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Abstract: The central nervous system extensively expresses Ca2+-stimulated K+ channels, which serve 
to use Ca2+ to control their opening and closing. In this study, we explore the numerical computation 
of Hopf bifurcation in the Chay model based on the equilibrium point’s stability and the center 
manifold theorem to illustrate the emergence of complicated neuronal bursting induced by variation 
of the conductance of the Ca2+-sensitive K+ channel. The results show that the formation and removal 
of various firing activities in this model are due to two subcritical Hopf bifurcations of equilibrium 
based on theoretical computation. Furthermore, the computational simulations are shown to support 
the validity of the conceptual approach. Consequently, the conclusion could be helpful to improve and 
deepen our understanding of the contribution of the Ca2+-sensitive K+ channel. 
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1. Introduction 

It is known that the Chay model, comprising the mixed Na+-Ca2+ channel current and K+ channel 
current, can be used to simulate and describe various neuronal firings of pancreatic β cells, sensory 
terminals and cold receptors [1–3]. Exploring the Chay model is prevalent to understand not only 
physical-mathematical associations but also physiological due to its simplicity and abundant dynamic 
behavior consisting of synchronization and oscillations set off by noise. Ca2+-sensitive K+ channels 
are significant to the initiation of action potential, contributing substantially to physiological processes 
and its dysfunction leads to abnormal action potential propagation [4–6]. Bursting is crucial in the 
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exchange of information between neurons, which is characterized by alternations between resting and 
repetitive firing states. The most significant messenger in cells is Ca2+, which conveys vital information 
about nearly every action essential to the survival and proper operation of cells. The dynamic 
modulation of several elements is necessary for Ca2+ signaling, and the Na+/Ca2+ exchanger (NCX) 
plays a role in maintaining its homeostasis by extracting Ca2+ from cells [7]. In both healthy and 
ischemic brains, astrocyte NCX activation may perform various roles. Studies are amassing that 
demonstrate the importance of one of the major glial ion transporters, NCX, in the regulation of 
astrocytic, microglial and oligodendrocytic functions. We can conjecture that alterations in NCX 
activity in distinct brain regions or astrocytic places may be linked to learning, memory and 
information processing functions in the brain [8]. It has become clear that neuronal firing patterns are 
usually associated with abundant dynamical behaviors since it is affected by intrinsic and extrinsic 
mediators, for instance, variation of ion path permeability, time delay and noise perturbation, as well as 
depolarizing current and so on [9–11]. Although nervous systems are quite different, neurons share 
many common features, such as action potential as carriers of information, ion channels and rich 
nonlinear phenomena.  

Experimental and theoretical investigations indicate that action potentials generated by Na+, Ca2+ 
and K+ currents are attributed to Ca2+-activated K+ channels [12–14]. Due to the importance of 
electrical activities associated with Ca2+-activated K+ channels, the dynamic mechanism underlying 
bursting in the Chay model should be investigated in detail. This model was studied extensively by 
Duan et al. [15–17], Xu et al. [18,19], Lu et al. [20,21] and Zhu et al. [22]. However, most studies are 
confined to numerical simulation of the Hopf bifurcation with variations in different bifurcation 
parameters [15–18]. Based on these previous works, the mechanisms and contributions involved in 
firing activities related to various ion channels are not well understood. Hence, we simulate the 
bursting dynamics associated with Ca2+-activated K+ ion channels in combination with the use of the 
Chay model. 

2. Stability and bifurcation analysis 

We use the two-pool model by Chay [23] and develop upon it as a demonstration of stability and 
bifurcation analysis. This model is formed from three dynamic indexes: The membrane voltage (V), 
the concentration of Ca2+ within the cell (C) and the odds of triggering the voltage-sensitive K+ channel 
(n). The model comprises three equations: 
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The details of each parameter can be found in [23]. Here, g*
kc is designated as the bifurcation 

parameter. It represents the highest conductance of Ca2+-sensitive K+ channel. Let x = V, y = C, z = 
n, r = g*

