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Abstract: The problem of interest in this paper is the mathematical and numerical analysis of a new
non-variational model based on a high order non-linear PDE system resulting from image denoising.
This model is motivated by involving the decomposition approach of H−1 norm suggested by Guo et
al. [1, 2] which is more appropriate to represent the small details in the textured image. Our model
is based on a diffusion tensor that improves the behavior of the Perona-Malik diffusion directions in
homogeneous regions and the Weickert model near tiny edges with a high diffusion order. A rigorous
analysis of the existence and uniqueness of the weak solution of the proposed reaction-diffusion model
is cheked in a suitable functional framework, using the Schauder fixed point theorem. Finally, we carry
out a numerical result to show the effectiveness of our model by comparing the results obtained with
some competitive models.

Keywords: image denoising; high order PDE system; anisotropic diffusion tensor; fixed point
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1. Introduction

Currently, Image restoration is one of the outstanding challenging problems in both image process-
ing and computer vision with numberless applications. Its goal is to remove noise from a degraded
image to restore the original one. Generally, given a noisy image function defined on Ω, with Ω ⊂ R2

an open and bounded domain, the image denoising process can be modelled as f = u + n where f
represents the observed noisy image, u is the true image, and n is the noise component. To solve
this inverse problem, there are several approaches such as PDE based technique [3, 4], wavelet based
technique [5], stochastic approach [6], patch based technique [7].

PDE based denoising models can be classified in two categories, namely variational and non varia-
tional PDE models. In variational PDE models, the solution is obtained as the steady-state solution of
an evolution equation corresponding to the Euler–Lagrange equation of the energy functional. In non-
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variational PDE models, the PDE is proposed directly on the diffusion equations (systems), without
thinking of any energy. Whatever the used approach, one should consider a certain diffusion equation
(system).

In recent years, partial differential equations (PDEs) have become one of the most effective tools
for image processing. Among them, the ROF model, which was first introduced by Rudin et al. [8], is
one of the most popular and given by

min
u

E(u) =
∫
Ω

|∇u| + λ∥u − f ∥2L2(Ω), (1.1)

where λ > 0 is parameter regularization, ∥u − f ∥2L2(Ω) is a fidelity term, and
∫
Ω

|∇u| is a regularization

term. The corresponding PDE which the evolution of the Euler-Lagrange equation for E(u) is given by
following equation ∂u

∂t = div
(
∇u
|∇u|

)
+ 2λ( f − u) in Ω,

⟨∇u, n⟩ = 0 on ∂Ω,
(1.2)

This last model is named TV model, it has been the subject of several studies (see [9, 10]) and has
successfully contributed to preserve edges during the restoration process. Given the success of TV-
based diffusion, various modifications have been investigated (see [11, 12]). Though the TV model
performs very well for image denoising and edge protecting, it may also destroy small details, such
as textures (see [13]). To overcome this drawback, Meyer [14] proposed a new minimization method
by introducing a weaker norm which is more appropriate to represent the oscillatory patterns and
small details in the textured image. Subsequently, Osher et al. [13] proposed the following 4th order
denoising model which used the H−1 norm with the TV minimization. The minimization energy has
the form

min EH−1(u) =
∫
Ω

|∇u| + λ∥u − f ∥2H−1(Ω). (1.3)

The corresponding PDE associated to Euler-Lagrange is given by the following equation :∂u
∂t = ∆

(
div

(
∇u
|∇u|

))
+ 2λ( f − u) in Ω,

⟨∇
(
div

(
∇u
|∇u|

))
, n⟩ = ⟨∇u, n⟩ = 0 on ∂Ω,

(1.4)

This model is called the TV − H−1 denoising model. This model is a highly nonlinear PDE and its
numerical solution is not obvious. To solve this problem, Guo et al. [1] suggested a reaction-diffusion
system applied to image restoration and image decomposition into cartoon and texture. This idea is
introduced by [12] where the initial image f is decomposed into carton part u and texture or noise
( f − u). The Euler-Lagrange of the functional energy (1.3) becomes

∆−1( f − u) =
1

2λ
div

( ∇u
|∇u|

)
, (1.5)

To overcome the difficulty of 4th order degrees in (1.5), the authors transform it into the following two
coupled second order equations: 

−∆v + ( f − u) = 0 in Ω,

−div
(
∇u
|∇u|

)
+ 2λv = 0 in Ω,

⟨∇u, n⟩ = ⟨∇v, n⟩ = 0 on ∂Ω,

(1.6)
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and the evolutionary form of the steady system (1.6) is given by the following PDE system:

∂v
∂t = ∆v − ( f − u) in Ω × (0,T ),
∂u
∂t = div

(
∇u
|∇u|

)
− 2λv in Ω × (0,T ),

⟨∇u, n⟩ = ⟨∇v, n⟩ = 0 on ∂Ω × (0,T ),
u(0, x) = f in Ω,

v(0, x) = 0 in Ω.

