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Abstract: Natural and household discharges are the natural breeding grounds of various mosquito
species, including female Anopheles mosquitoes, which transmit the Plasmodium parasite, causing
the spread of the life-threatening disease malaria. Apart from that, population migrations also have
a substantial impact on malaria transmission, claiming about half a million lives every year around
the world. To assess the effects of the cumulative density of households and other natural discharges,
and emigration-dependent interaction rates on the dissemination of the vector-borne infectious dis-
ease malaria, we propose and analyze a non-linear mathematical model. The model comprises five
dependent variables, namely, the density of the susceptible human population, the density of the in-
fective human population, the density of the susceptible female Anopheles mosquito population, the
density of the infective mosquito population and cumulative density of household and other natural
discharges. In the model, the density of the mosquito population is supposed to follow logistic growth,
whose intrinsic growth rate is a linear function of the cumulative density of household and other natu-
ral discharges. The nonlinear model is analyzed by using the stability theory of differential equations,
numerical simulations and sensitivity analysis. The analysis shows that an increase in non-emigrating
population causes increased incidence of malaria. It is also found that an increase in household and
other natural discharges accelerates the occurrence of malaria. A basic differential sensitivity analysis
is carried out to assess the sensitivity of model solutions with respect to key parameters. The model’s
numerical simulations demonstrate the analytical findings.
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1. Introduction

Malaria, a vector-borne disease, instigated by Plasmodium protozoan parasites of female Anopheles
mosquitoes, has been a serious threat to human health for ages. According to the reports of WHO, the
disease caused nearly 241 million cases and claimed 627,000 lives worldwide in the year 2020 [1]. In
2019, there were 227 million cases and nearly 69,000 fewer deaths due to malaria than in 2020 [1].
There are more than 200 known species of Plasmodium parasite which infect humans as well as other
vertebrates. Out of these species of Plasmodium parasite, P. falciparum, P. vivax, P. malariae, P. ovale
and P. knowlesi are known to infect humans. The first two of these pose the greatest threat to human
populations, and P. knowlesi causes zoonotic malaria that occurs in South-east Asia [2].

There are almost 3500 known species of mosquitoes, which are grouped into 41 genera. Malaria
is transmitted in the human population only by the females of the genus Anopheles. The epicenter of
malaria lies in the tropical and subtropical regions of the world, which are the natural breeding sites
of Anopheles mosquito populations. The life cycle of Anopheles mosquitoes begins with laying their
eggs in stagnant water, which further hatch into larvae and then mature into adult mosquitoes. The
male mosquitoes feed upon sources of sugar such as nectar. The females also feed on sources of sugar
to meet their energy requirements but require a blood meal to mature their fertilized eggs. During this
course the female mosquito may become infected by sucking blood of a malaria-infected individual
and becomes a source of transmission of Plasmodium parasites to susceptible individuals. Among 475
species named in the genus Anopheles, only 41 species, such as An. gambiae, An. funestus, etc., have
been identified as dominant vectors of human malaria. The remaining either bite humans seldomly or
cannot sustain development of malaria parasites. It is also noteworthy that different Anopheles species
are responsible for Malaria transmission in different geographic regions [3].

However, the transmission of Plasmodium parasite through the malarious mosquito requires a vi-
able environment, usually provided by natural as well as household discharges into the atmosphere in
residential population areas, so that the life span of the mosquito is enough for the parasite to success-
fully nurture itself and then be ready to invade the human population. [4–6]. Water tanks, ponds, the
moist gardens, unplanned drainage of sewage water, poor solid waste disposal, etc. [7] provide con-
ducive environments for fertilization and breeding of the female Anopheles mosquitoes in residential
areas, thereby leading to increased malarial contacts with humans [8]. Changes in the environment
caused due to deforestation, agricultural activities and urbanization are also seen to have a huge impact
on malaria transmission [9].

It is also seen that the mosquito-borne diseases are directly affected by population density related
factors [10]. One of the major factors contributing to malaria transmission is the migration of human
population, which may either be long-term migration or short-term movement of persons between
locations with low and high malaria burdens. Therefore, it is very important to study the effect of
household and other natural discharges on growth of vector population density leading to the spread of
vector-borne infectious diseases.

Mathematical models have long been used to provide a definitive structure for better understanding
of the disease-dynamics of malaria. Bailey et al. developed quantitative approaches to study malaria
transmission [4]. Thereafter, many other researchers have done modeling and analysis of the dissem-
ination of infectious diseases including malaria [11–16]. Singh et al. have conducted mathematical

Electronic Research Archive Volume 31, Issue 1, 319–341.



321

studies of effects of human population related factors on the spread of malaria [17]. Ghosh et al.
have proposed an optimal control model of malaria using larvivorous fishes as control measures [18].
Ndamuzi et al. have proposed a deterministic model of malaria transmission in mosquito and human
populations in Burundi, an East African country [19]. They have shown that the probabilities of a
mosquito being infected and a human being bitten by an infectious mosquito must be reduced by ap-
plying optimal control strategies to curb the spread of malaria. Wu et al. have proposed a differential
mathematical model to study the effect of time delay on stability of equilibria considering treated and
successfully treated classes of human populations [20]. Traoré et al. have shown through a math-
ematical model that the global behavior of malaria transmission dynamics is dependent strongly on
the vector reproduction ratio and basic reproduction ratio [21]. Elaiw et al. have studied a reaction
diffusion model of malaria transmission [22]. Noeiaghdam et al. have analyzed several non-linear
mathematical models of malaria infection [23, 24].

