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Abstract: This paper investigated the propagation and interaction behavior of the fractional-in-space
multidimensional FitzHugh-Nagumo model using second-order time integrators in combination with
the Fourier spectral method. The study focused on analyzing the accuracy, efficiency and stability of
these time integrators by comparing numerical results. The experimental findings highlight the ease of
implementation and suitability of the methods for long-time simulations. Furthermore, the method’s
capability to capture the influence of the fractional operator on the equation’s dynamics was examined.
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1. Introduction

In the field of excitable media, FitzHugh [1] introduced the FitzHugh model as a mathematical
model to understand the generation and propagation of electrical signals in neuronal dynamics. Ini-
tially, the FitzHugh model was formulated as a nonlinear ordinary differential equation. Later, Nagumo
in [2] extended this model to create the FitzHugh-Nagumo (FHN) model. The FitzHugh-Nagumo
model is a well known two components classical reaction-diffusion model that describes the dynamics
of excitable systems such as neurons and cardiac tissues [3]. However, when heterogeneity and com-
plex connectivity properties characterize the medium in which the transport phenomenon is observed
on a very large number of scales, it cannot be adequately described using the classical FHN model.
Hence, the use of space-fractional FHN (SFFHN) model becomes necessary. The SFFHN model is
obtained by replacing the standard Laplacian operator in the FHN model by a fractional one. In this
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study, we consider the following SFFHN model.

∂u(X, t)
∂t

= −Du(−∆)
α
2 u(X, t) + F1(u, v), X ∈ Ω ⊂ Rd, t > 0,

∂v(X, t)
∂t

= F2(u, v), X ∈ Ω ⊂ Rd, t > 0,

with the periodic, homogeneous Neumann, or Dirichlet boundary conditions along with appropriate
initial conditions

u(X, 0) = u0(X), v(X, 0) = v0(X), X ∈ Ω, (1.1)

where u is a normalized transmembrane potential, v is a dimensionless time-dependent recovery vari-
able, Du is the diffusion coefficient, d is the dimension of the problem, F1(u, v) = u(u − µ)(1 − u) −
v, F2(u, v) = ϵ(βu − γv − δ) are nonlinear functions that satisfy the local Lipschitz condition, ϵ, µ, β, γ,
and δ are constants that describe the model behavior and (−∆)

α
2 , 1 < α ≤ 2 is thel fractional Lapla-

cian. As this model often exhibits complex and nonlinear behavior, analytical solutions to this model
are often not available or they are very challenging to obtain. This has led to the development of a
variety of efficient and accurate numerical methods to simulate the propagation of electrical signals,
with varying degrees of accuracy and computational efficiency. In recent years, there has been an in-
creasing interest in the development of various-order numerical methods for the simulation of partial
differential equation models such as the SFFHN model. To name a few of them, Liu et al. [4] devel-
oped an implicit operator splitting method with a shifted Grünwald-Letnikov approximation to solve
the two-dimensional (2D) SFFHN model with zero Dirichlet boundary conditions. Bueno-Orovio et
al. [5] proposed a backward Euler method along with a Fourier spectral method as accurate and ef-
ficient numerical stencils for the SFFHN model, with the advantage of fully diagonal discretization
that can scale to any spatial dimension. Bu et al. in [6] introduced a Crank–Nicolson (CN) alternating
direction implicit Galerkin finite element method for a 2D fractional FitzHugh–Nagumo monodomain
model with homogeneous Dirichlet boundary conditions. In another study, Li and Song [7] introduced
a second-order operator splitting spectral element method for solving the space fractional reaction-
diffusion (SFRD) equations including the SFFHN. Liu and Zhang [8] developed a semi-alternating
direction Galerkin finite element method to solve a 2D fractional FHN monodomain model on an ir-
regular domain. Li et al. [9] used a fourth-order Runge-Kutta method along with a Fourier spectral
method to solve the FitzHugh-Nagumo model with Riesz fractional-derivatives. Zhang et al. in [10] in-
troduced a numerical scheme based on the CN method in time and a Legendre spectral method in space
for the SFFHN model. In [11, 12], authors proposed a second-order stabilized semi-implicit method
and a second-order operator splitting Fourier spectral method respectively to solve SFRD equations,
including the 2D SFFHN model. Wang et al. [13] proposed a ghost structure finite difference method
for a fractional FHN monodomain model on a moving irregular domain. Che et al. in [14] introduced
the Fourier transform for spatial discretization and the Runge-Kutta method for time discretization
for the time dependent 2D SFFHN mode. Authors in [15] proposed a fast high-order method for the
multidimensional SFRD equation with general boundary conditions, including the 2D SFFHN model.

Second-order numerical methods in particular have shown promise in providing increased accuracy
and efficiency over first-order methods. However, the application of these methods to multidimensional
(especially 3D) SFFHN models with general boundary conditions (periodic, Dirichlet and Neumann)
remains relatively unexplored, despite the potential benefits that they could provide. Therefore, the

Electronic Research Archive Volume 31, Issue 12, 7284–7306.



7286

primary objective of this research project is to investigate the effectiveness of second-order time in-
tegrators in combination with the Fourier spectral method for solving the multidimensional SFFHN
model (1.1), with given initial and boundary conditions. We aim to explore the accuracy, stability, and
computational efficiency of second-order numerical methods in capturing the dynamics of the SFFHN
model for varying α, comparing the results based on two testing parameters: Accuracy and CPU time
consumption.

