the attention mechanism to
model user representations, items with higher weights were usually assigned more contributions to the
user representation, while items with lower weights may be ignored. So, this cannot reflect the
difference information between the items. It did not consider the differences among items, which was
an important reason for the inefficiency of APR+ATT.

Effectiveness of residual preference prediction mechanism: Figure 3 showed that the APR-all
delivered worse than APR-retain. This verifies the effectiveness of the residual preference prediction
mechanism. We asserted that the traditional GNN suffered from data sparsity and over-smoothing
during propagation in higher-order neighborhoods. We integrated the aggregated results of each layer
of the GNN into the final prediction by using a residual network, and this helped avoid data sparsity
and over-smoothing, thus improving performance in terms of recommendations.

5.6. Effect of hyperparameters (Q3)

Since the number of GNN layers is critical to the model, we investigated its impact on
performance. We also analyzed the effects of the learning rate and the number of embedding
dimensions on the APR-GCCEF.

The effect of the number of GNN layers: In the graph convolution clustering process, the
number of layers of the graph convolution is 1, which means that the first-order neighborhoods are
aggregated. The number of layers is k, which means that the kth-order neighborhoods are aggregated.
To explore the effect of the number of layers on the model, we varied the number of GNN layers k in
therange {1, 2,3,4,5} while keeping the other parameters constant. Figure 5 implied the performance
obtained using different numbers of graph convolutional layers on the three datasets. When k = 3, the
model achieved the best performance on all three datasets. As the number of graph convolutional layers
increased, performance gradually worsened due to over-smoothing and overfitting.

The effect of the learning rate: We delved into the effects of different learning rates on the model
on the three datasets, as shown in Figure 6. We set the initial learning rate Ir to 0.01 and gradually
reduced it. The performance of the model was optimal when Ir = 0.001, and degraded as the learning
rate decreased. We thus used an appropriate learning rate to reduce the complexity of the model.

The impact of the number of embedded dimensions: The number of embedded dimensions
d was a key parameter controlling the APR-GCCEF. Figure 7 showed that the proposed method attained
the best performance on Amazon and FilmTrust at d = 64, and on Yelp at d = 32. This difference
might have been acquired owing to the varying sparsity of the datasets. In general, as d increased,
recommendation performance gradually improves, with more embedded dimensions yielding a
stronger representation. But the model’s performance worsened when the number of dimensions was
larger than the optimal value.

Electronic Research Archive Volume 31, Issue 2, 793—811.

808

1.00 0.85 1.00 0.85 0.360 0.20
- RMSE - RMSE = RMSE

- MAE - MAE 0.355 - MAE

0.18

0.350
0.345

< L0340 014 %
:z 2

0.335
0.12
0.330

0.10
0.325

0.60 0.320 0.08

3 4 5

(a) Amazon (b) FilmTrust (c) Yelp

Figure 5. The effect of the number of layers of the GCN on the three datasets.

1.00 0.85 X 0.90 0.400 05
T FSE S — s - RMSE
- MAE el 0375 e
. 0.85
095 osa 1.00 0.4
0.350
0.75 0.8
0.325
0.90 0.95 03
w w w w
] 7048 € 075% 0.300 <
H o070z 3 £ = =
0.85 0.9 0.275 0.2
0.65 0.70
0.250
0.80 0.85
0.60 0.65 01
0.225
075 055 0.80 0.60 0.200
5e-05 0.0001 0.0005 0.001 0.01 5e-05 0.0001 0.0005 0.001 0.01 5e-05 0.0001 0.0005 0.001 0.01

Figure 6. The effect of learning rate on the three datasets.

13 12 13 12 0.3400

- RMSE - RMSE -S|
- MAE n — MAE 0.3375 el R
12 12 11
03350
1.0 1.0 16
11 11
03325
9
I w w 09 L w 14,
210 = 210 2 203300 <
z = z - s
8 08
03275 012
09 09
0.7
0.3250
0.10
08 0.8 &
09 0.8 03225
0.7 05 0.7 0.5 0.3200 0.08
16 2 64 128 256 16 32 64 128 256 16 32 64 128 256

Figure 7. The effects of embedded dimensions on the three datasets.
6. Conclusions and future work

We proposed a graph network model called the APR-GCCF to model collaborative filtering to
predict the ratings assigned by users to items to make recommendations to them. The APR-GCCF was
composed of two parts. An adaptive preference retention mechanism was used to adaptively
distinguish the items. We retained differences among these items to model fine-grained user/item
preferences. In addition, to reduce data sparsity and the effect of over-smoothing introduced by higher-
order layers of the GNN, we designed a residual preference prediction mechanism that used a residual

Electronic Research Archive Volume 31, Issue 2, 793—811.