In most of these models, the density dependent contact rates and the effect of non-emigrating pop-
ulation of the habitat along with parameters concerning natural and household discharges have not
been considered in the modeling processes, but in a realistic situation, the contact rates between sus-
ceptible and infective populations depend upon non-emigrating and total populations of the human
habitat [25–27]. Thus, the effect of a variable transmission rate as a function of emigrating population
of the habitat should to be studied mathematically. Also, the study of effects of natural as well as an-
thropogenic discharges on dissemination of the disease needs to be focused on. In this paper, the effects
of household and other natural discharges on the growth of the vector population in the environment,
leading to the spread of infectious diseases, are studied by considering the density dependent contact
rates between susceptible and infective populations as a linear function of total population.

The following important assumptions are made in the modeling process:

• In this paper, we have considered those female Anopheles mosquito species which are able to
transmit Plasmodium parasites responsible for human infections in a given region.
• The malarial contact rate between the susceptible human population and infected mosquito pop-

ulation is increased with the increase in the density of non-emigrating population of the habitat
and decreases as the emigration increases [28, 29].
• The density of the vector (female Anopheles mosquito) population is assumed to be governed by

a logistic model with the intrinsic growth rate as a linear function of the cumulative density of
household and other natural discharges [30].
• The growth rate of the vector population decreases with a rate which is proportional to the vector

population due to natural causes as well as use of pesticides and other control measures.
• The growth rate of cumulative density of household and other natural discharges depends on the

current population in the habitat. Also, it increases with a constant rate caused by natural factors,
but it decreases with a constant rate which is proportional to the cumulative density of household
and other natural discharges.

2. Materials and methods

Let total population density of the human habitat be N(t), which is divided into two subclasses
as susceptible population density X(t) and infective population density Y(t) at time t, respectively,
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so that X(t) + Y(t) = N(t). The vector (female Anopheles mosquito) population density at time t
is N1(t), which is divided into two subclasses X1(t) and Y1(t), here X1(t) represents the susceptible
vector population density, and Y1(t) denotes the infectious vector population density. C(t) is cumulative
density of household and other natural discharges in the habitat. The contact rate between susceptible

humans and infectious vectors is assumed to be β(N) = β − β0(N − N0), where N0 is density of the
non-emigrating human population of the habitat.
In view of the above, we propose the following set of non-linear differential equations which governs
the dynamics of the model:

dX
dt
= A − {β − β0(N − N0)}XY1 − dX + µY

dY
dt
= {β − β0(N − N0)}XY1 − (µ + α + d)Y

dX1

dt
= {ϕ0 + ϕ1(C −C0)}N1 − ϕN1

2 − β2X1Y − (dm + αm)X1

dY1

dt
= β2X1Y − (dm + αm)Y1

dC
dt
= Q0 − α0C + α1(A − dN) (2.1)

where X(0) > 0, Y(0) ≥ 0, N(0) > 0, X1(0) ≥ 0, Y1(0) ≥ 0, N1(0) > 0, C(0) > 0. The positive
constants of model (2.1) are defined as follows:

A: Immigration of human population.
β: Constant coefficient of interaction due to infective population density.
β0: Emigration dependent coefficient of interaction due to infective population density.
β2: Coefficient of interaction between infective population density and susceptible vector popula-
tion.
d: Natural death rate coefficient of human population
α: Disease related death rate coefficient of infective human population.
µ: Recovery rate coefficient of infectives.
ϕ0: Constant intrinsic growth rate coefficient of vector population density.
ϕ: The depletion rate coefficient of vector population density due to competition.
ϕ1: The growth rate coefficient of vector population density due to household and other natural
discharges.
Q0: Natural house hold discharges.
α1: Rate coefficient of household discharges due to human activities.
α0: The depletion rate of household and other natural discharges.
αm: Death rate coefficient of vector population due to pesticides or other preventive measures.
dm: Natural death rate coefficient of vector population density.

For the analysis of mathematical model (2.1), we get an equivalent form by using X = N − Y and
X1 = N1 − Y1 as follows:

dY
dt
= {β − β0(N − N0)}(N − Y)Y1 − (µ + α + d)Y (2.2)
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dN
dt
= A − dN − αY (2.3)

dY1

dt
= β2(N1 − Y1)Y − (dm + αm)Y1 (2.4)

dN1

dt
= {ϕ0 + ϕ1(C −C0)}N1 − ϕN1

2 − (dm + αm)N1 (2.5)

dC
dt
= Q0 − α0C + α1(A − dN). (2.6)

with the initial conditions Y(0) ≥ 0, N(0) > 0, Y1(0) ≥ 0, N1(0) > 0, C(0) > 0.

