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Abstract: Collaborative filtering is one of the most widely used methods in recommender systems. 

In recent years, Graph Neural Networks (GNN) were naturally applied to collaborative filtering 

methods to model users’ preference representation. However, empirical research has ignored the 

effects of different items on user representation, which prevented them from capturing fine-grained 

users’ preferences. Besides, due to the problem of data sparsity in collaborative filtering, most GNN-

based models conduct a large number of graph convolution operations in the user-item graph, 

resulting in an over-smoothing effect. To tackle these problems, Adaptive Preference Retention 

Graph Convolutional Collaborative Filtering Method (APR-GCCF) was proposed to distinguish the 

difference among the items and capture the fine-grained users’ preferences. Specifically, the graph 

convolutional method was applied to model the high-order relationship on the user-item graph and 

an adaptive preference retention mechanism was used to capture the difference between items 

adaptively. To obtain a unified users’ preferences representation and alleviate the over-smoothing 

effect, we employed a residual preference prediction mechanism to concatenate the representation 

of users’ preferences generated by each layer of the graph neural network. Extensive experiments 

were conducted based on three real datasets and the experimental results demonstrate the 

effectiveness of the model. 
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1. Introduction  

Recommender systems have attracted considerable attention from both the industry and 

academia [1,2]. Collaborative filtering (CF) is among the most important recommendation method and 

depends on a basic assumption that people with similar purchasing experiences in the past will make 

similar decisions in the future [3]. With the development of graph neural networks (GNN) [4,5], the 

application of GNN in recommender systems has become increasingly mature [6,7]. In recent years, 

the history of user-item interactions has been modeled as a user-item graph [8] and applied to 

knowledge graphs [9,10], heterogeneous graphs [11,12], and social recommendations [13]. In 

addition, the graph convolutional network (GCN) [14] has been applied extensively to recommender 

systems [15−19] and delivered promising performance. Compared with the traditional CF methods, 

the graph neural network has powerful feature extraction and learning capabilities. The graph 

convolution can capture the high-order neighborhoods information and the complex interaction 

relationship on the user-item graph, and generate the feature information of the local graph 

neighborhood of the user/item. First-order neighborhoods are the user’s direct neighbors, second-order 

neighborhoods are the neighbors of the user’s neighbors, and so on. Higher neighborhoods than first-

order are called high-order neighborhoods. Meanwhile, GNN combines the target nodes own 

representation with it’s neighborhood information to update the new representation of the target node. 

The graph convolutional method stacks multiple graph convolutional layers and can aggregate features 

of users and items. Furthermore, exploiting high-order relationships on the user-item graph can 

alleviate the problem of data sparsity in collaborative filtering [20]. 

Despite their enormous success, these methods assumed that all interactive items could be used 

to model user preferences, in which each item contributed the same in generating user preferences. 

However, the distinctions among the items determine the purchasing behaviors of users. For instance, 

different items have different attributes, such as functionality and appearance. When users purchase 

an item, some of them prefer functionality while others prefer its appearance. This prompts us to 

capture fine-grained preference. A more detailed and specific description of the users’ preferences 

for the item, namely user fine-grained preferences. Similarly, item fine-grained preferences mean 

more granular features of items, for example, goods will be preferred by users because of their price 

or quality advantages. 

Meanwhile, when the graph convolution operation generates the user’s representation, it suffers 

from an over-smoothing effect on the high-order neighborhood. Therefore, when modeling user 

preferences, it is important to consider the difference between items to capture the fine-grained 

preferences of users/items and alleviate the over-smoothing on the user-item graph. 

As is shown in Figure 1. Different ratings of items indicate their different contributions to user 

preferences. If items are similar in terms of importance, it is unclear whether the user assigns an item 

a high or low rating. However, if we consider differences between items, we may find that assign a 

high rating because the attributes are more consistent with the characteristics of a career. Hence, failing 

to discern the differences between items may limit the performance of the recommender system. It is 

therefore desirable to design a recommender system to adaptively identify differences among items to 

acquire fine-grained user preferences. 

Although it is useful to distinguish the differences among items, three challenges are outstanding 

in this context. The first challenge stands in the large and complex user-item graph, which makes it 

difficult to capture the differences between items in the user-item graph. The second challenge involves 
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ways to incorporate the differences between items into modeling user preferences. It is also difficult 

to identify items that are important for modeling user preferences from among the large number with 

which he/she interacts. Besides, the user-item graph usually suffers from the problems of data sparsity 

and over-smoothing due to the cold start issue inherent in recommender systems. Hence, the third 

challenge pertains to the means of solving these problems in the user-item graph. 

