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Abstract: The Cahn–Hilliard equation is a fundamental model that describes the phase separation
process in multi-component mixtures. It has been successfully extended to different contexts in various
scientific fields. In this survey article, we briefly review the derivation, structure as well as some
analytical issues for the Cahn–Hilliard equation and its variants. Our focus will be placed on the
well-posedness as well as long-time behavior of global solutions for the Cahn–Hilliard equation in the
classical setting and recent progresses on the dynamic boundary conditions that describe non-trivial
boundary effects.
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1. Introduction

The Cahn–Hilliard equation provides a continuous description of the phase separation process for
binary mixtures. It was first proposed in [1–3] to model the so-called spinodal decomposition of binary
alloys in a rapid cooling process, assuming isotropy of the material. As pointed out in [4], the Cahn–
Hillirad equation is rather broad ranged in its evolution scope such that it is capable of describing
important qualitative features of many systems undergoing phase separation at different time stages.
Besides the spontaneous heterogenization of a binary mixture like spinodal decomposition, it can also
model other mechanisms in pattern formation such as the process of nucleation and growth, and the
process of coarsening [3–5]. The Cahn–Hilliard equation is a representative of the so-called diffuse
interface models describing the evolution of free interfaces during phase transitions. Instead of the
classical sharp-interface formulation, the diffuse interface model represents free interfaces that separate
different components of the mixture as thin layers with finite thickness over which material properties
vary smoothly. This approach has several advantages, see e.g., [6, 7]. First, explicit tracking of the
free interface, which is usually a difficult task, can be avoided in both mathematical formulation and

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2022143


2789

numerical computation. Second, evolution of complex geometries and topological changes of the free
interface can be handled in a natural way. In the past years, the Cahn–Hilliard equation and its variants
have been successfully applied in different scientific fields and turned out to be efficient tools for the
study of a wide variety of segregation-like phenomena [8], for instance, diblock copolymer [9], image
inpainting [10, 11], tumor growth [12, 13], biology [14], two-phase flows [7, 15–18], moving contact
line dynamics [19, 20], and so on.

Assume that T ∈ (0,+∞], Ω ⊂ Rd (d = 1, 2, 3) is a bounded domain with a sufficiently smooth
boundary ∂Ω. When d = 1, Ω is simply an interval, e.g., Ω = (0, l) for some l > 0. The classical
Cahn–Hilliard equation can be written in the following form:∂tϕ = ∇ · [M(ϕ)∇µ], in Ω × (0,T ),

µ = −ϵ2∆ϕ + F′(ϕ), in Ω × (0,T ).
(1.1)

The unknown function ϕ is called the order parameter or phase-field, which is related to local concen-
trations of the two components of a binary mixture. It may have different interpretations according to
the physical context, for instance, the volume fraction, mass fraction, or mole fraction [4, 6]. Usually
people consider a rescaled form of ϕ such that it denotes the difference between local concentrations
for the two components, that is, ϕ = cA − cB. Since the concentrations satisfy cA, cB ∈ [0, 1] and
cA + cB = 1, it is straightforward to check that ϕ should take its value in the physical interval [−1, 1],
with ±1 corresponding to the pure states. In a general framework for the description of free interfaces,
the phase-field function ϕ takes distinct values in different bulk phases away from the diffuse interface
separating them, and the free interface can be identified with an intermediate level set of ϕ (e.g., the
zero-level set).

In Eq (1.1), µ denotes the chemical potential, ϵ is a positive constant and M is a nonnegative quantity
standing for the diffusion mobility that can be chosen as either a positive constant or a concentration
dependent function M = M(ϕ). From the mathematical point of view, (1.1) is a fourth order parabolic
equation for the unknown variable ϕ when M > 0. Thus, suitable initial and boundary conditions
should be taken into account to form a well-posed problem. For the initial condition, we take

ϕ|t=0 = ϕ0(x), in Ω. (1.2)

On the other hand, one of the classical choices for boundary conditions is the following homogeneous
Neumann type:

M(ϕ)∇µ · n = 0, on ∂Ω × (0,T ), (1.3)
∂nϕ = 0, on ∂Ω × (0,T ). (1.4)

Here, n = n(x) denotes the unit exterior normal to the boundary ∂Ω and ∂n stands for the outward nor-
mal derivative on ∂Ω. Other boundary conditions that are of interest are Dirichlet boundary conditions
(for ϕ and µ) and periodic boundary conditions (cf. [21]).

The Cahn–Hilliard equation has been extensively studied in the literature both analytically and nu-
merically. Our aim in this paper is to review the derivation, mathematical structure and some analytical
issues for the Cahn–Hilliard equation and its variants, with main focus on the well-posedness and
long-time behavior of global solutions. Some other important and interesting problems like nonlocal
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interactions, limit motions, formal and rigorous justifications of the sharp-interface limit etc are be-
yond the scope of this paper. In Section 2, we present results for the Cahn–Hilliard equation in the
classical setting, i.e., the initial boundary value problem (1.1)–(1.4). In Section 3, we discuss some
recent developments on the dynamic boundary conditions.

2. Cahn–Hilliard equation in the classical setting

2.1. Derivation and structure

For an isotropic binary mixture with nonuniform composition at a fixed temperature, we consider
the following Ginzburg–Landau type free energy:

Ebulk(ϕ) =
∫
Ω

ϵ2

2
|∇ϕ|2 + F(ϕ) dx. (2.1)

The energy functional Ebulk consists of two contributions, that is, the bulk part and the gradient part.
The bulk energy part represents the interaction of different components in a homogeneous system,
where F(ϕ) denotes the (Helmholtz) free energy density of mixing. A typical thermodynamically
relevant example is the following logarithmic potential (see [2, 4])

Flog(s) =
θ

2

[
(1 + s) ln(1 + s) + (1 − s) ln(1 − s)

]
−
θc

2
s2, s ∈ (−1, 1), (2.2)

for some constants θ, θc > 0, where θ is the absolute temperature of the system and θc is the critical
temperature of phase separation. The potential (2.2) is also related to the Flory–Huggins free energy
density in assessing the mutual miscibility of polymer solutions. When 0 < θ < θc, it is easy to verify
that Flog has a double-well structure with two minima ±ϕ∗ ∈ (−1, 1), where ϕ∗ is the positive root of
the equation F′log(s) = 0 (see [22]). This case is of physical importance since the phase separation may
occur, see the phase diagram in [4, 23]. The interval (−ϕ∗, ϕ∗) with ϕ∗ = (1 − θ/θc)1/2 > 0 is called
the spinodal region, in which it holds F′′log(s) < 0. When a homogeneous state is located in (−ϕ∗, ϕ∗),
any small fluctuation in composition will lower the free energy and yield spontaneous phase separation
of the mixture towards the equilibrium compositions of two phases corresponding to ±ϕ∗. When the
system temperature θ is closed to the critical temperature θc, i.e., the so-called “shallow quenching”
case, the singular potential Flog is often approximated by a polynomial of degree four like the following
form

Freg(s) =
1
4
(
1 − s2)2

, s ∈ R. (2.3)

More precisely, in view of (2.2), we can apply Taylor’s expansion at s = 0 to get (cf. [24])

Flog(s) ≈
(
θ

2
−
θc

2

)
s2 +

θ

12
s4.

For the special case θ = 3, θc = 4, we recover (2.3) after adding the resultant with a constant 1/4.
The above simple approximation brings great convenience in the mathematical analysis and numeric
simulation for the Cahn–Hilliard equation. Nevertheless, we note that it leads to a shift of the location
of minima, i.e., from ±ϕ∗ to ±1. In the literature, there is another type of singular potential called
the double obstacle potential, which can be obtained in the “deep-quench limit” of the logarithmic
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potential (2.2) by letting θ → 0+ (see [22]). In this case, the spinodal region eventually expands to
(−1, 1) and the corresponding free energy density usually takes the following form (after a shift by
adding the constant θc/2):

Fobs(s) =
θc

2
(1 − s2) + I[−1,1](s) =


θc

2
(1 − s2), if s ∈ [−1, 1],

+∞, if |s| > 1.
(2.4)

The gradient part of Ebulk represents the spatial variation in composition of the mixture, where
ϵ2 > 0 is a parameter often called the coefficient of gradient energy [2, 21, 23]. The small positive
constant ϵ measures the capillary width of the mixture (i.e., thickness of the transition layer), see [6,7].
Formally speaking, this gradient term can be obtained by making expansion of a free energy density in
a region of nonuniform composition

F̃(ϕ)(ϕ,∇ϕ,∇2ϕ, ...) ≈ F(ϕ) +
ϵ2

2
|∇ϕ|2 + · · · ,

see e.g., [2, 23] for details. As pointed out in [25], the gradient part accounts for heterogeneity of the
mixture and serves as a penalty for the phase-field function ϕ having sudden changes with respect to
the spatial variable x. It corresponds to the tendency of the mixture to prefer to be uniform in space
and gives an approximation of the interfacial surface energy [6]. Here, this gradient term can also be
regarded as an elliptic regularization against the possible backwards diffusion (noting that F can be
nonconvex in the spinodal region), in order to guarantee the system of partial differential equations to
be well-posed (cf. [4, 25]). We note that the idea of regularization by gradient terms dates back to the
earlier work [26].

2.1.1. Derivation from the mass balance law

There are several ways to derive (and to understand) the Cahn–Hilliard equation (1.1). We first
present the derivation by using basic thermodynamics (cf. [2, 23]). Recalling the definition of the
order parameter ϕ, we see that local concentrations of the two components of a binary mixture can be
determined once the scalar function ϕ is known. Thus, dynamics of the composition can be predicted
by a single evolution equation for ϕ.

The conserved dynamics of a phase separation process is due to the generalized (non-Fickian) diffu-
sion driven by gradients in the chemical potential µ (see [2], and also [21,23,27]). Phenomenologically,
we consider a continuity equation

∂tϕ + ∇ · J = 0, (2.5)

where the vector J denotes the mass flux. Equation (2.5) yields a differential (local) form for the
law of mass balance. The natural and possibly the simplest boundary conditions are as follows (cf.
(1.3)–(1.4))

J · n = 0, on ∂Ω × (0,T ), (2.6)
∂nϕ = 0, on ∂Ω × (0,T ). (2.7)

The first boundary condition (2.6) is usually called the no-flux boundary condition such that after
integration by parts, we can easily deduce from (2.5) the mass conservation of the system (at least in a
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formal manner by assuming that the solution is smooth):

d
dt

∫
Ω

ϕ dx =
∫
Ω

∂tϕ dx = −
∫
Ω

∇ · J dx =
∫
∂Ω

J · n dS = 0, ∀ t ∈ (0,T ).

Therefore, it holds ∫
Ω

ϕ(x, t) dx =
∫
Ω

ϕ0(x) dx, ∀ t ∈ [0,T ]. (2.8)

On the other hand, the homogeneous Neumann boundary condition (2.7) for ϕ also has its physical in-
terpretation: the free interface between the two components intersects the solid wall (i.e., the boundary
∂Ω) at a perfect static contact angle of π/2 (cf. [19, 20]). Under this choice, the chemical potential µ,
that is defined as the variational derivative of the bulk free energy Ebulk with respect to ϕ, is given by

µ =
δEbulk(ϕ)

δϕ
= −ϵ2∆ϕ + F′(ϕ), (2.9)

where F′ denotes the derivative of the bulk potential F with respect to ϕ (cf. [23, 25]). The chemical
potential may be viewed as a forcing term proportional to the local distance from equilibrium [23].
Then the right expression of the mass flux J should be chosen to fulfill the basic thermodynamics, that
is, the evolution of ϕ must occur in such a way that the free energy Ebulk does not increase in time. For
instance, we may postulate the following constitutive equation

J = −M(ϕ)∇µ. (2.10)

Thus, combining (2.5), (2.9) and (2.10), we arrive at the Cahn–Hilliard equation (1.1). Besides, it is
obvious that (2.6) together with (2.10) yields the boundary condition (1.3). An important consequence
of (2.6), (2.7) and (2.10) is that the free energy Ebulk is indeed non-increasing in time, which can be
seen from a direct calculation (cf. [21, 28]):

d
dt

Ebulk(ϕ(t)) =
∫
Ω

(
ϵ2∇ϕ · ∇∂tϕ + F′(ϕ)∂tϕ

)
dx

=

∫
Ω

µ∂tϕ dx =
∫
Ω

µ∇ · (M(ϕ)∇µ) dx

= −

∫
Ω

∇µ · (M(ϕ)∇µ) dx +
∫
∂Ω

µ(M(ϕ)∇µ · n) dS

= −

∫
Ω

M(ϕ)|∇µ|2 dx, ∀ t ∈ (0,T ). (2.11)

In this sense, (2.7) is sometimes referred to as the variational boundary condition such that it guar-
antees the validity of the energy dissipation property (2.11) and thus the resulting system fulfills the
requirement from the laws of thermodynamics.

When the Cahn–Hilliard equation (1.1) is subject to other types of boundary conditions for ϕ and µ,
for instance, the periodic boundary conditions or the (nonhomogeneous) Dirichlet boundary conditions,
a similar energy dissipation law can still be derived, see e.g., [21].
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2.1.2. Gradient flow structure

Another possible derivation of (1.1) we would like to mention is based on the gradient flow ap-
proach, see e.g., [25], where the author treated the case with M being a positive constant. Within this
framework, the Cahn–Hilliard equation (1.1) can be derived by considering the constrained gradient
dynamics for the free energy Ebulk, subject to the mass conservation property (2.8). Namely, we seek a
law of evolution in the form

∂tϕ = −Mgrad0Ebulk(ϕ), (2.12)

for some constant mobility M > 0. To specify the meaning of the constraint gradient denoted by grad0,
we introduce some function spaces (cf. [25,28]). For every f ∈ H1(Ω)′, we denote by f its generalized
mean value over Ω such that f = |Ω|−1⟨ f , 1⟩(H1)′,H1; if f ∈ L1(Ω), then its mean is simply given by
f = |Ω|−1

∫
Ω

f (x) dx. Consider the realization of the minus Laplacian with homogeneous Neumann
boundary conditionAN ∈ L(H1(Ω),H1(Ω)′) defined by

⟨ANu, v⟩(H1)′,H1 :=
∫
Ω

∇u · ∇v dx, ∀ u, v ∈ H1(Ω).