3. Equilibrium analysis

First, to analyze the long term behavior of the model system (2.2)–(2.6), we obtain the region of
attraction of solution trajectories. The following lemma provides us the region of attraction, which is
required for further analysis of the model system [31].

Lemma 3.1. The region of attraction for the model system (2.2)–(2.6) is given by the set defined as:

Γ =

{
(Y,N,Y1,N1,C) ∈ R+5 : 0 ≤ Y ≤

A
(α + d)

,
A

(α + d)
≤ N ≤

A
d
,

0 ≤ Y1 ≤ Y1m, 0 ≤ N1 ≤ N1m, 0 ≤ C ≤ Cm}

where Cm = C0 +
Aα1α
α0(α+d) , N1m =

ϕ1C0+ϕ0−dm−αm
ϕ

+
Aα1αϕ1
ϕα0(α+d) and Y1m =

β2A2

d(αm+dm)(α+d) .
It attracts all the solutions initiating in the interior of the region.

Theorem 3.2. There are three equilibrium points in the region of attraction for the model system (2.2)
–(2.6):

(i) E0(0, A
d , 0, 0,C0), the infected human population-free and vector-free equilibrium point. This equi-

librium point exists without any condition and represents the complete eradication of malaria
along with the vector population.

(ii) E1(0, A
d , 0, N̄1,C0), the infective human population free and infectious vector population-free equi-

librium point. This disease free equilibrium exists if ϕ0 − αm − dm > 0 where N̄1 =
ϕ0−αm−dm

ϕ
.

(iii) E2(Y∗,N∗,Y∗1 ,N
∗
1 ,C

∗), non-trivial endemic equilibrium point, provided

R0 =
(β + β0N0).Ad

β2
αm+dm

.ϕ0−αm−dm
ϕ

(µ + α + d) + β0.
A2

d2 .
β2
αm+dm

ϕ0−αm−dm
ϕ

> 1. (3.1)

Proof. The existence of E0(0, A
d , 0, 0,C0), and E1(0, A

d , 0, N̄1,C0) are obvious. We prove the existence
of E2(Y∗,N∗,Y∗1 ,N

∗
1 ,C

∗) from model system (2.2)–(2.6).
By using Y , 0 and N1 , 0, we get

{β − β0(N − N0)}(N − Y)Y1 − (µ + α + d)Y = 0 (3.2)
A − dN − αY = 0 (3.3)

β2(N1 − Y1)Y − (αm + dm)Y1 = 0 (3.4)
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ϕ1(C −C0) − ϕN1 + ϕ0 − (dm + αm) = 0 (3.5)
Q0 + α1(A − dN) − α0C = 0. (3.6)

By using Eqs (3.3)–(3.5), we get

N1 =
{β2Y + αm + dm}Y1

β2Y
. (3.7)

By using (3.2)–(3.7), we define a polynomial function F(Y).

F(Y) =
{(
β + β0N0 − β0

A
d

)
β2A(ϕ0 − αm − dm)

ϕd
− (µ + α + d) (αm + dm)

}
+

{(
β + β0N0 − β0

A
d

)
β2A(ϕ1α1α)
ϕα0d

− (µ + α + d) β2

}
Y

−

{(
β + β0N0 − β0

A
d

)
αα1ϕ1(α + d)
α0d2 +

(ϕ0 − αm − dm)β0α(α + d)
ϕd2

−
Aβ0ϕ1α1α

2

α0ϕd2

}
β2Y2 −

β0β2α1(α + d)α2

α0ϕd2 Y3. (3.8)

By using (3.8), we get the followings:

(i) F(0) =
{(
β + β0N0 − β0

A
d

)
β2A(ϕ0−αm−dm)

ϕd − (µ + α + d) (αm + dm)
}
> 0, for R0 > 1 as defined in

(3.1).
(ii) F( A

α+d ) = −(µ + α + d)(αm + dm +
β2A
α+d ) < 0.

Since the function F(Y) is a polynomial function of degree three in Y , it is continuous and differ-
entiable. Hence, the equation F(Y) = 0 has at least one root lying in 0 < Y < A

α+d . To show the
uniqueness of the root, we prove F(Y) is monotonic (non-increasing) in 0 < Y < A

α+d , and for this we
prove F′(Y) < 0. By differentiating (3.8) with respect to Y , we get

F′(Y) =
{(
β + β0N0 − β0

A
d

)
β2A(ϕ1α1α)
ϕα0d

− (µ + α + d) β2

}
−{(

β + β0N0 − β0
A
d

)
αα1ϕ1(α + d)
α0d2 +

(ϕ0 − αm − dm)β0α(α + d)
ϕd2

−
Aβ0ϕ1α1α

2

α0ϕd2

}
β22Y −

β0β2α1(α + d)α2

α0ϕd2 3Y2. (3.9)

Then, by using (3.8) again, we have

YF′(Y) = −
{(
β + β0N0 − β0

A
d

)
β2A(ϕ0 − αm − dm)

ϕd
− (µ + α + d) (αm + dm)

}
−

{(
β + β0N0 − β0

A
d

)
β2A(ϕ1α1α)
ϕα0d

− (µ + α + d) β2

}
Y

−
β0β2α1(α + d)α2

α0ϕd2 Y3. (3.10)