In this paper, we proposed an Adaptive Preference Retention Graph Convolutional Collaborative 

Filtering Method (APR-GCCF), which is an end-to-end model that differentiates distinctions between 

items to model user preferences. To address the first two challenges, we proposed an adaptive 

preference retention mechanism. It contains two important elements. First of all, when users interact 

with different items, the contributions of different items to the user’s representation are different. So, 

we adopted a trainable weight pair for different neighborhoods that generated corresponding scores 

and then assign them to capture neighborhoods to the user’s local interest. Moreover, when we used 

GNN to aggregate neighborhoods of user nodes, different neighborhoods would carry different item 

node information. So, we modeled the user and item preferences through two trainable mapping 

vectors to capture fine-grained user and item preferences. To address the third, we exploited a residual 

preference prediction mechanism. Among them, to alleviate the problem of data sparsity, we used a 

multi-layer GNN to aggregate higher-order neighbors. However, similar to previous work [21], multi-

layer GNNs can cause an over-smoothing problem. The essence of over-smoothing is that too much 

information about the other nodes suppress the information of the nodes themselves. By using the 

residual network, we connected its embedding and the aggregated new vector when updating the node 

embedding. This implemented the decoupling of neighborhoods and their information; thus the 

problem of over-smoothing could be relieved. 

The contributions of this paper are as follows: 

⚫ We use a residual preference prediction mechanism that exploits high-order relationships and the 

residual network, which can alleviate the problems of data sparsity and over-smoothing generated 

by the user-item graph. 

⚫ To distinguish the different contributions made by different items to user embedding, we design 

an adaptive preference retention mechanism to adaptively identify different types of information 

provided by different items, thus capturing a fine-grained representation of the user’s preference. 

⚫ We use L0 regularizers to address the overfitting problem and apply a weighted random sampling 

strategy to select items that are important for user preference modeling. We validate the 

effectiveness of the proposed framework (APR-GCCF) on three empirically acquired datasets: 

Amazon, FilmTrust, and Yelp. 

The following parts of this paper were organized as follows: In Section 2, relevant works related 

to collaborative filtering and graph convolution neural networks were reviewed. In Section 3, we 

defined the formulations of the recommendation problem in our paper. The framework proposed was 

presented in Section 4 and three empirically acquired datasets were verified in Section 5. Finally, we 

summarize our work here and suggested directions for future research in the area in Section 6.  
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Figure 1. The impact of items on users when they purchase them. 

2. Related works 

This section focuses on two areas of research directly related to our study: collaborative filtering 

and graph neural networks. 

2.1. Collaborative filtering 

Collaborative filtering (CF) assumed that users with similar behaviors would have similar 

preferences for items. Most collaborative filtering algorithms that have been proposed in recent years 

used matrix factorization (MF) for the recommendation. Matrix factorization (MF) involved mapping 

users and items into a shared latent space and learning vector information to make recommendations. 

The PMF [22] utilized Gaussian distribution to model latent factors related to users and items, and then 

used their product to predict item ratings. BiasedMF [3] improved the PMF by combining user/item 

bias and a global bias. SVD++ [23] utilized implicit feedback (such as the number of clicks and 

identification of items by users as their favorite) to model user preferences. Deep learning models have 

yielded impressive performance in recommender systems in recent years. [24] combined collaborative 

filtering and neural networks to solve the cold start problem. NCF [9] employed deep learning to learn 

complicated internal interactions between users and items. AutoRec [25] utilized an encoder layer to 

project the user’s/item’s observed ratings into a latent space and reconstructs them using a decoder 

layer. Another relevant method involved modeling the history of user-item interactions as a user-item 

graph [8] to predict user preferences. The NGCF [26] adopted graph neural networks to capture higher-

order connectivity and extracted a collaborative signal for a user-item graph. The LR-GCCF [27] 

exploited the residual network to solve the problem of over-smoothing in the user-item graph, and 

eliminated the nonlinearity in the GNN to improve recommendation performance. The MCCF [28] 

decomposed the user’s motivations for purchasing items. Meanwhile, MCCF used node-level and 

component-level attention mechanisms to generate user/item preferences. 
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2.2. Graph neural networks 

Graph neural networks were first proposed by [29−31]. The graph convolutional network (GCN) 

has lately achieved remarkable success in various tasks of graph-based analysis. It aggregated features 

derived from neighbors of the target node and propagated the information related to it in the graph to 

update new node embeddings. While different from the GCN, GraphSAGE [32] also aggregated 

features from local neighbors and used uniform sampling to generate a node embedding. The GAT [33] 

employed an attention mechanism [34] to adaptively assign weights to a node’s neighbors when 

performing an aggregate operation. The GIN [35] operated through an injection-based neighborhood 

aggregation scheme. It applied a learnable mechanism of combining features to preserve the local 

graph structure and features of the nodes. The HAN [36] has considered the difference in importance 

among nodes in the convolution process, and the SGC [37] reduced the complexity of the GCN by 

removing feature transformations and nonlinear activations. It was used as a low-pass filter in the 

spectral domain to reduce the effects of over-smoothing as well. The developers of the DAGNN [38] 

claimed that the effects of entanglement of representational transformation and information 

propagation primarily affected the performance of the GNN and devised an adaptive fusion weight to 

adjust the effect of over-smoothing on it. 