(1.7)

Recently, Atlas et al. [15] proposed a new model based on a nonlinear fractional reaction-diffusion
system. This model is based on the following minimization procedure:

min EH−s(u) =
∫
Ω

|∇u| + λ∥u − f ∥2H−s(Ω), (1.8)

where the norm H−s, s > 0 is introduced by Giga [16]. The corresponding PDE associated of its
Euler-Lagrange will be

2λ( f − u) = (−∆)s
(
div

( ∇u
|∇u|

))
. (1.9)

where H−s is negative Hilbert-Sobolev space with s ∈ (0, 1] For the nonlinear regularization term, the
authors propose an Orlicz-operator and generalize Eq (1.9), which becomes:

2λ( f − u) = (−∆)s
(
div

(Aµ(x)(x, |∇|)∇u
|∇u|

))
. (1.10)

where the function Aµ(x) : Ω × R → R is chosen to be monotonically close to 1 when t tends to
infinity (for more details see [15]). To solve the problem (1.10), the authors follow the decomposition
suggested in [1, 2] introducing the following coupled system−div

(
Aµ(x)(x,|∇|)∇u

|∇u|

)
+ 2λv = 0,

(−∆)sv + ( f − u) = 0,
(1.11)

furthermore, the authors consider the solution (u, v) of system (1.11) as a steady state of an evolutionary
fractional reaction-diffusion system investigated in [15].

More recently, Halim et al. [17] proposed a non-variational denoising model by modifying the
TV − TV2 model introduced in [18]. They proposed the following model:

∂u
∂t
= −α∆

(
div

( ∇u
|∇u|

))
+ β

(
div

( ∇u
|∇u|

))
+ λ( f − u). (1.12)

This model called TV − L2 − H−1, it contains the diffusion terms of TV − L2 and TV − H−1 model.
However, it still suffers from the staircasing effect and the combination between the second and fourth-
order diffusion terms leads to over-smooth homogeneous areas.

To overcome these limitations, we propose a nonlinear high order system, using the Weickert
model [19], which is more efficient in reducing high noise intensity, combined with a decomposition
suggested by Guo et al. [1] to control the diffusivity in smooth areas. This model corrects the disad-
vantages (staircasing phenomenon and over smoothing) of the diffusion term proposed in Eq (1.12).
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(a) Noisy image (b) TV − L2 − H−1 (c) Proposed operator

Figure 1. First line: the restored image u, second line: its corresponding sharp edges for the
real Ice cream image, contaminated by an unknown noise. We can observe that the staircasing
effect is reduced using the Weickert operator during the denoising process, while tiny edges
are well preserved.

We can see that in the Figure 1, where a denoising example is carried-out using the two diffusion
operators. However, since the Weickert operator is strongly nonlinear, the computation of the solu-
tion using classical numerical approximation generates some blur effect. Hence, the introduction of
the decomposition procedure, which will facilitate the treatment of the nonlinear part of the Weickert
operator. However this decomposition is in general ill-posed and existence of the looked for solution
is not ensured. In this work, we will check the existence and uniqueness of the solution in a suitable
functional space inspired by the well-known Schauder fixed point theorem.

The organization of the main paper is given as follows. In section 2, we describe the new proposed
model. Section 3 is devoted to the existence and uniqueness results of the solution to the proposed
equation using Schauder fixed point theorem. After, we give a brief discretization part of the proposed
coupled model PDE. At last, section 4 is devoted to numerical results and comparative experiments to
improve our model.