kc. In order to simplify the calculation process, system (1) is transformed into the 
subsequent expression: 
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The existence of equilibrium points can be determined by analyzing the differential equations of 
model. Suppose system (2) has three roots x0, y0, z0. Let x1 = x – x0, y1 = y – y0, z1 = z – z0, we get the 
following representations: 
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Equilibrium is (0, 0, 0) and system (3) has the same properties in system (2). It is clear that the 
Jacobian matrix (aij)3×3 of system (3) and the characteristic equations satisfy: λ3 + Q1λ2 + Q2 λ + Q1 = 0, 
where Q3 = a31a13a22 + a12a21a33 + a32a23a11 – a11a22a33 – a12a23a31 – a13a21a32, Q2 = a11a22 + a11a33 + 
a22a33 – a13a31 – a12a21 – a32a23, Q1 = – (a11 + a22 + a33). Examine the Hurwitz matrix in the context of 
the coefficients Qi (i = 1, 2, 3) of the characteristic polynomial: 

 
1

1
1 1 2 3 3 2

3 2
3

1 0
1

, , 1
0 0

Q
Q

H Q H H Q Q
Q Q

Q

 
            

. 

The eigenvalues are negative when the determinant values of Hurwitz matrix are bigger than zero: 

 det 0, 1,2,3iH i  . 

The robustness of system (3) is taken into account as varying the values of g*
kc using the criteria 

of the Routh’s array: 

1 3 1 2 30, 0,Q Q Q Q Q   . 

It is easy to see that: 
1) r < -41.647, system (3) contains a stable node;  
2) r = -41.647, the system possesses a non-hyperbolic stationary state, which is O1 = (-17.5904, 

4.7463, 0.4334); 
3) -41.647 < r < 27.25, the system includes a saddle point; 
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4) r = 27.25, the system contains a non-hyperbolic stationary state, which is O2 = (24.7680, -
0.8969, 0.6095); 

5) r > 27.25, the system is stable. 
The system (3) reaches equilibrium at (x0, y0, z0) as r = r0, x1 = x - x0, y1 = y - y0, z1 = z - z0, r1 = r - r0. 

Next, we introduce a new variable denoted as r1 in the application of center manifold theorem with 
respect to the parameter g*

kc. Let dr1/dt = 0, we obtain: 

       
 

 
    

 

           

0 1

1 0
1 0 1 0

1 0 1 0

32.5 0.05

32530.05 2.5 0.1 2.5 18 9
0.1 2 0.1 2.

0 1 0 1
1

1 0

0 1 1 0 0 1
0 1 0 1

5

4

126.0e 100 2.5 0.1

0.1 2.510.07e e 1 4e
e 1 e 1

75
       1700 75

x x

x x
x x x x

x x x x

x x x x
x

x x

y y x x r r
z z x x

y






 

 

  
   


 



 

         

 




 




 


 



 

       
 

 
    

 

 

0 1

1 0
1 0 1 0

1 0 1 0

1 0
1

5
.

0

0 1 0
32.5 0.05

3

1

2530.05 2.5 0.1 2

1
1

1 0

0

1

. 18 9
0.1 2 0 1 2.5

7 280
1

0.0189e 100 2.5 0.1

0.1 2.510.07e e 1 4e
e 1 e 1

       0.0495

28

,

,

x x

x x
x x x x

x x x x

x x
y

x x x x
y

x x

y y

z

 

    
   




 

 

 


 

     




 




     





 




  
 

 
    

 

1 0

0 1

1 0
1 0

1 0

3
80 8

0

2 0.1

3
0.1 2 80 8

0.

1

1 2

0

0 1
0 1

1

1

230 0.01 0.2
.75e

e 1

0.01 0.2
,

0.01 0.2
1

      

0

e 0.125e
e

.

