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Abstract: Achieving carbon neutrality requires high efficiency in agricultural carbon emissions. This 
study employs a super efficiency Slack Based Measure-Data Envelopment Analysis (SBM-DEA) 
model to measure the Agricultural Carbon Emission Efficiency (ACEE) of 31 provinces, cities, and 
autonomous regions within the Chinese Mainland from 2001 to 2021. Additionally, it utilizes the 
modified gravity model and a social network analysis to establish the spatial correlation relationship 
of ACEE, and extensively investigates the characteristics and transmission mechanism of China’s 
spatial correlation network structure regarding ACEE. The findings reveal the following: 1) The spatial 
correlation relationship of China’s ACEE from 2001 to 2021 exhibits a complex network structure; 2) 
in terms of the overall network structure characteristics of the spatial correlation, the ACEE network 
demonstrates a high degree of correlation and displays a stable temporal evolution trend; 3) 
concerning the centrality network structure characteristics of the spatial correlation, most provinces 
in China experience a continuous decline in point centrality and near centrality, while the 
interdependence of the ACEE between provinces increases; and 4) regarding the clustering 
characteristics of the spatial correlation, variations exist in the correlation among the four plates of 
the ACEE. However, they mostly assume a mediating role, and in 2021, the ACEE network sectors 
witnessed a robust interoperability. 

Keywords: Agricultural Carbon Emission Efficiency (ACEE); spatial correlation network structure; 
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1. Introduction 

The urgency of improving the Agricultural Carbon Emissions Efficiency (ACEE) has become 
an important issue for the green and sustainable development of countries worldwide [1–4]. The 
Intergovernmental Panel on Climate Change (IPCC) determined that the agricultural sector is responsible 
for 23% of carbon dioxide emissions in the ecosystem [5]. Globally, agricultural carbon emissions are the 
second largest source of greenhouse gas emissions, contributing approximately 14% of anthropogenic 
greenhouse gas emissions and 58% of non-anthropogenic carbon dioxide emissions [5,6]. As a major 
agricultural country, China must actively respond to climate change in alignment with its national 
strategies [7–10]. This includes addressing and enhancing carbon emissions in agricultural 
development, thereby achieving the ‘dual carbon’ goals. The promotion of low-carbon development in 
agriculture and the improvement of the ACEE form an essential aspect of this process. The study on 
the ACEE holds great significance, as it endeavors to strike a balance between agricultural economic 
benefits and environmental impacts, while aiming for optimal resource allocation and minimal carbon 
dioxide emissions. It serves as a comprehensive indicator that not only evaluates agricultural economic 
benefits, but also takes the impact on the agricultural environment into consideration. Additionally, it 
provides an objective evaluation of the level of agricultural ecology and offers a comprehensive 
reflection of the low-carbon transformation of the agricultural economy. 

China is witnessing an era of rapid progress in agricultural technology with uneven regional 
development observed in the agricultural sector. The regional linkage is of great importance and 
much attention should be given to any regional differences. There is a significant gap in China’s 
regional development with a regional imbalance being particularly noticeable. The trend of regional 
differentiation is increasingly evident. To some extent, the potential for regional development has 
been unleashed by the strategic layout of national and regional coordinated developments, as well as 
by the innovation and development of transportation and information technology. Economic and 
social connections between regions are growing closer, and administrative barriers to economic 
development are gradually being dismantled, thereby leading to the increased economic 
interconnectivity between regions. However, due to disparities in agricultural resource endowments, 
geographical environment, and convenient transportation, the distinct characteristics of agricultural 
development among provinces in China are becoming more pronounced. These disparities have 
further strengthened the agricultural economic connections rooted in geographical space, owing to 
the inherent correlation of agricultural resources and geographic proximity. Against the backdrop of 
resource and environmental constraints, there has been an increase in cross-regional technological 
exchanges and energy cooperation, consequently leading to a systematic and complex network 
structure in terms of the ACEE. 

Previous research efforts on the ACEE can be categorized into three main categories. First, 
research has been conducted related to measuring agricultural carbon emissions. The primary factor 
contributing to the differences in the measurement of agricultural carbon emissions is the determination 
of carbon source types. Many scholars [11–14] believe that the main carbon sources of agricultural 
carbon emissions are emissions generated by the use and production of fertilizers, pesticides, and 
agricultural films, emissions generated by the consumption of fossil energy during the use of 
agricultural machinery, emissions generated by the destruction of organic carbon reservoirs during 
agricultural tillage, and emissions indirectly generated by the use of fossil energy in agricultural 
irrigation. Additionally, Johnson [15] suggests that agricultural carbon emissions mainly come from 
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five aspects: waste generated during agricultural production, livestock gut fermentation, livestock 
manure management, agricultural resource utilization, and crop straw burning. Some studies [16,17] 
approach the measurement of agricultural carbon emissions from the perspective of agricultural output 
by appropriately categorizing carbon sources. For example, they consider adding carbon emissions 
during rice growth and development, as well as the addition of carbon emissions during animal 
breeding, particularly ruminant breeding, to the aforementioned five carbon sources to calculate the 
total agricultural carbon emissions. Meanwhile, agricultural carbon sources could also be distinguished 
based on carbon emission source tracing, with a division into agricultural non-energy carbon emissions 
and agricultural energy carbon emissions [18]. Other methods for measuring carbon emissions in 
agriculture are relatively scattered. For instance, Gao et al. [19] adopted fertilizer usage, pesticide 
usage, diesel usage, agricultural plastic film usage, effective irrigation area, and tillage area as the main 
sources of carbon emissions. West and Marland [20] concluded that the primary sources of agricultural 
carbon emissions are generated by the process of agricultural land cultivation, including agricultural 
inputs such as production, transportation, energy consumption during utilization, and the use of 
machinery. On the other hand, Lal [21] took the hidden carbon costs of agricultural inputs such as 
fertilizers, pesticides, agricultural films, farmland irrigation, and crop cultivation into account when 
estimating the net carbon sequestration of a region. 

The second aspect pertains to the research associated with measuring the ACEE. Differences in 
research perspectives and the assimilation of diverse methodologies account for the variations in 
measurement methods regarding the ACEE. Input-output models, including the traditional Data 
Envelopment Analysis (DEA) model and its derivative models, constitute the primary measurement 
methods utilized for the ACEE. The ACEE has been calculated by several scholars [22–24] employing 
DEA models. Subsequently, some scholars have incorporated unexpected outputs into the 
measurement scope of the model. Nonetheless, in numerous instances, the radial conditions in the 
application of the DEA model cannot be completely satisfied, thereby rendering it incapable of 
addressing the issue of unexpected outputs. Consequently, improved methods have emerged, such as 
the Slack Based Measure (SBM) model and DEA Malmquist index method. The SBM model, which 
is a non-radial DEA model, was originally proposed by Tone [25]. Additionally, it can measure the 
efficiency value in inefficient decision units, thus enhancing the balance between the present state and 
the highly efficient target value, thereby overcoming the inherent limitations in traditional DEA models. 
This approach has been widely employed in calculating the ACEE [26–29]. Several scholars have 
combined DEA with pertinent indicators, such as performance indices, to compute carbon emission 
indices, which serve as reflections of the ACEE [30–33]. Additionally, there are scattered methods 
available for measuring the ACEE [34–36].  