3. Preliminaries 

In this section, we will introduce the notation used in this paper. We classically modeled the 

history of user-item interactions as a user-item graph G = {U, V, R, E} [28]. Let U = {u1, u2, … , un} 

and V = {v1, v2, … , vm} denoted the sets of users and items, respectively, where 𝑛 was the number of 

users and 𝑚 was the number of items. We assumed that R ∈ ℝn×m was the user-item graph and may 

contain several ordinal rating levels {1, … , R} . Each edge e = (ui, vj, rij) ∈ E  showed that user 

ui assigned rating rij to item vj. If ui assigned a rating to vj, rij is the rating, otherwise, rij = 0. 

Generally, we let Rui
 be the set of items that have interacted with the user ui, Rvj

 be the set of users 

who vj have interacted with. We used an embedding vector sui ∈ Rd and an embedding vector hvj ∈

Rd to denote a user ui and an item vj, respectively, where d was the dimension of the embedding 

vector. The mathematical notations used in this paper are given in Table 1. Then the task of rating 

prediction can be formulated as:  

Input: The user-item interaction matrix R. 

Output: Each user’s missing rating for the item. 
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Table 1. Notations. 

Notations Description 

𝐮𝐢 User i 

𝐮𝐣 Item j 

𝐬𝐮𝐢 The embedding of user ui. 

𝐡𝐯𝐣 
The embedding of item vj. 

𝐑𝐮𝐢
 The set of items with which user ui interacts. 

𝐑𝐯𝐣
 The set of users who have interacted with item vj. 

𝐞𝐮𝐢
 The new aggregated representation of user ui, obtained by combining the 

neighborhood of ui with its own features. 

𝐞𝐯𝐣
 The new aggregated representation of item vj, obtained by combining the 

neighborhood of vj and its own features. 

𝐚𝐮𝐢 The preference retention score of user ui. 

𝐚𝐯𝐣 The preference retention score of item vj. 

𝐀𝐮𝐢 Preference representation of user ui. 

𝐀𝐯𝐣 Preference representation of item vj. 

K The number of GNN layers. 

𝐠𝐢𝐣
𝐤 User preference for the k-th layer. 

W, b Weight and bias in the MLP. 

  The concatenation operator of two vectors. 

𝐫̂𝐢𝐣 The predicted rating of item vj by user ui. 

λ The regularized penalty coefficient. 

4. Adaptive preference retention collaborative filtering algorithm based on graph 

convolutional method 

4.1. Overview 

In this part, we proposed Adaptive Preference Retention Graph Convolutional Collaborative 

Filtering Method (APR-GCCF) which was a general graph neural network based on the CF model for 

the recommendation. The general framework of the APR-GCCF was shown in Figure 2. APR-GCCF 

consisted of two major components. The first component, an adaptive preference retention mechanism, 

is shown in the red dotted line and blue dotted line of Figure 2 used the GNN to assemble the 

user’s/item’s neighborhood to learn the user/item embedding and took the user of a trainable mapping 

vector m1/m2  that was shared between layers of the GNN generated retain scores a0, … , ak  to 
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differentiate among users/items. The second component was a residual preference prediction 

mechanism as shown in the black dotted line of Figure 2. It utilized a residual network to concatenate 

user’s/item’s preferences representations from an adaptive preference retention mechanism. Finally, 

the user-item interaction ratings were predicted through MLP. 

 

Figure 2. The framework of APR-GCCF. 