For the linear spaces

Ḣ1(Ω) =
{
u ∈ H1(Ω) : u = 0

}
, Ḣ−1(Ω) =

{
u ∈ H1(Ω)′ : u = 0

}
,

we can check that the operator AN is self-adjoint, positively defined on Ḣ1(Ω) and the restriction of
AN from Ḣ1(Ω) onto Ḣ−1(Ω) is an isomorphism (an easy consequence from the Poincaré–Wirtinger
inequality and the Lax–Milgram theorem). Denote its inverse by N = A−1

N : Ḣ−1(Ω) → Ḣ1(Ω). Then
for every f ∈ Ḣ−1(Ω), u = N f ∈ Ḣ1(Ω) is the unique weak solution of the Neumann problem−∆u = f , in Ω,

∂nu = 0, on ∂Ω.

Moreover, it holds

(g, f )Ḣ−1 = ⟨g,N f ⟩Ḣ−1,Ḣ1 = ⟨ f ,Ng⟩Ḣ−1,Ḣ1 =

∫
Ω

∇(Ng) · ∇(N f ) dx, ∀ g, f ∈ Ḣ−1.

Let
H4

N(Ω) =
{
ϕ ∈ H4(Ω) : ∂nϕ = ∂n∆ϕ = 0 on ∂Ω

}
.

We remark that the second boundary condition for ∆ϕ is actually equivalent to ∂nµ = 0 on ∂Ω thanks to
(1.3)–(1.4). Let ϕ ∈ H4

N(Ω). Then for any smooth function f satisfying f = 0 and ∂n f = 0 on ∂Ω, we
use the expression f = −∆(N f ) and integration by parts to obtain (in the sense of Gateaux derivative,
cf. [28, Section 3])

grad0Ebulk(ϕ)[ f ] =
d
dr

Ebulk(ϕ + r f )
∣∣∣∣∣
r=0

=

∫
Ω

(ϵ2∇ϕ · ∇ f + F′(ϕ) f ) dx

=

∫
Ω

(−ϵ2∆ϕ + F′(ϕ)) f dx
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= −

∫
Ω

(−ϵ2∆ϕ + F′(ϕ))∆(N f ) dx

=

∫
Ω

∇(−ϵ2∆ϕ + F′(ϕ)) · ∇(N f ) dx

=
(
− ∆(−ϵ2∆ϕ + F′(ϕ)), f

)
Ḣ−1 .

Hence, we can identify in Ḣ−1(Ω) that

grad0Ebulk(ϕ) = −∆(−ϵ2∆ϕ + F′(ϕ)), (2.13)

and specify its domain as H4
N(Ω). From (2.12) and (2.13) we obtain

∂tϕ = M∆(−ϵ2∆ϕ + F′(ϕ)),

which is exactly the Cahn–Hilliard equation (1.1) with the mobility M being a positive constant and
subject to the boundary conditions (1.3)–(1.4).

The above simple argument indicates that in case of a constant mobility, the Cahn–Hilliard equa-
tion can be regarded as a constrained gradient flow in the Hilbert space Ḣ−1(Ω). Concerning the more
general case with concentration dependent mobilities, it was shown in [29] that for the linear mo-
bility M(s) = s, the Cahn–Hilliard equation generates a gradient flow in the space endowed with a
non-Hilbertian metric, i.e., the L2-Wasserstein distance (note that the solution considered in [29] is
nonnegative in the framework therein). Moreover, in [30], the authors considered the Cahn–Hilliard
type equation with some general nonlinear mobilities (e.g., nonnegative concave functions) as a gradi-
ent flow in certain weighted-Wasserstein metric spaces and proved the existence of weak solutions by
the variational minimizing movement approach.

2.1.3. Derivation by the energetic variational approach

We note that the previous derivations, though performed along different procedures, aim to derive a
set of partial differential equations that mainly fulfill two physical constraints: the mass conservation
(expressed either in a local or a global form) and the energy dissipation. The constitutive relation
(2.10) is postulated to guarantee the energy dissipation (2.11), which may not be the unique choice for
this purpose. There are some other evolution equations that have similar properties, for instance, the
conservative Allen–Cahn equation (see [31])

∂tϕ = ϵ
2∆ϕ − F′(ϕ) +

1
|Ω|

∫
Ω

F′(ϕ) dx, in Ω × (0,T ),

subject to the homogeneous Neumann boundary condition ∂nϕ = 0 on ∂Ω× (0,T ). In this case, a direct
calculation yields that (2.8) holds and the free energy Ebulk is still non-increasing in time:

d
dt

Ebulk(ϕ) =
∫
Ω

(
ϵ2∇ϕ · ∇∂tϕ + F′(ϕ)∂tϕ

)
dx

=

∫
Ω

(
−ϵ2∆ϕ + F′(ϕ)

)
∂tϕ dx

=

∫
Ω

(
− ∂tϕ + F′(ϕ)

)
∂tϕ dx
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= −

∫
Ω

|∂tϕ|
2 dx + F′(ϕ)

∫
Ω

∂tϕ dx

= −

∫
Ω

|∂tϕ|
2 dx, ∀ t ∈ (0,T ). (2.14)

Below we provide an alternative derivation of the Cahn–Hilliard equation (1.1) via the energetic
variational approach, which combines the least action principle and Onsager’s principle of maximum
energy dissipation in continuum mechanics [32–34]. Within this general framework, one can easily
include different physical processes by choosing specific form of the free energy as well as the dissi-
pation for the nonequilibrium system. Then based on suitable kinematic and energetic assumptions,
the corresponding partial differential equations can be uniquely determined by force balance relations.
This approach has been successfully applied to derive complex hydrodynamic systems in fluid dynam-
ics, liquid crystals, electrokinetics, visco-elasticity, and so on, we refer to [35–39] and the references
cited therein.

In the domain Ω, ϕ is assumed to be a locally conserved quantity that satisfies the continuity equa-
tion

∂tϕ + ∇ · (ϕu) = 0, (x, t) ∈ Ω × (0,T ). (2.15)

Here, the mass flux is given by J = ϕu, where u : Ω→ Rd stands for the microscopic effective velocity
(e.g., due to certain diffusion process). Concerning the boundary conditions, we again assume the
no-flux boundary condition J · n = 0 on ∂Ω, which can be guaranteed by

u · n = 0, (x, t) ∈ ∂Ω × (0,T ). (2.16)

For an isothermal closed system, we assume that the evolution of a binary mixture satisfies the
following energy dissipation law, which is a natural consequence of the first and second laws of ther-
modynamics (see e.g., [36]):

d
dt

Ebulk(t) = −Dbulk(t), t ∈ (0,T ), (2.17)

where the bulk free energy Ebulk takes the form in (2.1) and the rate of energy dissipation Dbulk is
chosen as

Dbulk(t) =
∫
Ω

ϕ2

M
|u|2 dx, (2.18)

with M > 0 being the mobility.
It remains to determine the microscopic velocity u in (2.15). Let ΩX

0 ,Ω
x
t ⊂ R

d be bounded domains
with smooth boundaries ΓX

0 ,Γ
x
t , respectively. We introduce the flow map x(X, t) : ΩX

0 → Ω
x
t , which is

defined as a solution to the system of ordinary differential equations
d
dt

x(X, t) = u(x(X, t), t), t > 0,

x(X, 0) = X,
(2.19)

where X = (X1, ..., Xd)tr ∈ ΩX
0 , x = (x1, ..., xd)tr ∈ Ωx

t , and u(x, t) ∈ Rd is a (sufficiently smooth) velocity
field. The coordinate system X is called the Lagrangian coordinate system and it refers to ΩX

0 that we
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call the reference configuration. Meanwhile, the coordinate system x is called the Eulerian coordinate
system and it refers to Ωt

x that we call the deformed configuration. We shall denote ∇x the spatial
gradient operator in Ω under the Eulerian coordinate system. Introduce now the action functional

Abulk(x(X, t)) = −
∫ T

0
Ebulk(ϕ(t)) dt. (2.20)

Then applying the least action principle, which states that the dynamics of a Hamiltonian system is
determined by a critical point of the action functional with respect to the trajectory (in the Lagrangian
coordinates), we eventually get

δxA
bulk = −

∫ T

0

∫
Ωx

t

(ϕ∇xµ) · δx dxdt, with µ = −ϵ2∆ϕ + F′(ϕ). (2.21)

In the above computation, we have assumed a trivial boundary dynamics for ϕ such that the boundary
condition (1.4) holds. The relation (2.21) yields the conservative force (written in the strong form,
cf. [38, Section 2.2.1])

fconv = −ϕ∇µ.

On the other hand, from Onsager’s maximum dissipation principle for a dissipative system, we can
calculate the dissipative force by taking variation of the Rayleigh dissipation functional R = 1

2D
bulk

(recall (2.18)) with respect to the rate function u, that is,

δu

(
1
2
Dbulk

)
=

1
2

d
dr

∣∣∣∣∣
r=0
Dbulk(u + rũ) =

∫
Ω

ϕ2

M
u · δu dx.

This gives the generalized dissipative force (again written in the strong form, cf. [38, Section 2.2.1]):

fdiss = −
ϕ2

M
u.

By the force balance relation, i.e., Newton’s second law finertial + fconv + fdiss = 0 (recalling that here we
have finertial = 0 because the kinetic energy is neglected), we obtain

ϕ∇µ +
ϕ2

M
u = 0, in Ω × (0,T ),

where µ = −ϵ2∆ϕ + F′(ϕ). Finally, solving u from the above algebraic equation and inserting it back
into (2.15), we arrive at the Cahn–Hilliard equation (1.1), subject to the boundary conditions (1.3)–
(1.4).

The above derivation via the energetic variational approach reveals that the Cahn–Hilliard equation
together with the classical boundary conditions naturally fulfills three important physical constraints:
conservation of mass, dissipation of energy and, in addition, the force balance.

2.2. Well-posedness

The Cahn–Hilliard equation (1.1) subject to the initial and boundary conditions (1.2)–(1.4) has
been extensively studied in the literature. A rather complete picture about the existence, uniqueness,
regularity and long-time behavior of global solutions has been obtained. For details, we refer the reader
to the recent book [41] and the references cited therein.
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2.2.1. The case with a regular potential

Concerning problem (1.1)–(1.4) with a constant mobility (e.g., M = 1 without loss of generality)
and a regular potential F (e.g., a fourth order polynomial like (2.3)), existence of global weak solutions
with an initial datum ϕ0 ∈ H1(Ω) can be easily obtained by using the Faedo–Galerkin method, thanks
to the Lyapunov structure (2.11) (see [21, 42]). Existence and uniqueness of more regular solutions
with an initial datum ϕ0 ∈ H2

N(Ω) =
{
ϕ ∈ H2(Ω) : ∂nϕ = 0 on Ω

}
was proved in [91]. More precisely,

they considered
µ = −ϵ2∆ϕ + F′(ϕ), with F′(ϕ) = γ2ϕ

3 + γ1ϕ
2 − ϕ,

where γ1, γ2 are two constant parameters. It was shown that the sign of γ2 (coefficient of the leading
order term) plays a crucial role in the study of existence of global solutions. If γ2 > 0, for any initial
datum there is a unique global solution, while for γ2 < 0, the solution must blow up in a finite time
for large initial data. The proofs therein relied on the Picard iteration scheme (for local existence and
uniqueness) and the energy method (for global existence and finite time blow-up). Besides, the authors
studied a finite element Galerkin approximation of the initial boundary value problem and obtained the
existence result as well as some optimal order error bounds. We also refer to [44], in which the authors
considered a general polynomial of the following form

F′(s) =
2p−1∑
j=1

a js j, p ∈ N, p ≥ 2

and boundary conditions of either Neumann or periodic type. The specific form and growth condition
on the regular potential F can be relaxed when studying the regularity of solutions, see for instance, [41,
Chapter 3, Section 3.4] such that F ∈ C3(R), F(0) = F′(0) = 0 and

F′′(s) ≥ −c0, c0 ≥ 0, ∀ s ∈ R,

F′(s)s ≥ c1F(s) − c2, F(s) ≥ −c3, c1 > 0, c2, c3 ≥ 0, ∀ s ∈ R,

|F′(s)| ≤ εF(s) + cε, ∀ ε > 0, s ∈ R,

Besides, in [45], the author analyzed the Cahn–Hilliard equation (1.1) with M = 1, subject to (1.2)
and the homogeneous Dirichlet boundary conditions ϕ = ∆ϕ = 0 on ∂Ω, where Ω ⊂ Rd, d = 1, 2, 3, is
a bounded domain with smooth boundary. He proved the unique global solvability in H1

0(Ω) and the
existence of a global attractor, for a general regular function F ∈ C3(R) satisfying F(0) = 0 and

F′(s)s − F(s) ≥ −C, ∀ s ∈ R,

F(s) ≥ −C, F′′(s) ≥ −C, F′(s)s ≥ −C, ∀ s ∈ R,

|F′′′(s)| ≤ C(1 + |s|p), ∀ s ∈ R,

where C ≥ 0, p ≤ 1 when d = 3 and p is arbitrary when d = 2. In the above assumptions, the growth
condition on the nonlinearity is essentially due to the Sobolev embedding theorem.