The paper is organized as follows: Section 2 describes the spatial discretization approach using the
Fourier spectral method for different boundary conditions. Section 3 introduces four second-order time
integrators for solving the SFFHN model. The linear stability analysis of the proposed methods is pre-
sented in Section 4. Section 5 provides numerical results and discussions to evaluate the accuracy and
computational efficiency of the methods. Finally, Section 6 concludes the work and outlines potential
avenues for future research.

2. Fourier spectral method

There are various definitions available for the fractional Laplacian operator (−∆)
α
2 , and for more

detailed information, readers are encouraged to refer to the references [16, 17]. The selection of an
appropriate numerical approximation method depends on the specific definition being employed. In
this study, we define the fractional Laplacian (−∆)α/2 operator in terms of the spectral decomposition
of the Laplacian (−∆) operator.

Suppose the d dimensional Laplacian (−∆) has a complete set of orthonormal eigenfunctions ϕη1,··· ,ηd

corresponding to eigenvalues λη1,··· ,ηd on the bounded region Ω = [a, b]d with periodic, homogeneous
Dirichlet or homogeneous Neumann boundary conditions, that is (−∆)ϕη1,··· ,ηd = λη1,··· ,ηdϕη1,··· ,ηd , then
(−∆)α/2 is defined by

(−∆)α/2u =
∞∑
η1=0

· · ·

∞∑
ηd=0

ûη1,··· ,ηdλ
α
2
η1,··· ,ηdϕη1,··· ,ηd ,

in which u can be expressed as follows

u =
∞∑
η1=0

· · ·

∞∑
ηd=0

ûη1,··· ,ηdϕη1,··· ,ηd , ûη1,··· ,ηd = ⟨u, ϕη1,··· ,ηd⟩,

∞∑
η1=0

· · ·

∞∑
ηd=0

(
|ûη1,··· ,ηd ||λη1,··· ,ηd |

α
)
< ∞,

where ⟨u, ϕη1⟩ =
∫
Ω

uϕη1dx for d = 1 and eigenvalues λη1,··· ,ηd and eigenvectors ϕη1,··· ,ηd will depend on
the provided boundary conditions:

Case 1: For periodic boundary conditions:

λη1,··· ,ηd =

d∑
j=1

(
2πη j

L

)2

, ∀ η1, · · · , ηd,

ϕη1,··· ,ηd =


√

1
L

d d∏
j=1

e
(√
−1

2η jπ(X−a)
L

)
, ∀ η1, · · · , ηd.
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Case 2: For homogeneous Dirichlet boundary conditions:

λη1,··· ,ηd =

d∑
j=1

(
(η j + 1)π

L

)2

, ∀ η1, · · · , ηd,

ϕη1,··· ,ηd =


√

2
L

d d∏
j=1

sin
(
(η j + 1)π(X − a)

L

)
, ∀ η1, · · · , ηd.

Case 3 For homogeneous Neumann boundary conditions:

λη1,··· ,ηd =

d∑
j=1

(
(η j)π

L

)2

, ∀ η1, · · · , ηd,

ϕη1,··· ,ηd =


√

2
L

d d∏
j=1

cos
(
(η j)π(X − a)

L

)
, ∀ η1, · · · , ηd,

where L = b − a. If we consider a finite number of the orthonormal trigonometric eigenfunctions
{ϕi}(equal to the number of discretization points N), then (−∆)

α
2 u is approximated by a truncated series:

(−∆)α/2u ≈
N−1∑
η1=0

· · ·

N−1∑
ηd=0

ûη1,··· ,ηdλ
α
2
η1,··· ,ηdϕη1,··· ,ηd . (2.1)

Efficient computation of the coefficients ûη1,··· ,ηd in Eq (2.1) and the inverse reconstruction of u in
physical space can be accomplished using fast and robust algorithms such as direct and inverse Discrete
Sine Transforms for the homogeneous Dirichlet boundary, direct and inverse Discrete Cosine Trans-
forms for the homogeneous Neumann boundary and direct and inverse Discrete Fourier Transforms for
the periodic boundary data, as detailed in [18].

To illustrate the idea of the Fourier spectral method applied to the fractional Laplacian, let’s consider
the following equation on one-dimensional (1D) space for simplicity:

∂u(x, t)
∂t

= −D(−∆)
α
2 u(x, t) + f (x, t, u). (2.2)

The following is the representation of Eq (2.2) in Fourier space by using the definition of the fractional
Laplacian and applying the Fourier transform:

dF (U(t))
dt

+ AF (U) = F (F(U)), (2.3)

where A = D(λη1)
α
2 ,U := [u1(t), u2(t) · · · , uN(t)]⊺,F(U) = [ f (x1, t, u), f (x2, t, u), · · · , f (xN , t, u)]⊺.

In the actual calculation, the choice of the mesh will depend on the specified boundary data, and
we generate the grids in MATLAB as follows. For simplicity, we consider a 1D space. The 2D/three-
dimensional (3D) case is defined analogously.
For periodic boundary conditions,

x =
L
N

[
−

N
2
+ 1 :

N
2

]
,

λη1 =

(
2π
L

[
0 :

N
2
−

N
2
+ 1 : −1

])2

.

