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Abstract: This paper addressed the problem of observer-based memory state feedback control de-
sign for semi-Markovian jump systems subject to input delays and external disturbances, where the
measurement output was vulnerable to randomly occurring cyber attacks. To facilitate analysis, the
cyber attacks were described by a nonlinear function that meets Lipschitz continuity and the possible
attack scenarios were represented by a stochastic parameter that follows the Bernoulli distribution.
Based on the information from the considered system and state observer, an augmented closed loop
system was constructed. Then, by using the Lyapunov stability theory, an extended Wirtinger’s integral
inequality and stochastic analysis, the required stability criterion was proposed in the form of linear
matrix inequalities. As a result, the control and observer gain matrices were efficiently derived, ensur-
ing the stochastic stability of closed-loop systems with H∞ performance, regardless of cyber attacks.
To demonstrate the effectiveness and theoretical value of the proposed robust memory state feedback
control design, simulation results were presented.
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1. Introduction

Past few decades, Markovian jump systems (MJSs) have emerged as a powerful modeling tool
for practical systems that undergo random changes due to component failures, repairs, sudden envi-
ronmental disturbances, and alterations in subsystem interconnections [1–7]. Particularly, in [3], the
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dynamic-output-feedback control approach to uncertain singular systems has been designed for MJSs
with time-varying delays. The delay-dependent stochastic stabilization of MJSs modeled by fractional
Brownian motion via a quantized controller has been proposed in [4]. However, MJSs do have lim-
itations in their application, particularly arising from the exponential distribution of jump times in
Markov chains. This leads to constant transition rates and conservative results. To overcome these
limitations, semi-Markovian jump systems (s-MJSs) have been introduced as a more practical alterna-
tive [8]. Unlike MJSs, s-MJSs permit more general probability distributions for sojourn time, without
being constrained to exponential distributions. In s-MJSs, the transition rates depend on the jump time,
providing a more realistic representation of practical dynamical systems [9]. This fundamental dis-
tinction makes s-MJSs less conservative and more applicable to various real-world scenarios. Notably,
many results established for MJSs are seen as special cases of s-MJSs, considering that the transition
rates in s-MJSs can be time-dependent rather than constant [10].

As control performance requirements continue to increase, the network-based communication
mechanism has been widely adopted in real-time system design. Despite offering various benefits,
the open and shared nature of these communication networks makes them susceptible to cyber attacks.
In existing literature, three primary attack modes are often discussed: Denial-of-service attacks [11],
deception attacks [12] and replay attacks [13]. Among these, deception attacks, also known as false-
data injection attacks, are particularly concerning due to their secretive and destructive nature, posing a
significant threat to network or internet security. These attacks transmit false information to the sensor
or actuator by exploiting network transmission vulnerabilities, thereby altering the actual values of the
sensor or controller [14–18]. As a result, system performance can be severely deteriorated. Conse-
quently, developing effective control measures for s-MJS in the presence of deception attacks becomes
a challenging task, especially as the adversaries often hide their attack strategies. This challenge forms
the motivation for this work.

On the other hand, state feedback control synthesis problems for MJSs are typically classified into
two types, delay-independent memoryless state feedback controllers and delay-dependent memory
state feedback controllers. From the viewpoint of the stochastic nature of Markovian jump systems,
memory controllers are natural state feedback controllers and memory controllers [19–21] achieve bet-
ter performances than memoryless controllers can be expected. This strategy enhances the performance
of control systems by enriching the dynamics of the controller. In [19], the robust H∞ tracking prob-
lem for stochastic time-delay systems was investigated using a memory state feedback control strategy.
In [20], the authors developed a non-fragile memory H∞ control design for the discrete-time singular
MJS with actuator saturation to explore its finite-time stability. A new aperiodic memory sampled-data
control framework for a kind of fuzzy MJS with time-varying delay was proposed in [21]. The memory
control strategy integrates memory into the controller’s dynamics, offering numerous benefits, includ-
ing improved control system performance, enhanced robustness, and adaptability to diverse operating
conditions. It enables the controller to exhibit adaptive behaviors, refining its actions based on the
system’s evolution. However, accurate measurement of the system state information for control design
can be difficult due to external disturbances and cyber attacks. As a result, recent control research com-
munities have shown interest in the Luenberger state observer-based feedback control design [22, 23].
Despite its practical significance, only a limited number of studies on observer-based memory state
feedback control design have been published for s-MJSs in the existing literature, which motivates the
present study.
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Considering these aspects, this study is aimed at exploring the Luenberger state based memory state
feedback control design for s-MJSs subject to external disturbance. The key contributions of this study
can be summarized as follows.