On simplification, we get- YF′(Y) < 0 for R0 > 1. Thus, the polynomial equation F(Y) = 0 has
a unique solution Y = Y∗ in 0 < Y < A

(α+d) . Now, by using the value of Y∗ the value of N∗ can be
determined from (3.3), and the values of other variables can be determined uniquely from Eqs (3.4) to
(3.6). Hence, E2(Y∗,N∗,Y∗1 ,N

∗
1 ,C

∗) exists if R0 > 1.
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4. Stability analysis

The results related to stability of the equilibrium points E0(0, A
d , 0, 0,C0), E1(0, A

d , 0, N̄1,C0) and
E2(Y∗,N∗,Y∗1 ,N

∗
1 ,C

∗) are stated in the following theorems [32].

Theorem 4.1. The equilibrium point E0(0, A
d , 0, 0,C0) is unstable when ϕ0 − αm − dm > 0, and

E1(0, A
d , 0, N̄,C0) is unstable whenever R0 > 1. The non-trivial equilibrium E2(Y∗,N∗,Y∗1 ,N

∗
1 ,C

∗) is
locally asymptotically stable provided the following conditions are satisfied:

αY∗β2
0(N∗ − Y∗)2 < N∗d{β(N∗)}2 (4.1)

and {
(N∗ − Y∗)Y∗2 +

ϕ2α2
0Y∗1(N∗1 − Y∗1)

dβ2αα
2
1ϕ

2
1

(β2Y∗ + dm + αm)
}2

<

Y∗Y∗1
2N∗ϕ2α2

0

dβ2
2αα

2
1ϕ

2
1

 ·
{β2Y∗ + dm + αm}

2

Proof. From the model system (2.2)–(2.6)

dY
dt
= {β − β0(N − N0)}(N − Y)Y1 − (µ + α + d)Y (4.2)

dN
dt
= A − dN − αY (4.3)

dY1

dt
= β2(N1 − Y1)Y − (dm + αm)Y1 (4.4)

dN1

dt
= {ϕ0 + ϕ1(C −C0)}N1 − ϕN1

2 − (dm + αm)N1 (4.5)

dC
dt
= Q0 − α0C + α1(A − dN) (4.6)

For the model system, we find the Jacobian matrix as follows:
A11 A12 A13 0 0
−α −d 0 0 0

β2(N1 − Y1) 0 −β2Y − αm − dm β2Y 0
0 0 0 A44 ϕ1N1

0 −α1d 0 0 −α0


where

A11 = −β(N)Y1 − (α + d + µ)
A12 = β(N)Y1 − β0Y1(N − Y)
A13 = β(N)(N − Y)
A44 = ϕ0 + ϕ1(C −C0) − 2ϕN1 − αm − dm.
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The Jacobian matrix at the equilibrium point E0(0, A
d , 0, 0,C0) is

−(µ + α + d) 0 β( A
d ) A

d 0 0
−α −d 0 0 0
0 0 −αm − dm 0 0
0 0 0 ϕ0 − αm − dm 0
0 −α1d 0 0 −α0


For the above Jacobian matrix one of the eigenvalues is ϕ0 − αm − dm > 0, which is the condition for
existence of E1. Hence, E0(0, A

d , 0, 0,C0) is unstable whenever E1 exists.
Now, the Jacobian matrix for the equilibrium point E1(0, A

d , 0, N̄1,C0), is
−(µ + α + d) 0 β( A

d ) A
d 0 0

−α −d 0 0 0
β2N̄1 0 −αm − dm 0 0

0 0 0 ϕ0 − αm − dm − 2ϕN̄1 ϕN̄1

0 −α1d 0 0 −α0


It is clear from the above matrix that one of the eigenvalues AN0N̄1β0β2d + AN̄1ββ2d − A2β0β2N̄1 −

d2(dm + αm)(α + d + µ) is positive, as R0 > 1. Hence, the equilibrium point E1(Ȳ , N̄, 0, N̄1,C0) is
unstable when E2 exists.

Local stability behavior of E2(Y∗,N∗,Y∗1 ,N
∗
1 ,C

∗)-
We study the local stability behavior of E2(Y∗,N∗,Y∗1 ,N

∗
1 ,C

∗) by using Lyapunov’s direct method. By
using the transformations Y = Y∗ + y, N = N∗ + n, Y1 = Y∗1 + y1, N1 = N∗1 + n1 C = C∗ + c, we
linearize the model system. We consider the positive definite function

V =
1
2

y2 +
k1

2
n2 +

k2

2
y2

1 +
k3

2
n2

1 +
k4

2
c2. (4.7)

Differentiating (4.7) with respect to t, we get

V̇ = yẏ + k1nṅ + k2y1ẏ1 + k3n1ṅ1 + k4cċ. (4.8)

We linearise the model system about E2(Y∗,N∗,Y∗1 ,N
∗
1 ,C

∗) as follows:

ẏ =
{
−Y∗1β(N

∗) − (α + d + µ)
}
y

+
{
Y∗1β(N

∗) − (N∗ − Y∗)β0Y∗1
}
n + β(N∗)(N∗ − Y∗)y1 (4.9)

ṅ = −αy − dn (4.10)
ẏ1 = β2(N∗1 − Y∗1)y − (β2Y∗ + dm + αm)y1 + β2Y∗n1 (4.11)
ṅ1 = −ϕN∗1n1 + ϕ1N∗1c (4.12)
ċ = −α1dn − α0c. (4.13)

Using the equations from (4.9)–(4.13) in (4.8), we have

V̇ =
{
−Y∗1β(N

∗) − (α + d + µ)
}
y2
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+
{
Y∗1β(N

∗) − (N∗ − Y∗)β0Y∗1
}
ny

+β(N∗)(N∗ − Y∗)yy1 − k1dn2 − k1αny

+k2

{
β2(N∗1 − Y∗1)yy1 − (β2Y∗ + dm + αm)y2

1 + β2Y∗n1y1

}
+k3

{
−ϕN∗1n2

1 + ϕ1N∗1n1c
}
+ k4

{
α1dcn − α0c2

}
. (4.14)

In (4.14), we choose the constant k1 such that k1 =
Y∗1β(N

∗)
α

, and we get

V̇ =

{
−Y∗1 N∗

Y∗
β(N∗)

}
y2 −
{
β0Y∗1(N∗ − Y∗)

}
ny

+β(N∗)(N∗ − Y∗)yy1 − k1dn2

+k2

{
β2(N∗1 − Y∗1)yy1 − (β2Y∗ + dm + αm)y2

1 + β2Y∗n1y1

}
+k3

{
−ϕN∗1n2

1 + ϕ1N∗1n1c
}
+ k4

{
α1dcn − α0c2

}
. (4.15)

Rewriting (4.15), we get

V̇ =

{
−Y∗1 N∗

2Y∗
β(N∗)y2 − β0Y∗1(N∗ − Y∗)ny −

Y∗1d
2α
β(N∗)n2

}
+

{
−Y∗1 N∗

2Y∗
β(N∗)y2 + {β(N∗)(N∗ − Y∗) + k2β2(N∗1 − Y∗1)}yy1−

k2

2
(β2Y∗ + dm + αm)y2

1

}
+

{
−k3

2
{ϕN∗1n2

1} + k2β2Y∗n1y1 −
k2

2
(β2Y∗ + dm + αm)y2

1

}
+

{
{
−k3

2
{ϕN∗1n2

1} + k3ϕ1N∗1cn1 −
α0k4

2
c2
}

+

{
−

Y∗1d
2α
β(N∗)n2 − k4α1dnc −

α0k4

2
c2
}
.

The derivative V̇ < 0 if the inequalities given below are satisfied.

αY∗β2
0(N∗ − Y∗)2 < N∗d{β(N∗)}2 (4.16)

Y∗
{
β(N∗)(N∗ − Y∗) + k2β2(N∗1 − Y∗1)

}2
(β2Y∗ + dm + αm)

< k2Y∗1 N∗β(N∗) (4.17)

{(k2β2Y∗}2 < k2k3ϕN∗1(β2Y∗ + dm + αm) (4.18){
k3ϕ1N∗1

}2 < k3k4ϕN∗1α0 (4.19)

{k4α1d}2 < α0k4
Y∗1d
α
β(N∗). (4.20)

By combining inequalities (4.16)–(4.20), we get the conditions stated in Theorem 4.1.

αY∗β2
0(N∗ − Y∗)2 < N∗d{β(N∗)}2, (4.21)
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and {
(N∗ − Y∗)Y∗2 +

ϕ2α2
0Y∗1(N∗1 − Y∗1)

dβ2αα
2
1ϕ

2
1

(β2Y∗ + dm + αm)
}2

<

Y∗Y∗1
2N∗ϕ2α2

0

dβ2
2αα

2
1ϕ

2
1

 ·
{β2Y∗ + dm + αm}

2 .

Theorem 4.2. The equilibrium point E2(Y∗,N∗,Y∗1 ,N
∗
1 ,C

∗) is non-linearly stable in Γ provided the
following two inequalities are satisfied.

αY∗
{A

d
.β0Y1m

}2
< N∗d{Y∗1β(N

∗)}2 (4.22)

{
A
d

Y∗2 +
ϕ2α2

0Y∗1 N1m

dβ2αα
2
1ϕ

2
1

(β2Y∗ + dm + αm)
}2

<

Y∗Y∗1
2N∗ϕ2α2

0

dβ2
2αα

2
1ϕ

2
1

 ·
{β2Y∗ + dm + αm}

2 .

Proof. For non-linear stability, we consider the following positive definite function.

