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Abstract: The performance of lithium-ion batteries will decline dramatically with the increase in usage 
time, which will cause anxiety in using lithium-ion batteries. Some data-driven models have been 
employed to predict the remaining useful life (RUL) model of lithium-ion batteries. However, there 
are limitations to the accuracy and applicability of traditional machine learning models or just a single 
deep learning model. This paper presents a fusion model based on convolutional neural network (CNN) 
and long short-term memory network (LSTM), named CNN-LSTM, to measure the RUL of lithium-
ion batteries. Firstly, this model uses the grey relational analysis to extract the main features affecting 
the RUL as the health index (HI) of the battery. In addition, the fusion model can capture the non-
linear characteristics and time-space relationships well, which helps find the capacity decay and failure 
threshold of lithium-ion batteries. The experimental results show that: 1) Traditional machine learning 
is less effective than LSTM. 2) The CNN-LSTM fusion model is superior to the single LSTM model 
in predicting performance. 3) The proposed model is superior to other comparable models in error 
indexes, which could reach 0.36% and 0.38e-4 in mean absolute percentage error (MAPE) and mean 
square error (MSE), respectively. 4) The proposed model can accurately find the failure threshold and 
the decay fluctuation for the lithium-ion battery. 

Keywords: lithium-ion battery; remaining useful life prediction; convolutional neural network; long 
short-term memory network; fusion model 
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Abbreviations: 1D: One-Dimensional; 2D: Two-Dimensional; 3D: Three-Dimensional; ARIMA: 
Autoregressive Integrated Moving Average model; Adam: Adaptive Moment Estimation; BP: Back 
Propogation; CC: Constant Current; CNN: Convolutional Neural Network; CV: Constant Voltage; 
EOL: End of Life; HI: Health Index; LSTM: Long Short-Term Memory; MAPE: Mean Absolute 
Percentage Error; MSE: Mean Square Error; NASA: National Aeronautics and Space Administration; 
PoF: Physics of Failure; PSO: Particle Swarm Optimization; RUL: Remaining Useful Life; RVM: 
Ruby Version Manager; SOC: State of Charge; SOH: State of Health; SVR: Support Vector Regression 
Nomenclature: 𝐶 : Current battery capacity; 𝐶 : Factory rated capacity of the battery; 𝑉: Average 
measured voltage; 𝑅𝑈𝐿 : Remaining useful life prediction error; 𝑅𝑈𝐿 : Remaining useful life 
prediction results; 𝑅𝑈𝐿 : Remaining useful life actual results 

1. Introduction  

With the emergence of the traditional energy crisis, there is a pressing for society to explore and 
develop new energy. Among many new energy sources, lithium-ion batteries have become the 
mainstream of the new energy market owing to their high energy density, high output voltage, long 
cycle life, and wide operating temperature range [1–3]. However, the internal resistance increases with 
lithium-ion batteries’ repeated charging and discharging cycles. After the internal resistance 
increases, the battery heats severely, which continue to affect the performance and normal use of the 
battery pack [4,5]. The remaining useful life (RUL) of lithium-ion batteries is the number of charging 
and discharging cycles remaining between the beginning of measurement and the end of life (EOL) of 
lithium-ion batteries [6]. Regular RUL prediction of a lithium-ion battery can show the remaining 
useful cycle times of the battery, predict whether the battery is close to the EOL, and avoid potential 
risks in the use process [7–11]. Therefore, the accuracy of the lithium-ion battery RUL evaluation 
method will directly affect the overall performance of the battery management system, which has great 
practical significance in the field of energy battery application. 

The traditional life prediction model is a tedious and strict process due to the complex physical 
and chemical properties of lithium-ion batteries. Fortunately, the RUL model of lithium-ion battery 
based on data-driven technology is a powerful and effective method with the development of artificial 
intelligence. It regards the battery as a black box, bypasses the complex change process inside it, and 
only needs to find the statistical law through the historical measurement data to predict the RUL of 
lithium-ion batteries. In recent years, more and more scholars have started to focus on the research of 
power batteries. There are two main categories for building battery life prediction models: model-
based and data-driven methods [12–14]. 

The model-based method establishes the mathematical model of the battery by analyzing the 
physical structure and electrochemical reaction and then estimating the changing process of the battery 
parameters. Khare et al. [15] used the statistical modelling method to establish the mapping model 
between battery internal resistance and health state to evaluate the health state. Based on the analysis 
of the failure principle and the electrochemical reaction of lithium-ion batteries, a complete 
mathematical model was found to fit the degradation trajectory of lithium-ion batteries and to achieve 
the prediction of RUL. Mevawalla et al. [16] proposed an equivalent circuit model approach 
incorporating physio-chemical theory into developing a nonlinear equation for internal resistance. This 
method creates a model to simulate the internal resistance and surface temperature of lithium-ion 
batteries using actual measurable parameters. Wang et al. [17] proposed a resistance-based thermal 
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model of the batteries considering the impact of the state of charge (SOC), battery temperature, and 
current on the battery heat generation. According to the research results, air velocity has little effect on 
the maximum battery temperature at the discharge rate of flying cars. However, it can affect the 
temperature decrease rate. Xie et al. [18] proposed a distributed spatial-temporal online correction 
algorithm for SOC-three-dimensional state of temperature (SOT) co-estimation of battery. The result 
shows that the co-estimation algorithm still has a good converge performance with disturbance added. 
Xing et al. [19] proposed a fusion prediction method based on the physics of failure (PoF) and data-
driven technology. This method can deeply analyze the failure mechanism caused by changes of 
physical and chemical characteristics in the battery. It can also be applied to estimate some parameters 
in real-time monitoring scenarios. Wang et al. [20] introduced a spherical particle filter to solve the 
state space model and then established the state space model of battery capacity to predict the RUL of 
lithium-ion batteries after evaluating the capacity degradation. Tran et al. [21] investigated and 
compared the performance of three different equivalent circuit models using four lithium-ion battery 
chemistries under dynamic and non-dynamic current profiles. However, the model-based method is 
vulnerable to the influence of the external environment, and it is difficult to establish an accurate 
mechanism model. Also, due to the different physical and chemical properties of different batteries, 
the applicability of the model is not strong. It needs to be modified for different batteries, which 
requires much work. 

