
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 30(9): 3337–3350.
DOI: 10.3934/era.2022169
Received: 12 April 2022
Revised: 12 June 2022
Accepted: 21 June 2022
Published: 13 July 2022

Research article

Generalized tilting modules and Frobenius extensions

Dongxing Fu1, Xiaowei Xu2 and Zhibing Zhao1,*

1 Center for Pure Mathematics, School of Mathematical Sciences, Anhui University, Hefei 230601,
China

2 School of Mathematical Sciences, Jilin University, Changchun 130012, China

* Correspondence: Email: zbzhao@ahu.edu.cn; Tel:+8613866776163.

Abstract: Let A/S be a ring extension with S commutative. We prove that ω ⊗S AA is a generalized
tilting module if ωS is a generalized tilting module. In this case, we obtain that ⊥ω-resol.dimS (M) and
⊥(ω⊗S A)-resol.dimA(M) are identical for any A-module M. As an application, we show that S satisfies
gorenstein symmetric Conjecture if and only if so does A. Furthermore, we introduce the concept of
⊥ω-Gorenstein projective modules, and we obtain that the relative Gorenstein projectivity is invariant
under Frobenius extensions.
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1. Introduction

Throughout this paper, all rings are associative with identity and all modules are unital right modules
unless stated otherwise. For a ring S , we denote the category of all right S -modules (resp. finitely
generated right S -modules) by Mod-S (resp. mod-S ). We use pdS (M) (resp. idS (M)) to denote
projective dimension (resp. injective dimension) of MS .

The generalized tilting modules were firstly introduced as a generalization of tilting modules by T.
Wakamatsu in [1]. Sometimes, it is also called the Wakamatsu tilting module, see [2].

Definition 1.1. Let S be a ring. An S -module ωS ∈mod-S is called a generalized tilting module (it is
also called a Wakamatsu tilting module) if it is self-orthogonal, that is Exti

S (ωS , ωS ) = 0 for any i ≥ 1,
and there is an exact sequence

0→ S S
f0
−→ T0

f1
−→ T1

f2
−→ · · ·

fi
−→ Ti → · · ·

such that: (1) Ti ∈addωS for any i ≥ 0, where addωS is the full subcategory of mod-S that consisting of
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all modules isomorphic to direct summands of finite direct sum of copies of ωS , and (2) after applying
by HomS (−, ωS ) the sequence is still exact.

About the generalized tilting module, there is a famous homological conjecture in the representation
theory of Artin algebras, which is called the Wakamatsu tilting conjecture (WTC). This conjecture
states that every generalized tilting module with finite projective dimension is tilting, or equivalently,
every generalized tilting module with finite injective dimension is cotilting (see [3]). The homological
conjecture is closely related to other homological conjectures. For example, the validity of finitistic
dimension conjecture (FDC) implies the validity of WTC, and the validity of WTC implies the validity
of the Gorenstein symmetric conjecture (GSC) and the Generalized Nakayama conjecture (GNC) (see
[3, 4]). Hence, the generalized tilting modules are studied widely, see [3–6].

The notion of Frobenius extensions was firstly introduced by Kasch in [7] as a generalization of
Frobenius algebras. They play an important role in topological quantum field theories in dimension 2
and even 3 (see [8]) and in representation theory and knot theory (see [9–11]). Also, each Frobenius
extension with base ring commutative provides us with a series of solutions to classical Yang-Baxter
equation (see [10]). The fundamental example of Frobenius extensions is the group algebras induced
by a finite index subgroup. There are other examples of Frobenius extensions include Hopf subalge-
bras, finite extensions of enveloping algebras of Lie super-algebras and finite extensions of enveloping
algebras of Lie coloralgebras etc [12, 13].

Separable extensions were firstly defined by Hirata and Sugano in [14] as a generalization of sepa-
rable algebras, and they made a thorough study of these connection with Galois theory for noncommu-
tative rings and generalizations of Azumaya algebras. If a ring extension is both separable extension
and Frobenius extension, then it is called a separable Frobenius extension. Sugano proved that the
central projective separable extensions are Frobenius extensions in [15]. More examples of separable
Frobenius extensions can be found in Example 2.4. We refer to [10] for more details.

It is well-known that many homological properties are preserved under change of rings, especially
excellent extension and Frobenius extension (see [16–20]). In this paper, we will consider some ho-
mological modules and homological dimension related a generalized tilting module under Frobenius
(or separable Frobenius) extensions.

For a generalized tilting module ωS , we denote the left orthogonal class of ω by ⊥ωS = {X ∈Mod-
S |Exti

S (XS , ωS ) = 0, for any i ≥ 1}. The ⊥ω-resolution dimension of a module is defined as follows.

Definition 1.2. Let M be an S -module. The ⊥ω-resolution dimension of M, denoted by ⊥ω-
resol.dimS (M), is defined as ⊥ω-resol.dimS (M) = inf{n | ∃⊥ωS -resolution 0 → Tn → · · · T1 →

T0 → M → 0}. We set ⊥ω-resol.dimS (M) = ∞ if no such integer exists.