It is worth noting that when the mobility M is a positive constant, (1.1) is a fourth-order semilin-
ear parabolic equation. In general, a fourth-order parabolic equation does not maintain the maximum
principle that holds for second-order parabolic equations. Concerning the equation (1.1), its solution
ϕ needs not to stay in the physically relevant interval [−1, 1] as time evolves, even if the initial datum
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ϕ0 satisfies this property. We can refer to [41, Chapter 4, Remark 4.10] for a simple counterexam-
ple regarding the Cahn–Hilliard equation with M = 1 and F′(ϕ) = ϕ3 − ϕ in the case of one space
dimension.

Next, we would like to mention the viscous Cahn–Hilliard equation∂tϕ = ∆µ, in Ω × (0,T ),
µ = α∂tϕ − ϵ

2∆ϕ + F′(ϕ), in Ω × (0,T ),
(2.22)

with the viscous parameter α > 0. Equation (2.22) was introduced in [46] to include certain viscoelastic
relaxation effects in the phase separation process, which was neglected in the original work [2]. The
viscous term α∂tϕ is also related to the influence of certain internal microforces in the mixture (see
[47]). From the energetic point of view, it yields some additional dissipation in the system, for instance,
any smooth solution to the initial boundary value problem (2.22) with (1.2)–(1.4) satisfies

d
dt

Ebulk(ϕ) = −
∫
Ω

|∇µ|2 dx − α
∫
Ω

|∂tϕ|
2 dx, ∀ t ∈ (0,T ). (2.23)

Thus, the viscous Cahn–Hilliard equation (2.22) can be regarded as a regularized version of the original
Cahn–Hilliard equation (1.1). When the potential F is regular, e.g., a general polynomial, we refer
to [43,48] for an extensive study on the computation and mathematical analysis for the equation (2.22)
subject to the homogeneous Dirichlet (or Neumann) boundary conditions as well as the initial condition
(1.2). The results in [43, 48] showed that in a suitable sense the viscous Cahn–Hilliard equation (2.22)
can actually be viewed as an interpolation between the Cahn–Hilliard equation (1.1) (with M = 1) and
the Allen–Cahn equation for the grain-boundary migration (see [40]), that is,

∂tϕ = ϵ
2∆ϕ − F′(ϕ).

2.2.2. The case with a degenerate mobility

Next, we consider the situation that the diffusion mobility M is concentration dependent, and even
may be degenerate at some values of ϕ. This case appeared in the original derivation of the Cahn–
Hilliard equation [1] and a thermodynamically reasonable choice is M(s) = 1 − s2 (see [4, 23, 67, 68]).
Concerning the mathematical analysis, the author of [49] studied a general Cahn–Hilliard type equation
in one space dimension (i.e., on the interval (0, 1)) with F′ being continuous and M being Hölder
continuous such that

M(0) = M(1) = 0, M(s) ≥ 0, ∀ s ∈ (0, 1).

Then for any initial datum ϕ0 ∈ H3
0(0, 1) =

{
ϕ ∈ H3(0, 1) : Du = 0 at x = 0, 1

}
satisfying 0 ≤ ϕ0 ≤ 1, he

proved the existence of a global generalized solution ϕwith a uniform bound in L∞(0,T ; H1(0, 1)) and a
local L2-estimate on D3ϕwhen the equation does not degenerate. In particular, thanks to the degeneracy
of the mobility, he obtained nonnegativity of the solution such that 0 ≤ ϕ(x, t) ≤ 1, see [49, Theorem
3.2]. We note that in [49], the phase function ϕ stands for the concentration of one component, not the
difference of concentrations. The result of [49] implies that the degenerate mobility M turns out to be
a sufficient condition for the existence of weak solutions with the physical property 0 ≤ ϕ(x, t) ≤ 1 for
(x, t) ∈ (0, 1) × (0,+∞), as long as 0 ≤ ϕ0(x) ≤ 1 for x ∈ (0, 1).

Later on, the Cahn–Hilliard equation (1.1) with a degenerate concentration dependent mobility as
well as a singular potential was analyzed in [50]. Assume that
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(i) F(s) = F1(s) + F2(s), with ∥F2(s)∥C2[−1,1] ≤ C and F1 : (−1, 1) → R being convex, satisfying
F′′1 (s) = (1 − u2)−mF̃(s) for m ≥ 1 and a C1-function F̃ : [−1, 1]→ R+ ∪ {0};

(ii) M(s) = (1 − s2)mM̃(s) with a C1-function M̃ : [−1, 1] → R satisfying 0 < m0 ≤ M̃(s) ≤ M0 for
s ∈ [−1, 1], and M(s) is extended to R by setting M(s) = 0 for |s| > 1.

It is easy to check that these general assumptions cover the physically relevant case with the logarithmic
potential (2.2) and M(s) = 1− s2, s ∈ [−1, 1]. Let either ∂Ω ∈ C1,1 or Ω be convex in Rd (d ≥ 1). Then
for any initial datum ϕ0 ∈ H1(Ω) with |ϕ0| ≤ 1 almost everywhere in Ω and

∫
Ω

F(ϕ0)+Φ(ϕ0) dx < +∞,
problem (1.1)–(1.4) admits a global weak solution on an arbitrary time interval [0,T ], see [50, Theorem
1]. Here, the function Φ : (−1, 1)→ R+ ∪ {0} is determined by

Φ′′(s) = M(s)−1, Φ(0) = Φ′(0) = 0.

The proof therein relied on some suitable approximation of the degenerate mobility and a specific
regularization of the singular potential such that (see [50, Section 3])

Mε(s) :=


M(−1 + ε), for s ≤ −1 + ε,
M(s), for |s| ≤ 1 − ε,
M(1 − ε), for s ≥ 1 − ε,

Fε = F1
ε + F2 with

(F1
ε)
′′(s) :=


F′′1 (−1 + ε), for s ≤ −1 + ε,
F′′1 (s), for |s| ≤ 1 − ε,
F′′1 (1 − ε), for s ≥ 1 − ε,

F1
ε(0) = F1(0), (F1

ε)
′(0) = F′1(0),

and F2 being extended to be a function on R such that ∥F2∥C2(R) ≤ C. We note that the special structure
that M(s)F′′(s) is bounded plays a crucial role in the proof of existence in [50].

Recently, the authors of [51] considered the Gibbs–Thomson effect in the phase separation process.
For the Cahn–Hilliard equation (1.1) inΩ = [0, 2π]d subject to periodic boundary conditions, assuming
that the double-well potential F is smooth at its minima ±1 (cf. (2.3)) and the mobility is of the form
M(s) = |1 − s2|m without zero extension outside [−1, 1] (m > 0 when d = 1, 2, and m ∈ (0, 2/(d − 2))
when d ≥ 3), they proved that for any initial datum ϕ0 ∈ H1(Ω), the resulting initial boundary value
problem admits a global weak solution on an arbitrary time interval [0,T ], see [51, Theorem 2]. The
proof is again based on some regularization of the degenerate mobility and then passing to the limit in
the non-degenerate approximating problem. One difference from the previous results (cf. those in [50])
is that for the solution ϕ, even if its initial value lies in [−1, 1], it may not remain inside [−1, 1] as long as
the interface has nonzero mean curvature, which accommodates the physical Gibbs–Thomson effect.
Nevertheless, we remark that in all the studies mentioned above, the uniqueness of weak solutions
(in various formulations) to the Cahn–Hilliard equation with a degenerate mobility remains an open
problem.

2.2.3. The case with a singular potential

A lot of attentions have been paid to the problem (1.1)–(1.4) with a constant mobility M > 0 and a
singular potential F including the typical ones (2.2) and (2.4), see [27,41,58] for some surveys on this
topic.
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To study the existence of solutions, one basic strategy is to regularize the singular potential in a suit-
able manner, prove the existence of solutions to the regularized problem, derive uniform estimates with
respect to the approximating parameter and then pass to the limit to extract a convergent subsequence.

In [22], the authors studied problem (1.1)–(1.4) in a bounded smooth domain Ω ⊂ Rd (d = 1, 2, 3)
with the double obstacle potential (2.4). They proved that for any initial datum ϕ0 ∈ H1(Ω), |ϕ0| ≤ 1
almost everywhere in Ω with its spatial average in (−1, 1), problem (1.1)–(1.4) admits a unique global
weak solution ϕ satisfying −1 ≤ ϕ(x, t) ≤ 1 almost everywhere in Ω × (0,T ), see [22, Theorem 2.2].
Some regularity results on the weak solutions were also obtained in [22, Section 2.2]. The proof
therein relied on the following C2-regularization for the singular potential (see [22, (2.9)]) such that
for ε ∈ (0, 1),

Fε(s) =



1
2ε

(
s −

(
1 +

ε

2

))2
+

1
2

(1 − s2) +
ε

24
, for s ≥ 1 + ε,

1
6ε2 (s − 1)3 +

1
2

(1 − s2), for 1 < s < 1 + ε,

1
2

(1 − s2), for |s| ≤ 1,

−
1

6ε2 (s + 1)3 +
1
2

(1 − s2), for − 1 − ε < s < −1,

1
2ε

(
s +

(
1 +

ε

2

))2
+

1
2

(1 − s2) +
ε

24
, for s ≤ −1 − ε.

When the logarithmic potential (2.2) is concerned, several different methods have been developed
in the literature. The authors of [52] studied a general multi-component problem in a bounded smooth
domain Ω ⊂ Rd (d = 1, 2, 3) subject to homogeneous Neumann boundary conditions. Their results can
easily apply to the two-component problem, that is, for potentials like

F(s) = θ
[
s ln s + (1 − s) ln(1 − s)

]
− (a0s2 + a1s + a2), s ∈ (0, 1),

if the initial datum ϕ0 ∈ H1(Ω), 0 ≤ ϕ0(x) ≤ 1 almost everywhere in Ω with its spatial average
belonging to (0, 1), problem (1.1)–(1.4) admits a unique global weak solution ϕ satisfying 0 ≤ ϕ(x, t) ≤
1 almost everywhere in Ω × (0,T ), see [52, Theorem 1] for a general statement of the result. Indeed,
the arguments in [52, Section 3] also implied that 0 < ϕ(x, t) < 1 almost everywhere in Ω × (0,T ), i.e.,
the set of singular points for F′(s) has zero measure. Besides, in [52, Theorem 2] they justified the
“deep-quench limit” problem studied in [22] by letting θ → 0+. The key idea of the proof in [52] is to
regularize the function G(s) = s ln s by

Gε(s) =

s ln s, for s ≥ ε,
s2

2ε
+ s ln ε −

ε

2
, for s < ε,

for some ε ∈ (0, 1). After solving the regularized problem, they derived estimates that are uniform in
ε and then passed to the limit as ε → 0+ to extract a convergent subsequence, whose limit is a global
weak solution to the original problem.

Later in [24], the authors introduced a different approximation of the logarithmic potential (2.2) in
terms of the following polynomials

Fn(s) = θ
n∑

k=0

s2k+2

(2k + 1)(2k + 2)
−
θc

2
s2, ∀ s ∈ (−1, 1), n ∈ N.

Electronic Research Archive Volume 30, Issue 8, 2788–2832.



2801

Then for any initial datum ϕ0 ∈ L2(Ω) (or H1(Ω)), ∥ϕ0∥L∞(Ω) ≤ 1 with its spatial average in (−1, 1),
they prove that the initial boundary value problem (1.1)–(1.4) (or in a periodic setting) admits a unique
global weak solution satisfying ∥ϕ(t)∥L∞(Ω) ≤ 1 for t ≥ 0 and for t > 0, the set {x ∈ Ω : |ϕ(x, t)| = 1}
has measure zero, see [24, Theorem 2.2]. Moreover, they showed the continuity property of weak
solutions, which yields the existence of a C0-semigroup defined by S (t) : ϕ0 → ϕ(t) in suitable phase
spaces.

In [27], the author considered the following equation∂tϕ + χϕ = ∆µ, in Ω × (0,T ),
µ = −ϵ2∆ϕ + F′(ϕ), in Ω × (0,T ),

(2.24)

with some constant χ ≥ 0 and a general class of singular nonlinearities F′ ∈ C1(−1, 1) satisfying
F(0) = F′(0) = 0 and

lim
s→±1

F′(s) = ±∞, lim
s→±1

F′′(s) = +∞. (2.25)

In particular, the logarithmic potential (2.2) fulfills the above assumptions. By adapting the methods
in [50, 52], he made use of the following approximation F′ε ∈ C1(R) such that for ε ∈ (0, 1),

F′ε(s) =


F′(−1 + ε) + F′′(−1 + ε)(s + 1 − ε), for s < −1 + ε,
F′(s), for |s| ≤ 1 − ε,
F′(1 − ε) + F′′(1 − ε)(s − 1 + ε), for s > 1 − ε.

Let Ω ⊂ Rd, d = 1, 2, 3 be a smooth bounded domain. The author proved that for any initial datum
ϕ0 ∈ H1(Ω), |ϕ0(x)| < 1 almost everywhere in Ω with its spatial average belonging to (−1, 1), the initial
boundary value problem (2.24) with (1.2)–(1.4) admits a unique global weak solution ϕ satisfying
−1 < ϕ(x, t) < 1 a.e. in Ω × (0,T ), see [27, Theorem 2.6, Remark 2.7, Remark 2.8]. We note that
when χ > 0, the equation (2.24) is usually referred to as the Cahn–Hilliard–Oono equation, which
was introduced in [53] to model certain long-ranged (nonlocal) interactions. For further details on its
mathematical analysis, see e.g., [54] (with the regular potential (2.3)) and [55] (with singular potentials
including (2.2)). In [54], it was also shown that, in certain sense (i.e., the existence of a robust family
of exponential attractors as χ→ 0+), the dynamics of the original Cahn–Hilliard equation is “close” to
that of the Cahn–Hilliard–Oono equation, for χ > 0 being sufficiently small.