The data-driven method uses techniques such as machine learning to extract battery ageing 
characteristics from battery data collected during operation, revealing the relationship between the 
input data and the system degradation process and thus predicting the remaining battery life [22–24]. 
Khumprom et al. [25] used multiple data-driven artificial intelligence algorithms to conduct a 
comparative experiment on predicting the remaining useful life of lithium-ion batteries. Cai et al. [26] 
proposed an optimization process based on a nondominated sorting genetic algorithm (NSGA II), 
which uses the short-term characteristics of support vector regression (SVR) and current pulse test to 
predict. Nevertheless, the model is relatively simple, and the potential is limited, which limits the 
prediction accuracy. Qin et al. [27] established an improved particle swarm optimization-support 
vector regression (PSO-SVR) model to estimate RUL under different fault thresholds. However, this 
method is challenging for dealing with massive data. Cai et al. [28] proposed a hybrid data-driven 
algorithm to predict the RUL of the lithium-ion battery, reconstructed the phase space, and 
established a model to predict the RUL by combining discrete grey model (DGM), relevance vector 
machine (RVM), and artificial fish swarm algorithm (AFSA). However, this method is effective in 
short-term prediction, and the long-term prediction error of the No. 7 battery is significant. Gou et 
al. [29] proposed a hybrid data-driven method integrating elm and random vector functional link 
(RVFL) networks to improve the generalization ability, accuracy, and robustness of prediction results. 
Ma et al. [30] and Zhang et al. [31] applied LSTM to predict the RUL of lithium-ion batteries. Yalçın 
et al. [32] proposed a novel scheme, namely CNN-artificial bee colony (ABC) leveraged from CNN 
and ABC algorithm for heat generation rate (HGR) and voltage estimation. Wang et al. [33] proposed 
a transferable lithium-ion battery RUL prediction method from cycle-consistency of degradation trend, 
which can solve both the problem of large dispersion of lifetime distribution and the issue of error 
accumulation. Wang et al. [34] proposed an improved feedforward-long short-term memory (FF-
LSTM) modelling method to realize an accurate whole-life-cycle SOC prediction by effectively 
considering the current, voltage and temperature variations. Xia et al. [35] proposed a hybrid prediction 
model based on LSTM and a fully connected layer to capture the correlation in historical data. However, 
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the above data-driven methods have the defects of complex structure, a large amount of calculation, 
and extended training time. 

As mentioned earlier, with the progress of artificial intelligence algorithms, applying data-driven 
methods to power battery capacity prediction is a hot issue [36–38]. Due to the high dimensionality 
and non-linearity of the data collected during the discharge of lithium-ion batteries, the historical data 
features in complex non-linear systems can be extracted by the data-driven method [39–41]. However, 
single-model prediction methods still face the drawbacks of cumulative prediction errors and poor 
universality. The multi-model fusion prediction method can combine the advantages of each model 
and make up for the deficiency of single-model prediction. Therefore, the RUL prediction model for 
lithium-ion batteries composed of different in-depth learning techniques has excellent potential in 
prediction accuracy and generality. CNN can extract the features of one-dimensional (1D) time series 
data, mining potential hidden information, but it cannot learn the long-dependent characteristics of 
data. LSTM can solve the long dependence problem in time series data and effectively identify data 
patterns, but it is better than CNN in extracting data features [42,43]. A RUL prediction model for 
lithium-ion batteries based on the fusion of CNN and LSTM is presented to solve the RUL prediction 
problem. Combining the advantages of CNN and LSTM, extract the space-time characteristics of the 
lithium-ion batteries discharge process data to achieve RUL prediction for lithium-ion batteries. The 
main contributions of this study are summarized as follows. 

1) Using grey relational analysis selected attributions affecting RUL of lithium-ion batteries, 
including mean discharge current, average discharge voltage, and average temperature as HI of batteries. 

2) We proposed a RUL prediction of the lithium-ion battery based on CNN-LSTM fusion model. 
By changing the input data dimension and model hierarchy, the fusion model can capture the non-
linear characteristics and time-space relationship of the discharge process of lithium-ion batteries. 

3) By comparing BP, PSO-SVR, ARIMA-SVR, LSTM, and CNN-LSTM models, we found that 
the prediction accuracy of traditional machine learning models is not as good as that of the deep learning 
model, and the performance of our proposed CNN-LSTM fusion model is better than that of the single 
LSTM model. The MAPE and MSE of the proposed models are 0.36% and 0.38e-4, respectively. 

4) Our study is different from the conventional RUL prediction. Considering the relaxation effect 
of the battery, we choose the last intersection of the battery capacity and the failure reference line as 
the failure threshold of the battery life. In the comparison experiments, the CNN-LSTM fusion model 
has the highest accuracy in predicting the RUL of lithium-ion batteries. 

The rest of this paper is organized as follows. Section 2 describes the RUL prediction problem of 
lithium-ion batteries and the data structure. Then, in Section 3, the details of the proposed approach 
are introduced. Then, in Section 4, the proposed model is compared with the backpropagation (BP) 
model, long short-term memory (LSTM) model, particle swarm optimization hyphen support vector 
regression model (PSO-SVR) [25], and the autoregressive integrated moving average hyphen support 
vector regression model (ARIMA-PSO) [44], and the all-around performance of each model in the 
RUL prediction experiment are analyzed. Finally, the conclusion is presented in Section 5.  