For the homological dimension above, we have the following result.
Theorem A. Let A/S be a Frobenius extension with S commutative. For any A-module M, we have
⊥ω-resol.dimS (M) = ⊥(ω ⊗S A)-resol.dimA(M).

As an application, we get the following corollary.
Corollary B. Let S and A be both two-sided Noetherian rings and A/S be a Frobenius extension.
Then S is a Gorenstein ring if and only if so is A. Furthermore, S satisfies GSC if and only if so does
A.

Relating to a generalized tilting module ωS , ⊥ω-Gorenstein projective module is defined as a kind
of relative Gorenstein homological module.
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Definition 1.3. Let ω be a generalized tilting S -module. A right S -module G is called ⊥ω-Gorenstein
projective if there exists an exact sequence

P := · · · → P1 → P0 → P0 → P1 → · · ·

of projective right S -modules which is still exact after applying HomS (−, X) for any module X ∈ ⊥ωS

and G = Ker(P0 → P0). Furthermore, the exact sequence P is called an ⊥ω-complete projective
resolution of G.

We denoted by ⊥ω-GP(S ) the full subcategory of Mod-S consisting of all ⊥ω-Gorenstein projective
modules.

For the relative Gorenstein projectivity, we prove it is preserved under Frobenius (or separable
Frobenius) extensions.
Theorem C. Let A/S be a Frobenius extension with S commutative and ω a generalized tilting S -
module. Then GS is ⊥ω-Gorenstein projective if and only if G⊗S AA is ⊥(ω⊗S A)-Gorenstein projective.
Theorem D. Let A/S be a Frobenius extension with S commutative, ω a generalized tilting S -module
and G an A-module. If GA is ⊥(ω ⊗S A)-Gorenstein projective, then GS is ⊥ω-Gorenstein projective.
Furthermore, if the ring extension A/S is also separable, then GA is ⊥(ω⊗S A)-Gorenstein projective if
and only if GS is ⊥ω-Gorenstein projective.

The paper is organized as follows. In Section 2, we give some notations and preliminaries. In Sec-
tion 3, we will study the ⊥ω-resolution dimension under Frobenius extensions; the main result Theorem
A is proved, see Theorem 3.5. As a corollary, we show that for a Frobenius extension of two-sided
Noetherian rings, the base ring is Gorenstein if and only if so is the extension ring, see Corollary 3.12.
In Section 4, ⊥ω-Gorenstein projectivity and ⊥ω-Gorenstein projective dimension are studied, the main
results Theorem C and Theorem D are proved, see Theorems 4.4 and 4.5, respectively. Furthermore,
we get some applications concerning some classical homological dimensions in this section.

2. Preliminaries

A ring extension A/S is a ring homomorphism S l // A. A ring extension is an algebra if S is
commutative and l factors S → Z(A) ↪→ A where Z(A) is the center of A. The natural bimodule
structure of S AS is given by s ·a · s′ := l(s) ·a · l(s′). Similarly, we can get some other module structures,
for example AS , S AA and AAS , etc.

For a ring extension A/S , there is a restriction functor R : Mod-A → Mod-S sending MA 7→ MS ,
given by m · s := m · l(s). In the opposite direction, there are two natural functors as follows:

(1) T = − ⊗S AA : Mod-S → Mod-A is given by MS 7→ M ⊗S AA.
(2) H = HomS (AAS ,−) : Mod-S → Mod-A is given by MS 7→ HomS (AAS ,MS ).
It is easy to check that both (T,R) and (R,H) are adjoint pairs.

Definition 2.1. (see reference [10, Theorem 1.2]) A ring extension A/S is a Frobenius extension,
provided that one of the following equivalent conditions holds:

(1) The functors T and H are naturally equivalent.
(2) S AA � HomS (AAS , S S S ) and AS is finitely generated projective.
(3) AAS � HomS op(S AA, S S S ) and S A is finitely generated projective.
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(4) There exist E ∈ HomS−S (A, S ), xi, yi ∈ A such that for ∀a ∈ A, one has
∑
i

xiE(yia) = a and∑
i

E(axi)yi = a.

Definition 2.2. A ring extension A/S is a separable extension if and only if

µ : A ⊗S A→ A, a ⊗ b 7→ ab,

is a split epimorphism of A-A-bimodules. If a ring extension A/S is both Frobenius extension and
separable extension, then it is called a separable Frobenius extension.

Let A/S be a ring extension and M an A-module. Then MS is a right S -module. There is a natural
surjective map π : M⊗S A→ M given by m⊗a 7→ ma for any m ∈ M and a ∈ A. It is easy to check that
π is split as an S -module homomorphism. However, π is not split as an A-homomorphism in general.
The following lemma is a characterization of separable extensions.

Lemma 2.3. (see [21]) A ring extension A/S is separable if and only if for every module MA and
A-homomorphism M → N, the natural epimorphism M ⊗S AA → MA is a split A-epimorphism and
natural with respect to M → N.

There are some other examples of Frobenius extensions or separable Frobenius extensions.