4.2. Adaptive preference retention mechanism 

In this paper, we aimed to learn the fine-grained preference Aui
 of user ui and representation 

Avj
  of item vj  from user-item graph. It was claimed that user ui ’s preference relied on his/her 

characteristics sui  and neighborhood ha,k , where a ∈ Rui
 . So, we combined ui ’s characteristics 

with features of ui’s neighborhood through an aggregation function Aggreuser. When aggregating the 

features of the user to generate item vj’s embedding, a similar aggregation function Aggreitem was 

used. The aggregation process as follows: 

eui
k+1 = Aggreuser(sui,k, ∑ ha,k

a∈Rui
)      (1) 

evj
k+1 = Aggreitem(hvj,k, ∑ sb,k

b∈Rvj
)      (2) 

where eui
k+1 denoted the user ui’s embedding of GNN at layer k that is generated by user aggregation 

function Aggreuser. k ∈ (1, … , K) indicated the number of layers in GNN. Rui
 was the set of items 

that user ui has interacted with. Rvj
 represented the set of users that have interacted with the item 

vj, s
ui,k denoted the vector of user ui at k-th layer. hvj,k was the vector of item vj at k-th layer. 

Then we will discuss how to define aggregation functions Aggreuser and Aggreitem. 

We adopted aggregation functions that is different from the traditional graph convolutional 
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networks on the user-item graph to capture the user’s/item’s representations. To be specific, the 

attention mechanism was applied to aggregate the neighborhood of user/item, as below: 

eui
k+1 = Relu(Wuser ∙ (sui,k ⊕ ∑ αi,aha,k

a∈Rui
) + buser)    (3) 

evj
k+1 = Relu(Witem ∙ (hvj,k ⊕  ∑ αj,bsb,k

b∈Rvj
) + bitem)    (4) 

where αi,a denoted the attention coefficient of items in the user’s neighborhood when characterizing 

user ui’s representation from the user-item interaction history Rui
. αj,b denoted the attention weight 

of users in the item vj’s neighborhood when characterizing item vj’s representation from the item-

user interaction history Rvj
 .  Relu(∙)  was the Relu activate function. Wusers / Witems  and 

buser /bitem  were weight and bias of aggregation functions, respectively.  ⊕  is the concatenation 

operation. Take the aggregation function of user ui as an example, we took user ui’s representation 

sui,k and features of item interacted with user ui as input, then use the Softmax function to produce 

the attention coefficient αi,a as: 

αi,a =  
exp (Relu(Wi,j∙(sui,k⊕ha,k)))

∑ exp (Relu(Wi,j∙(sui,k⊕ha,k)))a∈Rui

       (5) 

αj,b =  
exp (Relu(Wj,i∙(sui,k⊕ha,k)))

∑ exp (Relu(Wj,i∙(sui,k⊕ha,k)))b∈Rvj

       (6) 

where Wi,j and Wj,i were the attention weight of αi,a and αj,b. 

The GNN can capture information on the neighborhood of a given node through the feature 

propagation mechanism. The nodes were assumed to contribute similarly to the neighborhood 

aggregation process, which led to the inevitable loss of fine-grained user preference-related 

information. In practice, the purchasing behavior of the user was usually determined by differences 

among items. Therefore, different items should make different contributions to generate user 

embedding. This motivated us to design an adaptive preference retention mechanism to adaptively 

identify different kinds of information provided by different items. 

By taking original user embedding generated by the GNN as input, we took advantage of a 

trainable mapping vector shared between layers of the GNN to learn the differences among items, and 

to output their preference retention scores, such as aui,k and avj,k. These preference retention scores 

were used for representations that carried information on the differences among items in 

neighborhoods spanning a variety of ranges, and also for measuring the feature-related information of 

the items to identify their contributions as follows: 

aui,k = Relu (m1 ⋅ eui
k + n1)       (7) 

avj,k = Relu (m2 ⋅ evj
k + n2)       (8) 

where  aui,k  was the preference retention scores of the user ui  at k-th layer, and  aui,k  was the 

preference retention scores of vj  same as ui . m1  and m2  indicated trainable mapping vectors 

shared by the processes of user and item preference modeling, respectively, and n1  and n2  were 

biases. eui
k  and evj

k  are user’s/item’s embeddings generated by GNN at the k-th layer. 

Finally, we confirmed differences among the items by using the preference retention scores and 

preserving the differences in user embeddings automatically to model fine-grained user preferences. 

The generated user/item preference embeddings Aui,k/Avj,k were as follows: 
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Aui,k = aui,k ⊙ eui
k          (9) 

 Avj,k = avj,k ⊙ evj
k          (10) 

where ⊙  represented element-wise multiplication, and Aui,k and Avj,k  were the preference 

embeddings of the user and the item in layer k. 