2. Description of the proposed model

In this section, we have proposed a denoising model of non-variational type by modifying the
diffusion term in Eq (1.12) to overcome its drawbacks. To take advantage of both the Perona-Malik
model [20] and the Weickert model [19], we propose the new model given by the following equation: 1

2λ

(
div(D(Jρ(∇uσ))∇u)

)
= ∆−1( f − u) in Ω,

⟨D(Jρ(∇uσ))∇u, n⟩ = 0 on ∂Ω,
(2.1)

Electronic Research Archive Volume 30, Issue 7, 2618–2642.



2622

where D is an anisotropic diffusion tensor and Jρ is the structure tensor defined by

Jρ(∇Xσ) = Kρ ∗ (∇Xσ ⊗ ∇Xσ). (2.2)

where ∗ is the convolution product and ⊗ is the outer product defined such as ∇Xσ⊗∇Xσ = ∇Xσ(∇Xσ)t.
Here Xσ is constructed using a convolution of X with a Gaussian kernel, while Kρ and Kσ represent
two Gaussian convolution kernels such as Kτ(x) = 1

2πτ2 exp(− |x|
2

2τ2 ). The function D is calculated using
the tensor Jρ eigenvalues and the eigenvectors as follows

D := φ+(υ+, υ−)θ+θT
+ + φ−(υ+, υ−)θ−θ

T
− , (2.3)

where υ+/− and θ+/− are respectively the eigenvalues and the eigenvectors of the tensor structure Jρ, the
eigenvalues υ+/− are calculated as

υ+/− =
1
2

(
trace(Jρ) ±

√
trace2(Jρ) − 4 det(Jρ)

)
. (2.4)

While the functions φ+ and φ− represent the isotropic or anisotropic behavior of the smoothing on
the image regions. Recently, an efficient choice of these functions is introduced in [21], where the
authors consider the behavior of the Weickert model according to the two directions θ+ and θ−. The
proposed coefficients take into account the diffusion in the vicinity of the contours and corners where
the eigenvalues υ+ and υ− are very high. This choice is proposed as follows:φ+(υ+, υ−) = exp(−υ+k1

),
φ−(υ+, υ−) = exp(−υ−k2

)(1 − exp(−υ+k1
)),

(2.5)

where k1 and k2 are two thresholds defining the diffusion with respect to the directions θ+ and θ−,
respectively.

Equation (2.1) is a highly nonlinear PDE and therefore its numerical solution is a non-trivial task.
To overcome this difficulty, we follow the decomposition suggested in [1], introducing a splitting into
the coupled system: 

div(D(Jρ(∇uσ))∇u) = αv in Ω,

∆v = f − u in Ω,

⟨D(Jρ(∇uσ))∇u, n⟩ = ⟨∇v, n⟩ = 0 on ∂Ω,

(2.6)

Moreover, the solution (u, v) of system (2.6) is a stable state of the following evolutionary reaction-
diffusion system 

∂u
∂t
− div(D(Jρ(∇uσ))∇u) + αv = 0 in Ω × (0,T ),

∂v
∂t
− ∆v + f − u = 0 in Ω × (0,T ),

⟨D(Jρ(∇uσ))∇u, n⟩ = ⟨∇v, n⟩ = 0 on ∂Ω × (0,T ),
u(x, 0) = f , v(x, 0) = 0 in Ω.

(2.7)

In order to establish the existence of the solution u associated to the problem (2.7), we introduce the
following set of hypotheses (H) :
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H1 - The tensors D in C∞(R2×2,R2×2), positive-definite matrix and coercive with the coercivity constant
is β.

H2 - The initial condition f in L2(Ω).

H3 - The constants β, α, τ, ρ, σ, k1 and k2 are positives.

3. Existence and uniqueness

In this section, we give the variational formulation of the problem (2.7) and a priori estimations of
the solution (u, v). Indeed, the variational formulation of the problem (2.7) is stated as follows

Find (u, v) ∈
(
L2(0,T ; H1(Ω))

)2and (
∂u
∂t
,
∂v
∂t

) ∈
(
L2(0,T ; H1(Ω)

′

)
)2 such that

⟨
∂u
∂t
, ϕ⟩ +

∫
Ω

D(Jρ(∇uσ))∇u∇ϕ +
∫
Ω

αvϕ = 0,

⟨
∂v
∂t
, ϕ⟩ +

∫
Ω

∇v∇ϕ +
∫
Ω

fϕ −
∫
Ω

uϕ = 0,

∀ϕ ∈ H1(Ω).