The third aspect of the research pertains to the evolution characteristics of the ACEE. As research 
within this field continues to deepen, the spatiotemporal differences and changing trends of this 
efficiency have garnered increased attention from scholars. The ACEE in China was first calculated 
by several scholars [33,37,38], who also conducted extensive studies on the variations and trends in 
ACEE among different provinces. Other studies [39,40] focused on the provincial ACEE and 
incorporated regional factors such as the eastern and western regions to analyze the spatiotemporal 
evolution characteristics of the efficiency. 

In this article, the aforementioned achievements provide ideas and methods to study the spatial 
evolution characteristics of China’s ACEE. At the same time, there are urgent issues that need to be 
addressed. One is that the measurement of the ACEE has not been unified. Previous studies have 
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mostly started with the types of carbon sources and selected different indicators to measure the ACEE 
based on different carbon sources. Most of the research is based on input-output methods, DEA 
methods that consider unexpected outputs, and calculation methods combined with indices. This article 
takes capital and labor based on traditional economic growth models and further combines the 
ecological perspective to incorporate agricultural ecosystem service indicators as independent factors 
affecting agricultural economic growth into the model framework for carbon emission efficiency 
measurement, in order to reasonably and accurately measure China’s ACEE. Second, there is limited 
research on the spatiotemporal evolution characteristics of Chinese ACEE. Most existing research is 
based on the same space to study the ACEE, thereby neglecting the characteristics and differences of 
its cross temporal and spatial evolution. Based on this, this article mainly uses social network analysis 
methods to divide 31 provinces (cities and autonomous regions are both expressed as province in the 
following text) in China from 2001 to 2021 into multiple regional blocks through spatial clustering. 
Using panel data and spatial econometric models from each province, the spatial correlation 
relationship of the ACEE between provinces is quantified, and the transmission mechanism of the 
ACEE between different regions is clarified. The selected provinces in this study do not include Taiwan, 
Hong Kong, and Macau, mainly for two reasons: first, there is no statistical data for the Taiwan 
province within the China Statistical Yearbook; and second, the agricultural output value of Hong Kong 
and Macau is too small, and the authors believe that calculating the ACEE of these locations is not 
feasible and has little significance. For the study, we selected a period of time from 2001 to 2021, 
mainly considering two factors: timeliness and data availability. From the perspective of timeliness, 
this study has a relatively long duration, and it is known that a longer time span makes the research 
conclusions of this article more convincing. From the perspective of data availability, the time point 
starts from 2001 mainly due to the evolutionary process of the economic structure and the establishment 
of the market economy system. The Chinese Mainland has established a market economy since 1992. The 
process of urbanization in the mid and late 1990s made great changes in China’s economic structure, which 
was relatively stable around 2001. At the same time, data before 2001 was not considered since they were 
partially missing, which made it impossible to calculate the ACEE values through the applied model. 

Consequently, our work seeks to make the following contributions to the existing literature. First, 
this article uses social network analysis methods to deeply characterize the evolution characteristics of 
the ACEE in Chinese provinces, and reveal its spatiotemporal differentiation characteristics. Second, 
this study intends to conduct an in-depth analysis from different levels and dimensions such as time-
varying trends, dynamic evolution trajectories, convergence and divergence, spatial distribution 
patterns, spatial change trajectories, regional differences and their decomposition, spatial clustering 
patterns, etc. of the ACEE. Third, the clever use of social network analysis methods effectively 
overcomes the previous regional limitations on central spatial research, and comprehensively reflects 
the regional correlation of the ACEE and the dynamic evolution characteristics of its overall network. 

2. Materials and methods 

2.1. Method for measuring ACEE 

2.1.1. Unexpected output SBM model 

In the process of using traditional DEA efficiency measurement models (radial CCR, BCC), as 
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they are all from a comparison perspective, some problems may arise, such as the inability to 
compare when the efficiency value is 1. For example, the influence of relaxation variables may be 
ignored, and the efficiency value of decision units located at the efficiency front are all 1, resulting 
in the inability of a comparison. In 1993, Andersen et al. [41] proposed the super-efficient DEA 
model based on the traditional DEA, allowing for the efficiency level of effective decision-making 
units to be greater than 1. In 2001, Tone [25] proposed the SBM model, which directly added 
relaxation variables to the objective function, thereby solving the problem of selecting input-output 
relaxation variables in traditional DEA models. 

The super efficiency SBM model further evolves based on the DEA model, which is a more 
comprehensive model that combines the super efficiency DEA and SBM models. It not only solves the 
problem of traditional DEA models not being able to calculate decision-making units with efficiency 
values greater than 1, but also incorporates the input and output relaxation variables into the objective 
function, thereby making the efficiency calculation results more accurate. This article considers 
incorporating agricultural carbon emissions into non-expected outputs, and therefore selects the super-
efficient SBM-DEA model to construct a Chinese ACEE model. The specific expressions are shown 
in Eqs (1)–(3): 
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In Eq (3), the Global Malmquist-Leuenberger (GML) presents the rate of change. Given the time range 
of the selected samples and assuming that the ACEE in the year 2000 for each province is 1, the ACEE 
of each province in 2001 is shown in Eq (4): 

𝐴𝐶𝐸𝐸ଶ଴଴ଵ ൌ 𝐴𝐶𝐸𝐸ଶ଴଴଴ ൈ 𝐺𝑀𝐿ଶ଴଴଴ିଶ଴଴ଵ                       (4) 

In Eqs (1)–(4), 𝑥 ൌ ሺ𝑥ଵ, ⋯ , 𝑥௡ሻ ∈ 𝑅ே
ା  represents the input indicators for measuring the ACEE, 

specifically including four basic input indicators: labor, land, capital, and agricultural materials. 𝑦 ൌ
ሺ𝑦ଵ, ⋯ , 𝑦௡ሻ ∈ 𝑅ெ

ା  is the expected output of the ACEE; this work selects the total agricultural output 
value for characterization. 𝑏 ൌ ሺ𝑏ଵ, ⋯ , 𝑏௡ሻ ∈ 𝑅ூ

ା is an unexpected output; this work selects the total 
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agricultural carbon emissions as the characterization indicator. For example, 𝑧௞
௧ ൒ 0 indicates that the 

returns-to-scale remains unchanged, while ∑ 𝑧௞
௧௄

௞ୀଵ ൌ 1, 𝑧௞
௧ ൒ 0 indicates the variable returns-to-scale. 

𝑆ீሺ𝑥௧, 𝑦௧, 𝑏௧; 𝑔௫, 𝑔௬, 𝑔௕ሻ is a global SBM based on non-radial and non-directional measurements. 

2.1.2. Input-output indicator system for ACEE 

This study draws on previous research and constructs an input-output indicator system for the 
ACEE in 31 Chinese provinces, as shown in Table 1. Selected agricultural input variables include labor 
input, land input, capital input, agricultural machinery input, fertilizer input, pesticide input, and 
agricultural film use. Agricultural output indicators include expected output and non-expected output, 
which are the total agricultural output value and agricultural carbon emissions, respectively. 

Table 1. Input-output indicator system for the ACEE. 