1) The memory state feedback control problem of s-MJSs with external disturbances is studied based
on the linear matrix inequality (LMI) technique. In order to reflect a more realistic environment,
the concept of cyber attacks is considered in state estimation for s-MJSs.

2) A Luenberger-type state observer is designed to estimate unmeasured states. A novel effective
control algorithm for selecting the gain matrices for the controllers and observers is developed
and also takes the past state information into account.

3) By using Lyapunov function methods and an extended Wirtinger’s integral inequality techniques,
a new set of LMI-based sufficient conditions are derived to ensure the stochastic stability of the
error system. Numerical simulations show that these conditions are computationally effective in
the analysis and synthesis of s-MJSs with and without cyber attacks.

The remainder of this paper is structured as follows. Preliminary discussions of the problem are
found in Section 2. Section 3 puts forth the primary theoretical findings. Section 4 employs numerical
examples to verify the proposed theory. Lastly, conclusions are drawn in Section 5.

2. Problem formulation

Consider the continuous-time s-MJSs with external disturbances:

ẋ(t) = A(q(t))x(t) + B(q(t))u(t) +C(q(t))ω(t),
y(t) = D(q(t))x(t), (2.1)

where x(t) ∈ ℜn, u(t) ∈ ℜm, and y(t) ∈ ℜw represent the state, the control input and the measured
output, respectively; ω(t) is the external disturbance that belongs to L2[0,∞); A(q(t)), B(q(t)), C(q(t))
and D(q(t)) are given matrices with appropriate dimensions. The process {q(t), t > 0} is a semi-Markov

process taking values as P{q(t + κ) = s|q(t) = r} =
{
Πrs(κ)κ + o(κ), if r , s,
1 + Πrr(κ)κ + o(κ), if r = s,

where κ > 0 is the

sojourn time, lim
κ→0

(o(κ)/κ) = 0 and Πrs(κ) ≥ 0 for r , s is the transition rate from mode r at time t to

mode s at time t + κ and Πrr(κ) = −
∑N

s=1,s,r Πrs(κ).
For the dynamics (2.1), we construct the below state estimator with cyber attacks:

˙̂x(t) =A(q(t))x̂(t) + B(q(t))u(t) + L(q(t))(ỹ(t) − ŷ(t)),
ỹ(t) =(1 − β(t))y(t) + β(t)D(q(t))g(x(t)), (2.2)
ŷ(t) =D(q(t))x̂(t),

where x̂(t) and ŷ(t) are the estimates of x(t) and y(t), respectively; L(q(t)) are the estimator gain matrices
to be determined; g(x(t)) denotes the cyber attacks; β(t) is the stochastic variable which satisfies the
Bernoulli distribution [16].

In this study, we are designing a memory controller of the below form:

u(t) = K1(q(t))x̂(t) + K2(q(t))x̂(t − τ), (2.3)
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where K1(q(t)) and K2(q(t)) are the control gain matrices to be designed; τ denotes the constant time
delay. For representation convenience, hereafter we denote the semi-Markov process parameter q(t) by
subscript r that is, A(q(t)) is denoted by Ar.