2. Problem statement of RUL prediction of lithium-ion batteries 

2.1. The problem of RUL prediction of lithium-ion batteries 

Most current new energy vehicles, communication devices, and electronic devices in the 5G smart 
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era use lithium-ion batteries as their power support [45]. Usually, a single lithium-ion battery consists of 
five parts: a positive electrode, diaphragm, negative electrode, organic electrolyte, and battery shell [46]. 
The lithium-ion battery structure schematic diagram is shown in Figure 1. 

 

Figure 1. Schematic diagram of lithium-ion battery structure. 

 

Figure 2. The lithium-ion battery working principle diagram. 

The lithium-ion battery is a rechargeable battery which mainly relies on the movement of lithium-
ion between the positive and negative electrodes to work [47]. During the discharge process of the 
lithium-ion battery, the electron (e-) and lithium-ion (Li+) simultaneously move. The e- runs from the 
negative electrode through the external circuit conductor to the positive electrode. The Li+ comes out 
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of the negative electrode into the electrolyte and to the positive electrode through the diaphragm to 
combine with an electron. During the charging process, the Li+ comes out of the positive electrode 
into the electrolyte cell, shuttles from the diaphragm to the negative electrode, and embeds itself in 
the micropores of the carbon layer. Lithium-ion batteries are reversible in the chemical reactions that 
occur in the charging or power generation state and are used repeatedly by cyclic charging and 
discharging [48]. The working principle of lithium-ion batteries is shown in Figure 2. 

However, during lithium-ion batteries’ charging and discharging process, some undesired side 
reactions occur between the positive and negative electrode materials and the elements in the 
electrolyte. The side reactions generate a large amount of polymer accumulation around the positive 
and negative electrodes or the diaphragm, which prevents Li+ from deem bedding between the positive 
and negative electrodes, and shuttling in the electrolyte is the cause of lithium-ion battery performance 
degradation. So, with the increase in lithium-ion battery usage time, over-charging or over-discharging, 
the battery range will gradually decay, and the battery life will be shortened, leading to battery failure 
when the life threshold is reached. Therefore, the RUL prediction of lithium-ion batteries can ensure 
the safety and reliability of the battery use process and avoid risk. 

The RUL of a lithium-ion battery is the number of charge/discharge cycles remaining between 
the start of the measurement and the threshold of failure, and its calculation formula is obtained 
by Eq (1). 

𝑅𝑈𝐿 𝐶𝑦𝑐𝑙𝑒 𝐶𝑦𝑐𝑙𝑒 1  

where, 𝐶𝑦𝑐𝑙𝑒 is the charge/discharge cycles of the lithium-ion battery at the measurement moment, 
and 𝐶𝑦𝑐𝑙𝑒  is the charge/discharge cycles of the lithium-ion battery at the failure threshold. The 
lithium-ion battery degradation to a certain level will affect normal use, and 70% of the standard 
capacity of lithium-ion batteries is usually used as the failure threshold in research [49]. 

The RUL is based on the state of health (SOH) of lithium-ion batteries, and the RUL evaluation 
of the battery is performed after establishing the capacity degradation model of the battery. Among 
them, the SOH of a lithium-ion battery is the ratio between the remaining capacity and the initial 
capacity. The remaining capacity is the discharge capacity of the battery at this stage after it is fully 
discharged under standard discharge conditions. The percentage of these two capacities reflects the 
SOH of the battery at this stage. The most intuitive expression of the battery SOH is the degree of 
capacity decline, with the capacity of the battery in two stages as the main component, and its 
mathematical expression is obtained by Eq (2). 

𝑆𝑂𝐻
𝐶
𝐶

100% 2  

where, 𝐶  is the current battery capacity, 𝐶  is the factory rated capacity of the battery, and SOH 
expresses the current health of the battery in the form of a percentage of capacity. The most common 
way to measure SOH nowadays is this definition by capacity recession. 

The lithium-ion battery capacity is used as the performance index to realize the RUL prediction. 
Still, the battery capacity is difficult to measure directly. Therefore, HI, which is highly correlated with 
the capacity of lithium-ion batteries, such as voltage, current, and temperature during battery operation, 
is extracted. Use the HI to construct the battery capacity prediction model to realize RUL prediction. 
The battery capacity is replaced when it is lower than a certain threshold, effectively eliminating the 
hidden danger of lithium-ion batteries. 
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2.2. Data set 

This paper uses the lithium-ion battery data set from NASA Ames Prognostics Center of 
Excellence [49]. The LiCoO2 is used as the positive material, soft and hard carbon as the negative 
material, and lithium salt as the electrolyte material for the 18,650 lithium-ion cobalt acid battery. The 
battery has a rated capacity of 2 Ah, and a rated voltage of 4.2 V. Lithium-ion batteries are charged (C-
rate = 0.75 C), discharged (C-rate = 1 C) and tested for impedance at different temperatures until the 
end of the battery life. Record collected data, such as voltage, current, temperature, and impedance. 
Table 1 shows the details of the NASA battery pack. 

We take the first group of lithium-ion batteries as an example to introduce the process of the 
NASA battery pack ageing life test. Charging process: charging with a constant current (CC) mode 
of 1.5 A until the voltage reaches 4.2 V. Then, charging continues with a constant voltage (CV) mode 
until the charging current drops to 20 mA. Discharge process: discharge with a CC of 2 A until the 
voltage of the battery reaches a different set value. For impedance measurements, the battery is scanned 
by electrochemical impedance spectroscopy (EIS) from 0.1 Hz to 5 kHz. 

The condition for the end of battery life is that after recharging and discharging the lithium-
ion battery repeatedly, the battery is considered invalid when its rated capacity decreases from 100% 
to 70% (from 2 Ah to 1.4 Ah). EOL of lithium-ion batteries can be defined as the number of cycles when 
the capacity of the lithium-ion batteries drops to the failure threshold during the initial experiment.   