U =
1
2

(Y − Y∗)2 +
K1

2
(N − N∗)2 +

K2

2
(Y1 − Y∗1)2

+K3

{
N1 − N∗1 − N∗1 ln

N1

N1‘∗

}
+

K4

2
(C −C∗)2. (4.23)

On differentiating (4.23) with respect to t, we get

U̇ = (Y − Y∗)Ẏ + K1(N − N∗)Ṅ + K2(Y1 − Y∗1)Ẏ1

+K3
Ṅ1

N1
(N1 − N∗1) + K4(C −C∗)Ċ. (4.24)

By using model system (2.2)–(2.6), we get

Ẏ = β(N∗)Y∗1(N − N∗) + β(N∗)(N − Y)(Y1 − Y∗1)

−β0(N − Y)Y1(N − N∗) −
β(N∗)N∗Y∗1

Y∗
(Y − Y∗) (4.25)

Ṅ = −d(N − N∗) − α(Y − Y∗) (4.26)
Ẏ1 = β2Y∗(N1 − N∗1) − (β2Y∗ + dm + αm)(Y1 − Y∗1)

+β2(N1 − Y1)(Y − Y∗) (4.27)
Ṅ1 = ϕ1(C −C∗) − ϕ(N1 − N∗1) (4.28)
Ċ = −dα1(N − N∗) − α0(C −C∗). (4.29)

By using (4.25)–(4.29) in (4.24), we get

U̇ = β(N∗)Y∗1(N − N∗)(Y − Y∗) + β(N∗)(N − Y)(Y1 − Y∗1)(Y − Y∗)
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−β0(N − Y)Y1(N − N∗)(Y − Y∗) −
β(N∗)N∗Y∗1

Y∗
(Y − Y∗)2

+K1

{
−d(N − N∗)2 − α(Y − Y∗)(N − N∗)

}
+K2

{
β2(N1 − Y1)(Y − Y∗)(Y1 − Y∗1) − (β2Y∗ + dm + αm)(Y1 − Y∗1)2

+β2Y∗(Y1 − Y∗1)(N1 − N∗1)
}

+K3

{
ϕ1(C −C∗)(N1 − N∗1) − ϕ(N1 − N∗1)2

}
+K4

{
−dα1(N − N∗)(C −C∗) − α0(C −C∗)2

}
. (4.30)

We choose constant K1 such that K1 =
Y∗1β(N

∗)
α

and the reduced form of 4.30 is as follows:

U̇ =

{
−Y∗1 N∗

2Y∗
β(N∗)(Y − Y∗)2 − β0Y1(N − Y)(N − N∗)(Y − Y∗)

−
dY∗1β(N

∗)
2α

(N − N∗)2
}
+

{
−Y∗1 N∗

2Y∗
β(N∗)(Y − Y∗)2

+{β(N∗)(N − Y) + K2β2(N1 − Y1)}(Y1 − Y∗1)(Y − Y∗)

−
K2

2
(β2Y∗ + dm + αm)(Y1 − Y∗1)2

}
+

{
−K3

2
{ϕ(N1 − N∗1)2} + K2β2Y∗(N1 − N∗1)(Y1 − Y∗1)

−
K2

2
(β2Y∗ + dm + αm)(Y1 − Y∗1)2

}
+

{
{
−K3

2
{ϕ(N1 − N∗1)2} + K3(C −C∗)(N1 − N∗1) −

α0k4

2
(C −C∗)2

}
+

{
−

dY∗1β(N
∗)

2α
(N − N∗)2 − K4α1d(N − N∗)(C −C∗) −

α0K4

2
(C −C∗)2

}
.

Thus, U̇ < 0 if the following inequalities are satisfied.

αY∗ {β0Y1(N − Y)}2 < N∗d{Y∗1β(N
∗)}2 (4.31)

{β(N∗)(N − Y) + K2β2(N1 − Y1)}2 <
K2Y∗1 N∗β(N∗)

Y∗
(β2Y∗ + dm + αm) (4.32)

{K2β2Y∗}2 < K2K3ϕ(β2Y∗ + dm + αm) (4.33)
{K3ϕ1}

2 < K3K4ϕα0 (4.34)

{K4α1d}2 < α0K4
Y∗1d
α
β(N∗). (4.35)

By combining conditions (4.32)–(4.35) and using the value of K1, we get the conditions stated in
Theorem 4.2.

αY∗
{A

d
.β0Y1m

}2
< N∗d{Y∗1β(N

∗)}2, (4.36){
A
d

Y∗2 +
ϕ2α2

0Y∗1 N1m

dβ2αα
2
1ϕ

2
1

(β2Y∗ + dm + αm)
}2

<

Y∗Y∗1
2N∗ϕ2α2

0

dβ2
2αα

2
1ϕ

2
1

 · {β2Y∗ + dm + αm}
2 . (4.37)
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5. Numerical simulation of the mathematical model

In this section, we illustrate the analytical findings of the model by choosing a set of parameter
values. We numerically find the nontrivial endemic equilibrium point E2(Y∗,N∗,Y∗1 ,N

∗
1 ,C

∗) and discuss
its stability behavior for the parameter values given in Table 1 by using MAPLE.

Table 1. List of Parameters along with values.