By substituting the memory control law (2.3) in (2.2), we have

˙̂x(t) =(Ar + BrK1r)x̂(t) + BrK2r x̂(t − τ) + (1 − β(t))LrDr x(t) + β(t)LrDrg(x(t)) − LrDr x̂(t). (2.4)

Denote e(t) = x(t) − x̂(t) and z(t) = y(t) − ŷ(t), then the error dynamics are described as

ẋ(t) =(Ar + BrK1r)x(t) − BrK1re(t) + BrK2r x(t − τ) − BrK2re(t − τ) +Crω(t). (2.5)
ė(t) =(Ar + LrDr)e(t) +Crω(t) − (1 − β(t))LrDr x(t) − β(t)LrDrg(x(t)) − LrDr x(t). (2.6)
z(t) =Dre(t). (2.7)

Further, by defining Φ(t) = [xT (t) eT (t)]T , g(Φ(t)) = [gT (x(t)) gT (e(t))]T , and combining Eqs
(2.5) and (2.6), the following augmented s-MJSs can be written as

Φ̇(t) =ÃrΦ(t) + B̃rΦ(t − τ) + C̃rg(Φ(t)) + D̃rω(t),
z̃(t) =ẼrΦ(t), (2.8)

where

Ãr =

[
Ar + BrK1r −BrK1r

Γr Ar + LrDr

]
, B̃r =

[
BrK2r −BrK2r

0 0

]
, C̃r =

[
0 0
νr 0

]
, D̃r =

[
Cr

Cr

]
, Ẽr = [0 Dr],

νr = −β̄LrDr − (β(t) − β̄)LrDr, Γr = −(1 − β̄)LrDr − (β̄ − β(t))LrDr − LrDr and g(e(t)) = g(x(t)) − g(x̂(t)).

In order to derive the main results of this paper, consider the below assumption, lemma and defini-
tion.

Assumption 1. The nonlinear function g(·) satisfies the Lipschitz condition such that ||g(Φ(t))|| ≤
∥GΦ(t)∥, where G > 0 is a known diagonal matrix.

Lemma 1. [24] For any positive matrix G = GT , the below inequality holds

(s − h)
∫ s

h
Φ̇T (q)GΦ̇(q)dq ≥ ΘT

1 GΘ1 + 3ΘT
2 GΘ2 + 5ΘT

3 GΘ3,

where Θ1 = Φ(s) − Φ(h), Θ2 = Φ(s) + Φ(h) − 2
s−h

∫ s

h
Φ(r)dr, Θ3 = Φ(s) − Φ(h) − 6

s−h

∫ s

h
Φ(r)dr

+ 12
(s−h)2

∫ s

h
dq
∫ q

h
Φ(r)dr.

Definition 1. [21] The augmented s-MJSs (2.8) are stochastically stable with an H∞ performance
level δ > 0. If it is stable and the response z̃(t) under zero initial condition satisfies, then

E
{ ∫ tm

0
z̃T (t)z̃(t)dt

}
≤ E
{
δ2
∫ tm

0
ωT (t)ω(t)dt

}
, (2.9)

for all t > 0 and any nonzero ω(t) ∈ L2[0,∞).
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3. Main results

The memory control issue of the augmented s-MJSs (2.8) is addressed by employing the Lyapunov
functions method.

Theorem 1. Let Assumption 1 hold. For given scalars τ > 0, α > 0, σ, β̄ ∈ [0, 1], diagonal matrix G,
known gain matrices K1r, K2r and Lr, the considered augmented s-MJSs (2.8) are stochastically stable
with an H∞ performance index δ > 0, if there exists symmetric matrices Pr > 0, Q > 0, R > 0 and a
scalar γ > 0 such that the following matrix inequality holds:

Γ̄rs Θr Σ̄

∗ −αPr 0
∗ ∗ −η̄

 < 0, (3.1)

N∑
s=1

πrs(κ)αPs − αR ≤ 0, (3.2)

where

Γ̄rs = [Ω]6×6
rs , [Ω]1,1

rs = PrÃr + ÃT
r Pr + Q +

N∑
r=1

πrr(κ)Pr − 9αPr + ẼT Ẽ + γGTG, [Ω]1,2
rs = Pr B̃r + 3αPr,

[Ω]1,3
rs = 18αPr, [Ω]1,4

rs = −2αPr, [Ω]1,5
rs = PrC̃r, [Ω]1,6

rs = PrD̃r, [Ω]2,2
rs = −Q − 9αPr, [Ω]2,3

rs = −15αPr,

[Ω]2,4
rs = 5αPr, [Ω]3,3

rs = −48αPr, [Ω]3,4
rs = 15αPr, [Ω]4,4

rs = −5αPr, [Ω]5,5
rs = −γI, [Ω]6,6

rs = −δ
2I,

Θr = [ταPrÃr ταPr B̃r 0 0 ταPrC̃r ταPrD̃r]T , η̄ = diag{P1, . . . ,Pr−1,Pr+1, . . . ,PN },