When users interact with different items, the contributions of different items to the user’s 

representation are different. As shown in Figure 1, the user’s current preference is shoes, so shoes are 

critical to modeling user preferences, and the contribution of musical instruments to the user’s 

representation will be much smaller, therefore, the user’s rating of shoes is higher than that of musical 

instruments. We have added an attention mechanism to the aggregation process of the graph neural 

networks, namely Eqs (5) and (6), and model the user’s representation by assigning corresponding 

preference scores αi,a and αj,b to different items. At the same time, we regard the user’s neighbors 

of different levels of user interaction as the user’s local interest. We believe that the local interest also 

plays a vital role in determining the final user’s preferences, so we adopt a trainable weight pair for 

different neighborhoods generate corresponding scores, namely Eqs (7) and (8), and assign them to 

each neighborhood to generate the final user representation. 

When we used GNN to aggregate the high-order neighborhoods of user nodes, different 

neighborhoods would carry different item node information. We modeled the user and item preferences 

through two trainable mapping vectors m1 and m2. We use the adaptively adjusted weight m1/m2 

shared between GNN layers was used to generate retention scores for different neighborhoods. These 

retention scores were applied to the user’s/item’s multi-level neighborhood to save the difference of 

the item/user nodes in each level of the user’s/item’s neighborhood. When modeling user preference, 

we considered the impact of the differences among items for user preference, i.e., the user ’s 

purchasing behavior was affected by the attributes of the items. Hence, we utilized m1 to adaptively 

identify the differences in items and retain their different features. Similarly, when modeling item 

preference, we thought that it was different decision-making procedures that determined a user’s 

decision to buy an item. We thus used m2 to distinguish among these procedures to capture fine-

grained item preferences. 

With the adaptive preference retention mechanism, APR-GCCF enabled the adaptive identification 

of differences between items and generated a fine-grained representation of users’/items’ preferences. 

The preference embeddings for the user and the item have been introduced in the previous part. 

Next, we will show how the residual preference prediction mechanism was used to generate predictions. 

4.3. Residual preference prediction mechanism 

With a predefined depth K, the traditional GNN-based recommender systems stop at the k-th layer, 

where output of the user embedding was regarded as ei
k and that of the item embedding was ej

k. In 

practice, ei
k and ej

k can catch the fine-grained preferences of user and item. Their inner product was 

used to predict the ratings r̂ij as follows: 

r̂ij = ei
k ⊙ ej

k         (11) 

where ⊙ denoted element-wise multiplication. 

Most GNN-based recommendation models won’t achieve the best performance until k = 2 or k 

= 3 (He et al., 2020; Xiang Wang, He, Wang, et al., 2019; Ying et al., 2018). The performance dropped 
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quickly when K continued to increase. We think that the reason was that the embedding of each 

user/item node was smoothed by higher-order neighbors in the user-item graph. Thus, it was the 

problem of over-smoothing. In the collaborative filtering task, there was few user-item interactions, 

and consequently rendered the effect of over-smoothing severe. To solve these problems, a residual 

preference prediction mechanism was proposed. We performed a concatenation operation on user and 

item preference embeddings Aui,k  and Avj,k  generated by the adaptive preference retention 

mechanism in layer k as follows: 

gij
k = Aui,k ⊕ Avj,k        (12) 

where ⊕ was the concatenation operation, k was the layer number of GNN. The residual preference 

prediction mechanism could help alleviate effect of over-smoothing by using deeper GNN layers to 

enhance the expressiveness of user preference. Hence, we used residual preference prediction 

mechanism to connects all layers of the results of prediction: 

gij =  gij
0  ⊕ gij

1  ⊕  ⋯ ⊕  gij
k       (13) 

where gij denoted the concatenation of preference-related predictions in all layers, gij
0  represented 

the initially predicted preference used as input for the user and the item, and ⊕  denoted the 

concatenation operation of the embeddings. The previous process was reasonable in that each user’s 

neighbors were different, and thus the practice that integrating each layer’s representation to generate 

the final user preference was advantageous. 

The residual preference prediction mechanism connected the user representations generated by 

the GNN of each layer with different neighborhood information to produce the final unified embedding 

of the user. At the same time, we obtained the final unified embedding of the item through the same 

operation, and combined the embedding of the user and the item to generate a prediction. 

Equation (9) was equivalent to embedding the nodes with differences in each layer to generate a 

new embedding. This was quite reasonable because the user-item interaction subgraph was different. 

As a result, the nodes in its neighborhood were different, and the contribution to the final representation 

of the node was different as well. Therefore, we integrated the representations of each layer to generate 

the final user/item embedding which contained richer information. 

Once the final preference has been obtained, we used it as input to the MLP to predict the rating 

rij from ui to vj as: 

c1 = Relu(W1gij + b1)        (14) 

c2 = Relu (W2c1 + b2)        (15) 

… 

r̂ij = Wlcl−1 + bl          (16) 

where Wl was a weight vector, bl was a bias vector, and 𝑙 was the hidden layer index. As we can see, 

the layer-wise aggregation was the main operation. For the k-th GNN layer, the aggregation function 

has computational complexity O(nm ×  d) , where 𝑛  was the number of users and 𝑚  was the 

number of items, and 𝑑 was the dimension of embedding vector. 