As can be seen from Table 1, the four batteries in the first group conformed to the standard 
charge/discharge cycle ageing experimental environment, with a long charge/discharge cycle number 
and apparent characteristics of capacity degradation. The second and third groups of batteries only 
changed the ambient temperature or discharge current, and the number of charge/discharge cycles was 
too short. The second group only had 28 cycles and did not reach the failure threshold. The cycle 
number of the third group of batteries is only 47, and it still needs to reach the failure threshold. 
Therefore, we selected the first group of batteries (B0005, B0006, and B0007 with 168 
charge/discharge cycles) for ageing study and analysis. 

Table 1. NASA battery pack details. 

Battery 

pack 
Battery 

Temperature 

(℃) 

Discharge 

current (A) 

Cut-off discharge 

voltage (V)  

Charge/Discharge 

cycle  

Initial capacity 

(Ah) 

Group 1 

B0005 

24 2 

2.7 168 1.8565 

B0006 2.5 168 2.0353 

B0007 2.2 168 1.8911 

B0018 2.5 132 1.8550 

Group 2 

B0025 

24 0/4 

2.0 28 1.8470 

B0026 2.2 28 1.8133 

B0027 2.5 28 1.8233 

B0028 2.7 28 1.8047 

Group 3 

B0038 

24,44 

1 2.2 47 0.8981 

B0039 2 2.5 47 0.1190 

B0040 3 2.7 47 0.6735 
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3. The RUL prediction model based on CNN and LSTM 

3.1. The advantage of CNN and LSTM 

3.1.1. Convolutional neural network (CNN) 

Convolutional neural network (CNN) is an effective method to capture the characteristic 
information of data. CNN has an input layer, convolution layer, pooling layer, fully connected layer, 
an output layer and other structures [50]. Among them, the convolution layer and pooling layer are the 
core layers of CNN, which are the most representative. The most popular use of CNN is the feature 
extraction of high-dimensional image data by two-dimensional (2D)-CNN or three-dimensional (3D)-
CNN in image processing. Recently, researchers have gradually applied CNNs in the study of feature 
extraction from 1D multivariate data [51].  

The convolution layer convolutes the input data with the convolution core to extract the potential 
features of the data. The fixed-size convolution core scans the whole data domain like human eyes. 
Multiple convolution cores with different weights evaluate and extract the different features of all 
aspects of the data through convolution operation. The specific operations of the convolution layer are 
obtained by Eq (3). 

𝑥 𝑓 𝑊 ∗ 𝑋 𝑏 3  

where, 𝑊  is the 𝑖𝑡ℎ convolution kernel weight matrix in the 𝑙𝑡ℎ layer; 𝑋  is the output in the 
𝑙𝑡ℎ layer; 𝑥  is the 𝑖𝑡ℎ feature of output in the 𝑙𝑡ℎ layer; “*” is a convolution operator; 𝑏  is the 
offset term. In this paper, the rectifier linear unit (ReLU) is selected as the activation function of the 
convolution layer, and its expression is obtained by Eq (4). 

𝑓 𝑧 0    𝑧 0
𝑧    𝑧 0

4  

Kernel_1

X1

X2

∙ ∙ ∙ ∙ ∙ ∙ 

Xn-1

Xn

∙ ∙ ∙ ∙ ∙ ∙  Kernel_m

 

Figure 3. One dimensional convolution structure. 
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The high-dimensional image data in image processing contains a more significant amount of 
information. Multidimensional convolution neural network is mainly used, while the lithium-ion 
battery data is 1D time series data. So 1D-CNN is designed to extract the features of the battery data. 
The structure of the 1D convolution layer is shown in Figure 3. 

After feature extraction of the convolution layer, multiple feature matrices are obtained according 
to different convolution cores. In order to extract enough hidden information, the output dimension of 
the convolution layer is generally significant. The role of the pooled layer is to down sample input 
features, filter many features simultaneously, and enhance some significant features, equivalent to the 
practical information filtering of human vision for observing things. The operator of the pooled layer 
is called the pooled kernel, which scans the characteristic matrix of the convolution layer output 
transversally by Eq (5). 

𝑦 𝑗 𝑚𝑎𝑥
∈

𝑥 𝑘 5  

where, 𝑥 𝑘  is the element of the 𝑖𝑡ℎ characteristic matrix of the 𝑙𝑡ℎ layer in the pooled core region; 
𝑦 𝑗  is the element in the 𝑖𝑡ℎ characteristic matrix of the 𝑙 1 𝑡ℎ layer after pooling. 𝐷  is the area 
covered by the 𝑚𝑡ℎ pooled core. 

3.1.2. Long short-term memory (LSTM) 

When it comes to the processing of time series data, the most commonly used is a recurrent neural 
network (RNN). However, when the valuable information in the processed data is far away from the 
location where the information is needed, RNN cannot learn the characteristic information of the data 
well. Long short-term memory network (LSTM) is a variant of RNNs designed to cope with these 
gradient varnishing problems [52]. 

 

Figure 4. LSTM neuron cell structure. 

Especially in the lithium-ion battery RUL prediction scenario, the particular hidden layer neurons 
of LSTM make it possible to record the battery history input information while influencing the data 
input at the next moment. Therefore, the battery ageing data is used to extract feature parameters to 
input into the LSTM network for training. LSTM introduces three “Gates” into neurons to control the 
amount of information retained by the data before and after to solve the problem of a medium and 
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long-term dependence on data [53]. The three gates are the input gate, forget gate, and output gate. 
The cell structure of LSTM neurons is shown in Figure 4. 