Indicator type Indicator name Characterization variable Units Declaration 

Input 
Indicators 

Labour force 
Employees in the primary industry at 
the end of the year 

10,000 people None 

Land Crop planting area 1000 hectares None 

Capital Agricultural fixed capital stock 10,000,000 yuan 
Calculate capital using 
the perpetual inventory 
method 

Agricultural 
machinery 

Total power of agricultural 
machinery 

10,000 kilowatts None 

Chemical fertilizer Usage of agricultural fertilizer 10,000 ton None 

Pesticide Pesticide usage 10,000 ton None 

Agricultural film Usage of agricultural film 10,000 ton None 

Expected 
output 

Total agricultural 
output value 

Total output value of agriculture, 
forestry, animal husbandry, and 
fishery 

10,000,000 yuan None 

Undesirable 
output 

Agricultural 
carbon emissions 

Agricultural carbon emissions 10,000 ton 

Calculate according to 
carbon emission 
coefficient method of 
IPCC 

The stock of agricultural fixed capital refers to the perpetual inventory method, and the specific 
calculation method is shown in Eq (5): 

𝐾௜,௧ ൌ 𝐼௜,௧ ൅ ሺ1 ൅ 𝛿ሻ𝐾௜,௧ିଵ                           (5) 

where Ki,t is the agricultural capital stock of the region in year t, Ii,t is the agricultural investment of the 
region in year t, and δ is the depreciation rate of fixed assets for the region in year t. 
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Table 2. Indicators and corresponding coefficients for the agricultural carbon emissions. 

Carbon emission source Corresponding indicator name Carbon emission coefficient 

Chemical fertilizer Usage of agricultural fertilizers 0.8956Kg CE/Kg 

Pesticide Pesticide usage 4.9341Kg CE/Kg 

Agricultural film Usage of agricultural film 5.18Kg CE/Kg 

Agricultural diesel Agricultural diesel usage 0.5927Kg CE/Kg 

Agricultural sowing area Crop planting area 3.126Kg CE/hm2 

Agricultural irrigation area Effective irrigation area for agriculture 20.475Kg CE/hm2 

There are many methods for measuring carbon emissions. Based on the IPCC carbon emission 
coefficient, this work adopts the emission factor method to calculate agricultural carbon emissions. 
Selected agricultural production carbon sources include fertilizers, pesticides, agricultural films, 
agricultural diesel, land tillage, and agricultural irrigation. The specific calculation method is shown 
in Eq (6): 

𝐶 ൌ ∑ 𝐶௜ ൌ ∑ሺ𝑇௜ ൈ 𝜆௜ሻ                          (6) 

where C represents the total carbon emissions from the agricultural production, Ci is the carbon 
emissions of the i-th carbon source, Ti is the carbon emissions of the i-th carbon source, and λi is the 
emission coefficient of the i-th carbon source. The relevant emission coefficients of each carbon source 
are shown in Table 2. 

2.2. Analysis method of spatial association network structure 

2.2.1. Revised gravity model 

This work constructs the modified gravity model to measure the correlation strength of the carbon 
emission efficiency between provinces. A series of expressions for the model are shown in Eqs (7)–(10): 

𝑌 ൌ ீெభெమ

௥మ                                    (7) 

𝑟௜௝ ൌ 𝑘௜௝
ெ೔ெೕ

஽೔ೕ
మ                                   (8) 

𝑘௜௝ ൌ ீ೔

ீ೔ାீೕ
                                   (9) 

𝐷௜௝ ൌ
ௗ೔ೕ

ீ೔ିீೕ
                                  (10) 

In the above equations, i and j represent two different Chinese provinces. The symbol 𝑟௜௝ 
represents the strength of the correlation between the ACEE of provinces i and j. 𝑘௜௝ is the correlation 
strength of the ACEE between provinces i and j. 𝐺௜ and 𝐺௝ represents the added value of the primary 
industry in provinces i and j. 𝐷௜௝ represents the comprehensive distance between provinces i and j, 
which considers both geographical and economic distances. In Eq (8), 𝑀௜  and 𝑀௝  represent the 
ACEE of provinces i and j, respectively. In Eq (10), 𝑑௜௝ represents the geographical distance between 
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provinces i and j. According to Eq (8), a gravity matrix for the ACEE ሺ𝑟௜௝ሻଷଵൈଷଵ is constructed. To 
reduce the interference of a weak correlation between the ACEE in the provinces, the mean of each 
row in the gravity matrix is taken as the threshold. When the element in the gravity matrix is greater 
than the threshold, it is denoted as 1, thereby indicating that there is a connection between the ACEE 
in provinces i and j. If the element in the gravity matrix is less than the threshold, it is marked as 0, 
indicating that there is no connection between the ACEE. 

2.2.2. Social network analysis method 

A social network analysis is a method based on ‘relationship’ data for the study of the spatial 
network structure of relationships among individuals. This method overcomes the constraint of 
geographic ‘adjacency’ or ‘proximity’, thereby allowing for a holistic investigation of the spatial 
correlation effects across multiple nodes, as opposed to typical spatial metrics approaches. Thorough 
explanations and analyses of intricate network interactions are provided, making it widely applicable 
in various industries. The current study of spatial correlation network structure serves as a reference 
for this analysis. In this work, the application of a social network analysis is employed to examine the 
geographical network features of the ACEE in the 31 Chinese provinces.  

1) Spatial correlation network overall structure characteristics. This feature mainly focuses on 
four indicators: network density, relevancy, hierarchy, and efficiency. Network density reflects the 
strength of the relationships between nodes in the spatial network, indicating the intensity of 
interactions among nodes in the spatial network. Network relevancy signifies the resilience of the 
spatial network. When the network relevancy is equal to 1, it signifies the presence of a spatial network 
effect in the ACEE among the 31 Chinese provinces, further indicating a highly robust spatial network. 
Network hierarchy reflects the status differences in the ACEE of the 31 Chinese provinces. The 
higher the hierarchy, the greater the hierarchy status difference formed in the spatial correlation 
network. Additionally, the network efficiency serves as a stability indicator of the spatial network. 
When the network efficiency is lower, it indicates a more stable spatial network of the ACEE of 
the 31 Chinese provinces. 

2) Spatial correlation network centrality structure characteristics. This feature mainly focuses on 
three indicators: degree centrality, closeness centrality, and betweenness centrality. When a province 
has a higher degree centrality, it indicates that the province is closer to the center of the spatial network 
of the ACEE among the 31 Chinese provinces, Furthermore, nodes with a higher degree centrality 
exert a stronger influence on other nodes within the network. When a province has a higher closeness 
centrality, it indicates that the province is closer to other provinces in terms of the ACEE in the spatial 
network among the Chinese provinces. When a province has a higher betweenness centrality, it 
indicates that the province has a stronger control and regulatory role in the ACEE of other provinces 
in the spatial network of ACEE among the 31 Chinese provinces. 

3) Spatial association network clustering structure feature analysis. This analysis primarily 
evaluates the roles and functions of different plates in the spatial network of the ACEE among the 31 
Chinese provinces using the block model analysis method. It conducts a clustering analysis of the 
spatial network of the ACEE of the 31 Chinese provinces. The spatial network is divided into four 
plates, and the attributes of each plate are determined based on the ratio of internal and external 
relationships and the number of members within the plate (Table 3). Here, N୩ represents the number 
of provinces within the plate in the network, and N represents the total number of provinces in the 
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entire network. 

Table 3. Plate classification criteria of block model. 

Proportion of intra-
plate relationships 

Proportion of plate receiving relation 
≈0 >0 

൒
N୩ െ 1
N െ 1

 bidirectional spillover sectors primary beneficiary sectors 

൑
N୩ െ 1
N െ 1

 primary spillover sectors brokerage sector 

2.3. Data source 

Our main sources of information are the China Statistical Yearbook, China Agricultural Yearbook, 
and China Rural Statistical Yearbook. Matlab is used to compute the distances of provinces, combining 
the latitude and longitude of the capital city of each province. 