We used a graph convolution operation in the user-item graph to aggregate the user’s 

representation. By obtaining the user’s high-level neighborhood information, we could mine hidden 

user-item interaction relationships, which can increase the density of the data to a certain extent. 
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However, aggregating the high-level neighborhood information through multi-layer GNN will cause 

the problem of over-smoothing. The essence of over-smoothing is that too much information about the 

other nodes suppress the information of the nodes themselves. A residual network was used to inject 

the user’s previous information into the high-order neighborhoods. Specifically, we connected its 

embedding and the aggregated new vector together when updating the node embedding. This 

implemented the decoupling of neighborhoods and their information; thus the problem of over-

smoothing could be relieved. 

In the following section, some optimization strategies will be discussed. 

4.4. Optimization 

Objective function: We focused on the task of predicting ratings. The ultimate goal was thus to 

minimize the difference between the predicted rating and the ground-truth rating: 

Lr =
1

2|O|
∑  (i,j)∈O (r̂ij − rij)

2
       (17) 

where O was the set of users and items, and r̂ij and rij were the predicted ratings and the ground-

truth ratings. 

L0 regularization was used to alleviate the problem of overfitting. The final objective function was: 

 min
Θ

L = Lr + λ ∥ θ ∥0        (18) 

where λ is the L0 regularization parameter and θ represented the set of model parameters. 

Weighted random sampling strategy: To model the representation of user/item, the 

user’s/item’s neighborhoods were aggregated by applying GNN. However, a large number of 

interactions occurred between items and users. So, we usually understood user preferences using only 

some items with what he/she interacted. In Eq (1), we did not aggregate all of the items that interacted 

with the user because highly-rated items better-reflected user preferences. Hence, we adopted a 

weighted random sampling strategy to emphasize more on such items. 

We regarded the average degree of the node Ni 
 (Nj 

 ) of the user (item) as the threshold. When the 

number of nodes neighboring a given node exceeded the threshold, we chose neighborhoods using a 

random weighted sampling strategy; otherwise, all neighborhood nodes would be retained. The 

procedure was as follows: 

w = Random (0,1)        (19) 

s = w
1

r          (20) 

where w was a random number in (0, 1), r  was the rating, and s indicated a generated weighted 

sampling score. We sampled all nodes in the neighborhood, arranged them in descending order, and 

took the highest Ni 
 (Nj 

 ) as the neighborhood of the user/item. 

5. The proposed method 

We conducted experiments on three empirically acquired datasets to verify the effectiveness of 

our proposed model and answered the following questions: 

⚫ Q1: How does the performance of our model compare with state-of-the-art collaborative filtering 

models? 
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⚫ Q2: How effective is the preference learned from the adaptive preference retention mechanism? 

Can it be used for residual preference prediction? 

⚫ Q3: How do different hyperparameters affect the model? 

5.1. Datasets 

We used three empirically acquired datasets to validate our model: Amazon, FilmTrust, and Yelp. 

Their main properties were listed in Table 2. We took 80% of each dataset as the training set and the 

other 20% as the test set. 

⚫ Amazon: The Amazon is a widely used product recommendation dataset containing 65,170 

ratings from 1000 users on 1000 items. 

⚫ FilmTrust: FilmTrust is a movie sharing and rating website containing 35,497 ratings from 1508 

users on 2071 items. 

⚫ Yelp: This is a dataset to recommend local businesses containing 30,838 ratings from 1286 users 

on 2614 items. 

5.2. Baseline 

To verify the effectiveness of our model, we used the following methods for comparison: 

⚫ PMF [22]: This is the most popular matrix factorization model for a CF-based recommender 

systems. 

⚫ BiasedMF [3]: This is a factorization model that considers biases to model user and item 

preferences. 

⚫ SVD++ [23]: It utilizes implicit feedback to capture fine-grained user preferences. 

⚫ AutoRce [25]: It utilizes an encoder layer to project the user’s/item’s observed ratings into a latent 

space, and then reconstructs them using a decoder layer. 

⚫ NGCF [26]: It is a deep learning method that uses the GNN to extract higher-order connectivity 

for recommendation. 

⚫ LR-GCCF [27]: The model uses a residual network to alleviate over-smoothing in the user-item 

grap. 

⚫ MCCF [28]: It decomposes the user’s motivation for purchasing, and uses node-level and 

component-level attention mechanisms to generate user/item preferences. 