(3.1)

Inspired by the techniques employed by Catté et al. [22], for a nonlinear equation, we will show the
existence result for our coupled problem of two equations. The following lemma gives some a priori
estimations of the solution.

Lemma 1. Assume that assumptions (H) are satisfied, then there exists a positive constant C, such that
the weak solution of the problem (3.1) satisfies the following estimations

|| u ||L∞(0,T ;L2(Ω)) + || u ||L2(0,T ;H1(Ω)) + || ∂tu ||L2(0,T ;H1(Ω)′ )≤ C,

|| v ||L∞(0,T ;L2(Ω)) + || v ||L2(0,T ;H1(Ω)) + || ∂tv ||L2(0,T ;H1(Ω)′ )≤ C,

Proof. We take ϕ = u in the first equation of (3.1) and ϕ = v in the second, we get
d
dt
|| u(t) ||2L2(Ω) +

∫
Ω

D(Jρ(∇uσ))∇u∇u +
∫
Ω

αvu = 0,

d
dt
|| v(t) ||2L2(Ω) +

∫
Ω

∇v∇v +
∫
Ω

f v −
∫
Ω

uv = 0,
(3.2)

We integrate for t ∈ (0, τ] with τ ∈ (0,T ], then we have
1
2
|| u(τ) ||2L2(Ω) +

∫ τ

0

∫
Ω

D(Jρ(∇uσ))∇u∇u +
∫ τ

0

∫
Ω

αvu =
1
2
|| u(0) ||2L2(Ω),

1
2
|| v(τ) ||2L2(Ω) +

∫ τ

0

∫
Ω

∇v∇v +
∫ τ

0

∫
Ω

f v −
∫ τ

0

∫
Ω

uv =
1
2
|| v(0) ||2L2(Ω),

(3.3)

Multiplying the second equation of (3.3) by α and using the initial data v(0) = 0 and u(0) = f , then the
equation becomes

1
2
|| u(τ) ||2L2(Ω) +

∫ τ

0

∫
Ω

D(Jρ(∇uσ))∇u∇u +
∫ τ

0

∫
Ω

αvu =
1
2
|| f ||2L2(Ω),

α

2
|| v(τ) ||2L2(Ω) +α

∫ τ

0

∫
Ω

∇v∇v + α
∫ τ

0

∫
Ω

f v − α
∫ τ

0

∫
Ω

uv = 0,
(3.4)
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we add the two equations of (3.4), we get

1
2
|| u(τ) ||2L2(Ω) +

α

2
|| v(τ) ||2L2(Ω) +

∫ τ

0

∫
Ω

D(Jρ(∇uσ))∇u∇u

+ α

∫ τ

0

∫
Ω

∇v∇v +
∫ τ

0

∫
Ω

α f v =
1
2
|| f ||2L2(Ω), (3.5)

On the one hand, applying Young’s inequality we have

|

∫ τ

0

∫
Ω

α f v |≤
αT
2

∫
Ω

f 2dx +
α

2

∫ τ

0

∫
Ω

v2dxdt, (3.6)

On the other hand, thanks to the coercivity of D, we see that∫ τ

0

∫
Ω

D(Jρ(∇uσ))∇u∇u ≥ β
∫ τ

0

∫
Ω

∇u∇u (3.7)

Using (3.7) and (3.6), Eq (3.5) becomes

1
2
|| u(τ) ||2L2(Ω) +

α

2
|| v(τ) ||2L2(Ω) +β

∫ τ

0

∫
Ω

∇u∇u + α
∫ τ

0

∫
Ω

∇v∇v (3.8)

≤
αT + 1

2

∫
Ω

f 2dx +
α

2

∫ τ

0

∫
Ω

v2dxdt, (3.9)

Setting K(τ) =
∫
Ω

v(τ)2, we see that

K(τ) ≤
αT + 1
α

∫
Ω

f 2dx +
∫ τ

0
K(t).

Using the Gronwall’s inequality, we get

K(τ) ≤
αT + 1
α

|| f ||2L2(Ω) exp(τ),

which implies that ∫
Ω

v(τ)2 ≤ C

where the constant depends on T , we deduce that v is bounded in L∞(0,T ; L2(Ω)). Hence

|| u ||L∞(0,T ;L2(Ω)) + || v ||L∞(0,T ;L2(Ω)) +β

∫ τ

0

∫
Ω

∇u∇u + α
∫ τ

0

∫
Ω

∇v∇v ≤ C.