3. Analysis of the measurement results of ACEE in China 

Analysis of the ACEE measurement results is based on the ACEE input-output indicator system 
proposed earlier in this paper. The non-desirable output SBM model is applied to calculate the ACEE 
of the 31 Chinese provinces from 2001 to 2021 using the MaxDEA software. 

3.1. Kernel density estimation of ACEE  

This work applies the kernel density estimation approach to better define the temporal evolution 
process of absolute differences in the ACEE. It explains the distribution features and evolutionary 
tendencies of China’s ACEE by examining the distribution location, peak form, and dispersion. 
Figure 1 displays the precise kernel density estimate findings. 

From the perspective of distribution location, the ACEE shows a phased trend and a 
rightward shift, with the differences between provinces tending to flatten. Overall, the ACEE has 
gradually improved over time. As time goes by, the ACEE of the provinces exhibits certain stages, 
which is divided into three stages: 1) the period from 2001 to 2008, characterized by a relatively low 
overall level and significant fluctuations; 2) the period from 2009 to 2016, during which the ACEE 
steadily increased; 3) and from 2016 to 2021, a downward trend was observed in the overall ACEE. 
Differentiation in the ACEE is evidenced by the shape of the main peak distribution. The continuous 
decrease in the peak value is depicted by the kernel density curve, indicating diversification in the 
ACEE. The perspective of distribution locations of three stages in Figure 1 reveals the following 
economic conclusions: the narrowing of the horizontal width suggests a dynamic convergence in 
the ACEE during 2001 to 2010, accompanied by the rapid development of agricultural finance and 
an overall nationwide improvement in the agricultural production efficiency, leading to a 
significant reduction in regional differences. Moreover, a slow expansion of the width during the 
period from 2011 to 2021 indicates slow differentiation and a differentiated development in the ACEE. 

From the perspective of distribution spread, there is a significant right-tail phenomenon. 
There is a significant right-trailing phenomenon in all distribution curves, indicating that the ACEE in 
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some regions is significantly higher than in others. Specifically, in the period from 2001 to 2008, there 
was a noticeable difference in the ACEE among the provinces, implying a considerable nationwide 
spatial disparity in the ACEE. After 2009, the right-tail phenomenon weakened, and the distribution 
curves tended to have an overall distribution, indicating a more balanced nationwide development of 
the ACEE among the provinces and an enhancement of the ACEE synergy. Additionally, the 
distribution curves show a transformation from a multi-peak shape to a single-peak shape, thereby 
indicating a reduction in the multi-level differentiation of the ACEE at the provincial level. The multi-
peak shape indicates the nationwide existence of multi-level differentiation in the ACEE. For example, 
there are four peaks in the distribution curve in 2000, indicating a phenomenon of ‘each region having 
its own policies’. After 2009, the distribution curve had only one peak, indicating a reduction in the 
spatial differentiation of the ACEE and a trend of differentiated development, even in agricultural 
production efficiency. 

 

Figure 1. Evolution of the kernel density estimation for the ACEE. 

3.2. Temporal evolution of ACEE and efficiency changes 

In order to analyze the temporal evolution characteristics of the ACEE and the efficiency growth 
rate, this study measures the central tendency and the discrete tendency to analyze their temporal 
evolution characteristics. The time trend chart of the average ACEE from 2001 to 2021, as well as the 
time trend of standard deviation and variance, are shown in Figure 2. 

On the one hand, this study analyzes the temporal evolution characteristics of the ACEE values 
using time series plots of central tendency and discrete tendency measurements. From the central 
tendency measurement, the average level of the ACEE shows a decreasing trend from 2001 to 2021. 
From the discrete tendency measurement, there is an increasing differentiation of the ACEE among 
different Chinese provinces during the sample period. The main reason is that with the diversification 
of economic models, policy formulation in each province tends to be customized. On the other hand, 
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this study analyzes the temporal evolution characteristics of the growth rate of the ACEE using the 
two aforementioned measurements. From the central tendency measurement, the overall level of the 
ACEE shows a declining trend, thereby experiencing a process of rapid decline followed by a slower 
decline. From the discrete tendency measurement, the differences in the ACEE changes among the 
Chinese provinces gradually tend to become more balanced from 2001 to 2021. This is because with 
the deepening of reforms, policies and technologies related to the agricultural carbon emissions have 
gradually stabilized. Some advanced technologies for reducing agricultural carbon emissions have 
been promoted nationwide, resulting in stable ACEE changes across provinces. 

 

Figure 2. Trends of the ACEE indexes from 2001 to 2021. 
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3.3. Spatial distribution and evolution characteristics of ACEE and its changes 

 

Figure 3. Distribution of the average ACEE in China from 2001 to 2021. 

In this paper, the calculated results of the ACEE of China’s provinces from 2001 to 2021 are 
utilized in this paper to display and analyze the spatial distribution and evolution characteristics during 
the sample period. On the one hand, a general overview of the geographical features for the efficiency 
change index and the ACEE of Chinese provinces from 2001 to 2021 is offered. By computing the 
average values of the ACEE and the efficiency change index for each identifier from 2001 to 2021, 
data sequences are formed using provinces and municipalities as identifiers. Following that, a map is 
created using these data sequences, as seen in Figures 3 and 4. Additionally, the number of times each 
identifier had a GML value greater than 1 from 2001 to 2021, which represents the number of 
efficiency increases, is summarized. Then, the data sequence is superimposed and mapped to the map 
layer (Figure 4). These visualizations and analyses provide insights into the spatial distribution and 
evolution characteristics of ACEE in China’s provinces and municipalities from 2001 to 2021. 

To further observe and compare the changes in the ACEE and the efficiency change index, this paper 
provides a map description of the average ACEE of China’s provinces from 2001 to 2021, as well as the 
average GML index of the agricultural carbon emission for each Chinese province from 2001 to 2021. 
The spatial characteristics of the ACEE in China’s provinces are supplemented by this additional 
analysis. Due to space limitations, this paper presents the data choropleth maps of the ACEE in each 
Chinese province for the years 2001, 2008, 2015, and 2021. These locations are depicted in Figure 5. 
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Figure 4. Distribution of the average GML index and number of the efficiency increase 
for the agricultural carbon emission in China from 2001 to 2021. 

 

Figure 5. Trend chart of the ACEE in Chinese provinces. 

On the one hand, data charts are presented based on the calculation results of the ACEE and a 
descriptive analysis of its spatial characteristics is provided. The charts indicate that an east-high-west-
low pattern is observed in China’s total ACEE. This pattern is strongly influenced by the main 
industries and agricultural growth environment specific to each province. A downward trend in China’s 
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ACEE could be seen in the majority of provinces, with notable variations in the efficiency between 
them becoming increasingly evident. On the other hand, data charts are presented based on the 
calculation results of the agricultural carbon emission GML index and an analysis of its spatial 
characteristics is conducted. The charts demonstrate that the average rate of improvement in the ACEE 
is relatively consistent and balanced among provinces in China, with better efficiency improvement 
observed in the monsoon region as compared to the non-monsoon region. In most Chinese provinces, 
the ACEE fluctuates around the original level, and it is becoming increasingly clear how these 
efficiencies are consistently growing across provinces. 

 

Figure 6. Trend chart of GML index for the agricultural carbon emission in Chinese provinces. 