Σ̄ = [
√
πr1(κ)PT

r , . . . ,
√
πr(r+1)(κ)PT

r , . . . ,
√
πrN (κ)PT

r ],

and the remaining parameters of Ωrs are zero.

Proof. Choose a Lyapunov-Krasovskii functional candidate for the augmented s-MJSs (2.8) as follows:

M(r,Φ(t)) = ΦT (t)PrΦ(t) +
∫ t

t−τ
ΦT (s)QΦ(s)ds + τ

∫ t

t−τ

∫ t

θ

Φ̇T (s)αPrΦ̇(s)dsdθ, (3.3)

where Pr = diag{P1r,P2r} and Q = diag{Q1,Q2}. Further, the infinitesimal operator of the semi-
Markovian process is denoted by £. By applying infinitesimal operator on (3.3) and taking mathemat-
ical expectation, we get

E{£M(r,Φ(t))} =E{ΦT (t)PrΦ̇(t) + Φ̇T (t)PrΦ(t) + ΦT (t)
N∑

s=1

πrs(κ)PsΦ(t) + ΦT (t)QΦ(ℓ) − ΦT (ℓ − τ)QΦ(ℓ − τ),

+ Φ̇T (t)τ2αPrΦ̇(t) − τ
∫ t

t−τ
Φ̇T (s)αPrΦ̇(s)ds + τ

∫ t

t−τ

∫ t

θ

Φ̇T (s)
N∑

s=1

πrs(κ)αPsΦ̇(s)dsdθ}. (3.4)

Further, by using Lemma 1 to the integral term in Eq (3.4), we can get

−τ

∫ t

t−τ
Φ̇T (s)αPrΦ̇(s)ds ≤


Φ(t)
Φ(t − τ)

2
τ

∫ t
t−τΦ(s)ds

12
τ2

∫ t
t−τ

∫ θ
t−τΦ(s)dsdθ



T 
−9αPr 3αPr 18αPr −2αPr

∗ −9αPr −15αPr 5αPr

∗ ∗ −48αPr 15αPr

∗ ∗ ∗ −5αPr




Φ(t)
Φ(t − τ)

2
τ

∫ t
t−τΦ(s)ds

12
τ2

∫ t
t−τ

∫ θ
t−τΦ(s)dsdθ

 . (3.5)
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From (3.2), it is clear that

τ

∫ t

t−τ

∫ t

θ

Φ̇T (s)
N∑

r=1

πrs(κ)αPrΦ̇(s)dsdθ ≤ τ
∫ t

t−τ

∫ t

θ

Φ̇T (s)αRΦ̇(s)dsdθ. (3.6)

For any scalar γ > 0, we can get from Assumption 1 that

γΦT (t)GTGΦ(t) − γgT (Φ(t))g(Φ(t)) ≥0. (3.7)

Now, by adding H∞ performance attenuation toM(r,Φ(t)) and associating (3.4)–(3.7), it is easy to
obtain that

E{£M(r,Φ(t)) + z̃T (t)z̃(t) − δ2ωT (t)ω(t)} ≤ E{ξT (t)Γrsξ(t)}, (3.8)

where ξ(t) = [ΦT (t) ΦT (t − τ) 2
τ

∫ t

t−τ
ΦT (s)ds 12

τ2

∫ t

t−τ

∫ θ
t−τ
ΦT (s)dsdθ gT (Φ(t)) ωT (t)]T and Γrs =

[Ω]6×6
rs + Φ̇

T (t)τ2αPrΦ̇(t)+∇T∇+ΦT (t)
N∑

s=1
πrs(κ)PsΦ(t). By using the Schur complement, we have Γrs

can be equivalently written as Γ̄rs which is defined in the theorem statement. Thus, it can be observed
that E{£M(r,Φ(t)) + z̃T (t)z̃(t) − δ2ωT (t)ω(t)} < 0 if the LMI (3.1) holds. Thus, by Definition 1, it is
concluded that the augmented s-MJSs (2.8) are stochastically stable with an H∞ performance index
δ > 0. This completes the proof of the theorem.