As shown in Figure 4, 𝜎 is the sigmoid activation function, the output range is 0,1 , the output 
range of tanh is 1,1 , and the value is limited within a specific range. LSTM is a variant of RNN, 
which controls the state of neurons through the three gates shown in Figure 4. 

Formally, the formulas to update an LSTM unit at time tare by Eqs (6)–(11). 

𝑓 𝜎 𝑊 ∙ ℎ , 𝑥 𝑏 6  

𝑖 𝜎 𝑊 ∙ ℎ , 𝑥 𝑏 7  

𝐶 𝑡𝑎𝑛ℎ 𝑊 ∙ ℎ , 𝑥 𝑏 8  

𝐶 𝑓 ∙ 𝐶 𝑖 ∙ 𝐶 9  

𝑜 𝜎 𝑊 ∙ ℎ , 𝑥 𝑏 10  

ℎ 𝑜 ∙ 𝑡𝑎𝑛ℎ 𝐶 11  

where, 𝜎 is the element-wise sigmoid function. 𝑥  is the input vector at time 𝑡, and ℎ  is the hidden 
state (also called out-put) vector storing all the useful information at (and before) time 𝑡. 𝑊 , 𝑊 , 
𝑊 , 𝑊  are the weight matrices for hidden state ℎ . 𝑏 , 𝑏 , 𝑏 , 𝑏  denote the bias vectors.  

3.2. RUL prediction model based on CNN-LSTM 

3.2.1. Data preprocessing 

1) Property means taking the average value instead 
The values of each attribute in the dataset are collected moment-by-moment basis, and the number 

of features is too large to increase the burden on the model, so the average value is used as an equivalent 
replacement for a certain attribute. Take measuring voltage as an example, and the average value 
calculation is obtained by Eq (12). 

𝑉
1
𝑛

𝑉 12  

where, 𝑉  is the measured voltage at time 𝑖, 𝑛 is the number of measurements, i.e., the number of 
time points, and 𝑉  is the average measured voltage. Similarly, the average current and average 
temperature are preprocessed in this way and converted into characteristic variables. 
2) Extraction of important attributes by grey relational analysis 

There are coupling relationships between attributes in the Li-ion battery dataset. If all the 
attributes are input into the model, this will increase the model calculation time and reduce the 
prediction accuracy. Therefore, it is necessary to filter out the attributes that greatly impact the battery 
RUL through grey correlation analysis. In this paper, the capacity sequence of the cell is used as a 
reference sequence for the behavioral characteristics of the reaction system 𝑌 𝑦 𝑘 |𝑘 1,2, Λ, 𝑛 , 
The time series of equal voltage drop discharges with discharge voltages in the interval from 3.8 to 3.5 
V is treated as a comparative series consisting of factors affecting the behavior of the system 𝑋
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𝑥 𝑘 |𝑘 1,2, Λ, 𝑛  , 𝑘  denotes the length of the sequence, 𝑖  denotes the number of compared 
sequences, and the calculation of the grey scale factor is obtained by Eq (13). 

𝜉 𝑘
𝑚𝑖𝑛 𝑚𝑖𝑛|𝑦 𝑘 𝑥 𝑘 | 𝜌𝑚𝑎𝑥 𝑚𝑎𝑥 |𝑦 𝑘 𝑥 𝑘 |

|𝑦 𝑘 𝑥 𝑘 | 𝜌 𝑚𝑎𝑥 𝑚𝑎𝑥|𝑦 𝑘 𝑥 𝑘 |
13  

The calculating of the correlation is obtained by Eq (14). 

𝑟
1
𝑛

𝜉 𝑘 14  

The correlation degree 𝑟  takes a value between (0,1), and closer to 1 indicates that the reference 
sequence is more correlated with the comparison sequence. As shown in Table 2, the average discharge 
current, average discharge voltage and average temperature were selected as the feature variables for 
training the prediction model of the RUL of lithium-ion battery after the analysis of B0005 and B0006 
model batteries. 

Table 2. Grey correlation coefficients of each attribute and battery capacity. 

Battery Number Average Discharge Voltage Average Discharge Current  Average Temperature 

B0005 0.908 0.508 0.532 

B0006 0.813 0.549 0.533 

3) Normalization process 
The value domain of each feature is different, and the magnitude is different. For example, the 

average discharge current size is around 2A, while the average temperature is around 30°C. Suppose 
the corresponding data processing is not carried out. In that case, the model is more obviously affected 
by the temperature feature and even ignores the role of the current-voltage feature on it, which is not 
consistent with the model design idea, so the normalization process is carried out to eliminate the 
influence of different magnitudes on the model by Eq (15). 

𝑥 𝑓 𝑥
𝑥 𝑥

𝑥 𝑥
15  

where, 𝑥  denotes the specific value under any attribute, 𝑥  denotes the maximum value of the 
attribute, and 𝑥  denotes the minimum value of the attribute. The normalization process shrinks 
the range of values of each attribute to between [0,1], which can eliminate the influence of different 
magnitudes on the correlation degree. 
4) Data dimensional transformation 

The CNN-LSTM model requires appropriate preprocessing of the data to allow the model to be 
trained at a specific step to learn the features of the data. 

Assuming the number of input samples is ‘N’, and the number of sample features is ‘Feature’, the 
original shape of the input data is (N, Feature). The sample data is divided into N-TimeStep+1 sample 
data by time step (TimeStep) through data preprocessing, and the data shape becomes (N-TimeStep+1, 
TimeStep, Feature). That is the shape of the data changes from 2D to 3D. 
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3.2.2. Structure of the proposed CNN-LSTM model 

In order to predict the RUL of lithium-ion batteries, it is necessary to analyze the battery discharge 
data in detail. Since CNN extracts potential hidden information from the data and LSTM can solve the 
long-term dependence of time series data, we combine the advantages of these two algorithms and 
apply to the study of RUL of lithium-ion batteries. By comparing the battery capacity decline curves 
at different temperatures, different discharge voltages and different discharge currents, we can obtain 
the external factors affecting the lifetime of lithium-ion batteries and find out the most relevant 
variables to the battery capacity decline. That is, the essential attributes are extracted from the many 
influencing factors, and a battery capacity decay model is established to achieve the prediction of RUL 
of lithium-ion batteries. To this end, a CNN-LSTM based fusion model is designed in this paper. It 
combines CNN and LSTM models to complement their advantages and accurately and effectively 
predict the RUL of lithium-ion batteries. 