4. An investigation of the spatial correlation network structure of ACEE in China 

The spatial correlation binary matrix of the ACEE of the 31 Chinese provinces is constructed 
followed by the construction of a spatial network structure. 

4.1. Analysis of the general characteristics of the ACEE network 

The Ucinet6.0 software is used to establish the overall characteristic index of the spatial 
correlation network of the ACEE of the 31Chinese provinces from 2001 to 2021, as shown in Table 4. 

From the standpoint of network density, the ACEE network density is constantly at a high level 
over the study period, which suggests that there is a high degree of correlation between provinces in 
the network. From the perspective of network correlation, the ACEE of each province shows a strong 
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connection. That is to say, the ACEE of each province can be indirectly connected through many other 
paths. The ACEE network is in a robust state. From the perspective of network hierarchy and network 
efficiency, the network hierarchy reflects the poor hierarchical structure between provinces in the 
ACEE network. The low network effectiveness shows the closeness of the indirect connection between 
provinces and the stability of the network. 

Next, the overall trend of the ACEE network is further examined by analyzing the change in the 
network density, the network correlation, the network rank, and the network efficiency over time. The 
evolution trend of network density and correlation in China’s ACEE network from 2001 to 2021 is 
illustrated in Figure 7. Similarly, Figure 8 depicts the evolution trend of the network hierarchy and the 
network efficiency in China’s ACEE network during the same period. 

Table 4. Analysis of the overall characteristics of China’s ACEE network. 

Year Network density Network correlation degree Network hierarchy Network efficiency 

2001 0.7419 1.0000 0.0000 0.1264 
2002 0.7419 1.0000 0.0000 0.1264 

2003 0.7495 1.0000 0.0000 0.1218 

2004 0.7581 1.0000 0.0000 0.1149 

2005 0.7602 1.0000 0.0000 0.1195 

2006 0.7677 1.0000 0.0000 0.1218 

2007 0.7720 1.0000 0.0000 0.1172 

2008 0.7656 1.0000 0.0000 0.1218 

2009 0.7656 1.0000 0.0000 0.1172 

2010 0.7656 1.0000 0.0000 0.1287 

2011 0.7581 1.0000 0.0000 0.1287 

2012 0.7591 1.0000 0.0000 0.1287 

2013 0.7624 1.0000 0.0000 0.1264 

2014 0.7419 1.0000 0.0000 0.1264 

2015 0.7538 1.0000 0.0000 0.1287 

2016 0.7484 1.0000 0.0000 0.1287 

2017 0.7516 1.0000 0.0000 0.1333 

2018 0.7527 1.0000 0.0000 0.1264 

2019 0.7505 1.0000 0.0000 0.1149 

2020 0.7484 1.0000 0.0000 0.1195 

2021 0.7462 1.0000 0.0000 0.1310 

According to Figure 7, the dynamic change in the network density of the ACEE is observed to 
initially increase and then decrease, while the network correlation degree remains relatively stable. 
From 2001 to 2007, the network density of the ACEE showed a continuous upward trend, reaching its 
peak value of 0.772 in 2017. Subsequently, it declined to the initial level from 2008 to 2015, and then 
stabilized from 2016 to 2021. In general, the network density of the ACEE remained above 0.74 
throughout the 21-year observation period. Despite a recent decline, the correlation degree among 
provinces remains strong. In terms of network robustness, the correlation degree of the ACEE network 
remained at 1 from 2001 to 2021, thereby indicating a high level of stability. This suggests that 
provinces can maintain connections through various routes, even if there is a heavy dependence on 
specific provinces. As a result, the ACEE network is not easily disrupted. 

According to Figure 8, the network hierarchy of the ACEE remains consistently at the minimum 
value, while its network efficiency fluctuates continuously. Throughout the period from 2001 to 2021, 
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the ACEE network rank remains constant at 0, thereby indicating a lack of hierarchy and dominance 
within the hierarchical structure of the network. Typically, a higher network rank suggests an increased 
presence of edge regions in the network, whereas most provinces within the ACEE network tend to be 
central. Examining the trend of network efficiency from 2001 to 2010, the ACEE network efficiency 
witnessed a quick fall in the first half of the period, followed by fluctuation and a return to the initial 
level. From 2011 to 2017, the network efficiency of the ACEE has gone through a stable development 
stage. However, from 2018 to 2021, the network efficiency of the ACEE exhibited a significant 
decrease, followed by a sharp rise in the latter half of the period, reaching its peak in 2017. Although 
the variation trend of the ACEE network efficiency is complex, the range of variation is small and 
maintains at a low level. Therefore, based on the development trend of the ACEE network efficiency, 
the network structure demonstrates a high stability, and the provinces within the network can generate 
spillover effects through increased geographical network linkages. 

 

Figure 7. Network density and correlation trend of China’s ACEE network from 2001 to 2021. 

 

Figure 8. Network hierarchy and efficiency trend of China’s ACEE network from 2001 to 2021. 
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4.2. Analysis of the centrality characteristics of the ACEE network 

In this study, the Ucinet6.0 software is used to estimate the three indicators of node centrality, 
proximity centrality and betweenness centrality of China’s ACEE network from 2001 to 2021, 
followed by an investigation of the characteristics of each centrality. While examining the evolution 
of the centrality features, due to the extensive research time span, the three years 2001, 2011 and 2021 
are chosen as representations for a longitudinal comparison, as stated in Tables 5–7. 

Table 5. Results of the degree centrality of the Chinese ACEE network. 

 
Province 

(2001) 

Centrality of 

point degree 

Province 

(2011) 

Centrality of 

point degree 

Province 

(2021) 