By taking Eq (3.8) and by adding the term β

∫ τ

0

∫
Ω

u2 + α

∫ τ

0

∫
Ω

v2 to both sides we get

1
2
|| u(τ) ||2L2(Ω) +

α

2
|| v(τ) ||2L2(Ω) +β

( ∫ τ

0

∫
Ω

∇u∇u + u2) + α( ∫ τ

0

∫
Ω

∇v∇v + v2)
Electronic Research Archive Volume 30, Issue 7, 2618–2642.
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≤
αT + 1

2

∫
Ω

f 2dx +
3α
2

∫ τ

0

∫
Ω

v2dxdt +
∫ τ

0

∫
Ω

u2dxdt,

which means that: 
|| u ||L∞(0,T ;L2(Ω))≤ C,

|| u ||L2(0,T ;H1(Ω))≤ C,

|| v ||L∞(0,T ;L2(Ω))≤ C,

|| v ||L2(0,T ;H1(Ω))≤ C.

(3.10)

Let’s prove now the estimation of
∂u
∂t

and
∂v
∂t

. For that, let’s back to Eq (3.1), we have for all ϕ
| ⟨
∂u
∂t
, ϕ⟩ |=|

∫
Ω

D(Jρ(∇uσ))∇u∇ϕ −
∫
Ω

αvϕ |,

| ⟨
∂v
∂t
, ϕ⟩ |=|

∫
Ω

∇v∇ϕ −
∫
Ω

fϕ +
∫
Ω

uϕ |,
(3.11)

using hypotheses H1 and Hölder inequality we get
| ⟨
∂u
∂t
, ϕ⟩ |≤|| D(Jρ(∇uσ)) ||L∞(Ω)|| ∇u ||L2(Ω)|| ∇ϕ ||L2(Ω) +α || v ||L2(Ω)|| ϕ ||L2(Ω),

| ⟨
∂v
∂t
, ϕ⟩ |≤|| ∇v ||L2(Ω)|| ∇ϕ ||L2(Ω) + || f ||L2(Ω)|| ϕ ||L2(Ω) + || u ||L2(Ω)|| ϕ ||L2(Ω),

(3.12)

or || ∇ϕ ||L2(Ω)≤|| ϕ ||H1(Ω) and || ϕ ||L2(Ω)≤|| ϕ ||H1(Ω), then the previous equation becomes
| ⟨
∂u
∂t
, ϕ⟩ |≤|| D(Jρ(∇uσ)) ||L∞(Ω)|| ∇u ||L2(Ω)|| ϕ ||H1(Ω) +α || v ||L2(Ω)|| ϕ ||H1(Ω),

| ⟨
∂v
∂t
, ϕ⟩ |≤|| ∇v ||L2(Ω)|| ϕ ||H1(Ω) + || f ||L2(Ω)|| ϕ ||H1(Ω) + || u ||L2(Ω)|| ϕ ||H1(Ω),

(3.13)

this means 
||
∂u
∂t
||(H1(Ω))′≤|| D(Jρ(∇uσ)) ||L∞(Ω)|| ∇u ||L2(Ω) +α || v ||L2(Ω),

||
∂v
∂t
||(H1(Ω))′≤|| ∇v ||L2(Ω) + || f ||L2(Ω) + || u ||L2(Ω),

(3.14)

integrating over t ∈ (0,T ], we find
||
∂u
∂t
||L2(0,T ;H1(Ω)′ )≤|| D(Jρ(∇uσ)) ||L∞(0,T ;L∞(Ω))|| ∇u ||L2(0,T ;L2(Ω)) +α || v ||L2(0,T ;L2(Ω)),

||
∂v
∂t
||L2(0,T ;H1(Ω)′ )≤|| ∇v ||L2(0,T ;L2(Ω)) +T || f ||L2(Ω) + || u ||L2(0,T ;L2(Ω)),

(3.15)

and according to estimates in (11), we conclude that
||
∂u
∂t
||L2(0,T ;H1(Ω)′ )≤ C,

||
∂v
∂t
||L2(0,T ;H1(Ω)′ )≤ C.