The Keras library is usually used in traditional research to stack CNN and LSTM models. This 
paper analyzes the model principle and improves the structure of the CNN-LSTM fusion model based 
on the principles of CNN and LSTM algorithms. A lithium-ion battery RUL prediction model based 
on CNN-LSTM is designed. The flow chart of the model is shown in Figure 5 [31]. 

Figure 5. The flow chart of CNN-LSTM model prediction. 

As mentioned above, the data shape changes from 2D to 3D after preprocessing. In order to 
enhance the features of the sample attributes, it is necessary to make the convolutional layers in CNN-
LSTM act on the features within each time step simultaneously. Therefore, the model uses the 
TimeDistribution layer in the Keras library to package 1D-CNN and MaxPooling and applies them to 
the changed time steps in the sample data, respectively. This process requires that the data processing 
be two-dimensional within each time step, using the 1D-CNN to slide over the data features, thus 
filtering and reinforcing the features. As in Figure 5, the row vector within the left time step enters the 
CNN processing stage and deforms into 2D data, changing the data shape again to split the time step 
into new time steps and subsequences (TimeStep', SubSequence) so that each new time step is 2D data 
(N-TimeStep+1, TimeStep', SubSequence, Feature). Then, the data features are extracted with 1D-
CNN, the features are reinforced by the pooling layer, and then the output is tiled with Flatten layer to 
get the reinforced features, i.e., Feature'. At this point, the data shape becomes (N-TimeStep+1, 
TimeStep', Feature'). The same TimeDistribute layer is used to wrap the Dense layer to function 
simultaneously within all new time steps to speed up the convergence. Then, the temporal data output 
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from the fully connected layer is fed to the LSTM layer for processing, and the neurons in the LSTM 
layer correspond to the changed time steps to finally output the prediction results.  

The goal of deep learning is to fit the output by continuously changing the network parameters so 
that the parameters can do various nonlinear transformations on the input, which is essentially a 
function to find the optimal solution. Adaptive moment estimation (Adam) is a first-order optimization 
algorithm that can replace the traditional stochastic gradient descent process by iteratively updating 
the neural network based on training data weights. The gradient calculation of the objective function 
is obtained by Eq (16). 

𝑔 𝛻 𝑓 𝜃 16  

where,  𝑔  is the gradient of the objective function to 𝜃. The average value at the first time is obtained 
by Eq (17). 

𝑚
𝑚

1 𝛽
17  

where, 𝑚  is the average value of the gradient at the first time,  𝛽   is the decay factor of the first 
momentum. The second time variance is obtained by Eq (18). 

𝑣
𝑣

1 𝛽
18  

where, 𝑣  is the second noncentral variance value of the gradient,  𝛽  is decay factor of infinity norm. 
The parameter update is obtained by Eq (19). 

𝜃 𝜃
𝜂 ∙ 𝑚

𝑣 𝜖
19  

where, 𝜂 is the learning rate,  𝜖 is the default parameter, avoiding zero denominator. 

4. Simulation and analysis of RUL prediction 

4.1. Experimental setting 

The experiment selected B0005, B0006, and B0007 batteries, 168 cycles of charge and 
discharge, as the experimental subjects in this experiment. The failure reference line for lithium-ion 
batteries is 70% of the rated capacity. The RUL of a battery is the residual discharge cycle between 
the actual current capacity and the EOL. When the capacity decay curve drops to the failure reference 
line, it does not necessarily mean that the battery is no longer working. In fact, the battery can still be 
used after the rest time [54]. Due to the internal current flow when the battery is at rest, the active 
material is rebalanced, increasing the available capacity for the next cycle [55]. So, the EOL is not the 
first intersection of the battery capacity and the failure reference line but the last intersection. Therefore, 
the EOL chosen in this experiment is the latest intersection of the battery capacity and the failure 
reference line. 

Attribute values in a dataset are collected in time units, with hundreds of points each time. Mean 
values are used as an equivalent substitute for an attribute because they are too large as features and 
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add to the load on the model. The average discharge current, average discharge voltage and average 
temperature were selected as the input of the CNN-LSTM model, and the output was the capacity of 
the lithium-ion battery through grey relational analysis. The model selected the first 100 sets of data 
for training and the last 60 sets of data for testing. 

Figure 6 shows the architecture of the CNN-LSTM prediction model. The step size and 
convolution kernel size of Conv1D are 1 and 2, respectively, and the number of filters is 10. The model 
uses the “same” mode to fill the data processed by the convolutional kernel, and the activation function 
is ReLU. The MaxPooling1D has a pool size of 3 and a step size of 1, selecting default mode, which 
means that the data entered into the layer is not populated. The size of Dense_1 is 5, and there are 200 
neurons in the LSTM layer with a step length of 5. The initialization method of Dense_2 is “normal”, 
and the size is 1. ReLU is also used for the activation functions of these three layers. The neural 
networks introduced in this study used MAE as the loss function during their training process. In this 
research, the Adam optimizer is employed to optimize the loss functions of the CNN–LSTM fusion 
model and the other benchmark models because of providing superior prediction performance 
(learning rate = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-8). The orange color at the bottom 
of the diagram indicates that the layer uses a TimeDistribute wrapper to act on the data. In the design 
of other models, the penalty factor C = 70 for PSO-SVR, the kernel function is RBF, gamma = 0.7, 
epsilon = 0.01, the number of particle swarms is 20, and the maximum evolutionary algebra is 100. 
The order p = 3, the difference number d = 1 and the sliding average model order q = 2 for the ARIMA-
SVR model, the penalty factor C = 100, the kernel function is RBF, gamma = 0.7, epsilon = 0.01. The 
number of hidden layer neurons in the BP model is 12. The LSTM model has a time step of 10 and the 
first hidden layer (the number of LSTM cells) of 200. The second hidden layer is the Dropout layer, 
and the Dropout rate is set to 0.3; The third hidden layer is the fully connected layer, with one neuron 
number. Epoch and batch size of BP, LSTM and CNN-LSTM are set to 200 and 20, respectively. 