Electronic Research Archive Volume 31, Issue 12, 7284–7306.



7288

For homogeneous Neumann boundary conditions,

xi = a + (i − 1)h +
h
2
, h =

L
N
, i = 1, 2, · · · ,N,

λη1 =

(
π

L
[0 : N − 1]

)2
.

For homogeneous Dirichlet boundary conditions,

xi = a + (i)h, h =
L

N + 1
, i = 1, 2, · · · ,N,

λη1 =

(
π

L
[1 : N]

)2
.

3. Second-order time integrators

In this section, we briefly discuss four second-order time integration methods for solving the SFFHN
model. To describe the methods, let us consider the following system of nonlinear ordinary differen-
tial equations obtained by approximating the fractional Laplacian in (2.2) with the Fourier spectral
technique discussed above:

Ût = −AÛ + F̂ (U), (3.1)

where Û = F (U) and F̂ = F (F(U)). Let k = tn+1 − tn be the time step size, then using a variation of
constant formula, we come up with the following formula:

Û(tn+1) = e−kAÛ(tn) + e−kA
∫ k

0
eAτF̂

(
U(tn + τ), tn + τ

)
dτ, (3.2)

The Eq (3.2) serves as the foundation for various time integrators, including the exponential time
differential (ETD) and the integrating factor (IF), which vary based on how we approximate the matrix
exponential function and nonlinear function.

3.1. Extrapolated exponential time differencing backward Euler (EETD-BE) method

To get the first order ETD method, the simplest approximation to the integral is to impose that F̂ is
constant for t ∈ [tn, tn+1] i.e., F̂ ≈ F̂n. Denoting the semi-discrete approximation to Û(tn) by Ûn yields:

Ûn+1 = e−kAÛn − A−1
(
e−kA − 1

)
F̂n. (3.3)

However, the effectiveness of this semi-discrete method hinges on discretizing the matrix exponen-
tial. By incorporating the (0, 1)-Padé approximation, the scheme becomes more practical and compu-
tationally efficient. This approximation facilitates a direct discretization of the matrix exponential and
eliminates the need for explicit computation of the inverse matrix A.
Definition 3.1. The (r + s)th order rational Padé approximation to e−z is defined as:

Rr,s(z) =
Pr,s(z)
Qr,s(z)

,
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where

Pr,s(z) =
r∑

j=0

(s + r − j)!r!
(s + r)! j!(r − j)!

(−z) j and Qr,s(z) =
s∑

j=0

(s + r − j)!
(s + r)! j!(s − j)!

(z) j.

Implementing (0, 1)-Padé approximation R0,1(kA) = (1+ kA)−1 into Eq (3.3), yields the ETD backward
Euler method (ETD-BE):

Ûn+1 = (1 + kA)−1
[
Ûn + kF̂n

]
. (3.4)

The ETD-BE method is only first order accurate in time. So, in order to enhance the temporal accuracy
to second-order, we implement a local extrapolation approach proposed by Lawson and Morris [19]:

Considering Eq (3.4) written over a double time step 2k and denoting the result with Û(2), we have:

Û(2) = (1 + 2kA)−1
[
Ûn + 2kF̂n

]
. (3.5)

Alternatively, if Eq (3.4) is computed over two single time steps and if we denote the result with Û(1)

we have:
Û(1) = (1 + kA)−1

[
Ûn+1 + kF̂n+1

]
. (3.6)

As a result, Equations (3.5) and (3.6) represent two distinct ETD-BE schemes for computing the so-
lution at double time steps. Neither (3.5) nor (3.6) achieves an accuracy of O(k2). Nonetheless, by
expanding Û(1) and Û(2) to O(k2) and combining these expansions through the operation of subtracting
Û(2) from 2Û(1), the local extrapolation of ETD-BE is obtained [20]:

Ûn+2 = 2Û(1) − Û(2). (3.7)

For the efficient implementation of EETD-BE, in the following Algorithm the fast Fourier transform
(FFT) computations of the EETD-BE method are provided for the case of 3D with Neumann boundary
conditions:

Algorithm 1 EETD-BE Method for the case of 3D with Neumann boundary conditions
1: Given L = b − a,N, h = L

N , α,Du,wn, and k = T
M .

2: Compute λ =
(
(0 : N − 1) πL

)2
+

(
(0 : N − 1) πL

)2
+

(
(0 : N − 1) πL

)2

3: Compute x = y = z = a + (0 : N − 1)h + h
2

4: Set A = kDuλ
α
2

5: Precompute the following arrays:
6: P = (1 + A)−1

7: Q = (1 + 2A)−1

8: for n = 1, · · · , M
2 do

9: tn = nk.
10: ŵn = dctn(wn) ▷ dctn is MATLAB built-in function
11: Compute F (wn, tn) as F (wn)
12: w∗ = idctn (P(ŵn + k dctn(F (wn)))) ▷ idctn is MATLAB built-in function
13: Compute F (w∗, tn + k) as F (w∗)
14: w(1) = idctn (P(dctn(w∗) + k dctn(F (w∗))))
15: w(2) = idctn (Q(ŵn + 2k dctn(F (wn))))
16: wn+2 = 2w(1) − w(2)