Besides the approximating arguments described above, there are some other approaches to handle
the Cahn–Hilliard equation with singular potentials. We first mention the work [56], which treated
problem (1.1)–(1.4) (again with a constant mobility) in a rather general setting. For a wide class of
non-smooth potentials including both (2.2) and (2.4), thanks to the decomposition

F(s) = β̂(s) + ĝ(s),

where β̂ is a proper, lower semi-continuous and convex function and ĝ is a C1 function with Lipschitz
continuous derivative g = ĝ′, the Cahn–Hilliard equation (1.1) can be written in a generalized form
involving multi-valued mappings via subdifferential operators. In this framework, the authors of [56]
first regularized the Cahn–Hilliard equation by the viscous one (cf. (2.22)) written in the following
form (αI +N)∂tϕ = ϵ

2∆ϕ − F′(ϕ) + |Ω|−1
∫
Ω

F′(x) dx, in Ω × (0,T ),
∂nϕ = 0, on ∂Ω × (0,T ),
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where α > 0 and N denotes the inverse of minus Laplacian subject to the homogeneous Neumann
boundary condition on the space L2

0(Ω) =
{
ϕ ∈ L2(Ω) :

∫
Ω
ϕ(x) dx = 0

}
. Then they solved the vis-

cous problem (indeed in a more general form) using an argument based on Yosida’s approximation of
monotone operators. After deriving uniform estimates for the approximate solutions with respect to
the viscous parameter α, they obtained the existence of a global weak solution to the original problem
(1.1)–(1.4) by finding a convergent subsequence as α → 0+ (see [56, Theorem 6.1] for a complete
statement including also results on uniqueness and long-time behavior). On the other hand, with the
help of monotone operator methods [57], the authors of [65] provided a different proof for the exis-
tence and uniqueness of global weak solutions to problem (1.1)–(1.4) with logarithmic type potentials
(see [65, Theorem 1.2]). After decomposing the nonlinear singular term F′ in (1.1) into a monotone
operator plus a globally Lipschitz continuous one, they achieved the conclusion in a direct manner
by solving an abstract Cauchy problem for a suitable Lipschitz perturbation of a monotone operator,
which is the subgradient of the convex part of the energy Ebulk (see [65, Theorem 3.1]).

2.2.4. Regularity of solutions and separation from the pure states

Regularity of solutions to problem (1.1)–(1.4) has been investigated in some works mentioned above
and the references cited therein. Roughly speaking, the parabolic nature of the Cahn–Hilliard equation
(valid when M > 0) can yield some instantaneous regularizing effect of its weak solutions for t > 0.
This fact is well understood for the case with regular potentials, while the case with singular potentials
like (2.2) and (2.4) turns out to be more tricky. On one hand, the possible singularity of the potential
(or its derivatives) at the pure states ±1 guarantees that the order parameter ϕ stays in the physically
relevant interval (−1, 1) (cf. the case with a degenerate mobility). On the other hand, it brings further
difficulties to gain higher-order spatial regularity of the solution, see extensive discussions made in
[22, 24, 27, 41, 56, 58, 59, 65].

The case with a logarithmic potential like (2.2) is of particular interest, because its two minima ±ϕ∗,
which are the two nonzero solutions to the equation

ln(1 + s)
ln(1 − s)

=
2θc

θ
s, with 0 < θ < θc,

locate exactly inside the interval (−1, 1). From the dissipative nature of the Cahn–Hilliard equation,
if the initial value is not a pure state (e.g., |Ω|−1|

∫
Ω
ϕ0(x) dx| < 1), one may expect in this case the

following strict separation property along evolution:

∥ϕ(t)∥L∞(Ω) ≤ 1 − δ, (2.26)

for some constant δ ∈ (0, 1). The property (2.26), if it holds, implies that in the conserved phase
separation process governed by the Cahn–Hilliard equation, the pure states can never be completely
reached. From the mathematical point of view, it plays an important role in the analysis of (1.1), since
the singular potential (2.2) can thus be regarded as a smooth, globally Lipschitz function so that further
regularity of solutions to (1.1) can be obtained, see e.g., [27, 41, 59, 65].

In [59], the authors considered the viscous Cahn–Hilliard equation (2.22) when the spatial dimen-
sion is less or equal than three. Taking advantage of the viscous term α∂tϕ (with α > 0) and using the
comparison principle for second-order parabolic equations, they proved that the separation property
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(2.26) holds for all t > 0 (i.e., the so-called instantaneous strict separation property) and the separation
is indeed uniform when t ≥ η, for an arbitrary but fixed η > 0 (see [59, Corollary 3.2]). However, the
distance δ from the pure states ±1 depends on the size of the viscous parameter α so that one cannot
pass to the limit as α→ 0+ to draw the same conclusion for the original Cahn–Hilliard equation (1.1).

When α = 0, the spatial dimension indeed plays a crucial role in the argument. In one and two
dimensions, the instantaneous strict separation property was proved in [59, Proposition 7.1, Theorem
7.2] for general singular potentials satisfying the conditions in (2.25). When the spatial dimension is
two, an additional assumption was also required therein:

|F′′(s)| ≤ eC1 |F′(s)|+C2

with some positive constants C1, C2. The above condition allows one to apply the Trudinger–Moser
type inequality (see e.g., [60]). Nevertheless, the assumptions mentioned above are fulfilled by the
logarithmic potential (2.2). Later on, the authors of [55] extended the result to the two dimensional
Cahn–Hilliard–Oono equation (2.24) by employing an alternative approach, which relies on the analy-
sis of the following Neumann problem of an elliptic equation with a singular nonlinearity:−ϵ2∆ϕ + F̃′(ϕ) = f , in Ω,

∂nϕ = 0, on ∂Ω.
(2.27)

Here, the nonlinear function F̃ is the strictly convex part of F satisfying lims→±1 F̃(s) = ±∞ (see [55,
Section 3]). We refer to [61–64] for generalizations to the higher order Cahn–Hilliard type equation
and some coupled systems with fluid interactions. In [55], an essential step to derive the separation
property of ϕ is to prove that the singular derivative satisfies F̃′(ϕ) ∈ L∞(Ω × (0,T )), which follows
from the fact µ ∈ L∞(0,T ; H2(Ω)) (this corresponds to assuming f ∈ H2(Ω) in the elliptic problem
(2.27)). In the recent work [63], the requirement on the L∞t H2

x-regularity of the chemical potential µ
was weakened to be µ ∈ L∞(0,T ; H1(Ω)) by applying a suitable chain rule concerning the singular
nonlinearity F̃′(ϕ) (see [63, Lemma 3.2]).

When the spatial dimension is three, the situation is less satisfactory, because the singularity of the
logarithmic potential at ±1 seems not strong enough. In [59], the authors obtained the instantaneous
strict separation property, under a stronger assumption on the potential such that (2.25) is satisfied
together with

|F′′(s)| ≤ C(|F′(s)|2 + 1)

for some C > 0 (see also [127] for some recent improvements). The above assumption is valid, for
instance, for a class of nonlinearities like (see [59, Remark 7.1])

h(s)
(1 − s2)γ

, where h ∈ C1([−1, 1]), h(±1) , 0 and γ ≥ 1,

but it is not satisfied by the logarithmic potential (2.2) which is physically important. On the other hand,
in [65], using the strict separation property for solutions to the stationary problem of the Cahn–Hilliard
equation (see [65, Proposition 6.1]), the authors proved that global weak solutions of problem (1.1)–
(1.4) with logarithmic type potential will eventually stay away from the pure states ±1 for sufficiently
large time. Besides, the stability result for the Cahn–Hilliard–Hele–Shaw system that was obtained
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in [61, Theorem 2.5] implies that (after simply neglecting the fluid interaction), if the initial datum ϕ0

is not a pure state and belongs to a suitably small H2-neighborhood of a local minimizer of the free
energy Ebulk, then the unique global strong solution to problem (1.1)–(1.4) with a logarithmic potential
exists and is strictly separated from the pure phases ±1 for all t ≥ 0.

2.3. Long-time behavior

In what follows, we review some results on the long-time behavior of global solutions to problem
(1.1)–(1.4) as t → +∞. Generally speaking, the study of long-time behavior of global solutions to a
nonlinear evolution equation can be divided into two categories: the first category is to investigate the
long-time behavior of the solution corresponding to a given initial datum, while the second category is
to investigate the long-time behavior of a bundle of solutions whose initial data vary in a bounded set
(see [146]). The latter category is related to the study of the associated infinite dimensional dynamical
system [140], for instance, the existence of (finite dimensional) global attractors, exponential attractors,
inertial manifolds, and so on. In this direction, there is a huge literature on problem (1.1)–(1.4) and its
variants, we refer to [24,27,42,44,45,54,55,58,59,101,136,138,140] and the references cited therein.
In particular, we refer to the recent book [41] for more detailed information.

In this paper, we confine ourselves to the discussion on the long-time behavior of a single trajectory
defined by the global solution to problem (1.1)–(1.4). In view of the energy dissipation relation (2.11),
it is natural to ask whether every bounded global solution to the evolution problem (1.1)–(1.4) will
converge to a single equilibrium (e.g., local or global minimizers of the energy functional Ebulk) as
t → +∞. This property is sometimes called the uniqueness of asymptotic limit as time tends to
infinity. In the one dimensional case, the long-time behavior of global solutions to problem (1.1)–
(1.4) with a regular potential like (2.3) was first analyzed in [145]. Based on the well-posedness
result obtained in [91] and the Lyapunov structure (2.11), the author proved that for any initial datum
ϕ0 ∈ H4

N(Ω), the trajectory of solution is relatively compact in H2(Ω) and moreover, when t → +∞,
ϕ(x, t) converges to the ω-limit set of ϕ0 denoted by ω(ϕ0), which is a compact, connected subset
of H2(Ω) and is positive invariant under the nonlinear semigroup S (t) : ϕ0 → ϕ(t) defined by the
solution (see [145, Theorem 2.2]). Besides, he proved that each element of ω(ϕ0) is an equilibrium
and in the one dimensional case, the associated stationary problem has only finite number of solutions
(see [145, Theorem 3.4]). As a consequence, the connected set ω(ϕ0) consists of only one point so that
the global solution ϕ(t) to the time-dependent Cahn–Hilliard equation must converge to an equilibrium
as t → +∞ (see [145, Theorem 3.5]). In this regard, we also refer to [137] for an extended result for
the one dimensional non-isothermal Cahn–Hilliard system.

The situation in higher spatial dimensions is more complicated. Although the dissipative structure
of problem (1.1)–(1.4) (cf. (2.11)) guarantees that the ω-limit set of a given initial datum ϕ0 contains
only the steady states. However, this property is not sufficient to show that ω(ϕ0) is a singleton. One
difficulty is that, in higher dimensions, the study on stationary solutions to the Cahn–Hilliard equation
turns out to be rather involved (see e.g., [72, 141]). In particular, due to the possible non-convexity
of the free energy Ebulk, the structure of the set of equilibria seems far from being well understood
and estimates on the number of equilibria are only available in the one dimensional case so far [118,
145]. On the other hand, examples have been given in the literature such that even for certain simple
semilinear second order parabolic equation with a specific smooth nonlinear term, it admits a globally
bounded solution whose ω-limit set is diffeomorphic to the unit circle S 1, namely, a continuum (see
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e.g., [131]).
Various assumptions have been made in the literature to assure that a bounded global solution of

an evolution equation will converge to a single equilibrium as t → +∞. Among these attempts, an
efficient approach was proposed by [139], in which the author generalized the Łojasiewicz inequality
for analytic functions in the finite-dimensional space Rm to the infinite dimensional spaces and proved
that, if the nonlinear term is real analytic in the unknown function then the convergence to a single
equilibrium as t → +∞ holds.

For problem (1.1)–(1.4) with a constant mobility (M = 1) and a general regular potential F :
Ω × R → R depending analytically on x, ϕ uniformly in x with suitable growth assumptions, the
authors of [135] applied the Łojasiewicz–Simon approach and proved that the unique global solution
converges to a single equilibrium as t → +∞ in the topology of C4,µ(Ω) with µ ∈ (0, 1) (see [135,
Theorem 3.1]). The proof therein relied on a generalized gradient inequality of Łojasiewicz–Simon
type (see [135, Theorem 3.2]), which is applicable to the H−1-gradient flow defined by the Cahn–
Hilliard equation (cf. (2.12)). Indeed, from the energy dissipation relation (2.11) (with M = 1) and the
equation (1.1), we see that∫ +∞

0
∥∇µ(t)∥2L2(Ω) dt < +∞ =⇒

∫ +∞

0
∥∂tϕ(t)∥2(H1(Ω))′ dt < +∞.

On the other hand, from the precompactness of the trajectory ϕ(t) in certain space, for instance, C4,µ(Ω)
as shown in [135], one can find a convergent subsequence ϕ(tn)→ ϕ∞ in C4,µ(Ω), as tn ↗ +∞ for some
equilibrium ϕ∞ ∈ ω(ϕ0) (thanks to the characterization on ω(ϕ0) for gradient systems). At this stage, if
one can show (which is not obvious indeed, since h(t) ∈ L2(0,+∞) does not imply h(t) ∈ L1(0,+∞))∫ +∞

t0
∥∂tϕ(t)∥(H1(Ω))′ dt < +∞, for some t0 > 0,

then it holds

lim
t→+∞

∫ +∞

t
∥∂tϕ(τ)∥(H1(Ω))′ dτ = 0.