Conv
1D

Max
Pooling1D

Flatten Dense_1 LSTM Dense_2 OutputInput

 

Figure 6. The architecture of CNN-LSTM model. 

4.2. Evaluation indicators 

In studies related to the SOH monitoring of lithium batteries, two evaluation metrics, prediction 
error of RUL 𝑅𝑈𝐿  and mean absolute percentage error (MAPE), are mainly used. Mean square 
error (MSE) is also introduced to make the model more accurate. Therefore, use these three evaluation 
indicators to better evaluate the predictive effect and reliability of the model. 

𝑅𝑈𝐿  is the error between predicted 𝑅𝑈𝐿  and expected 𝑅𝑈𝐿  of the model, which can 
be used as an evaluation index of model reliability.  𝑅𝑈𝐿  can be calculated by Eq (20). 

𝑅𝑈𝐿 𝑅𝑈𝐿 𝑅𝑈𝐿 20  

MSE is the commonly used mean square error indicator, which is square and mean of errors for 
the battery capacity 𝐶  and expected battery capacity 𝐶 . It can be used as an evaluation index of 
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model accuracy and obtained by Eq (21).  

𝑀𝑆𝐸
𝐶 𝐶

𝑛
21  

MAPE is the mean of relative error of multiple prediction results of the model, which can be used 
as an evaluation index of model stability. MAPE can be calculated by Eq (22). 

𝑀𝐴𝑃𝐸
1
𝑛

𝐶 𝐶

𝐶
22  

4.3. Experiment results and analysis 

The combined PSO-SVR [25] model of traditional machine learning algorithm SVR and group 
intelligence algorithm PSO, ARIMA-SVR model of SVR and time series prediction model ARIMA [44], 
BP network model and LSTM model of deep learning algorithm are designed experimentally. The 
prediction effect of the proposed CNN-LSTM fusion model is compared with the model mentioned 
above and two deep learning algorithms on three data sets. Figure 7 shows the performance of various 
prediction models in B0005, B0006, and B0007 data sets. 

Since PSO is only a parameter optimization algorithm, the SVR mentioned in the experiment 
refers to the PSO-SVR algorithm. Figure 7 shows that the two models combined with SVR and the 
traditional machine learning algorithm in the three data sets have relatively poor prediction results. For 
example, in the B0006 data set, the BP model always deviates from the actual value in the late 
prediction period. In contrast, the LSTM and CNN-LSTM fusion models fit the test set well. 

Specifically, each model learns more or less about the trend of residual capacity degradation. The 
traditional machine learning algorithm, SVR, cannot fit expected values well even though it optimizes 
parameters by the PSO particle swarm algorithm. Though the fusion model of SVR and ARIMA can 
predict the data development trend, there is some delay in the model, and the trend cannot be predicted 
in real-time. Meanwhile, the prediction results for the non-linear change process of the data could be 
better. That is, the fluctuation characteristics of the residual battery capacity due to the recovery effect 
are not learned. BP, LSTM and CNN-LSTM three neural network models have better fitting results 
than the two models of support vector machine. The BP neural network deviates in different degrees 
in the middle and late prediction and fits well in the B0005 data set. However, there is a specific 
deviation in the B0006 data set later prediction. Deviations occur on B0007 data sets from the mid-
term and accumulate into large deviations at later stages, which do not converge to the failure threshold. 
LSTM and CNN-LSTM are better for long-term prediction than the BP network model and have better 
prediction stability for different datasets. LSTM and CNN-LSTM are better for long-term prediction 
than the BP network model and have better prediction stability for different data sets. 

Figure 8 shows that the predicted lifetime endpoints of LSTM and CNN-LSTM in the B0005 
dataset are almost identical to the actual values, approximately discharging in the 124th cycle. However, 
the BP network with a good fit falls near the 135 discharge cycles due to large fluctuations near the 
failure threshold. The RUL errors of SVR and ARIMA-SVR are more significant than those of the BP 
network. On the B0006 data set, the RUL predicted by SVR is quite different from the actual value, 
and the life endpoints predicted by LSTM and CNN-LSTM are still accurate. Surprisingly, ARIMA-
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SVR with poor fit is more accurate than the BP network in predicting EOL. It is known that if the 
capture requirements of data characteristics are not high and the accuracy of prediction is only required 
at a particular time, the ARIMA-SVR fusion model can be used, which also provides evidence for the 
feasibility of the fusion model. On the B0007 battery data set, ARIMA-SVR, LSTM, and CNN-LSTM 
are still the best predictors of remaining life. However, the BP network and SVR cannot converge near 
the failure threshold. Because the BP and SVR-related models need to be revised for long-term data 
learning during training. For this reason, the LSTM model enhances the learning of long-term data. So 
LSTM model and CNN-LSTM model can effectively fit the fluctuations of actual data in performance. 
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Figure 7. Prediction effect of each model in B0005 B0006, B0007 data sets. 