17: wn = wn+2

18: end for
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3.2. Exponential time differencing Crank-Nicolson (ETD-CN) method

Using ETD-BE as a prediction of Ûn+1 and approximating the nonlinear term F̂ [21] in (3.2) with:

F̂ ≈ F̂ (Un, tn) + (t − tn)
F̂ (ân, tn + k) − F̂ (Un, tn)

k
, t ∈ [tn, tn+1],

where ân = e−kAÛn − A−1
(
e−kA − 1

)
F̂n yields

Ûn+1 = e−kAÛ(tn) + ke−kA
∫ 1

0
ekAτ

F̂ (Un, tn) + (t − tn)
F̂ (ân, tn + k) − F̂ (Un, tn)

k

 dτ,

= ân +
A−2

k

(
e−kA − 1 + kA

) (
F̂ (ân, tn + k) − F̂ (Un, tn)

)
.

Replacing e−kA in (3.8) with (1, 1)-Padé approximation R1,1(kA) = (2 − kA)(2 + kA)−1 results the ETD-
CN method:

Ûn+1 = an + k(2 + kA)−1
[
F̂ (ân, tn + k) − F̂ (Un, tn)

]
, (3.8)

where
an =

[
4(2 + kA)−1 − 1

]
Ûn + 2k(2 + kA)−1F̂ (Un, tn).

For the efficient implementation of ETD-CN, the FFT computations of the method are provided for the
case of 3D with periodic boundary conditions:

Algorithm 2 ETD-CN Method for the case of 3D with periodic boundary conditions

1: Given L = b − a,N, h = L
N , α,Du,wn, and k = T

M .

2: Compute λ =
(
[0 : N

2 −
N
2 + 1 : −1]2π

L

)2
+

(
[0 : N

2 −
N
2 + 1 : −1]2π

L

)2
+

(
[0 : N

2 −
N
2 + 1 : −1]2π

L

)2

3: Compute x = y = z = L
N

[
−N

2 + 1 : N
2

]
4: Set A = kDuλ

α
2 .

5: Precompute the following arrays:
6: P = (2 + A)−1.
7: for n = 1, · · · ,M do
8: tn = nk.
9: ŵn = fftn(wn). ▷ fftn is MATLAB built-in function

10: Compute F (wn, tn) as F (wn).
11: an = ifftn

(
P
(
4ŵn + 2kfftn(F (wn))

)
− ŵn

)
▷ ifftn is MATLAB built-in function

12: Compute F (an, tn + k) as F (an).
13: wn+1 = ifftn (fftn(an) + kP [F (an) − F (wn)])
14: end for

3.3. ETD-Padé (0, 2)

Replacing e−kA in (3.8) with (0, 2)-Padé approximation R0,2(kA) = 2
(
2 + 2kA + (kA)2

)−1
yields the

ETD-Padé (0, 2) method:

Ûn+1 = an + k
(
2 + 2kA + (kA)2

)−1
(1 + kA)

[
F̂ (ân, tn+1) − F̂ (Un, tn)

]
, (3.9)
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where

an = R0,2(kA)Ûn + k
(
2 + 2kA + (kA)2

)−1
(2 + kA)F̂ (Un, tn).

For the efficient implementation of ETD-Padé (0, 2), the FFT computations of the method are provided
for the case of 3D with Dirichlet boundary conditions:

Algorithm 3 ETD-Padé (0, 2) method for the case of 3D with Dirichlet boundary conditions

1: Given L = b − a,N, h = L
N+1 , α,Du,wn, and k = T

M .

2: Compute λ =
(
(1 : N) πL

)2
+

(
(1 : N) πL

)2
+

(
(1 : N) πL

)2

3: Compute x = y = z = a + (1 : N)h
4: Set A = kDuλ

α
2 .

5: Precompute the following arrays:
6: R02 =

(
2 + 2kA + (kA)2

)−1
.

7: P = 2R02.
8: Q = k(1 + A)R02.
9: R = k(2 + A)R02.

10: for n = 1, · · · ,M do
11: tn = nk.
12: ŵn = dstn(wn). ▷ dstn is MATLAB built-in function
13: Compute F (wn, tn) as F (wn).
14: an = idstn (Pŵn + R fftn(F (wn))) ▷ idstn is MATLAB built-in function
15: Compute F (an, tn + k) as F (an).
16: wn+1 = ifftn (fftn(an) + kP [F (an) − F (wn)])
17: end for

3.4. IIF2 method

To construct the second-order implicit integration factor (IIF2) method [22], we approximate
ekAτF̂ (U(tn+kτ), tn+kτ) using second-order Lagrange interpolation polynomial involving points tn+1, tn,

and tn−1:

eAτF̂ (U(tn + τ), tn + τ) ≈
1
k

[
F̂ (Un)(k − τ) + ekAF̂ (Un+1)τ

]
, 0 ≤ τ ≤ k.

With the above approximation, the direct evaluation of the integral in (3.2) leads to the IIF2 method
given as below:

Ûn+1 = e−kA

(
Ûn +

k
2
F̂ (Un)

)
+

k
2
F̂ (Un+1). (3.10)

For the efficient implementation of the IIF2 method, the FFT computations of the method are provided
for the case of 3D with Dirichlet boundary conditions:
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Algorithm 4 IIF2 method for the case of 3D with Dirichlet boundary conditions

1: Given L = b − a,N, h = L
N+1 , α,Du,wn, t0, tend,Tol, and k = T

M .