1

x x

x x

x x
x x

x x

x x

x x
z z

x x

r







 

 

   








 
   

 




























 


 






 







     






 

 





  (4) 

As r1 = 0, system (4) achieves equilibrium O (x1, y1, z1, r1) = (0, 0, 0, 0), which has the identical 
property in system (2). When r0 = -41.647, we consider the characteristic values of balanced state O1 

= (0, 0, 0, 0) in system (4): ξ1 = -0.0005, ξ2 = 1.6305i, ξ3 = -1.6305i, ξ4 = 0. 
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system (4) has the following form 
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Based on center manifold theorem, a center manifold exists. The specific form is as follows: 
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Here a = -0.0000036406, b = -0.000003093017389, c = 0.00008567728077, d = 0.00000180521, 
e = 0.00000016, f = -0.0000005491. If the system is limited by center manifold, the following 
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conditions are satisfied: 

 
 

1

2

0 1.6305 ,
,

1.6305 0 ,
v v f v w
w w f v w

     
               




                     (7) 

where 

1

2

( , ) 0.580313865 7.0 1.6305 0.0000001404922113 0.0000004820211492
                0.000001584700346 ,

( , ) 0.01133350044 1.493245098 0.000000006016773356 0.00000002064322272
     

f v w s v w sv sw
vw

f v w s v sv sw

    
 

    



           0.00000006786698519 .vw 

 

Then, we have 

1 1 2 2 1 1 1

(0,0)

2 2 2 1 2 1 2

( 0, 0, 0)

( 0, 0, 0)

1 1[ ] [ ( )
16 16 0.0204

( ) )] 3.01538319 > 0,

(Re( ( )) 0.00001623167121 0.

vvv vww vvw www vw vv ww

vw vv ww vv vv ww ww v w s

v w s

a f f f f f f f

f f f f f f f

d sd
ds


  

  

     


    

   

         (8) 

According to previous numerical computations, we have: 
Conclusion 1: At r0 = -41.647, a supercritical Hopf bifurcation is obtained. When the value of r 

is less than r0, the equilibrium O1 turns to be stable. The equilibrium state loses stability as r > r0 and 
a stable periodic solution appears, which causes the oscillation of system (2). As r0 = 27.25, the 
characteristic values are ξ1 = 0.0036, ξ2 = 3.8251i, ξ3 = -3.8251i and ξ4 = 0, respectively. 

The simplified form based on the center manifold system (4) is depicted as 
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The next conclusion can be obtained as a = 0.32334838 > 0 and d = 0.01462214783 > 0. 
Conclusion 2: At r0 = 27.25, the system exhibits a subcritical Hopf bifurcation transition. As r is 

less than r0, the equilibrium O2 is in an unstable state. As r > r0, the equilibrium O2 returns to be stable. 

3. Numerical simulations 

The generation processes of the parameter g*
kc are presented so as to study the bifurcation 
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phenomenon underlying various firing activities. Figures 1(a),(b) show the bifurcations that illustrate 
the stationary states of system (2) in the (V, g*

kc) and (C, g*
kc) planes, respectively. Each point of the 

solid line in the curve denotes equilibrium stability, and the dotted curve is an unsteady stationary state. 
Additionally, g*

kc passes through two Hopf bifurcations labeled with HB1 and HB2, where g*
kc

 1
 = -

41.647 μM/s and g*
kc

 2 = 27.25 μM/s. As g*
kc is increased, the balanced stationary initially loses its 

steady state at HB1, only to regain the balanced state at HB2. 

 

 

Figure 1. (Color online) (a) Bifurcation diagram of system (2) in the (g*
kc, V) plane. (b) 

Bifurcation diagram of system (2) in the (g*
kc, C) plane. HB1 and HB2 represent two Hopf 

bifurcation points. (c) The interspike interval (ISI) bifurcation of equilibrium with V and 
g*

kc. (d) Enlargement of the interspike interval (ISI) bifurcation of equilibrium with C and 
g*

kc in the selected range. 

Because of the fluctuation in the parameter g*
kc, the two Hopf bifurcation points are plainly visible. 

It can be seen that g*
kc has a stable equilibrium between g*

kc = -80 pS and -41.647 pS, as well as 
between g*

kc = 27.25 pS and 100 pS. There are two unstable equilibria in the range of g*
kc = -41.647 

pS to 27.25 pS. Firing activities can be obtained from the ISI bifurcation with variation of the parameter 
g*

kc. As g*
kc is increased approximately to 30 pS, simple firing activities occur (Figure 1(c)). Then, in 

Figure 1(d), a partially enlarged picture of the ISI bifurcation in the (g*
kc, C) plane is shown. As g*

kc is 
increased to 31 pS, bursts are observed. 