(3.16)

which ends the proof. □

The following theorem shows the existence and uniqueness of a solution to the proposed model

Theorem 1. Let f ∈ L2(Ω) and T > 0, under the assumptions above, the problem (2.7) admits a unique
weak solution (u, v) ∈ C(0,T ; L2(Ω)) ∩ L2(0,T ; H1(Ω)).
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3.1. Existence

For the proof of existence, we use the classical Schauder fixed point theorem [23, theorem 2.A,
p. 56]. To define the fixed point operator, we introduce first these spaces

V(0,T ) =
{
w ∈ L2(0,T ; H1(Ω)), ∂tw ∈ L2(0,T ; H1(Ω)

′

)
}

which is a Hilbert space equipped with the norm

|| w ||V(0,T )=|| w ||L2(0,T ;H1(Ω)) + || ∂tw ||L2(0,T ;H1(Ω)′ )

and
V0 =

{
w ∈ V(0,T ) :|| w ||L∞(0,T ;L2(Ω))≤ C, || w ||L2(0,T ;H1(Ω))≤ C,

|| ∂tw ||L2(0,T ;H1(Ω)′ ))≤ C, and w(0) = f
}

which is a nonempty, convex and weakly compact subset of V(0,T ). The estimations introduced in the
functional space V0 are deduced from the precedent lemma 1.
The Schauder’s fixed point operator is given as follows

L : V0 → V0

w 7→ L(w) = uw

where uw is the solution associated to (w, v) for the following problem

⟨
∂u
∂t
, ϕ⟩ +

∫
Ω

D(Jρ(∇wσ))∇u∇ϕ +
∫
Ω

αvϕ = 0,

⟨
∂v
∂t
, ψ⟩ +

∫
Ω

∇v∇ψ +
∫
Ω

fψ −
∫
Ω

uψ = 0,

∀ϕ, ψ ∈
(
H1(Ω)

)2
,

u(0) = f and v(0) = 0.

(3.17)

which is now linear in u. As a result and using the theoretical existence of parabolic equations results
[24, Theorem 3, p. 356], we ensure that the problem (3.17) has a unique solution (uw, v) in V(0,T ).
The existence of a weak solution for the problem (3.1) is equivalent to the existence of a fixed point for
the operator L. For this reason, we apply Schauder’s fixed point theorem, which requires only to prove
that the mapping L is weakly continuous. For that, let (wn)n∈N be a sequence in V0 such that wn ⇀ w in
V0, and un = L(wn), we should prove that

un = L(wn) ⇀ uw = L(w) in V0.

Using the compact inclusions of Sobolev spaces [25] and by estimations established in lemma 1, there
exists a subsequence noted also (wn, vn)n∈N and (un, vn) such that

∂un

∂t
⇀

∂u
∂t

and
∂vn

∂t
⇀

∂v
∂t

in L2(0,T ; H1(Ω)
′

)

un → u and vn → v in L2(0,T ; L2(Ω))
∇un ⇀ ∇u and ∇vn ⇀ ∇v in (L2(0,T ; L2(Ω)))2

wn → w in L2(0,T ; L2(Ω))
D(Jρ(∇wnσ)) → D(Jρ(∇wσ)) in L2(0,T ; L2(Ω))
un(0) → u(0) in H1(Ω)

′

(3.18)
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Using these convergences and by the uniqueness of the solution of (3.17), we have

un = L(wn) ⇀ u = L(w) in V0.

This proves that L is weakly continuous. Finally from the Schauder fixed point theorem, the operator
L admits a fixed point solution to the problem (3.1). Moreover, since u, v ∈ L2(0,T ; H1(Ω)) and
∂u
∂t ,

∂v
∂t ∈ L2(0,T ; H1(Ω)

′

), by Aubin’s theorem [26], we deduce that u, v ∈ C(0,T ; L2(Ω)).