2: Compute λ =
(
(1 : N) πL

)2
+

(
(1 : N) πL

)2
+

(
(1 : N) πL

)2

3: Compute x = y = z = a + (1 : N)h
4: Precompute P = expm(−kDuλ

α
2 ) ▷ expm is MATLAB built-in function

5: while istop== 0 do
6: if t0 + k > tend. then
7: k = tend − t0

8: P = expm(−kDuλ)
9: istop= 1

10: end if
11: ŵn = dstn(wn). ▷ dstn is MATLAB built-in function
12: Compute F (wn, tn) as F (wn).
13: an = P

(
ŵn +

k
2F (wn)

)
14: Temp = idstn

(
an +

k
2fftn(F (wn))

)
▷ idstn is MATLAB built-in function

15: Compute res = norm
(
Temp(:) − wn(:)

)
16: while max(res) > Tol do
17: wn = Temp
18: Temp = idstn

(
an +

k
2fftn(F (wn))

)
19: Compute res = norm

(
Temp(:) − wn(:)

)
20: end while
21: wn = Temp
22: t0 = t0 + k
23: end while

4. Stability regions

We consider the following nonlinear autonomous ordinary differential equation (ODE):

vt = −cv + F(v), c ≥ 0. (4.1)

In order to get the stability regions of an EETD-BE, we linearize Eq (4.1) about a fixed point u0 such
that −cu0 + F(u0) = 0 to obtain:

ut = −cu + λu, (4.2)

where u is perturbation of u0 and λ = F
′

(u0). In order to keep a fixed point u0 stable we need to have
Re(λ − c) < 0 (note that the fixed points of the ETD schemes are the same as those of the ODE (4.1),
in contrast to the IF methods, which do not preserve the fixed points for the ODE that they discretize)
[23].

The boundaries of the stability regions (a family of curves for different values of ck, where k is the
time step) based on Eq (4.2) are presented below for EETD-BE, ETD-CN and ETD-Padé (0, 2).

To obtain the stability regions, we applied EETD-BE, ETD-CN and ETD-Padé (0, 2) to (4.2), which
leads to the following amplification factors:
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4.1. Amplification factor of EETD-BE

r(x, y) = c0 + c1x + c2x2,

where

c0 =
y2 + 2y − 1

(y − 1)2(2y − 1)
, c1 =

2y2 + 4y − 2
(y − 1)2(2y − 1)

, c2 =
2

(y − 1)2 .

4.2. Amplification factor of ETD-CN

r(x, y) = c0 + c1x + c2x2,

where
c0 =

2 + y
2 − y

, c1 =
4

(2 − y)2 , c2 =
2

(2 − y)2 .

4.3. Amplification factor of ETD-Padé (0, 2)

r(x, y) = c0 + c1x + c2x2,

where

c0 =
2

2 + 2y + y2 , c1 =
y2 + 4y + 4

(2 + 2y + y2)2 , c2 =
y2 + 3y + 2

(2 + 2y + y2)2 .

In general, the parameters c and λ may both be complex-valued. The stability region is four dimen-
sional (4D) and, therefore, difficult to represent [23]. However, if both c and λ are pure imaginary [24]
or real [23] or if λ is complex and c is fixed and real [25], then the stability region is 2D. The bound-
aries of the stability region are obtained by substituting r = eiθ, θ ∈ [0, 2π] into Eq (4.2) and solving
for x. In order to plot a 2D stability region in the complex x−plane, where the solution is bounded as
n→ ∞, we start our analysis by assuming c to be fixed and real and λ as complex.

EETD ETD-CN ETD-Padé (0, 2)
Figure 1. Log-log plots of time rates of convergence of the proposed methods for varying α
in the case of homogeneous Neumann boundary.

Figure 1 illustrates the stability regions of the methods for different values of y =

0,−3,−5,−10,−15, and −20 in the complex x-plane. According to Beylkin et al. [25], it is crucial
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for a method to have stability regions that grow as ck becomes larger to be useful. From the stability
regions shown in Figure 1, we observed that as y → −∞, the methods maintain their shape and ex-
hibit larger stability regions. This characteristic enables the methods to utilize larger time-step sizes as
|c| → ∞) while solving the problem. This observation indicates the stability of the methods EETD-BE,
ETD-CN and ETD-Padé(0, 2). Comparing the stability regions in Figure 1, we can note that ETD-CN
exhibits slightly better stability than EETD and ETD-Padé(0, 2), as its stability region encompasses
larger values along the real axis.

4.4. Amplification factor of IIF2

For the linear stability analysis and amplification factor of the IIF2 method, readers are referred to
the work of [22]. In their study, the authors stated that the IIF2 method is unconditionally stable and
exhibits excellent stability properties when used to solve stiff reaction systems.