The corresponding time series of system (2) are presented in Figure 2. Figure 2(a1),(b1),(c1),(d1) 
shows the time evolution of parameter g*

kc with different values. Figure 2(a2),(b2),(c2),(d2) represents 
distinct state trajectories in the three-dimensional phase space under different g*

kc values.  
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Figure 2. (Color online) Evolution of the membrane potential (V) in pyramidal neuron 
emerged in different parts of the curves relative to HB1 and HB2 points in Figure 1(a). 
(a1),(b1),(c1),(d1) The left column represents the temporal evolution of neuronal membrane 
potential (V) under different parameters g*

kc. (a2),(b2),(c2),(d2) The image in the middle 
column denotes the corresponding V-C-n phase portrait. (a3),(b3),(c3),(d3) The image of the 
right column is recorded as the spectrum corresponding to Figure (a1)–(d1). (a) g*

kc = 21 pS, 
(b) g*

kc = 11 pS, (c) g*
kc = 10.9 pS, (d) g*

kc = 10.4 pS. 

Figure 2 depicts the time-varying membrane voltage for various values of the parameter g*
kc. On 

the left, the time evolution of V is compared with g*
kc. The state trajectories in the 3D phase portrait V-
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C-n space are shown in the middle panels, and the right panels are the time-frequency of parameter 
g*

kc. For instance, there is a single peak in the oscillation when g*
kc = 21 pS in Figure 2(a1). The one-

to-one correspondence of the three-dimensional phase space is visualized in Figure 2(a2). Moreover, 
Figure 2(a3) shows a temporal-spectral pattern with the parameter g*

kc = 21 pS. When the value of the 
bifurcation parameter g*

kc drops, the total number of peak counts and magnitudes begins to increase. 
Similarly, six peaks were produced when g*

kc = 11 pS, as shown in Figure 2(b1). Then, in Figure 2(c2), 
chaos appears. Furthermore, the number of peak counts in Figure 2(d1) tends to oscillate in a periodic 
fashion. Figure 2(a3),(b3),(c3),(d3) illustrates the frequency spectrogram of the temporal evolution 
pattern, making the change observation more apparent. 

The membrane voltage of neurons exhibits spontaneous oscillations in Figure 2(a1). The temporal 
evolution Figure 2(a1), which corresponds to the 3D phase Figure 2(a2), appears as an inflection point, 
denoted by a red hollow circle. Figure 2(b1) displays a multi-peak oscillation phenomenon as the 
parameter g*

kc lowers continually, in contrast to the single-peak oscillation phenomenon in Figure 2(a1). 
Among these, Figure 2(a1),(b1),(d1) represents a regular burst of membrane potential (V). Figure 2(c1) 
depicts chaos. In the third experimental situation, the evolution diagram of time shows significant 
irregularity, that is, the irregular spike sequence of spontaneous oscillations of membrane voltage (V). 
These phenomena are plentiful and warrant further investigation. 

4. Conclusions 

Mathematical modeling and numerical simulation are two effective methods to help us understand 
the internal workings of the neuronal system. We investigated the properties of primitive hippocampal 
neurons in the Chay model using the bifurcation parameter g*

kc. We analyzed the theoretical stability of 
equilibrium and bifurcation and explored the variations in the conductance of the Ca2+-sensitive K+ channel. 
As the parameter g*

kc varies, two supercritical Hopf critical nodes were found. 
The Chay model exhibited a bi-stability phenomenon, namely the coexistence of chaotic attractors 

and stationary point attractors. This phenomenon was numerically revealed through time evolution, 
local bifurcation, phase planes and spectrum diagrams. Numerical calculations of Hopf bifurcations 
confirmed the theoretical analysis. It is concluded that the conductance of Ca2+-sensitive K+ channels 
leads to the emergence of complex neuronal bursting. Thus, some dynamic behaviors of system (1) are 
schematically presented. Measurements corroborated the numerical results, displaying dynamic 
behaviors. Validation of theoretical results was achieved through the use of numerical methods, which 
were employed after conducting a thorough theoretical analysis. Other complex dynamical behaviors 
of the presented Chay model should be further studied. We aim to conduct more comprehensive 
research on the relationship between the synchronization of oscillatory patterns and bifurcation in our 
upcoming investigations. 
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