As a consequence, we have

∥ϕ(t) − ϕ∞∥(H1(Ω))′ ≤ ∥ϕ(t) − ϕ(tn)∥(H1(Ω))′ + ∥ϕ(tn) − ϕ∞∥(H1(Ω))′

≤

∫ t

tn
∥∂tϕ(τ)∥(H1(Ω))′ dτ + ∥ϕ(tn) − ϕ∞∥(H1(Ω))′

→ 0, for all t ≥ tn, as tn → +∞,

which further implies the convergence of ϕ(t) to ϕ∞ for all t → +∞, namely,

ω(ϕ0) =
{
ϕ∞

}
.

We emphasize that the Łojasiewicz–Simon type inequality played an essential role in obtaining the
required L1-integrability of ∥∂tϕ(t)∥(H1(Ω))′ on the unbounded interval R+ from its L2-integrability on
R+, where the latter is an easy consequence from the energy dissipation (2.11). To achieve such a goal
(not limited to the Cahn–Hilliard equation but also for other gradient-like systems), different arguments
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have been developed in the literature, we may refer to, for instance, [77,94,120,121] and the references
cited therein.

Later in [65], the authors studied problem (1.1)–(1.4) with M = 1 and a logarithmic type potential
like (2.2). They derived an extended Łojasiewicz–Simon type inequality (see [65, Proposition 6.3]) and
applied it to show that every global solution converges to a single equilibrium as t → +∞ in H2r(Ω) for
r ∈ (0, 1). In this case, we note that the regularity of stationary solutions, in particular, the property of
strict separation from pure states (which is indeed a direct consequence from the observation that every
solution of the stationary Cahn–Hilliard equation solves the viscous Cahn–Hilliard equation), plays a
crucial role in the derivation of the Łojasiewicz–Simon inequality involving a singular potential. In a
similar sprit, the authors of [97] presented a direct constructive descent method for finding minimiz-
ers of nonconvex functionals via the Łojasiewicz–Simon approach and applied it to phase separation
problems in multicomponent systems as well as image segmentation. Recently, in [55] the authors
extended the convergence result for global weak solutions to the Cahn–Hilliard–Oono equation (2.24)
with a logarithmic potential subject to (1.2)–(1.4), see [55, Theorem 7.1]. Besides, we would like to
mention that the above convergence results for problem (1.1)–(1.4) can be extended to the case with
non-constant mobilities, provided that M(ϕ) is non-degenerate.

3. Cahn–Hilliard equation with dynamic boundary conditions

The influence of boundaries (solid walls) on the phase separation process of binary mixtures has
attracted a lot of attentions of scientists. For instance, the occurring structures of a binary polymer
mixture during the phase separation process may get frozen by a rapid quench into the glassy state
and micro-structures at surfaces on small length scales can be produced [95]. In order to describe the
short-range interactions between the wall and both components of the mixture, suitable surface free
energy functional should be introduced into the system (see e.g., [95])

Esurf(ϕ) =
∫
∂Ω

κ

2
|∇Γϕ|

2 +G(ϕ) dS , (3.1)

where ∇Γ stands for the tangential (surface) gradient operator defined on the boundary ∂Ω and G is a
surface potential function that may take different forms in various physical contexts. The coefficient κ ≥
0 is related to the influence of spatial order parameter fluctuations on ∂Ω (e.g., the surface diffusion).
When κ = 0, the model is closely related to the evolution of a free interface in contact with the solid
boundary, namely, the well-known moving contact line problem [19, 20, 73, 106, 107].

Like in Section 2, the Cahn–Hilliard equation for phase separation processes with boundary effects
still has to be supplemented by two boundary conditions, with natural considerations from the mass
conservation and energy dissipation (or in other words, energy balance). However, the crucial differ-
ence is that one now has to take into account the non-trivial boundary effects driven by the surface
energy (3.1). Different types of dynamic boundary conditions have been proposed and analyzed in
the literature. In what follows, we shall review some recent progresses in this direction. Before pro-
ceeding, we just remark that dynamic boundary conditions can be found in various physical problems
(e.g., heat conduction with heat source on the boundary, kinetic motion on the boundary of a vibrat-
ing object etc), see for instance, [92, 93, 115] and the references cited therein. In particular, we refer
to [74,76,105,117] for the Caginalp phase-field system with dynamic boundary conditions accounting
for the non-isothermal phase transition process of a two-phase material.
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Remark 3.1. In the remaining part of this section, since we do not consider the asymptotic behavior
with respect to the parameter ϵ in Ebulk (recall (2.1)), without loss of generality, we simply set ϵ = 1.

3.1. Dynamic boundary conditions of Allen–Cahn type

The first set of boundary conditions we would to mention are those proposed in [95, 123] (see
also [66] for a derivation from the semi-infinite Ising model with Kawasaki spin exchange dynamics).
To ensure the conservation of mass in the bulk (cf. (2.8)), one can again assume the following no-flux
boundary condition (for the sake of simplicity, hereafter we set the mobility M = 1)

∂nµ = 0, on ∂Ω × (0,T ). (3.2)

On the other hand, to guarantee that the Cahn–Hilliard system tends to minimize its total free energy,
the following variational boundary condition was proposed:

1
Γs
∂tϕ − κ∆Γϕ + ∂nϕ +G′(ϕ) = 0, on ∂Ω × (0,T ), (3.3)

where Γs > 0 denotes the surface kinetic coefficient, ∆Γ stands for the Laplace–Beltrami operator on
∂Ω and the possible interaction with the bulk part is presented by the term ∂nϕ. The above boundary
condition is usually referred to as a dynamic one, since it contains the time derivative of the order
parameter. On the other hand, it can be viewed as a relaxation dynamics (L2-gradient flow) of the
surface free energy Esurf on ∂Ω. Then one can verify that the following energy dissipation relation
holds:

d
dt

[
Ebulk(ϕ(t)) + Esurf(ϕ(t))

]
+

∫
Ω

|∇µ|2 dx +
1
Γs

∫
∂Ω

|∂tϕ|
2 dS = 0, ∀ t ∈ (0,T ). (3.4)

When κ = 0, the dynamic boundary condition (3.3) was proposed to describe some other physically
relevant situation for the dynamics of fluid–fluid free interface at the solid boundary (see e.g., [20])
such that the contact angle on ∂Ω turns out to be time dependent and may deviate from the static one
like π/2 (cf. (1.4)).

3.1.1. Gradient flow structure

Besides the Lyapunov structure given by (3.4), the Cahn–Hilliard equation (1.1) subject to boundary
conditions (3.2)–(3.3) can actually be interpreted as a gradient flow of the total energy Etotal(ϕ) =
Ebulk(ϕ) + Esurf(ϕ) in the space Ḣ−1(Ω) × L2(∂Ω) with respect to the following inner product:

(g, f ) =
∫
Ω

∇(Ng) · ∇(N f ) dx +
∫
∂Ω

g f dS .

Roughly speaking, the gradient flow is of a mixed type such that it is Ḣ−1 in the bulk and L2 on the
boundary (see [111, Section 3] for further details).
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3.1.2. Well-posedness

Now we review some presentive works on the well-posedness of the initial boundary value problem

∂tϕ = ∆µ, in Ω × (0,T ),
µ = −∆ϕ + F′(ϕ), in Ω × (0,T ),
∂nµ = 0, on ∂Ω × (0,T ),
1
Γs
∂tϕ − κ∆Γϕ + ∂nϕ +G′(ϕ) = 0, on ∂Ω × (0,T ),

ϕ|t=0 = ϕ0(x), in Ω.

(3.5)

Let us first focus on the case with κ > 0. The first result on the existence and uniqueness of global
strong solutions to problem (3.5) was obtained in [134]. There the authors considered the following
specific choice of free energies

Ebulk(ϕ) =
∫
Ω

(
1
2
|∇ϕ|2 +

1
4
ϕ4 −

1
2
ϕ2

)
dx,

Esurf(ϕ) =
∫
∂Ω

(
κ

2
|∇Γϕ|

2 +
gs

2
ϕ2 − hsϕ

)
dS ,

(3.6)

where the constant gs > 0 accounts for a modification of the effective interaction between the com-
ponents at the solid wall, and hs , 0 describes the possible preferential attraction of one of the two
components by the wall [123]. To overcome the mathematical difficulties due to the presence of the dy-
namic boundary condition as well as the Laplace–Beltrami operator on the boundary, they introduced
an approximate problem related to the phase-field system of Caginalp type

ε∂tµ − ∆µ = −∂tϕ, in Ω × (0,T ),
∂nµ = 0, on ∂Ω × (0,T ),
ε∂tϕ − ∆ϕ = µ − F′(ϕ), in Ω × (0,T ),
1
Γs
∂tϕ − κ∆Γϕ + ∂nϕ +G′(ϕ) = 0, on ∂Ω × (0,T ),

µ|t=0 = µ0(x), ϕ|t=0 = ϕ0(x), in Ω,

(3.7)

for some positive parameter ε > 0. Here, we note that the system (3.7) is slightly different from the
exact form of the approximate problem in [134, Section 2]. The reason is that we just want to describe
the main idea but not to get into some technical details therein. The approximate problem (3.7) can
be locally solved by first analyzing its linearized problem and then applying the contraction mapping
theorem (see [134, Theorem 3.1]). After deriving some uniform-in-time a priori estimates, the authors
were able to extend the unique local solution to be a global one (see [134, Theorem 4.1]). Finally, with
the help of uniform a priori estimates that are independent of ε, they passed to the limit as ε → 0+, to
obtain the existence of global strong solutions to the original problem (3.5).

Uniqueness of solutions can be proved by using the standard energy method, however, it was not
clear whether the solution obtain in [134] defines a C0-semigroup in the energy space (cf. (2.1), (3.1)
and note that here κ > 0):

V1 =
{
(ϕ, ψ) ∈ H1(Ω) × H1(∂Ω) : ψ = ϕ|∂Ω

}
. (3.8)

Electronic Research Archive Volume 30, Issue 8, 2788–2832.



2809

To handle this issue, in a subsequent paper [132], the authors studied the maximal Lp-regularity of
the system (see [132, Theorem 2.1]) and provided an alternative proof on the global well-posedness
of problem (3.5) (see [132, Theorem 4.1]), which further implies that the solution indeed defines a
C0-semigroup in V1 as expected. Based on this fact, they were able to prove the existence of a
global attractor in suitable phase spaces, see [132, Theorem 5.1, Theorem 5.2]. Later, the maximal
Lp-regularity approach was also used in [133] to analyze the non-isothermal Cahn–Hilliard equation
with dynamic boundary conditions. For further applications to parabolic problems with boundary dy-
namics of relaxation type, we refer to [90].

A third approach to study problem (3.5) was given in [129], where the authors considered the
viscous Cahn–Hilliard equation for α ≥ 0:

∂tϕ = ∆µ, in Ω × (0,T ),
µ = α∂tϕ − ∆ϕ + F′(ϕ), in Ω × (0,T ),
∂nµ = 0, on ∂Ω × (0,T ),
∂tϕ − κ∆Γϕ + ∂nϕ +G′(ϕ) = 0, on ∂Ω × (0,T ),
ϕ|t=0 = ϕ0(x), in Ω,

(3.9)

where F,G ∈ C3(R) are some general (but regular) potentials with arbitrary growth and satisfy the
following dissipative conditions:

lim inf
|s|→+∞

F′′(s) > 0, lim inf
|s|→+∞

G′′(s) > 0.

They introduced a new variable on the boundary, i.e., by taking the trace of the phase function ϕ such
that

ψ = ϕ|∂Ω

and then treated the dynamic boundary condition as a separate evolution equation (parabolic when
κ > 0) on ∂Ω, namely, 

∂tϕ = ∆µ, in Ω × (0,T ),
µ = α∂tϕ − ∆ϕ + F′(ϕ), in Ω × (0,T ),
∂nµ = 0, on ∂Ω × (0,T ),
ϕ = ψ, on ∂Ω × (0,T ),
∂tψ − κ∆Γψ + ∂nϕ +G′(ψ) = 0, on ∂Ω × (0,T ),
ϕ|t=0 = ϕ0(x), in Ω,
ψ|t=0 = ψ0(x) := ϕ0(x)|∂Ω, on ∂Ω.

(3.10)

Within this convenient framework, the authors proved the existence and uniqueness of global solutions
to problem (3.10) by using the Leray–Schauder principle, see [129, Theorem 2.1, Corollary 2.2, The-
orem 2.2]. Moreover, they constructed a robust family of exponential attractors (as α → 0+) for the
semigroups associated with problem (3.10) in suitable phase spaces under the constraint due to mass
conservation (see [129, Theorem 3.1]). As a byproduct, the result therein also implies that the global
attractor obtained in the previous work [132] has finite fractal dimension.
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The analysis for problem (3.5) with singular potentials are more involved, since the combination of
dynamic boundary conditions with singular potentials can produce additional strong singularities on
the corresponding solutions close to the boundary (see [130]). In this direction, the first result on the
existence and uniqueness of global weak solutions was obtained in [113], within the following general
setting 

∂tϕ = ∆µ, in Ω × (0,T ),
µ = α∂tϕ − ∆ϕ + β(ϕ) + π(ϕ) − f , in Ω × (0,T ),
∂nµ = 0, on ∂Ω × (0,T ),
ϕ = ψ, on ∂Ω × (0,T ),
∂tψ − κ∆Γψ + ∂nϕ + βΓ(ψ) + πΓ(ψ) = fΓ, on ∂Ω × (0,T ),
ϕ|t=0 = ϕ0(x), in Ω,
ψ|t=0 = ψ0(x) := ϕ0(x)|∂Ω, on ∂Ω.