5. Numerical experiments and discussions

In this section, five test problems are considered to demonstrate the effectiveness of the methods
based on the two key testing parameters: Accuracy and CPU time consumption for the integrating
SFFHN model with different fractional powers α, different initial conditions along with periodic, ho-
mogeneous Dirichlet, or Neumann boundary conditions. The accuracy of the method is measured in
terms of maximum error norm ∥·∥∞ and the empirical rates of convergence (in time direction) of the
methods is computed utilizing the following formula:

rate =
log10(Ek/E k

2
)

log10(2)
,

where Ek = ∥uk − u2k∥∞ and E k
2
=

∥∥∥∥u k
2
− uk

∥∥∥∥
∞

are maximum norm errors at k and k
2 . Throughout this

study, we fixed the parameters Du = 10−4, ϵ = 0.01, µ = 0.1, β = 0.1, γ = 1, and δ = 0, which are
known to generate stable patterns in the system. All the computations are conducted on the MATLAB
2020b platform based on a MacBook Pro with 2.6 GHz 6-Core Intel Core i7 CPU and 16 GB RAM.

Example 1 (2D SFFHN model with Neumann Boundary): In this example, we consider the 2D
SFFHN model with homogeneous Neumann boundary conditions, along with the following initial
conditions on domain [0, 2.5]2:

u(x, y, 0) =

1, if 0 ≤ x, y ≤ 1.25
0, otherwise

v(x, y, 0) =

0.1, if 0 ≤ x ≤ 2.5, 1.25 ≤ y ≤ 2.5
0, otherwise.

(5.1)

To test the order of accuracy of the methods mentioned in Section 3 for varying α along with
Neumann boundary conditions, we simulated the solution profile of the component u up to the final
time t = 10. In the experiment we set the spectral resolution N = 256 large enough to ensure that the
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errors primarily arise from the time integration process rather than spatial discretization and repeatedly
halving the temporal step size in each simulation, starting with the initial value k = 0.1. The results of
our experiments are illustrated in Figure 2 for various values of α = 2, 1.7 and 1.5. Figure 2 confirms
second-order convergence for the ETD-CN, ETD-Padé (0, 2), IIF2, and EETD methods. These second-
order methods effectively integrate the system for varying α values.

In Figure 3, we extended the comparison of the methods by analyzing their accuracy in relation to
the CPU time. The results depicted in Figure 3 highlight a noticeable variation in CPU time among the
methods, even at a comparable level of accuracy. Consequently, it can be concluded that the compu-
tational time required by each method is not similar, indicating the presence of significant differences
in efficiency. The performance of the ETD-CN method closely resembles that of the ETD-Padé (0, 2),
as evident from the identical errors that scale with the expected second-order as shown in Figure 2.
However, it should be noted that the IIF2 method is the most computationally expensive due to the
involvement of a nonlinear solver, while the EETD method is the least demanding in terms of compu-
tational resources.

Considering both accuracy and computational cost when selecting a second-order method for time
stepping for Example 1, it becomes evident that the ETD-CN method stands out as the most efficient
choice in this regard.

Figure 2. Log-log plots of time rates of convergence of the proposed methods for varying α
in the case of homogeneous Neumann boundary.

Figure 3. Comparison of the computational efficiency of the proposed methods for varying
α in the case of homogeneous Neumann boundary.

In this experiment, we utilized the ETD-CN method to investigate the effect of the fractional order in
the SFFHN model. Figure 4 displays the stable rotation solutions of the component u at t = 2000 with
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k = 1 and N = 256 for four different fractional orders α = 2, 1.8, 1.7 and 1.5. As we observed in Figure
4, decreasing the fractional power has a notable effect on the width of the excitation wavefront and the
wavelength of the system. A smaller value of α leads to a significantly reduced width of the wavefront
and a shorter wavelength, allowing the domain to accommodate a larger number of wavefronts. These
visualizations align with the findings presented by Bueno-Orovio et al. in [5]. In addition, these results
highlight the application of fractional diffusion as a modeling tool to characterize intermediate dynamic
states that cannot be solely described by pure diffusion mechanisms.

Figure 4. Propagation speed of the spiral wave in FitzHugh-Nagumo model for varying
α = 2, 1.8, 1.7, 1.5 at t = 2000.

Example 2 (2D SFFHN model with Periodic Boundary): In this example, we consider the 2D
SFFHN model with periodic boundary conditions, along with following initial conditions on domain
[−2.5, 2.5]2 to analyze the effectiveness and accuracy of the methods for periodic boundary conditions
and varying α values.

u(x, y, 0) =


u(3N

8 : 5N
8 ,

5N
8 : 6N

8 ) = 1
u(3N

8 : 5N
8 ,

2N
8 : 3N

8 ) = 1
0, elsewhere

v(x, y, 0) =


v( 5N

8 : N, N
4 : N) = 0.1

v( N
8 : 3N

8 ,
N
4 : N) = 0.1

0, elsewhere.

(5.2)

In this experiment, we conducted a comparative analysis of the methods to assess their accuracy, com-
putational cost, and effectiveness for solving SFFHN in the case of periodic boundary conditions and
varying fractional order α. We simulated the solution profile of the component u up to the final time
t = 10 by setting the fixed spectral resolution N = 512, which was chosen to be large enough to ensure
that the errors primarily originated from the time integration process rather than spatial discretization.