Centrality of 

point degree 

1 Fujian 100 Fujian 96.6667 Fujian 96.6667 

2 Heilongjiang 100 Heilongjiang 96.6667 Heilongjiang 96.6667 

3 Xinjiang 100 Liaoning 96.6667 Liaoning 96.6667 

4 Jilin 96.6667 Anhui 93.3333 Jilin 93.3333 

5 Liaoning 96.6667 Jilin 93.3333 Inner Mongolia 93.3333 

6 Inner Mongolia 96.6667 Inner Mongolia 93.3333 Xinjiang 93.3333 

7 Jiangsu 93.3333 Xinjiang 93.3333 Zhejiang 93.3333 

8 Zhejiang 93.3333 Zhejiang 93.3333 Chongqing 93.3333 

9 Beijing 90 Guangxi 90 Gansu 90 

10 Hainan 90 Hainan 90 Guangxi 90 

11 Qinghai 90 Hebei 90 Hainan 90 

12 Shanxi 90 Jiangsu 90 Jiangsu 90 

13 Tianjin 90 Jiangxi 90 Tianjin 90 

14 Tibet 90 Qinghai 90 Yunnan 90 

15 Chongqing 90 Shanxi 90 Anhui 86.6667 

16 Anhui 86.6667 Tianjin 90 Guangdong 86.6667 

17 Gansu 86.6667 Yunnan 90 Hebei 86.6667 

18 Guangxi 86.6667 Chongqing 90 Hubei 86.6667 

19 Hebei 86.6667 Beijing 86.6667 Hunan 86.6667 

20 Hubei 86.6667 Guangdong 86.6667 Shanxi 86.6667 

21 Jiangxi 86.6667 Shandong 86.6667 Shaanxi 86.6667 

22 Shanghai 86.6667 Shanghai 86.6667 Shanghai 86.6667 

23 Yunnan 86.6667 Tibet 86.6667 Beijing 83.3333 

24 Guangdong 83.3333 Shaanxi 83.3333 Jiangxi 83.3333 

25 Henan 83.3333 Gansu 80 Qinghai 83.3333 

26 Shandong 83.3333 Guizhou 80 Shandong 83.3333 

27 Guizhou 80 Henan 80 Tibet 83.3333 

28 Shaanxi 80 Hubei 80 Guizhou 80 

29 Hunan 76.6667 Hunan 80 Henan 80 

30 Ningxia 73.3333 Ningxia 76.6667 Ningxia 76.6667 

31 Sichuan 73.3333 Sichuan 76.6667 Sichuan 76.6667 

 Mean value 88.1721 Mean value 87.9570 Mean value 87.7419 

 Above average 15 Above average 18 Above average 14 

 Below average 16 Below average 13 Below average 17 

As shown from Table 5, the average degree centrality of provinces in the ACEE network in 2001, 
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2011, and 2021 are 88.1721, 87.9570, and 87.7419, respectively, demonstrating a declining trend. The 
reason for this phenomenon is that agricultural production relies on the use of chemicals and fossil 
energy, which is often accompanied by a large amount of greenhouse gas emissions, and is the largest 
source of agricultural emissions, thereby resulting in a decrease in the ACEE. 

Table 6. Results of closeness centrality of China’s ACEE network. 

 
Province 

(2001) 

Closeness 

centrality 

Province 

(2011) 

Closeness 

centrality 

Province 

(2021) 

Closeness 

centrality 

1 Fujian 100 Fujian 96.7742 Fujian 96.7742 

2 Heilongjiang 100 Heilongjiang 96.7742 Heilongjiang 96.7742 

3 Xinjiang 100 Liaoning 96.7742 Liaoning 96.7742 

4 Jilin 96.7742 Anhui 93.75 Jilin 93.75 

5 Liaoning 96.7742 Jilin 93.75 Inner Mongolia 93.75 

6 Inner Mongolia 96.7742 Inner Mongolia 93.75 Xinjiang 93.75 

7 Jiangsu 93.75 Xinjiang 93.75 Zhejiang 93.75 

8 Zhejiang 93.75 Zhejiang 93.75 Chongqing 93.75 

9 Beijing 90.9091 Guangxi 90.9091 Gansu 90.9091 

10 Hainan 90.9091 Hainan 90.9091 Guangxi 90.9091 

11 Qinghai 90.9091 Hebei 90.9091 Hainan 90.9091 

12 Shanxi 90.9091 Jiangsu 90.9091 Jiangsu 90.9091 

13 Tianjin 90.9091 Jiangxi 90.9091 Tianjin 90.9091 

14 Tibet 90.9091 Qinghai 90.9091 Yunnan 90.9091 

15 Chongqing 90.9091 Shanxi 90.9091 Anhui 88.2353 

16 Anhui 88.2353 Tianjin 90.9091 Guangdong 88.2353 

17 Gansu 88.2353 Yunnan 90.9091 Hebei 88.2353 

18 Guangxi 88.2353 Chongqing 90.9091 Hubei 88.2353 

19 Hebei 88.2353 Beijing 88.2353 Hunan 88.2353 

20 Hubei 88.2353 Guangdong 88.2353 Shanxi 88.2353 

21 Jiangxi 88.2353 Shandong 88.2353 Shaanxi 88.2353 

22 Shanghai 88.2353 Shanghai 88.2353 Shanghai 88.2353 

23 Yunnan 88.2353 Tibet 88.2353 Beijing 85.7143 

24 Guangdong 85.7143 Shaanxi 85.7143 Jiangxi 85.7143 

25 Henan 85.7143 Gansu 83.3333 Qinghai 85.7143 

26 Shandong 85.7143 Guizhou 83.3333 Shandong 85.7143 

27 Guizhou 83.3333 Henan 83.3333 Tibet 85.7143 

28 Shaanxi 83.3333 Hubei 83.3333 Guizhou 83.3333 

29 Hunan 81.0811 Hunan 83.3333 Henan 83.3333 

30 Ningxia 78.9474 Ningxia 81.0811 Ningxia 81.0811 

31 Sichuan 78.9474 Sichuan 81.0811 Sichuan 81.0811 

 Mean value 89.7695 Mean value 89.4801 Mean value 89.2842 

 Above average 15 Above average 18 Above average 14 

 Below average 16 Below average 13 Below average 17 
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Table 7. Results of betweenness centrality of China’s ACEE network. 

 Province (2001) 
Betweenness 

centrality 
Province (2011) 

Betweenness 

centrality 
Province (2021) 

Betweenness 

centrality 

1 Fujian 2.490894 Heilongjiang 2.408498 Heilongjiang 2.40134 

2 Heilongjiang 2.490894 Jilin 2.408498 Jilin 2.40134 

3 Xinjiang 2.490894 Liaoning 2.408498 Liaoning 2.40134 

4 Jilin 2.456411 Fujian 2.310513 Fujian 2.299567 

5 Liaoning 2.456411 Anhui 2.246989 Zhejiang 2.231687 

6 Jiangsu 2.289324 Jiangsu 2.246989 Jiangsu 2.146542 

7 Zhejiang 2.289324 Zhejiang 2.246989 Xinjiang 2.036217 

8 Inner Mongolia 2.085355 Xinjiang 2.180512 Hainan 1.997301 

9 Hebei 2.030005 Shanghai 2.120178 Shanghai 1.979731 

10 Shanghai 1.985391 Hebei 2.05292 Chongqing 1.958845 

11 Beijing 1.929754 Inner Mongolia 1.969488 Inner Mongolia 1.921068 

12 Shanxi 1.929754 Qinghai 1.923299 Hebei 1.918641 

13 Tianjin 1.929754 Shanxi 1.906368 Guangxi 1.902738 

14 Shandong 1.909603 Tianjin 1.906368 Anhui 1.872869 

15 Qinghai 1.824119 Shandong 1.894057 Yunnan 1.853453 

16 Guangxi 1.804465 Hainan 1.891765 Tianjin 1.852221 

17 Tibet 1.79057 Guangdong 1.882421 Guangdong 1.811411 

18 Hainan 1.787287 Yunnan 1.881166 Shandong 1.800051 

19 Yunnan 1.681442 Guangxi 1.880125 Shanxi 1.770555 

20 Guangdong 1.657508 Beijing 1.820914 Beijing 1.7251 

21 Jiangxi 1.545446 Tibet 1.796178 Hunan 1.698846 

22 Chongqing 1.508327 Jiangxi 1.732271 Gansu 1.680874 

23 Anhui 1.490373 Chongqing 1.550641 Tibet 1.665936 

24 Henan 1.463205 Henan 1.339813 Qinghai 1.660481 

25 Hubei 1.35897 Shaanxi 1.283957 Hubei 1.64956 

26 Gansu 1.357052 Hunan 1.207775 Jiangxi 1.536256 

27 Guizhou 1.069199 Hubei 1.196369 Guizhou 1.498687 

28 Sichuan 1.004851 Guizhou 1.126985 Shaanxi 1.490534 

29 Shaanxi 0.990036 Gansu 1.094962 Henan 1.30422 

30 Hunan 0.953349 Ningxia 1.054962 Ningxia 1.280079 

31 Ningxia 0.950036 Sichuan 1.02953 Sichuan 1.25251 

 Mean value 1.7742 Mean value 1.8065 Mean value 1.8387 

 Above average 18 Above average 20 Above average 16 

 Below average 13 Below average 11 Below average 15 

Second, in that year, the point degree centrality is higher than the average in 15, 18, and 14 
provinces, respectively. Provinces with a higher than average point degree centrality have stronger 
connections in terms of agricultural carbon emissions as compared to other provinces, and occupy a 
central position in the ACEE network, exerting a gravitational force. Among them, there are 11 
provinces whose midpoint centrality values have consistently been higher than the yearly average 
during the 3-year research period. These provinces include five border provinces, five coastline 
provinces, and Chongqing, which is an inland municipality directly under the Central Government. 
These provinces have unique geographical distributions and significantly influence the overall 
correlation and spatial spillover effects within the ACEE network. They play a pivotal role in the 
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formation and stable development of the overall network. Particularly, Fujian, Heilongjiang, Liaoning, 
and Jilin consistently rank among the top four provinces and their centrality far exceeds that of other 
provinces. As prominent agricultural provinces, they continuously absorb information and technical 
experience from the surrounding areas, alongside promoting the deepening development of their own 
agricultural industry chains, thereby assuming leadership roles. 