809

network to concatenate the user/item preference generated by each layer of the GNN. We conducted
extensive experiments on three real-world datasets to validate the effectiveness of our approach.
Although the APR-GCCF has achieved success, information is collected from adjacent nodes
without distinguishing which path the information comes from. However, this problem is necessary
for improved model capability and interpretability. In future work, we will investigate this problem.

Acknowledgments

This study was supported by the Jilin Provincial Development and Reform Commission (contract
number 2022C046-5) and the Scientific Research Project of The Education Department of Jilin
Province in 2023, NO. JJKH20231514K.

Conflict of interest
The authors declare there is no conflict of interest.
References

1. S. Milano, M. Taddeo, L. Floridi, Ethical aspects of multi-stakeholder recommendation systems,
Inf. Soc., 37 (2021), 35—45. https://doi.org/10.1080/01972243.2020.1832636

2. H.Tang, G. Zhao, X. Bu, X. Qian, Dynamic evolution of multi-graph based collaborative filtering
for recommendation systems, Knowledge-Based Syst., 228 (2021), 107251.
https://doi.org/10.1016/j.knosys.2021.107251

3. Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems,
Computer, 42 (2009), 30—37. https://doi.org/10.1109/MC.2009.263

4. G. Datta, P. A. Beerel, Can deep neural networks be converted to ultra low-latency spiking neural
networks, in 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2021.
https://doi.org/10.23919/DATE54114.2022.9774704

5. C. Gao, X. Wang, X. He, Y. Li, Graph neural networks for recommender system, in Proceedings
of the Fifteenth ACM International Conference on Web Search and Data Mining, (2022),
1623-1625. https://doi.org/10.1145/3488560.3501396

6. S.Jang, H. Lee, S. Cho, S. Woo, S. Lee, Ghost graph convolutional network for skeleton-based
action recognition, in 2021 IEEE International Conference on Consumer Electronics-Asia (ICCE-
Asia), 2021. https://doi.org/10.1109/ICCE-Asia53811.2021.9641919

7. J. Xu, L. Chen, M. Lv, C. Zhan, S. Chen, J. Chang, HighAir: a hierarchical graph neural network-
based air quality forecasting method, preprint, arXiv:2101.04264. 86.

8. V. Kalofolias, X. Bresson, M. Bronstein, P. Vandergheynst, Matrix completion on graphs,
preprint, arXiv:14081717.

9. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T. Chua, Neural collaborative filtering, in Proceedings
of the 26th International Conference on World Wide Web, (2017), 173-182.
https://doi.org/10.1145/3038912.3052569

10. X. Wei, J. Liu, Effects of nonlinear functions on knowledge graph convolutional networks for
recommender systems with yelp knowledge graph, Lamar University, Beaumont, (2021),
185—-199. https://doi.org/10.5121/csit.2021.110715

Electronic Research Archive Volume 31, Issue 2, 793—811.

810

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

W. Li, L. Ni, J. Wang, C. Wang, Collaborative representation learning for nodes and relations via
heterogeneous graph neural network, Knowledge-Based Syst., 255 (2022), 109673.
https://doi.org/10.1016/j.knosys.2022.109673

C. Huang, Recent advances in heterogeneous relation learning for recommendation, preprint,
arXiv:211003455.

H. B. Kang, R. Kocielnik, A. Head, J. Yang, M. Latzke, A. Kittur, et al., From who you know to
what you read: augmenting scientific recommendations with implicit social networks, in
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, (2022), 1-23.
https://doi.org/10.1145/3491102.3517470

T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks,
preprint, arXiv:1609.02907.

X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: simplifying and powering graph
convolution network for recommendation, in Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, (2020), 639-648.
https://doi.org/10.1145/3397271.3401063

B. Jin, C. Gao, X. He, D. Lin, Y. Li, Multi-behavior recommendation with graph convolutional
networks, in Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, (2020), 659—-668.
https://doi.org/10.1145/3397271.3401072

L. Ma, Y. Li, J. Li, W. Tan, Y. Yu, M. A. Chapman, Multi-scale point-wise convolutional neural
networks for 3D object segmentation from LiDAR point clouds in large-scale environments, IEEE
Trans. Intell. Transp. Syst., 22 (2019), 821-836. https://doi.org/10.1109/TITS.2019.2961060

X. Wang, H. Jin, A. Zhang, X. He, T. Xu, T. Chua, Disentangled graph collaborative filtering, in
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, (2020), 1001—-1010. https://doi.org/10.1145/3397271.3401137

Y. Zheng, C. Gao, L. Chen, D. Jin, Y. Li, DGCN: diversified recommendation with graph
convolutional networks, in Proceedings of the Web Conference, (2021), 401-412.
https://doi.org/10.1145/3442381.3449835

R. Raziperchikolaei, Y. J. Chung, Simultaneous learning of the inputs and parameters in neural
collaborative filtering, preprint, arXiv:2203.07463.