Parameter Value of the Parameter
A 500 ( [30])
d 0.03 ( [30])
α 0.06 ( [30])
β 0.000012 ( [30])
µ 0.06
β2 0.002
N0 10000 ( [30])
ϕ0 0.08
β0 1.98 × 10−10 ( [30])
ϕ 0.0001
ϕ1 0.01
α1 0.005
α0 0.048
Q0 15
C0 312.5
αm 0.02
dm 0.03

For these values of parameters, the local and global stability conditions are satisfied. The non-zero
equilibrium point E2(Y∗,N∗, B∗,C∗) corresponding to (2.2)–(2.6) is obtained as follows:

Y∗ ≈ 210, N∗ ≈ 16246, Y∗1 ≈ 183, N∗1 ≈ 400, C∗ ≈ 313.8.

The Jacobian matrix at E2(Y∗,N∗,Y∗1 ,N
∗
1 ,C

∗) for the values of parameters given in Table 1 is
−0.1520 0.0014 0.1726 0 0
−0.06 −0.03 0 0 0
0.0434 0 −0.0920 0.0420 0

0 0 0 −0.0370 4
0 −0.00015 0 0 −0.048


The Eigenvalues corresponding to the Jacobian matrix at the equilibrium point

E2(Y∗,N∗,Y∗1 ,N
∗
1 ,C

∗) are- [-0.2130, -0.0026, -0.0741, -0.0346+0.0340i, -0.0346-0.0340i]. Since
three eigenvalues are negative, and two eigenvalues have negative real part, the equilibrium point
E2(Y∗,N∗,Y∗1 ,N

∗
1 ,C

∗) is asymptotically stable for this set of values.
To illustrate the non-linear behavior of the equilibrium point E2(Y∗,N∗,Y∗1 ,N

∗
1 ,C

∗) and the effect of
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various parameters on infected human population Y , the models (2.2)–(2.6) is used to plot Figures
1–8.

Figure 1. Phase plots between infected human population density Y(t) and total human
population density N(t).

Figure 2. Effect of constant coefficient of interaction β due to infectives on infective popula-
tion density Y .
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Figure 3. Effect of emigration dependent coefficient of interaction β0 due to infectives on
infective population density Y .

Figure 4. Effect of Constant coefficient of interaction β2 among the vector population density
on infective population density Y .
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Figure 5. The effect of growth rate coefficient ϕ1 of vector population density due to house-
hold and other natural discharges on infective population density Y .

Figure 6. Effect of constant intrinsic growth rate coefficient ϕ0 of vector population density
on infective population density Y .
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Figure 7. Effect of non-emigrating population density of human habitat N0 on infective
population density Y .

Figure 8. Effect of constant immigration A on infective population density Y .

Figure 1 shows that the trajectories initiating from different initial conditions are convergent to
the equilibrium point E2(Y∗,N∗,Y∗1 ,N

∗
1 ,C

∗), which indicates the global stability of equilibrium point
E2(Y∗,N∗,Y∗1 , N

∗
1 ,C

∗). In this figure, we have plotted four curves with different colors, each curve initi-
ating from a different point, i.e., initial condition. All these curves approach the equilibrium point as the
time progresses. Here, the curves with red, black, green and blue colors correspond to the initial con-
dions (C(0) = 312.51,N1(0) = 500,N(0) = 10000,Y1(0) = 100,Y(0) = 700), (C(0) = 312.51,N1(0) =
500,N(0) = 15000,Y1(0) = 100,Y(0) = 1000), (C(0) = 312.51,N1(0) = 500,N(0) = 20000,Y1(0) =
100,Y(0) = 50) and (C(0) = 312.51,N1(0) = 500,N(0) = 8000,Y1(0) = 100,Y(0) = 50), respectively,
which are all converging at E2. From Figure 2 we see that with the increase in the constant rate of
contact between susceptible humans and infected vectors, infective human population of the habitat in-
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creases. By Figure 3, it can be seen that as emigration dependent contact rate between susceptibles and
infectives increases, the infective population density of the habitat decreases. Figure 4 shows that as
the constant rate of contact between susceptible and infective vector population increases, the infected
humans in the habitat are increased. From Figure 5, it is noted that as growth rate coefficient due to
household and other natural discharges increases, the total vector population of the habitat and infected
human population density of the habitat also increase. By Figure 6, it is also observed that with the
increase in constant intrinsic growth rate coefficient of vector population density, the infectives of the
habitat are increased. By Figure 7 it is observed that the non-emigrating population of the habitat also
has a positive effect on the infected human population. In Figure 8, the effect of increase in the constant
immigration rate on the infected population density is observed.

6. Sensitivity analysis

In this section, we conduct the basic differential sensitivity analysis of the model system (2.2)–(2.6)
for the parameters β, β2, ϕ0, ϕ1 following Bortz and Nelson [33]. This is quite useful for the comparative
study of impacts of changes in these parameters on the behavior of the model system. For instance, the
sensitivity systems with respect to parameter β is as follows:

Ẏβ (t, β) = {1 − β0Nβ(t, β)} (N(t, β) − Y(t, β)) Y1(t, β)
+{β − β0 (N(t, β) − N0)} (N(t, β) − Y(t, β)}Y1β(t, β)

+{β − β0 (N(t, β) − N0)}
(
Nβ(t, β) − Yβ(t, β)

)
Y1(t, β) − (µ + α + d) Yβ(t, β)