In addition, there are 16, 13 and 17 provinces lower than the average centrality of the point degree 
in that year, respectively. The number of provinces that are lower than the average point degree 
centrality has a small number of agricultural carbon emission linkages with other provinces; most of 
them only have the ACEE linkages with either the top provinces or neighboring provinces. Provinces 
with a low centrality degree include Sichuan, Ningxia, Hunan, and other places. These regions are all 
located within the interior of China, and their agricultural development is faced with obstacles such as 
an inferior geographical position and transportation, a weak economic basis, and a low level of 
agricultural technology. Therefore, they are in a marginal position in the ACEE network, thereby displaying 
insufficient forward and backward linkage. It can neither produce large spillover effect on other provinces 
nor successfully accept technology and factor spillovers from other provinces. In general, the border and 
coastal provinces are close to the center of China’s ACEE network and have a large influence, while the 
inland provinces are located in the periphery, and there is still a large room for improvement. 

The closeness centrality of most provinces in China indicates a continual reduction. According to 
the data in Table 6, the closeness centrality of most provinces in 2001, 2011, and 2021 is in the range 
of [78, 100], indicating that the ACEE linking ability among provinces is strong, the overall spatial 
correlation network flow efficiency is high, and the network structure is balanced. 

Next, according to the data in Table 6, the mean closeness centrality of provinces in the ACEE 
network in 2001, 2011, and 2021 are 89.7695, 89.4801, and 89.2842, respectively. Specifically, the 
closeness centrality of Fujian, Heilongjiang, and Liaoning is ahead of that of other provinces, which 
indicates that the aforementioned provinces play the role of central actors in the spatial network, and 
the improvement of their ACEE can promote the improvement of the ACEE of other provinces more 
quickly and effectively. The reason is that the aforementioned five border provinces and one coastal 
province are more likely to rely on the advantages of the surrounding investment and cooperation 
greatly promoted by the open economy to generate spatial correlation with other provinces, which 
makes the agricultural ecological factors rapidly flow among each other, and thus has a significant role 
in promoting the improvement of the ACEE in other provinces. However, the closeness centrality of 
inland provinces such as Sichuan, Ningxia and Hunan are low. The spatial network connection is 
difficult, and the promotion effect of receiving other provinces is not significant, which is mainly 
related to the location of the provinces, agricultural development and other factors. 

Additionally, the ranking fluctuation of the closeness centrality value of Yunnan, Guangdong, and 
Shaanxi increased. It can be seen that Yunnan fiercely expanded its open agriculture, achieved results 
in regional cooperation and exchange, established an external cooperation and development platform, 
and increasingly interacted with other provinces in the agricultural economy. Shaanxi is located in the 
hinterland and the important node of ‘the Belt and Road’, with numerous adjacent provinces. Under 
the promotion of ‘the Belt and Road’ and other programs, the spatial connection strength with 
surrounding provinces continues to strengthen. Guangdong has a good geographical advantage. 
Relying on the economic basis and traffic conditions, Guangdong can swiftly absorb the overflow of 
agricultural elements from nearby provinces and quickly create correlation links with other provinces. 

An overall upward trend can be observed in the betweenness centrality of most provinces in 
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China, as indicated by Table 7. In the ACEE network, the mean betweenness centrality of each 
province in 2001, 2011, and 2021 are 1.7742, 1.8065, and 1.8387, respectively, indicating that the 
betweenness centrality of the ACEE of most provinces showed an overall upward trend, and the 
interdependence was enhanced with a stronger correlation. 

Second, it is noted that a higher intermediary centrality is observed in 18, 20, and 16 provinces, 
which include Heilongjiang, Jilin, and Liaoning, among others when compared to the average of that 
year. These provinces are known to have better agricultural resource endowment. The ACEE 
improvement process has identified these provinces as the core of the ACEE network. This positioning 
enables them to effectively control and influence the efficiency improvement of other provinces, 
thereby serving as ‘intermediaries’ and agents of ‘transmission’. Additionally, the analysis reveals that 
there are 13, 11, and 15 provinces with lower than average betweenness centrality in that year. Notably, 
provinces such as Henan, Shaanxi, and Guizhou fall into this category. These provinces are more 
susceptible to the ACEE levels of other provinces. To achieve a positive development, they need to 
rely on support from the top provinces in enhancing their efficiency. 

4.3. Analysis of plate characteristics of the ACEE network 

In this paper, the Ucinet6.0 software is used to conduct a block model analysis based on the 
CONCOR algorithm on the ACEE network of the 31 Chinese provinces in 2021 in order to examine 
its geographical clustering characteristics. The maximum segmentation depth is set as 2, the 
concentration degree is 0.2, and four plates are distinguished. In order to show the number and 
distribution of provinces in each segment of the network, this research collates the plate distribution 
content of China’s ACEE network in 2021 and maps it, as detailed in Figure 9. It can be seen that the 
ACEE of China in 2021 has obvious geographical regional agglomeration. 

In order to comprehend the relationship between the inside and outside of the plate, this study 
sorted out and counted the number of relationships between the inside and outside of the plate on the 
basis of the segmentation findings, and the particular results are provided in Table 8. 

Table 8. Plate characteristics of China’s ACEE cyberspace network in 2021. 

Spillover 
relationship plate 

Receptive relationship section Total overflow 
relation 

Inside the plate 
Outside the plate 

1 2 3 4 Receiving sending 

Plate 1 52 37 50 79 218 52 168 166 
Plate 2 51 19 39 63 172 19 169 153 
Plate 2 46 25 30 40 141 30 174 111 
Plate 4 71 38 29 47 185 47 149 138 

Total receive 
relation 

220 119 148 229 716 148 568 

The correlation of the ACEE varies among the plates. There are 716 correlations in the ACEE 
network, of which 148 are intra-plate and 568 are inter-plate. There is an obvious spatial connectivity, 
with the structure of each plate being close and the spillover effect between plates being very strong. 
By aggregating the number of receiving relations of each plate, the ACEE of the fourth plate is more 
influenced by the outside world as compared to other plates, while the second plate is substantially less 
affected. After summing the spillover relationship number of each plate, the spillover effect of the 
ACEE in the first plate is rather strong, and the third plate is relatively weak. By comparing the number 
of receiving relations and the associated spillover relations of each plate, the difference between the 
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first and third plates is minor, while the difference between the second and fourth plates is substantial. 
Among them, the ACEE relationship between the second plate and other plates primarily relies on a 
spillover relationship, while that between the fourth plate and other plates is mainly based on a 
receiving relationship. When the association within the plate is not regarded, the difference between 
the number of acceptance relations and spillover relations of the third plate is considerable, and the 
ACEE relationship of the third plate is dominated by the acceptance relationship. The number of 
external receiving relationships of each plate is always larger than the number of emitting relationships, 
indicating that, on the whole, the ACEE relationship between each plate and other plates is mainly a 
receiving relationship when the internal correlation of the plate is not considered. 