Example 2.4. (1) Let S be any ring and A = S [x]/(x2) be the quotient ring of S [x]. Then A/S is a
Frobenius extension (see [22, Lemma 3.1]).

(2) Let A be a ring and n a positive integer. Then Mn(A) is a separable Frobenius extension of S n(A),
where Mn(A) is the full n × n matrix ring over A and S n(A) is the centrosymmetric matrix ring over A,
see [11, Theorem]

(3) Let S be a commutative algebra and A an Azumaya algebra over S . Then A/S is a separable
Forbenius extension. See [10, Chapter 5] for more details.

(4) Every strongly separable extension is a separable Frobenius extension. Some examples of
strongly separable extensions can be found in [9].

(5) Every excellent extension is a Frobenius extension. Furthermore, for an excellent extension,
if the base ring is commutative, then it is also a separable extension. More examples of excellent
extension can be found in [17, Example 2.2].

For an S -module W, we denote the left orthogonal class of W by ⊥W = {X ∈Mod-S |Exti
S (X,W) = 0,

for any i ≥ 1}. Recall that a class of modules is called projectively resolving if it contains all projective
modules and closed under extensions and kernel of epimorphisms. We have the following lemma.

Lemma 2.5. The class ⊥W is projectively resolving and closed under direct sums and summands.

Remark 2.6. The condition “(2)” in Definition 1.1 can be replaced by “Coker fi ∈
⊥ωS for any i ≥ 0” .

By Lemma 2.5, the following result is a direct consequence of [23, Lemma 3.12].

Proposition 2.7. Let M be an S -module and consider two exact sequences,

0→ Kn → Tn−1 → · · · → T0 → M → 0,

0→ K′n → T ′n−1 → · · · → T ′0 → M → 0,

where T0, · · · ,Tn−1 and T ′0, · · · ,T
′
n−1 are in ⊥W. Then Kn is in ⊥W if and only if so is K′n.
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3. ⊥ω-dimensions under Frobenius extensions

In this section, ω is always a generalized tilting S -module. We prove that if A/S is a Frobenius
extension with base ring S commutative, then ω ⊗S AA is also a generalized tilting module over A and
⊥ω-resol.dimS (M) and ⊥(ω ⊗S A)-resol.dimA(M) are identical for any A-module M.

The following two lemmas show that orthogonal classes with respect to a generalized tilting module
are preserved under Frobenius extensions.

Lemma 3.1. Let A/S be a Frobenius extension of rings and X a right A-module. Then XA ∈
⊥(ω⊗S A)A

if and only if XS ∈
⊥ωS .

Proof. Since A/S is a Frobenius extension, we have T (MS ) = M ⊗S AA � HomS (AAS ,MS ) = H(MS )
for any MS ∈ Mod-S . By the adjoint isomorphism,

Exti
S (XS , ωS ) � Exti

S (X ⊗A AS , ωS )
� Exti

A(XA,HomS (AAS , ωS ))
� Exti

A(XA, ω ⊗S AA)

for any i ≥ 1. Consequently, Exti
S (XS , ωS ) = 0 for any i ≥ 1 if and only if Exti

A(XA, ω ⊗S AA) = 0 for
any i ≥ 1. □

Lemma 3.2. Let A/S be a Frobenius extension with S commutative. For any S -module X, XS ∈
⊥ωS

if and only if X ⊗S AA ∈
⊥(ω ⊗S A)A.

Proof. By the adjoint isomorphism, for any i ≥ 1,

Exti
A(X ⊗S A, ω ⊗S A) � Exti

S (X,HomA(S A, ω ⊗S A))
� Exti

S (X, ω ⊗S A).

Since A/S is a Frobenius extension, S A is a finitely generated projective S -module. And so ω ⊗S

AS ∈ addωS . If XS ∈
⊥ωS , then Exti

S (X, ω⊗S A) = 0 for any i ≥ 1. It follows that Exti
A(X⊗S A, ω⊗S A) =

0 for any i ≥ 1, that is, X ⊗S AA ∈
⊥(ω ⊗S A)A.

Conversely, if X ⊗S AA ∈
⊥(ω ⊗S A)A, then X ⊗S AS ∈

⊥ωS by Lemma 3.1. Since XS is a direct
summand of X ⊗S AS , we know that XS is also in ⊥ωS . □

Let C and D be two categories. Recall that a functor F : C → D is called a Frobenius functor
if there exists a functor G : D → C such that both (F,G) and (G, F) are adjoint pairs (see [24]). By
Definition 2.1, we know that the functors −⊗S AA � HomS (AAS ,−) induced by the Frobenius bimodule
AAS are Frobenius functors.

Proposition 3.3. Let A/S be a Frobenius extension with S commutative. Then the Frobenius bimodule
AAS induces a Frobenius functor from ⊥ωS to ⊥(ω ⊗S A)A.

Proof. By assumption, T (= − ⊗S AA) � H(= HomS (AAS ,−)) : Mod-S → Mod-A is a Frobenius
functor with the restriction functor R as a left and right adjoint at same time.