Control synthesis conditions are established by LMIs on the basis of Theorem 1, which are pre-
sented as follows.

Theorem 2. Let Assumption 1 hold. For given scalars τ > 0, α > 0, κ > 0, σ, β̄ ∈ [0, 1], and
known diagonal matrix G, the considered augmented s-MJSs (2.8) are stochastically stable with an
H∞ performance index δ > 0, if there exists symmetric matrices Pr > 0, Q > 0, any matrices Xr,W1r,
W2r, Tr, and a scalar γ > 0 such that LMI (3.2) and the below matrix inequality holds: Γ̄rs Θ̂r Σ̄

∗ −αPr 0
∗ ∗ −η̄

 < 0, (3.9)

[
−κI (BrXr − P1rBr)T

∗ −κI

]
< 0, (3.10)

where

Γ̂rs = [Ω̄]6×6
rs , [Ω̄]1,1

rs = Âr + Â
T
r + Q +

N∑
r=1
πrr(κ)Pr − 9αPr + ẼT Ẽ + γGTG, [Ω̄]1,2

rs = B̂r + 3αPr,

[Ω̄]1,5
rs = Ĉr, [Ω̄]1,6

rs = D̂r, Âr =

[
P1rAr + BrW1r −BrW1r

−(1 − β̄)TrDr + TrDr P2rAr − TrDr

]
, B̂r =

[
BrW2r −BrW2r

0 0

]
, Ĉr =[

0 0
−β̄TrDr 0

]
, D̂r =

[
P1rCr

P2rCr

]
, Θ̂r = [ταÂr ταB̂r 0 0 ταĈr ταD̂r]T and the other elements of

[Ω̄]rs are defined as [Ω]rs, which are given in the Theorem 1. Further, the gain matrices can be obtained
by the below conditions: K1r = X

−1
r W1r, K2r = X

−1
r W2r and Lr = P

−1
2r Tr.
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Proof. Let us assume that the linear congruence transformations (LCTs) are as follows: P1rBr = BrXr,
W1r = XrK1r,W2r = XrK2r and Tr = P2rLr. Then, by utilizing LCTs, the inequality in (3.1) can be
the same as (3.9). It is noted that the assumption P1rBr = BrXr is equally constraining. So it could not
be directly solved via the LMI Toolbox. To deal with this issue, we replace the condition P1rBr = BrXr

by the constraint trace [(BrX − P1rBr)T (BrX − P1rBr)] < κI, for known scalar κ > 0. Now, by using
the Schur complement, the inequality constraint can be converted to the LMI in (3.10). This completes
the proof of the theorem.

Remark 1. In recent years, cyber attacks have threatened information security, such as file confi-
dentiality, communication integrity, and data transmission effectiveness. Cyber attacks have gradually
become the main issuse hindering the effective communication of MJSs. Very recently, some interesting
results on state estimation for MJSs under cyber attacks have been discussed in [16–18]. For exam-
ple, Zha et al. [16] addressed the analysis and synthesis of state estimation for MJSs subject to cyber
attacks by utilizing the finite-time adaptive event-triggered method. In [18], an observer-based sliding
control law was designed, which guarantees the MJSs under actuator attacks to be reliable. Moreover,
so far in the literature, no work has been reported on memory control problem of s-MJSs with cyber
attacks and input delays. Thus, the main contribution of this paper is to fill such a gap through em-
ploying an observer-based memory control law for achieving stochastic stabilization in s-MJSs against
cyber attacks.