 

Figure 9. Plate distribution of China’s ACEE network in 2021. 

Based on Table 8, this paper calculated the proportion of the plate acceptance relationship, the 
expected proportion, and the actual proportion of the plate internal relationship, and carried out feature 
positioning of four plates in the ACEE network. The specific results are shown in Table 9. 

It can be observed from Table 9 that the plates generally play an intermediary function in the 
ACEE network of China in 2021. The figures of the proportion of accepting relations of the first, 
second and fourth plates are all around 50%, which both accept connections while sending links out. 
However, the actual proportion of internal relations of these three plates is smaller than the expected 
value of the proportion of the internal relations, which has a low proportion of internal relations. The 
acceptance proportion value of the third plate is 51.21%, and the actual proportion of internal relations 
is higher than the expected proportion of internal relations. It demonstrates that the third plate also accepts 
links and sends links to the outside; however, more links are sent to the inside, with a large proportion of 
internal relations, therefore the third plate is the main beneficiary plate. Plate qualities may be connected 
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with the geographical location of the plate. For example, the provinces in the third plate are mainly 
located in the central region of China, with a comparatively low agricultural development level, and are 
more dependent on resource spillovers from provinces rich in agricultural resources. 

Table 9. Plate feature positioning table of each ACEE network in China in 2021. 

Plate 
Reception relation ratio Internal relation ratio 

Role of plate 
Practice Compare to 0 Practice Expectation Comparing the two 

1 50.23% > 23.85% 26.67% < Broker plate 

2 40.89% > 11.05% 20.00% < Broker plate 

3 51.21% > 21.28% 16.67% > Main benefit plate 

4 55.31% > 25.41% 26.67% < Broker plate 

Note: proportion of receive relations = total number of receive relations/(total number of overflow relations + total number of receive 
relations); Expected internal relationship ratio = (number of provinces in the plate -1)/(number of all provinces in the network -1); 
Proportion of actual internal relations = number of plate internal relations/number of plate spillover relations. 

In order to depict the strength of connections inside and across plates more intuitively and 
concisely, this paper constructs an image matrix equivalent to the density matrix. Taking the overall 
network density as the threshold, the density matrix is assigned a value of 1 if it is more than the 
threshold; otherwise, it is assigned a value of 0, and the specific results are shown in Table 10. 

Table 10. Plate density and image matrix of the network spatial association of the ACEE in 2021. 

Plate 
Density matrix Image matrix 

Plate 1 Plate 2 Plate 2 Plate 4 Plate 1 Plate 2 Plate 2 Plate 4 

1 0.722 0.968 0.963 0.975 0 1 1 1 
2 0.968 0.429 0.929 1 1 0 1 1 
3 0.963 0.929 0.867 0.796 1 1 1 1 
4 0.975 1 0.796 0.639 1 1 1 0 

Note: “1” means there is a row to column relationship, “0” means there is no relationship. 

The network plates of China’s ACEE in 2021 had significant interoperability. Based on the density 
matrix and image matrix provided in Table 10, two crucial pieces of information may be obtained: the 
existence of a relationship and the strength of the link. Overall, the values in the density matrix are 
rather substantial, except for the somewhat decreased density value within the second plate, which 
suggests that there are correlations within and across plates. From the perspective of the plate interior, 
the third plate achieves the largest density value of 0.867, and the second plate achieves the smallest 
density value of 0.429, indicating that the third plate has the strongest internal interoperability, while 
the second plate has the weakest internal interoperability. From the perspective of the exterior of the 
plate, the density values within the third plate and between the third plate and other plates are quite 
high, and the image matrix values are all 1, indicating that the third plate has superior connectivity 
with other plates. By comparing the internal density of each plate and the density between them and 
other plates, the exterior interoperability of the plates is better than the internal interoperability of the 
plates, save the third plate. 
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5. Conclusions 

Based on the panel data of 31 Chinese provinces from 2001 to 2021, the SBM-DEA is adopted 
as the ACEE measurement model by comparing different carbon emission efficiency simulations, 
calculates China’s ACEE, and analyzes its basic characteristics. On this basis, this work uses social 
network analysis methods to conduct in-depth research on the characteristics and transmission 
mechanisms of the spatial correlation network structure of China’s ACEE. The research conclusions 
are as follows. 

First, from the perspective of the concentration trend, the average level of the ACEE from 2001 
to 2021 showed a decreasing trend year by year, while the overall level of the ACEE showed a 
decreasing trend, experiencing a process of rapid decline and slowdown. From the perspective of 
discrete trends, the differentiation of the ACEE among different provinces in China has intensified, 
and the degree of difference in the ACEE between provinces in China from 2001 to 2021 has gradually 
become balanced. 

Second, the overall ACEE of China shows a spatial pattern of being high in the east and low in 
the west, which is closely related to the economic leading industries and agricultural development 
environment of various provinces. Most provinces in China have shown a decreasing trend in the 
ACEE, and the differences in the ACEE levels between provinces have become more prominent. The 
average improvement rate of the ACEE in various provinces in China is relatively consistent and 
balanced; however, the overall efficiency improvement in monsoon areas is better than that in non-
monsoon areas. The ACEE of various provinces in China mostly fluctuates around the original level, 
and the characteristic of consistent growth rates of the ACEE between provinces is becoming 
increasingly evident. 

Third, the spatial correlation of China’s ACEE from 2001 to 2021 presents a complex network 
structure. In terms of the overall network structure characteristics of the spatial correlation, the ACEE 
network has a high degree of correlation, and its temporal evolution shows a stable trend. In terms of 
the centrality network structure characteristics of the spatial correlation, the point centrality and near 
centrality of most provinces in China continue to show a downward trend, while the interdependence 
of the ACEE between provinces increases. In terms of the clustering characteristics of the spatial 
correlation, there are differences in the correlation of ACEE among the four plates, though they mostly 
play a mediating role. Moreover, in 2021, the China ACEE network sector has a strong interoperability. 

Additionally, this study has provided some implications on China’s green and sustainable 
development. First, the relevant research findings on the inter-provincial ACEE provide a reference 
for the formulation of agricultural policies in various provinces of China, serving their industrial 
development. Second, it urges governments at all levels to pay attention to the development of green 
energy, especially in the field of green agriculture, and make planned investments based on their 
specific circumstances. There are two shortcomings in this study. First, considering the accessibility 
and coherence of the data, the data in this paper mainly comes from the National Statistical Yearbook, 
and the data type leans towards a macro analysis. Therefore, the paper mainly focuses on a macro 
analysis and lacks a micro analysis of the ACEE. Second, this study uses social network analysis 
methods to deeply discuss the evolution characteristics of ACEE of China, though the reasons for its 
formation and impact have not been thoroughly studied. In a later stage, the authors will further 
conduct in-depth research on the influencing factors and effects of China’s ACEE, and focus on 
collecting micro data to supplement micro discussions and research. 
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