In each simulation, we systematically reduced the temporal step size by halving it, starting with an
initial value of k = 0.1. This step allowed us to investigate the impact of different temporal resolutions
on the accuracy of the results and assess the convergence behavior of the numerical method. In Figures
5 and 6, we plotted the maximum error as a function of temporal step and the CPU time, respectively.
From these figures, it is evident that all the methods achieved expected second-order convergence in
the temporal direction for varying α. Additionally, there is a noticeable variation in the CPU time
among the methods, even when they achieve a comparable level of accuracy.

When considering both accuracy and computational cost in the selection of a second-order method
for time stepping in Example 2, the ETD-CN method emerges as the most efficient choice, making it a
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favorable option when balancing accuracy and computational cost.

Figure 5. Log-log plots of time rates of convergence of proposed methods for varying α in
the case of periodic boundary conditions.

Figure 6. Comparison of the computational efficiency of proposed methods for varying α in
the case of periodic boundary conditions.

After ensuring that the proposed methods provide second-order accuracy for Example 2, in this sets
of experiments we simulated the spatio-temporal evolution profile of the component v and studied the
effects of the super-diffusion on the SFFHN model. All the plots shown in Figure 7 are the aerial views
of the numerical solutions v and are obtained via the ETD-CN method with N = 512, k = 1 and α =
2, 1.8, 1.7, 1.5 for various times. Since the evolution profile of the component u is similar to the v, we
will not discuss it in this paper. From Figure 7, we observe that as the fractional order decreases, both
the width of the excitation wavefront and the wavelength of the system become significantly smaller.
Consequently, the domain is capable of accommodating a greater number of wavefronts for lower
orders. In the case of super-diffusion, which is characterized by the presence of a fractional Laplacian
operator, the wave propagation exhibits long-tailed characteristics. This means that the influence of the
wave extends over a larger spatial range compared to traditional diffusion. As a result, for wavefronts
with similar widths, the distance between consecutive wavelengths becomes larger in the case of super-
diffusion.These observations are in accordance with previous investigations conducted by researchers
in [9].
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(a) α = 2 (b) α = 1.8 (c) α = 1.7 (d) α = 1.5

(a) α = 2 (b) α = 1.8 (c) α = 1.7 (d) α = 1.5

(a) α = 2 (b) α = 1.8 (c) α = 1.7 (d) α = 1.5

(a) α = 2 (b) α = 1.8 (c) α = 1.7 (d) α = 1.5
Figure 7. Spatio-temporal wave propagation profile of the component v for varying t =
400, 1000, 2000 and 3000 (top-bottom).

Example 3 (2D SFFHN model with Dirichlet Boundary): In this example, we consider the 2D
SFFHN model with homogeneous Dirichlet boundary conditions, along with the following initial con-
ditions on domain [−1.25, 1.25]2 to compare accuracy, efficiency and effectiveness of the methods for
homogeneous Dirichlet boundary conditions and varying α.

u(x, y, 0) =

1, if x, y < 0
0, otherwise

v(x, y, 0) =

0.1, if − 1.25 ≤ x ≤ 1.25, y > 0
0, otherwise.

(5.3)

In order to analyze the empirical rates of convergence, computational efficiency, and effectiveness
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of the methods for the case of homogenous Dirichlet boundary conditions and super diffusion, we
simulated the solution profile of the component u with the methods up to time t = 10.We fixed N = 256
and ran the simulations for various values of temporal step size starting with k = 0.1 and illustrated
the maximum errors as a function of temporal step and CPU time in Figures 8 and 9, respectively.
From these figures, it is evident that all the methods were able to capture second-order accuracy in the
time direction for varying fractional orders α. The convergence rates were consistent with the expected
behavior. Moreover, there was noticeable variation in the CPU time among the methods, similar to
what was observed in Examples 1 and 2, even when achieving a comparable level of accuracy.

Considering the case of Dirichlet boundary conditions with the specified initial conditions, again
the ETD-CN method emerged as the most efficient choice, taking into account both accuracy and
computational efficiency. The results depicted in Figures 8 and 9 further support the superiority of the
ETD-CN method in this particular scenario.

Figure 8. Log-log plots of time rates of convergence of proposed methods for varying α in
the case of homogeneous Dirichlet boundary.

Figure 9. Comparison of the computational efficiency of proposed methods for varying α in
the case of homogeneous Dirichlet boundary.

Example 4 (3D SFFHN model with periodic boundary): In this example, we consider the 3D
SFFHN model with periodic boundary conditions, along with the following initial conditions on do-
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main [−2.5, 2.5]3:

u(x, y, z, 0) =


u(3N

8 : 5N
8 ,

5N
8 : 6N

8 ,
5N
8 : 6N

8 , 0) = 1
u( 3N

8 : 5N
8 ,

2N
8 : 3N

8 ,
2N
8 : 3N

8 , 0) = 1
0, elsewhere

v(x, y, z, 0) =


v( 5N

8 : N, N
4 : N, N

4 : N) = 0.1
v( N

8 : 3N
8 ,

N
4 : N, N

4 : N) = 0.1
0, elsewhere.

(5.4)

To further demonstrate the effectiveness and applicability of the methods, we applied them to inves-
tigate pattern formation in the 3D SFFHN model. In our analysis, we aimed to compare the accuracy
and efficiency of the methods by conducting simulations on Example 4 until time t = 5. We kept the
spectral resolution fixed at N = 128 and systematically reduced the temporal step size by halving it in
each simulation, starting with an initial value of k = 0.0625.