4. Simulation examples

To illustrate the effectiveness of the designed controller, we consider two simulation studies in
this section.

Example 1.

Consider the s-MJSs in the form of (2.1) with two modes and associated matrices are given as fol-
lows.

Mode 1:

A1 =


−2.4 0 1.4
0.1 −0.4 −0.3
0.7 0 0.3

 , B1 =


0.12 0
0.13 0.4
0.1 0.1

 , C1 =


0.5

0.05
−0.01

 , and D1 =


−0.1 0 1
0.15 −2 −0.1
0.1 0.2 0.1

 .
Mode 2:

A2 =


−3.6 0 2.2
0.3 −0.4 −0.7
0.1 0 −0.4

 , B2 =


0.11 0
0.14 0.4
0.2 0.1

 , C2 =


0.4

0.03
−0.02

 , and D2 =


−0.2 0 1
0.16 −1 −0.1
0.2 0.3 0.1

 .
Further, the external disturbances and cyber attacks function are taken as ω(t) = 0.3 sin(5πt) and

g(x(t)) = [−0.45 tanh(x1(t)) − 0.25 tanh(x2(t)) − 0.15 tanh(x3(t))]T . Moreover, the transition rates
Π12(κ) and Π21(κ) can be represented as Π12(κ) =

∑2
k=1 ψkΠ12,k and

∑2
k=1 ψk = 1 with Π12(κ) ∈ [0.1 0.3]

and Π21(κ) ∈ [0.2 0.4]. Moreover, the other parameters are chosen as τ = 2, α = 0.001, σ = 0.5,
β̄ = 0.4 and G = diag{0.45, 0.25, 0.15}.
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Based on these values, the memory control and observer gain parameter are computed as below:

K11 =

[
−93.5834 19.1919 −46.9853
43.4856 −67.5993 7.9646

]
, K12 =

[
−26.9227 −11.1151 −24.6391
15.8148 −8.3630 13.1298

]
,

K21 =

[
0.0026 −0.0115 −0.0030
−0.0012 0.0209 0.0043

]
, K22 =

[
0.0019 −0.0024 −0.0012
−0.0021 0.0083 0.0012

]
,

L1 =


−1.5813 29.4874 333.3484
0.1677 3.1112 35.9142
2.3518 1.5364 19.9485

 , and L2 =


18.3136 27.9459 114.7521
1.8261 2.3703 10.3630
1.6228 1.1022 7.2568

 .
We apply these gains to the system results of simulation under initial conditions x(t) = [1.1 −

4.2 − 2.2]T and x̂(t) = [1.5 − 5.1 − 3.3]T as shown in Figures 1–6. The state curves of addressed
system (2.1) with and without control are plotted in Figure 1(a,b), respectively. It can be seen that the
state curves with control in Figure 1(a) converge to zero, which shows the efficiency of the proposed
control strategy. Furthermore, the estimated state curves of s-MJSs (2.2) with and without cyber attacks
are given in Figure 2(a,b), and it can be seen that the convergence speed of the estimated state curves in
Figure 2(b) are faster than that in Figure 2(a), which indicates that cyber attacks can affect the estimate
performance of the system state. Moreover, the corresponding error state curves of s-MJSs (2.7) with
and without cyber attacks are displayed in Figure 3(a,b). Lastly, Figures 4–6 show the mode transitions,
the occurrence probability of cyber attacks and the function of cyber attacks, respectively. However,
these figures are provided to demonstrate the validity and applicability of the proposed control scheme.
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Figure 1. State curves of s-MJSs (2.1) with and without control.
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Figure 2. Estimated state curves of s-MJSs (2.2) with and without cyber attacks.
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Figure 3. Error state curves of s-MJSs (2.7) with and without cyber attacks.
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Figure 4. The Mode transitions.
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Figure 5. The occurrence probability of cyber attacks.
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Figure 6. The function of cyber attacks.

Example 2.