By Lemmas 3.1 and 3.2, we get T |⊥ωS⊆
⊥(ω ⊗S A)A and R |⊥(ω⊗S A)A⊆

⊥ωS , respectively. Hence T is
a Frobenius functor from ⊥ωS to ⊥(ω ⊗S A)A. □

The following proposition shows that we can get generalized tilting modules over an extension ring
from generalized tilting modules over a base ring when the ring extension is Frobenius.
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Proposition 3.4. Let A/S be a Frobenius extension with S commutative. If ωS is a generalized tilting
module, then ω ⊗S AA is also a generalized tilting A-module.

Proof. Since ωS is finitely generated as an S -module, we know that ω ⊗S AA is also finitely generated
as an A-module. For any i ≥ 1,

Exti
A(ω ⊗S AA, ω ⊗S AA) � Exti

S (ωS ,HomA(S AA, ω ⊗S AA))
� Exti

S (ωS , ω ⊗S AS ).

By assumption, S A is finitely generated projective. Then ω ⊗S AS ∈ addωS . It follows that Exti
A(ω ⊗S

AA, ω ⊗S AA) = 0 for i ≥ 1 from that ωS is self-orthogonal.
On the other hand, since ωS is a generalized tilting S -module, there exists an exact sequence

T := 0→ S S → T0 → T1 → · · · → Ti → · · ·

with Ti ∈addωS for any i ≥ 0 and HomS (T, ωS ) is still exact. Applying by the functor − ⊗S AA, we get
the following sequence

T ⊗S AA := 0→ S ⊗S AA � AA → T0 ⊗S AA → T1 ⊗S AA → · · · → Ti ⊗S AA → · · ·

with each Ti ⊗S AA ∈ add(ω ⊗S A)A, which is exact because S A is finitely generated projective. Since
ω ⊗S AS is in addωS , HomS(T, ω ⊗S AS) is exact. Considering the following complex isomorphisms

HomA(T ⊗S AA, ω ⊗S AA) � HomS (T,HomA(S AA, ω ⊗S AA))
� HomS (T, ω ⊗S AS ),

we know that HomA(T ⊗S AA, ω ⊗S AA) is also exact.
By Definition 1.1, ω ⊗S AA is a generalized tilting A-module. □
Let X be a subcategory of Mod-S and M an S -module. If there exists an exact sequence · · · →

Xn → · · · X1 → X0 → M → 0 in Mod-S with Xi ∈ X for any i ≥ 0, then we define the X-resolution
dimension of M, denoted by X-resol.dimS (M), as X-resol.dimS (M)=inf{n | ∃ an exact sequence 0 →
Tn → · · ·T1 → T0 → M → 0 with each Ti ∈ X for 0 ≤ i ≤ n }. We set X-resol.dimS (M) = ∞ if no
such integer exists.

Theorem 3.5. Let A/S be a Frobenius extension with S commutative. For any A-module M, we have
⊥ω−resol.dimS (M) = ⊥(ω ⊗S A)−resol.dimA(M).

Proof. Without loss of generality, we assume that ⊥(ω⊗S A)-resol.dimA(M) = n < ∞. There is an exact
sequence 0 → Tn → · · · T1 → T0 → MA → 0 with Ti ∈

⊥(ω ⊗S A) in Mod-A for 0 ≤ i ≤ n. Applying
the restriction functor −⊗A AS , we get the following exact sequence 0→ Tn → · · · T1 → T0 → MS → 0
in Mod-S . By Lemma 3.1, Ti ∈

⊥ωS as S -modules for 0 ≤ i ≤ n. Then ⊥ω-resol.dimS (M) ≤ n.
Conversely, we assume that ⊥ω-resol.dimS (M) = m < ∞. As an A-module M, there is an exact

sequence 0 → Km → Gm−1 → · · · → G0 → MA → 0 in Mod-A with Gi in ⊥(ω ⊗S A)A for any
0 ≤ i ≤ m − 1. Applying by restriction functor, we get the following exact sequence 0 → Km →

Gm−1 → · · · → G0 → MS → 0 in Mod-S with Gi in ⊥ωS for any 0 ≤ i ≤ m − 1 by Lemma 3.1.
Since ⊥ω-resol.dimS (M) = m, Km is also in ⊥ωS as an S -module by Proposition 2.7. It follows from
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Lemma 3.1 that Km is in ⊥(ω ⊗S A)A as an A-module. Hence ⊥(ω ⊗S A)-resol.dimA(M) ≤ m = ⊥ω-
resol.dimS (M). □

Similar to some classical homological dimensions, we have the following property of ⊥ω-resolution
dimensions.

Proposition 3.6. If (Mi)i∈I is a family of S -modules, then

⊥ω-resol.dim(
⊕

i∈I Mi) = sup{⊥ω-resol.dim(Mi) | i ∈ I}.

Proof. It is easy to see that ⊥ω-resol.dim(⊕i∈I Mi) ≤ sup{⊥ω-resol.dim(Mi) | i ∈ I} since ⊥ω is closed
under direct sums.