(3.11)

where α, κ ≥ 0, see [113, Theorem 1, Theorem 2]. In the above system, the authors introduced a
suitable decomposition of the singular functions F′ and G′ such as

F′ = β + π, G′ = βΓ + πΓ,

respectively, where β and βΓ are monotone and possibly non-smooth, while π and πΓ are some regular
(Lipschitz) perturbations. In [113], they aimed to keep the form of nonlinearities as general as possi-
ble. For instance, β and βΓ are allowed to be essentially arbitrary, with some compatibility conditions
such that β grows faster than βΓ (i.e., the bulk potential plays a dominating role) and that the other
boundary contributions satisfy a specific sign condition (see [113, Remark 6]). Well-posedness results
under certain alternative assumptions for β, βΓ, such as some growth conditions, were also discussed
in [113, Theorem 3]. The proofs for the existence results in [113] relied on the Yosida type regulariza-
tion of the possibly singular potentials, a suitable Faedo–Galerkin scheme (via eigenfunctions of the
elliptic problem −∆u = λu subject to the homogeneous Neumann boundary condition) together with
the compactness method (based on suitable a priori estimates performed on the approximate solutions).
This argument indeed provides the fourth approach to handle problem (3.5) in a general setting.

Some further investigation was performed in [130]. We recall that the result obtained in [113]
yields the existence of global weak solutions if the (regular) surface nonlinearity G′ has the “right”
sign at the singular points of the bulk nonlinearity F′ (i.e., at the pure states), that is, ±G′(±1) > 0.
However, when the sign condition is violated, it was shown in [130, Remark 6.2] that one may not
be able to have classical solutions even in the one dimensional case. To overcome this difficulty, the
authors of [130] introduced a suitable notion of variational solutions (see [130, Definition 3.1]) and
proved its existence as well as uniqueness by using proper approximations of the singular potential
(see [130, Theorem 3.2]). Then they proved the existence of global and exponential attractors in [130,
Theorem 5.2]. Besides, connections between the variational solution and the solution in the usual sense
of distributions were established in [130]. The authors also discussed the possible separation of the
solutions from the singularities of the singular bulk potential (see [130, Section 4]). They showed that
those variational solutions are Hölder continuous in space and will become solutions in the usual sense
if they do not reach the pure states on the boundary. This property can be guaranteed if either the sign
condition as in [113] holds or the singularity of the bulk potential F is strong enough (unfortunately, it
is not satisfied by the logarithmic one (2.2)). We refer to [27, 41, 58, 130] for detailed discussions.
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In [113, 130], the authors mainly treated the case that the bulk potential F plays a dominating role.
Motivated by the study for the Allen–Cahn equation with singular potentials and dynamic boundary
conditions in [69], the authors of [85] considered the opposite side of the compatibility condition for
potential functions such that the boundary potential G is now the leading one (see [85, (2.11)]). For
problem (3.9) with α ≥ 0 and some general assumptions on the potentials that cover all these typical
cases (2.2), (2.3) and (2.4), the authors proved global existence, uniqueness and regularity results on
its solutions (see [85, Theorem 2.2, Theorem 2.3, Theorem 2.4, Theorem 2.6]). The argument therein
implies that in the case of a dominating boundary potential, the analysis can be somewhat simplified
and it indeed allows for a unified treatment for the initial boundary value problem (3.9). As far as
some extensions are concerned, we refer to [79] for the Cahn–Hilliard system with dynamic boundary
conditions and mass constraint on the boundary, and to [86] for the study of a nonstandard viscous
Cahn–Hilliard system with dynamic boundary condition.

When κ = 0, i.e., the surface diffusion on ∂Ω is absent, we recall that existence and uniqueness of
global weak solutions to problem (3.5) have already been discussed in [113]. We also refer to [73] for
the analysis of problem (3.5) in a different context, which accounts for the evolution of fluid-fluid free
interfaces along the solid boundary in the “slow” dynamics such that the effect of flow can be neglected.
The authors proved well-posedness of the system with regular potentials (see [73, Theorem 2, Theorem
3]) and investigated its sharp interface limit via the method of matched asymptotic expansion. Besides,
the dynamics of the contact point and the contact angle were described and the theoretic results were
compared with numerical simulations.

Then a natural question arises, when the surface diffusion in the dynamic boundary condition is
vanishing as κ → 0+, whether the solution to problem (3.5) with surface diffusion will converge to the
solution of problem (3.5) without surface diffusion? In [82], the authors gave an affirmative answer for
a wide class of potentials including (2.2), (2.3) as well as (2.4) (see [82, Theorem 2.2]). Their result
indicates that the solution of the limiting problem with κ = 0 will lose some spatial regularity due to
the absence of the surface diffusion on ∂Ω as expected. For instance, the normal derivative ∂nϕ on the
boundary in general is no longer a function but an element in a dual space. Only under some specific
conditions it (as well as the boundary condition (3.3)) can hold almost everywhere (see [82, Theorem
5.1]).

3.1.3. Long-time behavior

When the long-time behavior of global solutions to problem (3.5) is concerned, we refer to [27,
41, 114, 129, 130, 132] for extensive studies within the theory of global and exponential attractors,
see also [70, 71, 100, 101, 108, 109] for related results on some extended systems involving thermal
or memory effects. The role of surface diffusion in dynamic boundary conditions for parabolic and
elliptic equations was also discussed in [103] within the attractor theory.

Thanks to the energy dissipation relation (3.4), we see that the dynamics of the system can be
viewed as a mixing of the Cahn–Hilliard type in the bulk combined with the Allen–Cahn type on the
boundary. In particular, we expect that the global solution of problem (3.5) will converge to a single
equilibrium as t → +∞ under suitable assumptions on the potentials F and G. When F, G take the
specific form in (3.6), in [144], the authors proved the convergence result (see [144, Theorem 1.1])
by applying an extended Łojasiewicz–Simon type inequality that involves a boundary term (see [144,
Lemma 3.4]). In [78], the authors obtained the convergence of global solutions to problem (3.5) with a
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general regular potential F being analytic in the phase function and under suitable growth assumptions
(see [78, Theorem 2.3]). They derived a Łojasiewicz–Simon type inequality in the dual space (see [78,
Proposition 6.6]) by adapting the abstract result given in [77, Corollary 3.11]. Moreover, they proved
the convergence to a single equilibrium of global solutions to the phase-field model of Caginalp type
with dynamic boundary conditions (cf. (3.7)). In this aspect, we also refer to [143] for the convergence
result of an extended phase-field system with hyperbolic relaxation but without boundary diffusion.
More general case was treated in [114], where the authors considered a general singular bulk potential
(including (2.2)) together with a regular boundary potential, in the framework of [113]. They extended
the argument in [78] and derived an extended Łojasiewicz–Simon inequality that also allows nonlinear
term on the boundary, see [114, Proposition 6.1] (recall that in [78,144] only linear boundary conditions
were considered). Then they proved the convergence to a single equilibrium for global solutions as
t → +∞. For related results on some extended Cahn–Hilliard systems, we may refer to [70, 71, 106]
and the references cited therein.

We also mention [104] for the study on a nonlocal version of the Cahn–Hilliard equation character-
ized by a fractional diffusion operator which is subject to a fractional dynamic boundary conditions.
For the case with regular potentials, the author proved global well-posedness, regularity of solutions
(see [104, Theorems 3.3, 3.4, 3.5]) and the existence of an exponential attractor (see [104, Theorem
4.3]), which yields the existence of a global attractor with finite fractal dimension (see [104, Corollary
1]).

3.2. Dynamic boundary conditions of Cahn–Hilliard type (I)

For simplicity, hereafter we consider the Cahn–Hilliard equation (1.1) with M = 1. In [98], the
author considered the phase separation in a binary mixture confined to a bounded domain with porous
walls, which may be (semi) permeable. In this case, due to the possible mass transfer on and through
the boundary ∂Ω, the homogeneous Neumann boundary condition (3.2) for the bulk chemical potential
µ should be modified in a proper way. Alternatively, the author of [98] proposed the following Wentzell
type boundary condition for µ, that is

∆µ + b∂nµ + cµ = 0, on ∂Ω × (0,T ), (3.12)

with some coefficients b > 0, c ≥ 0 (cf. [93, 115] for the Wentzell boundary condition for the heat
equation and wave equation). Then for sufficiently smooth solutions (ϕ, µ), (3.12) is equivalent to the
following dynamic boundary condition

∂tϕ + b∂nµ + cµ = 0, on ∂Ω × (0,T ). (3.13)

Under the above choice, we no longer have mass conservation in the bulk (unless letting b→ +∞), but
a new conservation law for the “total mass” defined in the measure space (Ω, dν) = (Ω, dx)⊕(∂Ω, dS/b)
(see [98, 115]):

d
dt

(∫
Ω

ϕ dx +
∫
∂Ω

ϕ
dS
b

)
= −

∫
∂Ω

cµ
dS
b
.

The boundary condition (3.12) describes the situation that there is certain mass source (or leak) on the
boundary and thus the system undergoes a different diffusive process. When c = 0, we see that the
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total mass is conserved along the evolution such that∫
Ω

ϕ(t) dx +
∫
∂Ω

ϕ(t)
dS
b
=

∫
Ω

ϕ(0) dx +
∫
∂Ω

ϕ(0)
dS
b
, ∀ t ∈ [0,T ]. (3.14)

Namely, the wall is non-permeable, but certain mass exchange between the bulk and the boundary
is allowed. On the other hand, in order to guarantee that the system tends to minimize its total free
energy, the author proposed the following variational boundary condition in [98] (with G′ being a linear
function of ϕ):

− κ∆Γϕ + ∂nϕ +G′(ϕ) =
µ

b
, on ∂Ω × (0,T ). (3.15)

As a consequence, it holds

d
dt

[
Ebulk(ϕ) + Esurf(ϕ)

]
+

∫
Ω

|∇µ|2 dx + c
∫
∂Ω

|µ|2
dS
b
= 0, ∀ t ∈ (0,T ). (3.16)

Later in [116], the authors considered the phase separation process in a bounded domain with non-
permeable walls in some more general setting. Requiring that the total free energy is decreasing in
time and the total mass is conserved (see (3.14)), they derived the following set of boundary conditions
via a variational principle (see also [75]),

∂tϕ + b(∂nµ − σ∆Γµ) = 0, on ∂Ω × (0,T ), (3.17)
µ

b
= −κ∆Γϕ + ∂nϕ +G′(ϕ), on ∂Ω × (0,T ), (3.18)

for some b > 0, σ ≥ 0 and κ ≥ 0. Here, the term ∆Γµ in (3.17) corresponds to some regularizing
effect for the chemical potential µ on the boundary. For σ > 0 and κ > 0, (3.17) is often referred to
as the Cahn–Hilliard type dynamic boundary condition in the literature. When σ = 0, (3.17) simply
reduces to the Wentzell boundary condition (3.13) with c = 0. In [116], the authors indeed considered
a more general situation such that the parameter b is replaced by a positive function w−1: w ∈ L∞(∂Ω),
0 < w∗ ≤ w(x) ≤ w∗ for almost everywhere x ∈ ∂Ω, where w∗,w∗ are given constants. With this
generalization, they were able to handle the situation when the “boundary mass” is linked to the vari-
able ϕ in a different way with respect to the “bulk mass”, for instance, the case when the dynamic
boundary condition arises as an approximation of a thin diffusive layer occupied by a different material
(see [116, Section 1]). From (3.17) and (3.18), it follows that the new mass conservation property
(3.14) is satisfied and the following energy dissipation relation holds (cf. (3.16))

d
dt

[
Ebulk(ϕ) + Esurf(ϕ)

]
+

∫
Ω

|∇µ|2 dx + σ
∫
∂Ω

|∇Γµ|
2 dS

b
= 0, ∀ t ∈ (0,T ). (3.19)

3.2.1. Gradient flow structure

As pointed out in [111], the Cahn–Hilliard equation (1.1) (with M = 1) subject to (3.17)–(3.18)
admits a gradient flow structure. For simplicity of the presentation, we set b = 1, σ > 0. Let us
consider the elliptic problem of Wentzell Laplacian−∆u = fΩ, in Ω,

−σ∆Γu + ∂nu = fΓ, on ∂Ω.
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Applying the Lax–Milgram theorem, one can see that the above problem admits a unique weak solution
u =W( f ) ∈ V1 with the constraint

∫
Ω

u dx +
∫
∂Ω

u dS = 0, if the two nonhomogeneous terms on the
right-hand side satisfy f = ( fΩ, fΓ) ∈ (V1)′ and ⟨ fΩ, 1⟩(H1(Ω))′,H1(Ω) + ⟨ fΓ, 1⟩(H1(∂Ω))′,H1(∂Ω) = 0. With the
help of the solution operatorW, Eq (1.1) subject to (3.17)–(3.18) can be viewed as a gradient flow of
the total energy Etotal with respect to the inner product

(g, f )(V1)′ =

∫
Ω

∇(Wg) · ∇(W f ) dx + σ
∫
∂Ω

∇Γ(Wg) · ∇Γ(W f ) dS .

Similar conclusions could be drawn for more general choices of parameters.