An F-404 aircraft engine model is borrowed from [25], which is considered the s-MJSs in the form
of (2.1) with two modes. The associated matrices are given as follows:

Mode 1:

A1 =


−1.46 0 2.428
−0.3357 −1.4 −0.3788
0.3107 0 −2.23

 , B1 =


0.055 0.05
0.1 −1

0.075 −0.05

 , C1 =


0.1
−0.2
−0.5

 , and D1 =


−0.1 0 1
0.15 −2 −0.1
0.1 0.2 0.1

 .
Mode 2:

A2 =


−1.46 0 2.428
−0.8357 −2.4 −0.3788
0.3107 0 −2.23

 , B2 =


0.055 0.05
0.075 −1
0.05 −0.05

 , C2 =


0.4
−0.3
−0.2

 , and D2 =


−0.1 0 1
0.15 −2 −0.1
0.1 0.2 0.1

 .
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Moreover, the external disturbances and cyber attacks function are selected as ω(t) = 0.5 sin(2πt)
and g(x(t)) = [−0.65 tanh(x1(t)) −0.25 tanh(x2(t)) −0.35 tanh(x3(t))]T . Furthermore, the transition
rates Π12(κ) and Π21(κ) are given in Example 1. Therefore, the remaining parameters are taken as
τ = 1, α = 0.01, σ = 0.2, β̄ = 0.6 and G = diag{0.65, 0.25, 0.35}.

Based on the above values, the memory controller and observer gain matrices are computed as
follows:

K11 =

[
−15.2057 −0.8366 3.3212
−1.7014 −0.0061 −0.2313

]
, K12 =

[
−23.3056 1.2995 −1.2568
−2.4397 −0.0248 −0.3595

]
,

K21 =

[
−0.0237 −0.0045 −0.0282
−0.0023 0.0051 −0.0020

]
, K22 =

[
−0.0489 −0.0040 −0.0244
−0.0037 0.0073 −0.0003

]
,

L1 =


2.5444 −0.5562 0.9756
0.1376 −0.0787 0.1280
−7.1661 0.1602 0.8970

 , and L2 =


2.7831 −1.2368 3.6411
0.0473 −0.3510 −1.8192
−7.1524 0.2981 3.1258

 .

Based on these gains values of simulation results under initial conditions x(t) = [2.2 −6.3 −3.1]T

and x̂(t) = [2.6 − 7.5 − 4.2]T as shown in Figures 7–9. Which depict the dynamics of the system
states and their estimations, it is clear that the proposed method can estimate states well if the states are
immeasurable. The state curves x(t) and its estimates x̂(t) with and without cyber attacks are showed
in Figures 7(a,b), 8(a,b) and 9(a,b), respectively. By contrast, it can be seen that the convergence speed
of the estimated state curves in Figures 7(b), 8(b) and 9(b) are faster than that in Figures 7(a), 8(a) and
9(a), which indicates that cyber attacks can affect the stability and estimate performance of the system
state. Thus, from these simulation results, we can conclude that the proposed controller effectively
estimated states of the F-404 aircraft engine system even in the presence of cyber attacks.
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(b) Without cyber attacks

Figure 7. First state curves x1(t) and its estimates x̂1(t) with and without cyber attacks.
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Figure 8. Second state curves x2(t) and its estimates x̂2(t) with and without cyber attacks.
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Figure 9. Third state curves x3(t) and its estimates x̂3(t) with and without cyber attacks.

5. Conclusions

The observer-based memory state feedback control design problem for S-MJSs subject to external
disturbance and randomly occurring cyber attacks has been addressed in this paper. First, the cyber
attacks have been represented by the Lipschitz continuous nonlinear function, with the randomness
phenomenon denoted by the Bernoulli distributed stochastic parameter. Next, on the basis of mea-
surement output, the state observer was constructed for the addressed system. By using the Lyapunov
stability theory and matrix integral inequality, sufficient conditions ensuring the desired stability and
observer design of the addressed system have been obtained. To reduce conservatism, an extended
Wirtinger’s integral inequality has been employed in the proof of stability criterion. Finally, two nu-
merical examples have been provided to illustrate the feasibility and potential value of the proposed

Electronic Research Archive Volume 31, Issue 12, 7496–7510.
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observer-based memory state feedback control design approach.
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