For the converse inequality “≥”, it suffices to show that ⊥ω-resol.dim(M′) ≤ ⊥ω-resol.dim(M) for
any direct summand M′ of M. Without loss of generality, we assume that ⊥ω-resol.dim(M) = n is
finite. We use induction on n.

If n = 0, M is in ⊥ω, then so is M′.
Now, we assume that n > 0. We write that M = M′ ⊕ M′′ for some S -module M′′. Taking exact

sequences 0 → K′ → P′ → M′ → 0 and 0 → K′′ → P′′ → M′′ → 0, where P′ and P′′ are projective.
By the Horseshoe Lemma, we get the following commutative diagram

0

��

0

��

0

��
0 // K′

��

// K′ ⊕ K′′

��

// K′′

��

// 0

0 // P′

��

// P′ ⊕ P′′

��

// P′′

��

// 0

0 // M′

��

// M

��

// M′′

��

// 0

0 0 0

with exact columns and split exact rows. It follows from Proposition 2.7 that ⊥ω-resol.dim(K′ ⊕K′′) =
n − 1. Hence the inductive hypothesis yields that ⊥ω-resol.dim(K′) ≤ n − 1. Therefore, we have
⊥ω-resol.dim(M′) ≤ n by Proposition 2.7 again. □

Theorem 3.7. Let A/S be a Frobenius extension with S commutative. For any S -module M, we have
⊥ω-resol.dimS (M) = ⊥(ω ⊗S A)-resol.dimA(M ⊗S A).

Proof. Firstly, we claim that ⊥(ω⊗S A)-resol.dimA(M ⊗S A) ≤⊥ ω-resol.dimS (M). We can assume that
⊥ω-resol.dimS (M) = n < ∞.

By Definition 1.2, there is an exact sequence 0 → Tn → · · · T1 → T0 → MS → 0 with Ti ∈
⊥ωS in

Mod-S for 0 ≤ i ≤ n. By Lemma 3.2, Ti ⊗S AA ∈
⊥(ω ⊗S A)A for 0 ≤ i ≤ n. Applying by the functor

− ⊗S AA, we get the following sequence

0→ Tn ⊗S AA → · · · → T1 ⊗S AA → T0 ⊗S AA → MS ⊗S AA → 0
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in Mod-A, which is also exact because S A is finitely generated projective. Then ⊥(ω ⊗S A)-
resol.dimA(M ⊗S A) ≤ n = ⊥ω-resol.dimS (M).

Conversely, there is a natural surjective map π : M ⊗S A → M given by π(m ⊗ a) = ma for any
m ∈ M and a ∈ A which is split as an S -module homomorphism. Therefore, we have that MS is a direct
summand of M ⊗S AS , and ⊥ω-resol.dimS (M) ≤ ⊥ω-resol.dimS (M ⊗S A) by Proposition 3.6. It follows
from Theorem 3.5 that ⊥ω-resol.dimS (M) ≤ ⊥ω-resol.dimS (M ⊗S A) ≤ ⊥(ω⊗S A)-resol.dimA(M ⊗S A).

Therefore, we get ⊥ω-resol.dimS (M) = ⊥(ω ⊗S A)-resol.dimA(M ⊗S A). □

We define r.Global⊥ω-resol.dim(S ) = sup{⊥ω-resol.dim(M) | M is any right S -module }, and call it
right global ⊥ω-resolution dimension of S .

Proposition 3.8. Let A/S be a Frobenius extension with S commutative. Then r.Global⊥ω-
resol.dim(S ) = r.Global⊥(ω ⊗S A)-resol.dim(A).

Proof. It follows from Theorem 3.5 that r.Global⊥(ω ⊗S A)-resol.dim(A) ≤ r.Global⊥ω-resol.dim(S ).
And Theorem 3.7 shows that r.Global⊥ω-resol.dim(S ) ≤ r.Global⊥(ω ⊗S A)-resol.dim(A). □

Lemma 3.9. (see [4, Propositon 3.1]) Let ωS be a generalized tilting S -module and n a non-negative
integer. Then r.idS(ω) ≤ n if and only if ⊥ω-resol.dimS (M) ≤ n for any module M in mod-S .

Theorem 3.10. Let A/S be a Frobenius extension with S commutative. Then r.idS (ω) = r.idA(ω⊗SAA).

Proof. Using the fact that the functors R, T and H preserve the finiteness of modules, we get the
assertion by Proposition 3.8 and Lemma 3.9. □

Corollary 3.11. Let A/S be a Frobenius extension of rings. Then r.idS (S ) = r.idA(A).

Proof. Put ωS = S S , and the corollary follows from the Theorem 3.10. □

Recall that a two sided Noetherian ring S is called a Gorenstein ring if l.idS (S ) and r.idS (S ) are
finite. A famous homological conjecture is called Gorenstein symmetric conjecture (GSC), which
states that the left injective and right injective dimensions of a two sided Noetherian ring are identical.
It is well-known that l.idS (S ) and r.idS (S ) are identical provided that both of them are finite (see [25]).
By the corollary above, we have the following valuable corollary.