3.2.2. Well-posedness and long-time behavior

Assume that Ω ⊂ Rd, d = 1, 2, 3, is a smooth bounded domain. Without loss of generality, let us
write the resulting initial boundary value problem in the following form:

∂tϕ = ∆µ, in Ω × (0,T ),
µ = −∆ϕ + F′(ϕ), in Ω × (0,T ),
∂tϕ + b∂nµ − σ∆Γµ + cµ = 0, on ∂Ω × (0,T ),
µ

b
= −κ∆Γϕ + ∂nϕ +G′(ϕ), on ∂Ω × (0,T ),

ϕ|t=0 = ϕ0(x), in Ω.

(3.20)

Note that in the one dimensional case, the terms involving ∆Γ do not appear in any of the boundary
conditions.

We first review some known results for the case σ = 0. The first results on existence and uniqueness
of global strong solutions to problem (3.20) with a regular bulk potential F and a quadratic boundary
potential G was obtained in [98] by employing some classical methods such as the contraction mapping
principle and the energy method (see [98, Theorem 11, Theorem 12]). The proof therein extends the
idea in [134] by investigating an approximate system of Caginalp type. Besides, a comparison between
two solutions of the systems (3.5) and (3.20) was made in [98, Theorem 14], which provides an estimate
on the difference between the two solutions on certain finite time interval, explicitly in terms of the
parameters b and Γs. Later in [99], the author improved his result by using a different approach, i.e.,
the Faedo–Galerkin method, to prove the existence and uniqueness of a global solution to the same
problem, but under some more general assumptions on the bulk potential F, see [99, Theorem 4.1].
The result implies that the solution defines a continuous semigroup on a suitable phase space, which
enables him to investigate its long-time behavior by proving the existence of an exponential attractor
(and thus of a global attractor with finite dimension), see [99, Theorem 5.1, Theorem 5.6]. In [102],
the author further studied the asymptotic behavior as b → +∞ and constructed a robust family of
exponential attractors for the problem under the same assumptions on the potential as in [99].

Convergence of global solutions to a single equilibrium as t → +∞ for problem (3.20) with σ = 0
was first analyzed in [142]. Under the assumption that c, κ > 0 and F is analytic with respect to the
phase function, the author proved the expected convergence result [142, Theorem 1.1] by means of
an extended Łojasiewicz–Simon type inequality with boundary term (see [142, Lemma 3.5]). Higher
order estimates on the convergence rate were also obtained in [142] by combining the Łojasiewicz–
Simon approach (cf. [119]) together with the energy method. The mass conserved case c = 0 is
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somewhat more involved, since the boundary contribution in the energy dissipation of (3.16) vanishes.
To overcome the difficulty due to a weaker dissipation that only comes from the bulk, in [110] the
authors applied a generalized Poincaré inequality to derive an improved Łojasiewicz–Simon type in-
equality subject to certain mass constraint (see [110, Lemma 4.1]), and then achieved the convergence
result [110, Theorem 2.4]. Moreover, they were able to prove the convergence of global solutions to
steady states in the limiting case b = ∞.

Next, the case σ > 0, c = 0 was studied in [116] in a rather general setting, i.e., the bulk potential F
can be a singular one in a wide class and the constant b can be a bounded positive function. There the
authors overcame difficulties similar to those encountered in [130] and proved existence, uniqueness
as well as regularity of global weak solutions (defined in a suitable sense) and studied their long-
time behavior, including the existence of a compact global attractor and the convergence to a single
equilibrium as t → +∞. The arguments in [116] were rather involved, since the authors tried to
deal with the nonlinear terms under general assumptions, see [116, Section 3] for detailed discussions.
Concerning a different approach, we refer to [122] for existence and uniqueness of solutions to problem
(3.20) with regular potentials on a domain with either permeable or non-permeable walls, which were
obtained by applying the general theory of maximal Lp regularity of relaxation type in [90].

We note that the boundary nonlinearity G in [116] was assumed to be a regular function. The
case with a possibly singular and dominating boundary potential was considered in [80]. The authors
introduced the unknowns on the boundary

ψ = ϕ|∂Ω, µΓ = µ|∂Ω

and considered the following alternative formulation of (3.20) (with some specific choice of parame-
ters) 

∂tϕ = ∆µ, in Ω × (0,T ),
µ = −∆ϕ + F′(ϕ) − f , in Ω × (0,T ),
ϕ = ψ, µ = µΓ on ∂Ω × (0,T ),
∂tψ + ∂nµ − ∆ΓµΓ = 0, on ∂Ω × (0,T ),
µΓ = −∆Γψ + ∂nϕ +G′(ψ) − fΓ, on ∂Ω × (0,T ),
ϕ|t=0 = ϕ0(x), in Ω,
ψ|t=0 = ψ0(x) := ϕ0(x)|∂Ω, on ∂Ω,

(3.21)

where f , fΓ are some given functions. Working with a general setting of bulk and boundary poten-
tials including the typical types (2.2), (2.3) and (2.4), they proved existence and uniqueness (indi-
cated by a continuous dependence estimate) of global weak solutions, see [80, Theorem 2.1, Theorem
2.2]. Refined regularity for weak solutions and existence of strong solutions were obtained as well,
see [80, Theorem 4.2]. The proof of the existence result relies on the Yosida regularization of maximal
monotone graphs and the introduction of viscous terms in the equations for both bulk and boundary
chemical potentials µ, µΓ in (3.21). Then the solvability of the approximate problem can be deduced
from the abstract theory of doubly nonlinear evolution inclusions [89]. After obtaining uniform esti-
mates for the approximate solutions, the authors of [80] were able to pass to the limit and conclude
the existence of global weak solutions. See [81] for an extension to the Cahn–Hilliard equation on
the boundary with bulk condition of Allen–Cahn type. We also refer to [87, 88] for extended results
on well-posedness and long-time behavior for the viscous regularization of problem (3.20) with an
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additional convection term. The proof for the existence of solutions in [87] was based on a similar
regularization of maximal monotone graphs but a different way of approximation for the equation via
the Faedo–Galerkin method.

In the recent work [96], for problem (3.20) with σ > 0, c = 0 and physically relevant singular (e.g.,
logarithmic) potentials, global regularity of weak solutions was established, see [96, Theorem 2.1].
When the spatial dimension is two, the authors showed the instantaneous strict separation property
such that for arbitrary positive time any weak solution stays away from the pure phases ±1, while in
the three dimensional case, although the instantaneous separation property remains open, an eventual
separation property for large time was derived. As a consequence, they proved that every global weak
solution converges to a single equilibrium as t → +∞ (see [96, Theorem 2.2]), by applying a suitable
Łojasiewicz–Simon type inequality. We expect that a similar result could be obtained for the case
σ = 0, c ≥ 0.

3.3. Dynamic boundary conditions of Cahn–Hilliard type (II)

From the previous discussions, we see that under all choices of boundary conditions ((3.2) with
(3.3), (3.13) with (3.15), or (3.17) with (3.18)), the Cahn–Hilliard equation (1.1) satisfies two ba-
sic physical constraints, that is, the mass conservation and the energy dissipation. Among them, the
boundary conditions (3.2), (3.13) and (3.17) are proposed to keep suitable mass conservation property
in the physical domain (see (2.8), (3.14)), while the so-called variational boundary conditions (3.3),
(3.15), (3.18) are chosen in a phenomenological way so that the validity of some specific energy dissi-
pation relation is guaranteed (see (3.4), (3.16), or (3.19)). We note that (3.3), (3.15) and (3.18) can be
viewed as some sufficient conditions for the energy dissipation of the evolution system, however, such
choices may not be unique.

3.3.1. Model derivation

In [37], the authors derived a different type of dynamic boundary condition for the Cahn–Hilliard
equation (1.1), that is, ∂nµ = 0, on ∂Ω × (0,T ),

ϕt = ∆Γ(−κ∆Γϕ + ∂nϕ +G′(ϕ)), on ∂Ω × (0,T ).
(3.22)

The derivation is based on an energetic variational approach that combines the least action principle
and Onsager’s principle of maximum energy dissipation, from which we see that the equation (1.1)
subject to (3.22) naturally fulfills three basic physical properties: (1) kinematics: conservation of mass
both in the bulk Ω and on the boundary ∂Ω; (2) energetics: dissipation of the total free energy; (3)
force balance: both in the bulk Ω and on the boundary ∂Ω.

Below we sketch the derivation of (3.22), and refer to [37] for further details in a more general
setting. In the bulk Ω, ϕ is assumed to be a locally conserved quantity that satisfies the continuity
equation

ϕt + ∇ · (ϕu) = 0, (x, t) ∈ Ω × (0,T ), (3.23)

where u : Ω→ Rd stands for the microscopic effective velocity (e.g., due to diffusion process etc). We
assume that u satisfies the no-flux boundary condition

u · n = 0, (x, t) ∈ ∂Ω × (0,T ). (3.24)

Electronic Research Archive Volume 30, Issue 8, 2788–2832.



2817

Next, we consider some nontrivial boundary dynamics that is assumed to satisfy a local mass conser-
vation law analogous to (3.23) such that

ϕt + ∇Γ · (ϕv) = 0, (x, t) ∈ ∂Ω × (0,T ), (3.25)

where v : ∂Ω → Rd denotes the microscopic effective tangential velocity field on the boundary. We
note that there is no need to impose any boundary condition on v, since here the boundary ∂Ω is
assumed to be a closed manifold.

Next, for an isothermal closed system, evolution of the binary mixtures is assumed to satisfy the
following energy dissipation law

d
dt

Etotal(t) = −Dtotal(t), t ∈ (0,T ), (3.26)

where
Etotal(t) = Ebulk(t) + Esurf(t). (3.27)

For instance, Ebulk and Esurf are given by (2.1) and (3.1), respectively. On the other hand, the rate of
energy dissipationDtotal is chosen as

Dtotal(t) = Dbulk(t) +Dsurf(t), (3.28)

which also consists of contributions from the bulk and the boundary. Here, we assume that

Dbulk(t) =
∫
Ω

ϕ2

Mb
u · u dx, Dsurf(t) =

∫
∂Ω

ϕ2

Ms
v · v dS , (3.29)

where Mb, Ms are some positive mobility functions.
Finally, in order to derive a closed system of partial differential equations, it remains to determine

the microscopic velocities u, v in equations (3.23) and (3.25). Using the principle of least action and
Onsager’s maximum dissipation principle, we are able to derive the conservative and dissipative forces
according to the free energy (3.27) and the dissipation functional (3.28). Then by the force balance
relation (Newton’s second law), we obtainϕ∇µ + M−1

b ϕ2u = 0, in Ω × (0,T ),
ϕ∇Γ (µΓ + ∂nϕ) + M−1

s ϕ2v = 0, on ∂Ω × (0,T ),
(3.30)

where the bulk and boundary chemical potentials are given by

µ = −∆ϕ + F′(ϕ), µΓ = −κ∆Γϕ + ∂nϕ +G′(ϕ).

Solving u, v from (3.30) and inserting them back into (3.23) and (3.25), respectively, we arrive at the
following Cahn–Hilliard system subject to a new class of dynamic boundary condition:

∂tϕ = ∇ · (Mb∇µ), in Ω × (0,T ),
µ = −∆ϕ + F′(ϕ), in Ω × (0,T ),
∂nµ = 0, on ∂Ω × (0,T ),
∂tϕ = ∇Γ · (Ms∇ΓµΓ), on ∂Ω × (0,T ),
µΓ = −κ∆Γϕ + ∂nϕ +G′(ϕ), on ∂Ω × (0,T ),
ϕ|t=0 = ϕ0(x), in Ω.

(3.31)
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When the mobilities are positive constants, for instance, Mb = Ms = 1, it was shown in [111] that
problem (3.31) can be regarded as a H−1 type gradient flow equation of the total free energy Etotal both
in the bulk and on the boundary, with respect to a suitable inner product on certain function space
(see [111, Section 3] for details).

3.3.2. Well-posedness

Inspired by [129], it will be convenient to view the trace of the order parameter ϕ as an unknown
function on the boundary. After introducing the new variable

ψ := ϕ|∂Ω,

the initial boundary value problem of the Cahn–Hilliard system (3.31) can be written in the following
form (taking Mb = Ms = 1 for simplicity):

∂tϕ = ∆µ, in Ω × (0,T ),
µ = −∆ϕ + F′(ϕ), in Ω × (0,T ),
∂nµ = 0, on ∂Ω × (0,T ),
ϕ = ψ, on ∂Ω × (0,T ),
∂tψ = ∆ΓµΓ, on ∂Ω × (0,T ),
µΓ = −κ∆Γψ + ∂nϕ +G′(ψ), on ∂Ω × (0,T ),
ϕ|t=0 = ϕ0(x), in Ω,
ψ|t=0 = ψ0(x) := ϕ0(x)|∂Ω, on ∂Ω.

(3.32)

Assume that Ω ⊂ Rd, d = 2, 3, is a smooth bounded domain. Well-posedness of problem (3.32)
was first analyzed in [37] when F and G are suitable regular potentials (including the typical choice
like (2.3) for F and the physically relevant surface potential in [20] for G). The one dimensional
case would be easier since the boundary dynamics is trivial such that the terms involving the operator
∆Γ simply vanish. The proof therein was inspired by the argument in [129]. First, for the problem
with surface diffusion (i.e., κ > 0), the authors introduced a regularization by adding viscous terms
in both of the bulk and boundary chemical potentials. This leads to a viscous Cahn–Hilliard equation
subject to a dynamic boundary condition of viscous Cahn–Hilliard type, which can be solved by using
the contraction mapping principle (see [37, Proposition 4.1]). After deriving global-in-time a priori
estimates that are independent of the approximating parameter as well, they obtained the existence of
global weak (and strong) solutions by finding a convergent subsequence of the approximate solutions
after passing to the limit, see [37, Theorem 3.1].