R. Yin, K. Li, G. Zhang, J. Lu, A deeper graph neural network for recommender systems.
Knowledge-Based Syst., 185 (2019), 105020. https://doi.org/10.1016/j.knosys.2019.105020
R. R. Salakhutdinov, A. Mnih, Probabilistic matrix factorization, in Proceedings of the 20th
International Conference on Neural Information Processing Systems, (2007), 1257—1264.

Y. Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model,
in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, (2008), 426—434. https://doi.org/10.1145/1401890.1401944

J. Wei, J. He, K. Chen, Y. Zhou, Z. Tang, Collaborative filtering and deep learning based
recommendation system for cold start items, Expert Syst. Appl., 69 (2017), 29-39.
https://doi.org/10.1016/j.eswa.2016.09.040

S. Sedhain, A. K. Menon, S. Sanner, L. Xie, Autorec: autoencoders meet collaborative filtering,
in Proceedings of the 24th International Conference on World Wide Web, (2015), 111-112.
https://doi.org/10.1145/2740908.2742726

Electronic Research Archive Volume 31, Issue 2, 793—811.

811

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

A

I

X. Wang, X. He, M. Wang, F. Feng, T. Chua, Neural graph collaborative filtering, in
Proceedings of the 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, (2019), 165—174. https://doi.org/10.1145/3331184.3331267

L. Chen, L. Wu, R. Hong, K. Zhang, M. Wang, Revisiting graph based collaborative filtering:
a linear residual graph convolutional network approach, in Proceedings of the AAAI Conference
on Artificial Intelligence, 34 (2020), 27—34. https://doi.org/10.1609/aaai.v34i01.5330

X. Wang, R. Wang, C. Shi, G. Song, Q. Li, Multi-component graph convolutional collaborative
filtering, in Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2020), 6267—-6274.
https://doi.org/10.1609/aaai.v34i04.6094

C. Zhang, W. Li, D. Wei, Y. Liu, Z. Li, Network dynamic GCN influence maximization algorithm
with leader fake labeling mechanism, IEEE Trans. Comput. Social Syst., 2022 (2022), 1-9.
https://doi.org/10.1109/TCSS.2022.3193583

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural network
model, IEEE Trans. Neural Networks, 20 (2008), 61-80.
https://doi.org/10.1109/TNN.2008.2005605

M. Gori, G. Monfardini, F. Scarselli, A new model for learning in graph domains, in 2005 IEEE
International ~ Joint ~ Conference on Neural Networks, (2005), 729-734.
https://doi.org/10.1109/IJCNN.2005.1555942

W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs, in
Proceedings of the 31st International Conference on Neural Information Processing Systems,
(2017), 1025-1035.

P. Velikovi, G. Cucurull, A. Casanova, A. Romero, P. LiQ Y. Bengio, Graph attention networks,
preprint, arXiv:1710.10903.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all
you need, in 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017.
Available from: https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053clc4a845aa-
Paper.pdf.

K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks, preprint,
arXiv:181000826.

X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, et al., Heterogeneous graph attention network, in
The World Wide Web Conference, (2019), 2022—2032. https://doi.org/10.1145/3308558.3313562
F. Wu, T. Zhang, A. H. de Souza, C. Fifty, T. Yu, K. Q. Weinberger, Simplifying graph
convolutional networks, 2019 (2019), 6861—-6871. https://doi.org/10.48550/arXiv.1902.07153
M. Liu, H. Gao, S. Ji, Towards deeper graph neural networks, in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, (2020), 338—348.
https://doi.org/10.1145/3394486.3403076

C. Louizos, M. Welling, D. P. Kingma, Learning sparse neural networks through $L_0%
regularization, preprint, arXiv:171201312.

©2023 the Author(s), licensee AIMS Press. This is an open access

0\
MS AIMS PI'GSS article distributed under the terms of the Creative Commons

[Attribution License (http://creativecommons.org/licenses/by/4.0).

Electronic Research Archive Volume 31, Issue 2, 793—811.