Corollary 3.12. Let S and A be two-sided Noetherian rings and A/S be a Frobenius extension. Then
S is a Gorenstein ring if and only if so is A. Furthermore, S satisfies GSC if and only if so does A.

Proof. By the“symmetry” of Frobenius extension and Corollary 3.11 , we get l.idS (S ) = l.idA(A).
Thus, r.idS (S ) = r.idA(A) and l.idS (S ) = l.idA(A) if A/S is a Frobenius extension. □

Example 3.13. (1) Let A be a two-sided Noetherian ring and Mn(A) the n× n matrix ring over A. Then
Mn(A) is an excellent extension of A. It follows that A is Gorenstein if and only if so is Mn(A) from
Corollary 3.12.

(2) Let A be an Artin ring and Q = A[x]/(x2) is the quotient of the polynomial ring, where x is a
variable which is supposed to commute with all the elements of A. Then A is Gorenstein if and only if
so is Q.

(3) Let A be a central separable Artin algebra over center C. Then A is a strong separable extension
of C. By Corollary 3.12, A is Gorenstein if and only if so is C.
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4. ⊥ω-Gorenstein projective modules

In this section, we will consider the ⊥ω-Gorenstein projectivity and ⊥ω-Gorenstein projective di-
mension under Frobenius extension, where ωS is a generalized tilting S -module. Furthermore, some
corollaries related to classical homological dimensions are obtained.

For the ⊥ω-Gorenstein projective modules (see Definition 1.3), we have the following facts.

Remark 4.1. (1) The ⊥ω-Gorenstein projective module is a special case of X-Gorenstein projective
module for X = ⊥ω. (See [26, Definition 2.1]).

(2) Every projective module is ⊥ω-Gorenstein projective. And every ⊥ω-Gorenstein projective mod-
ule is Gorenstein projective.

(3) The class ⊥ω-GP(S ) is projectively resolving and closed under direct summands and direct
sums.(See [26, Proposition 2.6]).

The following assertion is a direct consequence of [23, Lemma 3.12].

Proposition 4.2. Let M be an S -module. Suppose that

0→ Kn → Gn−1 → · · · → G0 → M → 0

and
0→ K′n → G′n−1 → · · · → G′0 → M → 0

are two exact sequences, where G0, · · · ,Gn−1 and G′0, · · · ,G
′
n−1 are in ⊥ω-GP(S ). Then Kn is in ⊥ω-

GP(S ) if and only if so is K′n.

It is easy to get the following equivalent condition of ⊥ω-Gorenstein projectivity by Definition 1.3.

Proposition 4.3. (see [26, Propostion 2.4]) Let G be a right S -module. Then the followings are equiv-
alent.

(1) G is ⊥ω-Gorenstein projective.
(2) i) Exti

S (G, X) = 0 for any X ∈ ⊥ω and i > 0;
ii) There exists an exact sequence Q := 0 → G → P0 → P1 → · · · in Mod-S with Pi projective for

every i ≥ 0 such that Hom(Q, X) is still exact for any X ∈ ⊥ω.
(3) There exists a short exact sequence of S -modules 0→ G → P→ G′ → 0, where P is projective

and G′ is ⊥ω-Gorenstein projective.

The following results show that ⊥ω-Gorenstein projectivity is preserved under Frobenius extensions.

Theorem 4.4. Let A/S be a Frobenius extension with S commutative. For an S -module G, G is ⊥ω-
Gorenstein projective if and only if G ⊗S AA is ⊥(ω ⊗S A)-Gorenstein projective.

Proof.(⇒): It suffices to show G⊗S AA satisfying the condition (2) in the Proposition 4.3 when GS is an
⊥ω-Gorenstein projective module. For any X ∈ ⊥(ω⊗S A)A, it follows from Lemma 3.1 that XS ∈

⊥ωS .
Then, for any i ≥ 1,

Exti
A(G ⊗S AA, XA) � Exti

S (GS ,HomA(S AA, XA))
� Exti

S (GS , XS )
= 0.
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Since GS is ⊥ω-Gorenstein projective, there is an exact sequence Q := 0→ GS → P0 → P1 → · · ·

in Mod-S with Pi projective for any i ≥ 0 and HomS (Q, X) is still exact for any X ∈ ⊥ωS . By the
assumption, S A is finitely generated projective, and we get the following sequence

Q ⊗S AA := 0→ G ⊗S AA → P0 ⊗S AA → P1 ⊗S AA → · · ·

is still exact with Pi⊗S AA projective in Mod-A for any i ≥ 0. For any XA ∈
⊥(ω⊗S A)A, then XS ∈

⊥ωS .
Thus

HomA(Q ⊗S AA, XA) � HomS (Q,HomA(S AA, XA))
� HomS (Q, XS )

is exact. Therefore, G ⊗S AA is ⊥(ω ⊗S A)-Gorenstein projective by Proposition 4.3.
(⇐): We claim that G ⊗S AS is ⊥ω-Gorenstein projective when G ⊗S AA is ⊥(ω ⊗S A)A-Gorenstein

projective. For any YS ∈
⊥ωS , Y ⊗S AA ∈

⊥(ω ⊗S A)A by Lemma 3.2. Then, for any i ≥ 1,

Exti
S (G ⊗S AS ,YS ) � Exti

S (G ⊗S A ⊗A AS ,YS )
� Exti

A(G ⊗S AA,HomS (AAS ,YS ))
� Exti

A(G ⊗S AA,Y ⊗S AA)
= 0

because G ⊗S AA is ⊥(ω ⊗S A)A-Gorenstein projective.
By assumption, there is an exact sequence P := 0 → G ⊗S AA → P0 → P1 → · · · in Mod-A with