Table 2. The statistics of the datasets used in this study. 

Dataset #User #Items #Interactions Density Rating Scale 

Amazon 1000 1000 65,170 6.5175% 1−5 

FilmTrust 1508 2071 35,497 1.136% 0.5−4 

Yelp 1286 2614 30,838 0.917% 1−5 
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Table 3. Comparison of performance of recommendation algorithms on three empirically 

acquired datasets with seven baselines. The best performances were presented in bold, and 

the underlined scores represented the second-best performances. 

Data 

sets 

Metrics PMF Biased 

MF 

SVD++ I-

AutoRec 

NGCF LR-

GCCF 

MCCF APR-

GCCF 

Improve 

Ama 

zon 

RMSE 

MAE 

0.9636 

0.7354 

0.9446 

0.7257 

0.9430 

0.7132 

0.9582 

0.7324 

0.9318 

0.6944 

0.9467 

0.7155 

0.9325 

0.6827 

0.8986 

0.6664 

3.6% 

2.4% 

Film RMSE 1.0145 0.9129 0.9177 0.9307 0.9064 0.9151 0.8977 0.8859 1.3% 

Trust MAE 0.7263 0.7010 0.7265 0.7188 0.6989 0.6917 0.7053 0.6809 1.6% 

Yelp 
RMSE 0.3909 0.3636 0.3625 0.3402 0.3767 0.3860 0.3341 0.3253 2.6% 

MAE 0.1881 0.1509 0.1548 0.1422 0.1352 0.1669 0.1973 0.0879 35% 

5.3. Implementation 

We adopted two widely used evaluation metrics, respectively, the RMSE (root mean squared error) 

and MAE (mean absolute error) to assess the predicted ratings of items. We set the number of layers 

of the graph neural network to {1, 2, 3, 4, 5} and the number of dimensions of the embedding d to 

{16, 32, 64, 128, 256}. We randomly initialized the model parameters using a Gaussian distribution N 

(0, 0.1) and took Adam as the optimizer. The batch used for training was {64, 128, 256, 512} and the 

learning rate was {0.00005, 0.0001, 0.0005, 0.001, 0.01} . The dropout rate was 

{0.1, 0.2, 0.3, 0.4, 0.5}. We used L0 regularization and the regularization parameters from [39]. 

5.4. Baseline comparison (Q1) 

We compared the performance of all methods. Table 3 shows the errors incurred by all of them in 

the experiments. 

We have the following observations: 1) Our model, the APR-GCCF, generally outperformed all 

the other baselines in terms of the RMSE and MAE, which showed its superiority in the 

recommendation. 2) The APR-GCCF further improved recommendation performance compared with 

the NGCF and MCCF. This suggested that considering the differences among items when modeling 

user preferences helped improve recommendation performance. 3) Our method consistently 

outperformed the LR-GCCF. Although the LR-GCCF used a residual network to predict user interest, 

it neglected the varying contributions of items to this outcome. 4) The APR-GCCF achieved better 

performance than the PMF, BiasedMF, and SVD++. Because these three methods were based on the 

MF, whereas the APR-GCCF was based on the graph neural networks, and took the user-item graph as 

input to model the user preference. 5) Of the baselines, the NGCF, LR-GCCF, MCCF, and APR-GCCF 

belonged to graph neural network-based methods, which indicated that graph neural networks were 

powerful in terms of learning representations for the user-item graph. 
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   (a) Amazon      (b) FilmTrust      (c) Yelp 

Figure 3. Comparison of performance of variants of the APR-GCCF model. 

 

(a) RMSE                    (b) MAE 

Figure 4. Performance of the APR-GCCF and APR+ATT in terms of the RMSE and MAE. 

5.5. Ablation study (Q2) 

We designed three variants of the proposed model: APR-all, APR-residual, and APR-retain. APR-

residual and APR-retain involved the proposed method without the residual preference mechanism and 

the adaptive preference retention mechanism, respectively, and APR-all consisted of the proposed 

method without both. We conducted experiments using them on the three empirically acquired datasets 

and compared the results with those of our proposed model. 

The experimental results were shown in Figure 3. 

Figure 3 illustrated that APR-all, APR-residual, and APR-retain delivered worse performance 

than the proposed method in varying degrees on the three datasets. There were three reasons. First, 

when we removed the adaptive and the residual preference prediction mechanisms, our model 

degenerated into a normal GNN that yielded poorer performance in terms of collaborative filtering. 