Ṅβ (t, β) = −dNβ(t, β) − αYβ(t, β)

Ẏ1β (t, β) = β2

(
N1β(t, β) − Y1β(t, β)

)
Y(t, β) + β2 (N1(t, β) − Y1(t, β)) Yβ(t, β)

− (dm + αm) Y1β(t, β)
Ṅ1β (t, β) = (ϕ1Cβ(t, β))N1 (t, β) + (ϕ0 + ϕ1 (C (t, β) −C0))N1β(t, β) − 2ϕN1 (t, β) N1β (t, β)

− (dm + αm) N1β (t, β)

Ċβ (t, β) = −α0Cβ (t, β) + α1

(
−dNβ (t, β)

)

Here, Yw(t,w) represents the sensitivity function of Y with respect to the corresponding parameter w.
In Figures 9 to 12, we have plotted semi-relative sensitivity solutions to show the impacts of doubling
of parameters β, β2, ϕ0, ϕ1 respectively on variables of the model system (2.2)–(2.6) following Bortz
and Nelson [33].
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Figure 9. Semi-relative sensitivity solutions for the state variables corresponding to infected
human population with respect to parameters β, β2, ϕ0, ϕ1.

Figure 10. Semi-relative sensitivity solutions for the state variables corresponding to total
human population with respect to parameters β, β2, ϕ0, ϕ1.
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Figure 11. Semi-relative sensitivity solutions for the state variables corresponding to infected
vector population with respect to parameters β, β2, ϕ0, ϕ1.

Figure 12. Semi-relative sensitivity solutions for the state variables corresponding to total
vector population with respect to parameters β, β2, ϕ0, ϕ1.

From Figures 9 and 10, it is evident that the parameters ϕ0, β, ϕ1 have significant influence over the
infected and total human population densities. From Figure 9, we see that on doubling the intrinsic
growth rate of the vector population, there will be a sharp increase of 1725 in the infected human
population of the habitat in 200 years. We also see from this figure that doubling the constant coefficient
of interaction between susceptible humans and infected vectors causes an increase of 981 cases in the
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infected population. The doubling of growth rate coefficient of vectors due to various discharges causes
an increase of 409 infectives in the considered human habitat in 200 years. From Figure 10, we observe
the adverse effects of doubling of the same parameters on total human population. For instance, we see
that doubling of growth rate of vectors due to discharges causes a decrease of 630 in the total human
population of the habitat. Similar trends are observed in Figures 11 and 12 for vector population
density.

7. Conclusions

Natural and household discharges such as water tanks, ponds, unplanned disposal of solid wastes,
etc., provide a favorable environments for growth of various vectors and vector dependent infectious
diseases. Changes in the demography of the region due to immigration and emigration are also among
the root causes behind the spread of vector-borne diseases, including malaria. Due to these reasons,
despite considerable advancements in medical research in recent decades, malaria continues to be
among the leading killers in the twenty-first century.

In this paper, a non-linear epidemic model has been proposed and analyzed to study the effects
of household discharges on the spread of malarious mosquito populations, further causing spread of
malaria in human populations. The rates of contact have been assumed to be density dependent. In the
model, we have considered five time dependent variables, namely, the susceptible population density
X(t), the infective population density Y(t), the susceptible vector population density X1(t) , infective
vector population density Y1(t) and the cumulative density of household and other natural discharges
C(t). The variable contact rate between susceptibles and infectives is considered to be emigration
dependent. The growth of the vector population in the habitat has been considered to follow a logistic
model, the intrinsic growth rate of which depends linearly on the infective population density as well
as on the cumulative density of household and other natural discharges.

We have obtained three equilibrium states of the model. Two of the equilibrium points are free of
infective human and vector populations. One of these two (E0) is completely vector free, and the other
(E1) has a non-zero equilibrium value of susceptible vector population but is infectious vector-free. An
important relation among growth rate and depletion rate coefficients of vector population is obtained
for the existence of E1. From the stability analysis, it is found that E0 is unstable whenever E1 exists.
The third equilibrium E2 is a non-trivial endemic equilibrium which exists if R0 > 1. The quantity
R0 depends on various system parameters. If we decrease β, β0, and N0 then R0 also decreases and if
we restrict R0 to be less than 1, we get only disease free equilibrium points. From stability analysis,
we observe that E1 is unstable whenever E2 exists. The local and global stability conditions for E2 are
obtained by using Lyapunov’s stability method. These stability conditions show that the disease related
death rate, the rate of household discharges, the growth rate of vectors due the various discharges and
emigration dependent coefficient of interaction have destabilizing effects on the system at E2.

The numerical simulation is done to illustrate the model findings. The simulation of the epidemic
model shows that the spread of vector dependent infectious diseases increases as the density of cumu-
lative household and other natural discharges increases. It is shown further that the infective population
density decreases as emigrating population of the habitat increases. If the non-emigrating population
density of the habitat increases, the interaction between populations of the habitat increases, i.e., in-
fective population density increases. To examine the sensitivity of model solutions with respect to the
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key parameters, a basic differential sensitivity analysis is also performed. The simulation study of the
model has confirmed the obtained analytical results.
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