Pi projective for any i ≥ 0 and HomA(P, X) is still exact for any X ∈ ⊥(ω ⊗S A)A. After applying the
restriction functor R = − ⊗A AS , we get the following exact sequence P := 0 → G ⊗S AS → P0 →

P1 → · · · with Pi projective in Mod-S for any i ≥ 0. And, for any YS ∈
⊥ω, the complex

HomS (PS ,YS ) � HomS (P ⊗A AS ,YS )
� HomA(P,HomS (AAS ,YS ))
� HomA(P,Y ⊗S AA)

is exact because Y ⊗S AA ∈
⊥ (ω ⊗S A)A. Thus G ⊗S AS is ⊥ω-Gorenstein projective.

It is well-known that GS is a direct summand of G ⊗S AS and the class ⊥ωS -GP(S ) is closed under
direct summands. Therefore, GS is ⊥ω-Gorenstein projective. □

Theorem 4.5. Let A/S be a Frobenius extension with S commutative. For any A-module G, if GA

is ⊥(ω ⊗S A)-Gorenstein projective, then GS is ⊥ω-Gorenstein projective. Furthermore, if the ring
extension A/S is also separable, then GA is ⊥(ω ⊗S A)-Gorenstein projective if and only if GS is ⊥ω-
Gorenstein projective.

Proof. The first assertion follows from the proof of sufficiency of Theorem 4.4.
If the ring extension A/S is also separable, then GA is a direct summand of G ⊗S AA by Lemma 2.3.

By Theorem 4.4, G⊗S AA is ⊥(ω⊗S A)A-Gorenstein projective if GS is ⊥ωS -Gorenstein projective. And
we have that GA is ⊥(ω⊗S A)A-Gorenstein projective since the class ⊥(ω⊗S A)A-GP(A) is closed under
direct summands. □

By Theorems 4.4 and 4.5, similar to the proof of Proposition 3.3, we have
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Corollary 4.6. Let A/S be a Frobenius extension with S commutative. Then the Frobenius bimodule
AAS induces a Frobenius functor from ⊥ω-GP(S ) to ⊥(ω ⊗S A)-GP(A).

Similar to the classical homological dimensions, we define the ⊥ω-Gorenstein projective dimension
of modules and the global ⊥ω-Gorenstein projective dimension of rings as follows.

Definition 4.7. Let M be an S -module. The ⊥ω-Gorenstein projective dimension of M, denoted by
⊥ω-GpdS (M), is defined as ⊥ω-GpdS (M) = inf{n | ∃⊥ω-Gorenstein projective resolution 0 → Gn →

· · ·G1 → G0 → M → 0}. We set ⊥ω-GpdS (M) = ∞ if no such integer exists.
We define r.⊥ω-Ggldim(S ) = sup{⊥ω-GpdS (M) | M is any right S -module }, and call it right global

⊥ω-Gorenstein projective dimension of S .

Proposition 4.8. Let A/S be a Frobenius extension with S commutative. For each S -module M, we
have ⊥ω-GpdS (M) = ⊥(ω ⊗S A)-GpdA(M ⊗S A).

Proof. The proof is similar to that of Theorem 3.7, for the sake of completeness, we give the proof as
follows.

Assume that ⊥ω-GpdS (M) = n < ∞, there is an exact sequence 0 → Gn → Gn−1 → · · · → G0 →

M → 0 in Mod-S with Gi being ⊥ω-Gorenstein projective for 0 ≤ i ≤ n. Applying by the functor
T = − ⊗S AA, we get the following exact sequence

0→ Gn ⊗S AA → Gn−1 ⊗S AA → · · · → G0 ⊗S AA → M ⊗S AA → 0

in Mod-A with Gi ⊗S AA being ⊥(ω ⊗S A)-Gorenstein projective for 0 ≤ i ≤ n by Theorem 4.4. Then
⊥(ω ⊗S A)-GpdA(M ⊗S A) ≤ n =⊥ ω-GpdS (M).

Conversely, we can assume that ⊥(ω ⊗S A)-GpdA(M ⊗S A) = m < ∞. As an S -module M, there
is an exact sequence 0 → Km → Gm−1 → · · · → G0 → M → 0 in Mod-S with Gi projective for
0 ≤ i ≤ m − 1 . Since S A is Projective as an S -module, applying the functor T = − ⊗S AA, we obtain
the following exact sequence

0→ Km ⊗S AA → Gm−1 ⊗S AA → · · · → G0 ⊗S AA → M ⊗S AA → 0,

where Gi ⊗S AA is ⊥(ω ⊗S A)-Gorenstein projective by Theorem 4.4 for 0 ≤ i ≤ m − 1. Thus Km ⊗S AA

is also ⊥(ω ⊗S A)-Gorenstein projective by Proposition 4.2. Again by Theorem 4.4, Km is an ⊥ω-
Gorenstein projective S -module. Thus ⊥ω-GpdS (M) ≤ m = ⊥(ω ⊗S A)-GpdA(M ⊗S A).