For the case without surface diffusion, i.e., κ = 0, the existence result can be achieved by deriving
uniform estimates independent of the parameter κ and then taking the limit as κ → 0+ (i.e., the van-
ishing surface diffusion limit), see [37, Theorem 3.2]. In both cases, the uniqueness of solutions can
be proved by a standard energy method. It is worth mentioning that the solution will lose some spatial
regularity due to the absence of the surface diffusion (cf. [82] for a similar situation for problem (3.5)).
In order to guarantee that the boundary equation µΓ = −∂nϕ + G′(ψ) is satisfied for weak solutions in
the usual sense, that is, almost everywhere on ∂Ω× (0,T ), an additional geometric assumption was im-
posed in [37, Theorem 3.2]. This restriction was later removed in [111], where the authors introduced
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a weaker notion of the “weak solution” such that the bulk and boundary chemical potentials satisfy the
following weak form (see [111, Definition 4.1])∫ T

0

∫
Ω

µη dxdt +
∫ T

0

∫
∂Ω

µΓη dS dt =
∫ T

0

∫
Ω

∇ϕ · ∇η + F′(ϕ)η dxdt +
∫ T

0

∫
∂Ω

G′(ψ)η dS dt,

for any test function η ∈ L2(0,T ; H1(Ω)) ∩ L∞(Ω × (0,T )) with η|∂Ω ∈ L∞(∂Ω × (0,T )). Namely,
the troublesome boundary term ∂nϕ does not appear in an explicit way. Then they proved existence
and uniqueness of global weak solutions by an implicit time discretization based on the gradient flow
structure of problem (3.32), see [111, Theorem 4.3]. Unfortunately, their argument does not work for
singular potentials like the logarithmic potential (2.2) or the obstacle potential (2.4).

Well-posedness of problem (3.32) with singular potentials was first established in [84]. For the case
κ > 0, the authors treated the initial boundary value problem in a wide class of nonlinearities (covering
(2.2), (2.3) and (2.4)) with the compatibility condition that the boundary potential plays a dominating
role. They proved existence and uniqueness of global weak solutions (see [84, Theorem 2.3, Theorem
2.4]) as well as existence of a unique global strong solution (see [84, Theorem 4.1]). The proofs
therein relied on several approximations of the original problem such as the introduction of viscous
regularizations in the chemical potentials, the Yosida approximation for maximal monotone graphs
and an implicit time discretization scheme for the bulk-boundary coupled system. They first proved
the existence of a discrete solution by taking advantage of the general maximal monotone theory. After
deriving a number of uniform estimates, they were able to conclude the existence results by performing
limiting procedures with respect to the time step first and then the approximating parameters.

3.3.3. Long-time behavior

Concerning the long-time behavior of problem (3.32), the authors made a preliminary investigation
for the case κ > 0 in [128] within the framework of infinite dimensional dynamical systems. For the
system with regular potentials, they proved existence of exponential attractors, which also yields the
existence of a global attractor with finite fractal dimension (see [128, Theorem 2.1]), while for the
system with singular potentials, they showed the existence of a global attractor in a suitable complete
metric space (see [128, Theorem 2.2]). The result is less satisfactory for the latter, because of the
possible singularity of the bulk and boundary potentials at the pure phases ±1 and its interplay with
the dynamic boundary condition (cf. [130]). To overcome this difficulty, one crucial step is to establish
the strict separation property of the solution (cf. [96] for problem (3.20)). Besides, the case without
boundary diffusion (κ = 0) turns out to be more difficult, since it is not clear so far whether the solutions
to problem (3.32) can define a C0-semigroup in a suitable phase space.

The long-time behavior of a single global solution was first analyzed in [37]. With the additional
assumption that the regular potentials F and G are real analytic functions on R, the authors proved that
every global bounded weak/strong solution to problem (3.32) will converge to a single equilibrium as
t → +∞ and provided an estimate on the convergence rate, see [37, Theorem 3.3]. The conclusion was
again achieved by employing an extended Łojasiewicz–Simon type inequality [37, Lemma 6.3]. We
note that the above convergence results are valid for both cases with or without boundary diffusion,
i.e., for κ ≥ 0. Moreover, in presence of the boundary diffusion, by applying the Łojasiewicz–Simon
approach in a different way, the authors were able to give a further characterization on the Lyapunov
stability of steady states (e.g., local energy minimizers) that may be non-isolated, see [37, Theorem
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3.4]. Whether the corresponding convergence or stability results hold for solutions to the system (3.32)
with singular potentials remains an open question, since it essentially relies on the regularity of solu-
tions, in particular, the strict separation property from the pure states ±1.

At last, we remark that all the available results for problem (3.32) were obtained for the case with
constant mobilities. It will be interesting to study the case with non-constant mobilities that are con-
centration dependent or even degenerate.

3.4. Some extended models

In the last part, we mention some extensions of the Cahn–Hilliard equation with dynamic boundary
conditions that have been studied in the recent literature.

We note that in the formulations (3.10), (3.21) and (3.32), some “strong” relations were imposed
on the phase-field function ϕ or the chemical potential µ via the trace operator, namely, in terms of
some nonhomogeneous Dirichlet boundary conditions. To provide a more general description of the
interactions between the materials in the bulk and the materials on the boundary, extended models with
certain relaxed coupling relations between the bulk and boundary variables (e.g., via the Robin type
boundary conditions) were introduced and analyzed in [112, 124, 125].

In [124], the authors considered the following bulk-boundary coupling system that can be regarded
as an extension of (3.32):

∂tϕ = ∆µ, in Ω × (0,T ),
µ = −∆ϕ + F′(ϕ), in Ω × (0,T ),
∂nµ = 0, on ∂Ω × (0,T ),
ϕ = αψ + β, on ∂Ω × (0,T ),
∂tψ = ∆ΓµΓ, on ∂Ω × (0,T ),
µΓ = −κ∆Γψ + α∂nϕ +G′(ψ), on ∂Ω × (0,T ),
ϕ|t=0 = ϕ0(x), in Ω,
ψ|t=0 = ψ0(x) := α−1(ϕ0(x)|∂Ω − β), on ∂Ω,

(3.33)

for some constants α , 0, β ∈ R. The affine linear transmission condition between the bulk and
boundary phase-field variables (i.e., ϕ = αψ + β on ∂Ω) was introduced in order to account for some
non-trivial boundary interactions. This condition can be further relaxed by imposing a Robin type
boundary condition such that

∂tϕ = ∆µ, in Ω × (0,T ),
µ = −∆ϕ + F′(ϕ), in Ω × (0,T ),
∂nµ = 0, on ∂Ω × (0,T ),
K∂nϕ = H(ψ) − ϕ, on ∂Ω × (0,T ),
∂tψ = ∆ΓµΓ, on ∂Ω × (0,T ),
µΓ = −κ∆Γψ + H′(ψ)∂nϕ +G′(ψ), on ∂Ω × (0,T ),
ϕ|t=0 = ϕ0(x), in Ω,
ψ|t=0 = ψ0(x), on ∂Ω,

(3.34)
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for some K > 0 and a function H ∈ C2(R). Under suitable assumptions, the authors proved exis-
tence and uniqueness of global weak solutions to problems (3.33) and (3.34) (see [124, Theorem 2.1,
Theorem 2.2]). Besides, for the special case H(s) = αs + β, they showed the weak convergence of
solutions as the parameter K → 0+, and derived an error estimate between solutions of the two models,
see [124, Theorem 2.3]. Analysis on some similar extended models for the Allen–Cahn equation with
dynamic boundary conditions can be found in [83, 126].

An analogous Robin type relaxation can be imposed on the chemical potentials, which account for
possible reactions between the materials in Ω and on ∂Ω. In [125], the authors studied the following
problem 

∂tϕ = ∆µ, in Ω × (0,T ),
µ = −∆ϕ + F′(ϕ), in Ω × (0,T ),
L∂nµ = βµΓ − µ on ∂Ω × (0,T ),
ϕ = ψ, on ∂Ω × (0,T ),
∂tψ + β∂nµ − ∆ΓµΓ = 0, on ∂Ω × (0,T ),
µΓ = −κ∆Γψ + ∂nϕ +G′(ψ), on ∂Ω × (0,T ),
ϕ|t=0 = ϕ0(x), in Ω,
ψ|t=0 = ψ0(x) = ϕ0(x)|∂Ω, on ∂Ω,

(3.35)

for some constants β , 0 and L > 0. The Robin type boundary condition indicates that the mass
flux ∂nµ is driven by differences in the chemical potentials and the constant L−1 can be interpreted as
the reaction rate. Taking β = 1, this boundary condition also allows people to establish a connection
between models (3.21) and (3.32), via the formal limits L→ 0+ and L→ +∞, which correspond to the
limit cases of an instantaneous reaction (L → 0+) and a vanishing reaction rate (L → +∞), see [125]
for detailed discussions. Thus, problem (3.35) can be interpreted as an interpolation between (3.21)
and (3.32) where the parameter L corresponds to a positive but finite kinetic rate. The authors proved
the existence, uniqueness and regularity of weak solutions to problem (3.35) (see [125, Theorem 3.1])
and investigated the asymptotic limits as L → 0+ and L → +∞, establishing also convergence rates
for these limits, see [125, Theorem 4.1, Theorem 4.2]. Concerning the long-time behavior of global
solutions to problem (3.35), we refer to [112], where the authors proved the existence of a global
attractor and the convergence of global weak solutions to a single equilibrium as t → +∞ by means
of a Łojasiewicz–Simon type inequality, see [112, Theorem 4.9, Theorem 4.13]. Besides, they proved
that the global attractor of problem (3.21) is stable with respect to perturbations of the kinetic rate and
constructed a robust family exponential attractors for L ∈ [0, 1] (see [112, Theorem 6.5]).

We note that the results obtained in [112, 124, 125] for the extended models are only valid for
regular potentials including (2.3). However, singular potentials like the logarithmic potential (2.2) or
the obstacle potential (2.4) are not admissible for the arguments therein. This will be an interesting
field for the future research.
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and M. Pokorný), Handb. Differ. Equ., vol. 4, Elsevier/North-Holland, Amsterdam, (2008), 201–
228. https://doi.org/10.1016/S1874-5717(08)00004-2

5. P. Bates, P. Fife, The dynamics of nucleation for the Cahn–Hilliard equation, SIAM J. Appl.
Math., 53 (1993), 990–1008. https://doi.org/10.1137/0153049

6. Q. Du, X.-B. Feng, Chapter 5 – The phase field method for geometric moving interfaces and their
numerical approximations, in Handbook of Numerical Analysis, Vol. 21, (eds. A. Bonito and R.
H. Nochetto), Elsevier, (2020), 425–508. https://doi.org/10.1016/bs.hna.2019.05.001

7. D. M. Anderson, G. B. McFadden, A. A. Wheeler, Diffuse-interface methods in fluid mechanics,
Annu. Rev. Fluid Mech., 30 (1997), 139–165. https://doi.org/10.1146/annurev.fluid.30.1.139

8. J. Kim, S. Lee, Y. Choi, S. Lee, D. Jeong, Basic principles and practical applica-
tions of the Cahn–Hilliard equation, Math. Probl. Eng., (2016), Art. ID 9532608, 11 pp.
https://doi.org/10.1155/2016/9532608

9. T. Ohta, K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19
(1986), 2621–2632. https://doi.org/10.1021/ma00164a028

10. A. L. Bertozzi, S. Esedoglu, A. Gillette, Inpainting of binary images using
the Cahn–Hilliard equation, IEEE Trans. Image Process., 16 (2007), 285–291.
https://doi.org/10.1109/TIP.2006.887728

11. A. L. Bertozzi, S. Esedoglu, A. Gillette, Analysis of a two-scale Cahn–Hilliard
model for binary image inpainting, Multiscale Model. Simul., 6 (2007), 913–936.
https://doi.org/10.1137/060660631

12. H. Garcke, K.-F. Lam, E. Sitka, V. Styles, A Cahn–Hilliard–Darcy model for tumour growth
with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095–1148.
https://doi.org/10.1142/S0218202516500263

13. J. T. Oden, A. Hawkins-Daarud, S. Prudhomme, General diffuse-interface theories and an ap-
proach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20 (2010), 477–
517. https://doi.org/10.1142/S0218202510004313

Electronic Research Archive Volume 30, Issue 8, 2788–2832.

http://dx.doi.org/https://doi.org/10.1016/0001-6160(61)90182-1
http://dx.doi.org/https://doi.org/10.1063/1.1744102
http://dx.doi.org/https://doi.org/10.1063/1.1730447
http://dx.doi.org/https://doi.org/10.1016/S1874-5717(08)00004-2
http://dx.doi.org/https://doi.org/10.1137/0153049
http://dx.doi.org/https://doi.org/10.1016/bs.hna.2019.05.001
http://dx.doi.org/https://doi.org/10.1146/annurev.fluid.30.1.139
http://dx.doi.org/https://doi.org/10.1155/2016/9532608
http://dx.doi.org/https://doi.org/10.1021/ma00164a028
http://dx.doi.org/https://doi.org/10.1109/TIP.2006.887728
http://dx.doi.org/https://doi.org/10.1137/060660631
http://dx.doi.org/https://doi.org/10.1142/S0218202516500263
http://dx.doi.org/https://doi.org/10.1142/S0218202510004313


2823

14. E. Khain, L. M. Sander, Generalized Cahn–Hilliard equation for biological applications, Phys.
Rev. E, 77 (2008), 051129. https://doi.org/10.1103/PhysRevE.77.051129
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