The results regarding the order of convergence and computational time are depicted in Figures 10
and 11, respectively. From these figures, it is evident that all the methods achieved second-order con-
vergence in the time direction for varying α values, as expected. Similar to the 2D case, the ETD-CN
method stood out as the most efficient choice, considering both accuracy and computational efficiency.
It demonstrated excellent performance in solving the 3D SFFHN model with periodic boundary con-
ditions and varying fractional orders. These findings further emphasize the superiority of the ETD-CN
method in capturing the dynamics and patterns of the 3D SFFHN model accurately while maintaining
computational efficiency.

Figure 10. Empirical convergence analysis of the proposed methods in temporal direction
for varying α in the case of periodic boundary conditions.

After confirming the accuracy and efficiency of the ETD-CN method for solving the 3D SFFHN
model, we proceeded with a series of experiments to simulate the spatio-temporal evolution profiles
of the component u and v for varying α = 2, 1.9, 1.8, 1.7 to investigate the effects of super-diffusion
on the SFFHN model. In these simulations, we used N = 128, k = 1 and ran the simulations until
different times t = 400, 500, 1000, and 2000. The complex patterns obtained from these simulations
are illustrated in Figures 12 and 13. Notably, some of the patterns observed in these figures differ
from those obtained in previous numerical work [9]. These unique patterns highlight the ability of
the methods to capture novel and distinct dynamical behavior in the context of the SFFHN model.
The results presented in Figures 12 and 13 provide valuable insights into the intricate spatio-temporal
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Figure 11. Comparison of the computational efficiency of proposed methods for varying α
in the case of periodic boundary conditions.

dynamics and pattern formation in the 3D SFFHN model under the influence of super-diffusion.

(a) t = 400 (b) t = 500 (c) t = 1000 (d) t = 2000

Figure 12. Complex patterns of the component u (odd rows) and v (even rows) for varying
α = 2, 1.9 (top-bottom) at various times t = 400, 500, 1000 and 2000 (left-right).
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(a) t = 400 (b) t = 500 (c) t = 1000 (d) t = 2000

Figure 13. Complex patterns of the component u (odd rows) and v (even rows) for varying
α = 1.8, 1.7 (top-bottom) at various times t = 400, 500, 1000 and 2000 (left-right).

Example 5 (3D SFFHN model with Dirichlet boundary): In this example, we consider the 3D
SFFHN model with homogeneous Dirichlet boundary conditions, along with the following initial con-
ditions on domain [−1.25, 1.25]3.

u(x, y, z, 0) =

1, if x, y, z < 0
0, otherwise

v(x, y, z, 0) =

0.1, if − 1.25 ≤ x ≤ 1.25, y > 0, − 1.25 ≤ z ≤ 1.25
0, otherwise.

(5.5)

In this experiment we conducted a series of simulations using the ETD-Padé(0, 2) method with a
fixed spectral resolution of N = 128, temporal step size of k = 1 and varying fractional orders
α = 2, 1.8, 1.7, 1.5. The simulations were performed until time t = 2000 to investigate the effect
of the fractional operator on the wave propagation process in the 3D SFFHN model. Figure 14 pro-
vides visual representation of the system’s evolution, highlighting the generation of a spiral wave from
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the initial data. The process begins with the emergence of a traveling pulse, which subsequently starts
rotating in a clockwise direction. Notably, as the fractional power decreases, the wave propagation
extends toward the edge of the region. This phenomenon is accompanied by a noticeable reduction in
both the width of the excitation wavefront and the wavelength of the system. The observed genera-
tion of spiral waves and the subsequent propagation dynamics shed light on the complex relationship
between the fractional order and the spatio-temporal patterns in the system.

(a) α = 2 (b) α = 1.8 (c) α = 1.7 (d) α = 1.5

Figure 14. Spatio-temporal wave propagation scenario of the component u (first row) and v
(second row) for varying α = 2, 1.8, 1.7, 1.5 (left-right) at time t = 2000.

6. Conclusions

In this manuscript, we have introduced four second-order time integrators along with the Fourier
spectral method to investigate the influence of the fractional operator α in the 2D and 3D SFFHN model
with periodic, Dirichlet, or Neumann boundary conditions. The effectiveness of these methods was
compared based on two key parameters: Accuracy and computational efficiency. The experimental
results have demonstrated that all the considered methods accurately captured the long-time spatio-
temporal solution profiles of the system for varying α, although with noticeable variations in CPU time.
Considering both accuracy and computational cost when selecting a second-order method for time
stepping the SFFHN model suggests that certain methods are more preferable than others, although all
the methods yielded satisfactory results. Notably, the ETD-CN method emerged as the most efficient
choice in this regard.

However, it is crucial to note that these conclusions are specific to the studies conducted on the
SFFHN model with the specified initial and boundary conditions. The performance of the methods
may vary depending on the specific case, such as the choice of initial conditions or other problem
scenarios. It is important to emphasize that these results are not universally applicable and may differ
for different sets of initial conditions, boundary conditions, and problem scenarios.

The methods introduced in this paper have the potential to be extended for solving fractional non-
linear reaction-diffusion models with variable coefficients or models with a fractional Laplacian of
complex order [26] posed in higher dimensions, which will be the focus of our future research project.
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