Therefore, ⊥ω-GpdS (M) = ⊥(ω ⊗S A)-GpdA(M ⊗S A). □

Corollary 4.9. Let S be a commutative Artin ring and A/S a Frobenius extension. For each S -module
MS , we have pdS (M) = pdA(M ⊗S A).

Proof. Since S is a commutative Artin ring, there exists some generalized tilting module ωS with
idS (ω) = 0 (in fact, an injective cogenerator is such generalized tilting module ). For any MA ∈Mod-A
and i ≥ 1,

Exti
A(MA, ω ⊗S AA) � Exti

A(MA,HomS (AAS , ωS ))
� Exti

S (M ⊗A AS , ωS )
� Exti

A(MS , ωS )
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= 0

Hence ω ⊗S AA is also a generalized tilting A-module with idA(ω ⊗S AA) = 0. In this case, the ⊥ω-
Gorenstein projective S -module is same to projecitive S -module and the ⊥ω-Gorenstein projective
dimension coincides with the classical projective dimension. The assertion follows from Proposition
4.8 . □

Proposition 4.10. Let A/S be a Frobenius extension with S commutative and ωS a generalized tilting
S -module and M a right A-module. Then ⊥ω-GpdS (M) ≤ ⊥(ω ⊗S A)-GpdA(M). Furthermore, if the
ring extension A/S is also separable, then ⊥ω-GpdS (M) = ⊥(ω ⊗S A)-GpdA(M).

Proof. It is trivial for the case of ⊥(ω ⊗S A)-GpdA(M) = ∞. We assume that ⊥(ω ⊗S A)-GpdA(M) =
n < ∞, there is an exact sequence 0 → Gn → Gn−1 → · · · → G0 → MA → 0 in Mod-A with Gi being
⊥(ω⊗S A)A-Gorenstein projective for 0 ≤ i ≤ n. Applying the restriction functor R = −⊗A AS , we have
an exact sequence 0 → Gn → Gn−1 → · · · → G0 → MS → 0 in Mod-S with Gi being ⊥ω-Gorenstein
projective for 0 ≤ i ≤ n by Theorem 4.5. Therefore, ⊥ω-GpdS (M) ≤ ⊥ω ⊗S A-GpdA(M).

Conversely, we can assume that ⊥ω-GpdS (M) = m. There is an exact sequence 0→ Gm → Gm−1 →

· · · → G0 → M → 0 in Mod-S with Gi being ⊥ωS -Gorenstein projective for 0 ≤ i ≤ n. By Theorem
4.4, the following sequence

0→ Gm ⊗S AA → Gm−1 ⊗S AA → · · · → G0 ⊗S AA → M ⊗S AA → 0,

in Mod-A is exact with Gi⊗S AA being ⊥(ω⊗S A)-Gorenstein projective. And so ⊥(ω⊗S A)-GpdA(M⊗S

A) ≤ m =⊥ ω-GpdS (M).
If the ring extension A/S is separable, then MA is a direct summand of M⊗S AA. It follows from [26,

Proposition 3.4] that ⊥ω ⊗S A-GpdA(M) ≤ ⊥(ω ⊗S A)-GpdA(M ⊗S A) ≤ m. □

The following result maybe is well-known. In fact, we have known that : for a Frobenius extension
A/S and an A-module M, if pdA(M) < ∞, then one has pdA(M) = pdS (M), see [27, Theorem 8].

Corollary 4.11. Let S be a commutative Artin ring and A/S be a Frobenius extension. For each
right A-module M, pdS(M) ≤ pdA(M). Furthermore, if the ring extension A/S is also separable, then
pdS(M) = pdA(M).

Proof. The proof is similar to that of the Corollary 4.9. □

Corollary 4.12. Let A/S be a Frobenius extension with S commutative and ωS a generalized tilting
S -module. Then r.⊥ω-Ggldim(S ) ≤ r.⊥(ω ⊗S A)-Ggldim(A). Furthermore, if the ring extension A/S is
also separable, then r.⊥ω-Ggldim(S ) = r.⊥ω ⊗S A-Ggldim(A).

Proof. The first assertion follows from Proposition 4.8. Furthermore, if A/S is separable, MA is a
direct summand of M⊗S AA for any M ∈Mod-A by Lemma 2.3. And the second assertion follows from
Proposition 4.10. □

Corollary 4.13. Let S be a commutative Artin ring and A/S a Frobenius extension. Then gldim(S ) ≤
gldim(A). Furthermore, if the ring extension A/S is also separable, then gldim(S ) = gldim(A).

Proof. It follows from Corollarys 4.9 and 4.11. □
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