Second, the GNN treated the contributions of all items as the same because it did not have the adaptive 

preference retention mechanism, and thus could not distinguish among the items. Finally, when the 

residual preference prediction mechanism was removed, the GNN could not handle the problem of 

over-smoothing, so this degraded its performance. 

Effectiveness of adaptive preference retention mechanism: APR-residual delivered worse 

results than APR-GCCF, which indicated that considering the differences among items is important for 

learning user preferences and improving recommendation-related performance. 
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To distinguish the adaptive preference retention mechanism and the attention mechanism, we 

designed an attention-based variant of the proposed method called APR+ATT, i.e., we used an attention 

mechanism instead of the adaptive preference retention mechanism. We experimented it on three 

datasets and compared its results with those of the proposed APR-GCCF, as shown in Figure 4. 

The APR+ATT was inferior to our model on both evaluation metrics on the three datasets. This is 

because the attention mechanism usually pays more attention to items with larger weights, and cannot 

effectively retain the difference information between items. Besides, using the attention mechanism to 

model user representations, items with higher weights were usually assigned more contributions to the 

user representation, while items with lower weights may be ignored. So, this cannot reflect the 

difference information between the items. It did not consider the differences among items, which was 

an important reason for the inefficiency of APR+ATT. 

Effectiveness of residual preference prediction mechanism: Figure 3 showed that the APR-all 

delivered worse than APR-retain. This verifies the effectiveness of the residual preference prediction 

mechanism. We asserted that the traditional GNN suffered from data sparsity and over-smoothing 

during propagation in higher-order neighborhoods. We integrated the aggregated results of each layer 

of the GNN into the final prediction by using a residual network, and this helped avoid data sparsity 

and over-smoothing, thus improving performance in terms of recommendations. 

5.6. Effect of hyperparameters (Q3) 

Since the number of GNN layers is critical to the model, we investigated its impact on 

performance. We also analyzed the effects of the learning rate and the number of embedding 

dimensions on the APR-GCCF. 

The effect of the number of GNN layers: In the graph convolution clustering process, the 

number of layers of the graph convolution is 1, which means that the first-order neighborhoods are 

aggregated. The number of layers is k, which means that the kth-order neighborhoods are aggregated. 

To explore the effect of the number of layers on the model, we varied the number of GNN layers k in 

the range {1, 2, 3, 4, 5} while keeping the other parameters constant. Figure 5 implied the performance 

obtained using different numbers of graph convolutional layers on the three datasets. When k = 3, the 

model achieved the best performance on all three datasets. As the number of graph convolutional layers 

increased, performance gradually worsened due to over-smoothing and overfitting. 

The effect of the learning rate: We delved into the effects of different learning rates on the model 

on the three datasets, as shown in Figure 6. We set the initial learning rate lr to 0.01 and gradually 

reduced it. The performance of the model was optimal when lr = 0.001, and degraded as the learning 

rate decreased. We thus used an appropriate learning rate to reduce the complexity of the model. 

The impact of the number of embedded dimensions: The number of embedded dimensions 

d was a key parameter controlling the APR-GCCF. Figure 7 showed that the proposed method attained 

the best performance on Amazon and FilmTrust at d = 64, and on Yelp at d = 32. This difference 

might have been acquired owing to the varying sparsity of the datasets. In general, as d increased, 

recommendation performance gradually improves, with more embedded dimensions yielding a 

stronger representation. But the model’s performance worsened when the number of dimensions was 

larger than the optimal value. 
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    (a) Amazon     (b) FilmTrust      (c) Yelp 

Figure 5. The effect of the number of layers of the GCN on the three datasets. 

  

    (a) Amazon     (b) FilmTrust      (c) Yelp 

Figure 6. The effect of learning rate on the three datasets. 

 
    (a) Amazon      (b) FilmTrust       (c) Yelp 

Figure 7. The effects of embedded dimensions on the three datasets. 

6. Conclusions and future work 

We proposed a graph network model called the APR-GCCF to model collaborative filtering to 

predict the ratings assigned by users to items to make recommendations to them. The APR-GCCF was 

composed of two parts. An adaptive preference retention mechanism was used to adaptively 

distinguish the items. We retained differences among these items to model fine-grained user/item 

preferences. In addition, to reduce data sparsity and the effect of over-smoothing introduced by higher-

order layers of the GNN, we designed a residual preference prediction mechanism that used a residual 
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network to concatenate the user/item preference generated by each layer of the GNN. We conducted 

extensive experiments on three real-world datasets to validate the effectiveness of our approach. 

Although the APR-GCCF has achieved success, information is collected from adjacent nodes 

without distinguishing which path the information comes from. However, this problem is necessary 

for improved model capability and interpretability. In future work, we will investigate this problem. 
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