Train set
Test set
BP model
PSO‐SVR model
ARIMA‐SVR model
LSTM model
CNN‐LSTM model

Cycle

R
e
m
ai
n
in
g 
ca
p
a
ci
ty
 /
 A
H

      

Train set
Test set
BP model
PSO‐SVR model
ARIMA‐SVR model
LSTM model
CNN‐LSTM model

Cycle

R
e
m
ai
n
in
g 
ca
p
a
ci
ty
 /
 A
H

      

Train set
Test set
BP model
PSO‐SVR model
ARIMA‐SVR model
LSTM model
CNN‐LSTM model

Cycle

R
e
m
ai
n
in
g 
ca
p
a
ci
ty
 /
 A
H

 
(a) B0005                                                              (b) B0006                                                                    (c) B0007            

Figure 8. Details of prediction results for each model in B0005, B0006, B0007 data sets. 
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Figure 9. Prediction errors for each model in different battery data.  
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Figure 10. The RUL prediction error histogram. 

Table 3. Error indicators for models in the B0005 data set. 

  MAPE/% MSE RULerror 

BP 1.3 3.7e-4 10 

PSO-SVR 2.1 12e-4 13 

ARIMA-SVR 6.9 36e-4 16 

LSTM 0.35 0.47e-4 1 

*CNN-LSTM 0.36 0.38e-4 1 

Table 4. Error indicators for models in the B0006 data set. 

  MAPE/% MSE RULerror 

BP 3.9 33e-4 3 

PSO-SVR 5.0 65e-4 28 

ARIMA-SVR 6.8 3.6e-4 11 

LSTM 1.0 2.9e-4 2 

*CNN-LSTM 0.7 1.2e-4 1 

Table 5. Error indicators for models in the B0007 data set. 

  MAPE/% MSE RULerror 

BP 3.1 23e-4 - 

PSO-SVR 2.7 22e-4 - 

ARIMA-SVR 4.5 6.1e-4 2 

LSTM 0.44 0.71e-4 1 

*CNN-LSTM 0.39 0.63e-4 0 

Figure 9(a) is the error map of each model predicting the B0005 data set. It can be seen more 
directly that the errors of LSTM and CNN-LSTM models fall to near zero with slight fluctuation. 
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Figure 9(b),(c) is the error map of each model predicting the B0006 and B0007 data sets. From the 
figures, we can observe that the error fluctuations of LSTM and CNN-LSTM models are still small 
and fall near the error line of 0. The ARIMA-SVR model also performs well in both data sets with 
standard errors. Tables 3 and 4 contain the error indicators of each model in the B0005, B0006, and 
B0007 data sets, respectively. The minimum values have been bold. From Table 3, we can see that the 
mean square error MSE of the proposed CNN-LSTM model is the lowest, and the percentage relative 
error MAPE of the LSTM model is the lowest. It shows that the accuracy and stability of the LSTM 
model and the CNN-LSTM model for the B0005 dataset are better than the other models. Tables 4 
and 5 show that the MAPE and MSE of the CNN-LSTM model are the minimum values in all models. 
It shows that the CNN-LSTM model performs best in both B0006 and B0007 data sets and that the 
CNN-LSTM model has the same RULerror as LSTM in the B0005 data set, while the other two data 
sets are the smallest, indicating that the model has high reliability. Figure 10 shows how well each 
model predicts the failure threshold in each of the three battery data. The bars above the baseline 
indicate that the model delays predicting the failure threshold, and the bars below the baseline indicate 
that the model predicts the failure threshold early. As seen from the figure, in the B0005 and B0006 
datasets, the BP model, PSO-SVR model and ARIMA-SVR have a large delay in predicting the failure 
threshold, and the LSTM and CNN-SLTM models have a better prediction. In the B0007 dataset, the 
BP model and PSO-SVR model could not predict the failure threshold. In contrast, the ARIMA-SVR, 
LSTM, and CNN-SLTM models could predict the battery failure threshold slightly earlier than 
predicted, with the proposed model accurately predicting the failure threshold. The CNN-LSTM fusion 
model has the best performance in predicting the battery RUL. 

5. Conclusions and future work 

In this paper, we combine the advantages of CNN and LSTM and propose a fusion model based 
on CNN and LSTM for RUL prediction of lithium batteries. First, the main factors of the battery that 
affect the RUL degradation are screened as the HI of the battery using grey relational analysis. Then 
the data are processed in a specific way to extract the features of the 1D lithium-ion battery data using 
TimeDistribute wrapping CNN layer for each time step. In addition, the data was entered into the 
LSTM layer through a fully connected layer wrapped in TimeDistribute to analyze the long-term 
changes in the battery data and build a RUL prediction model for lithium-ion batteries. The proposed 
model has been experimented on the NASA lithium-ion batteries dataset compared to the traditional 
machine and single deep learning models. The experimental results show that the proposed CNN-
LSTM fusion model can effectively monitor the capacity degradation process of lithium-ion batteries 
and can accurately predict the failure threshold of the RUL for batteries, considering the battery 
relaxation effect. In addition, the CNN-LSTM model shows the most robust performance in MAPE, 
MSE and RULerror compared with the benchmark model, verifying that the deep learning model 
outperforms the machine learning model. 

In general, the multi-model fusion approach is superior to a single model. Our proposed RUL 
prediction model for lithium-ion batteries can effectively predict the current battery capacity and avoid 
safety hazards caused by battery aging in practice. In addition, the final battery life is predicted based 
on the battery relaxation effect, which helps users to correctly understand the RUL of the battery and 
save the usage cost. 

Although the model achieves good prediction accuracy, it still has shortcomings. For example, 
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the effect of ambient temperature on the battery RUL prediction is not considered in the experiment, 
and the subsequent experiments of ambient temperature can be added for analysis. In addition, from 
the perspective of computational efficiency, increasing the number of parameters improves model 
accuracy but increases calculation time. 
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