3.2. Uniqueness

In order to show that the solution of (2.7) is unique, we consider two different solutions (u1, v1) and
(u2, v2) to the problem (2.7). Then we have

⟨
∂u1

∂t
, ϕ⟩ +

∫
Ω

D(Jρ(∇u1σ))∇u1∇ϕ +

∫
Ω

αv1ϕ = 0,

⟨
∂v1

∂t
, ϕ⟩ +

∫
Ω

∇v1∇ϕ +

∫
Ω

fϕ −
∫
Ω

u1ϕ = 0,
(3.19)

and 
⟨
∂u2

∂t
, ϕ⟩ +

∫
Ω

D(Jρ(∇u2σ))∇u2∇ϕ +

∫
Ω

αv2ϕ = 0,

⟨
∂v2

∂t
, ϕ⟩ +

∫
Ω

∇v2∇ϕ +

∫
Ω

fϕ −
∫
Ω

u2ϕ = 0,
(3.20)

By subtracting both variational formulation of (u1, v1) and (u2, v2), we obtain
⟨
∂(u1 − u2)

∂t
, ϕ⟩ +

∫
Ω

(
D(Jρ(∇u1σ))∇u1 − D(Jρ(∇u2σ))∇u2)∇ϕ +

∫
Ω

α(v1 − v2)ϕ = 0,

⟨
∂(v1 − v2)

∂t
, ϕ⟩ +

∫
Ω

∇(v1 − v2)∇ϕ −
∫
Ω

(u1 − u2)ϕ = 0,
(3.21)

We take ϕ = u1 − u2 in the first equation of (3.21) and ϕ = v1 − v2 in the second, we get

d
2dt
|| u1(t) − u2(t) ||2L2(Ω) +

∫
Ω

(
D(Jρ(∇u1σ))(∇(u1(t) − u2(t)))2

+

∫
Ω

(
D(Jρ(∇u1σ)) − D(Jρ(∇u2σ))

)
∇u2∇(u1(t) − u2(t)) +

∫
Ω

α(v1 − v2)(u1 − u2) = 0,

d
2dt
|| v1(t) − v2(t) ||2L2(Ω) +

∫
Ω

(∇(v1 − v2))2 −

∫
Ω

(u1 − u2)(v1 − v2) = 0,

(3.22)

Now, multiplying the second equation of (3.22) by α and adding the two equations we get

d
2dt
|| u1(t) − u2(t) ||2L2(Ω) +α

d
2dt
|| v1(t) − v2(t) ||2L2(Ω) +

∫
Ω

(
D(Jρ(∇u1σ))(∇(u1(t) − u2(t)))2

+

∫
Ω

(
D(Jρ(∇u1σ)) − D(Jρ(∇u2σ))

)
∇u2∇(u1(t) − u2(t)) + α

∫
Ω

(∇(v1 − v2))2 = 0

Thanks to the coercivity of D, we have

d
2dt
|| u1(t) − u2(t) ||2L2(Ω) +α

d
2dt
|| v1(t) − v2(t) ||2L2(Ω) +β || ∇(u1(t) − u2(t)) ||2L2(Ω)
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+α || ∇(v1(t) − v2(t)) ||2L2(Ω)≤ || D(Jρ(∇u1σ)) − D(Jρ(∇u2σ)) ||L∞(Ω)

∫
Ω

| ∇u2(t) | | ∇(u1(t) − u2(t)) |

Since the operator D(Jρ) is smooth enough, we have

|| D(Jρ(∇u1σ)) − D(Jρ(∇u2σ)) ||L∞(Ω)≤ c || u1(t) − u2(t) ||L2(Ω) (3.23)

Using (3.23) and hypothesis (H1), and Holder inequality, we have

d
2dt
|| u1(t) − u2(t) ||2L2(Ω) +α

d
2dt
|| v1(t) − v2(t) ||2L2(Ω) +β || ∇(u1(t) − u2(t)) ||2L2(Ω)

+α || ∇(v1(t) − v2(t)) ||2L2(Ω)≤ c || u1(t) − u(t) ||L2(Ω)|| ∇u2(t) ||L2(Ω) || ∇(u1(t) − u2(t)) ||L2(Ω)

Integrating over [0, s) with s ∈ (0,T ] and applying Young’s inequality for enough epsilon, we have

1
2
|| u1(s) − u2(s) ||2L2(Ω) +(β −

ε

2
)
∫ s

0
|| ∇(u1(t) − u2(t)) ||2L2(Ω) dt

≤
c

2ε

∫ s

0
|| u1(t) − u2(t) ||2L2(Ω)|| ∇u2(t) ||2L2(Ω) dt

For ε < 2β, we have

1
2
|| u1(s) − u2(s) ||2L2(Ω)≤

c
2ε

∫ s

0
|| u1(t) − u2(t) ||2L2(Ω)|| ∇u2(t) ||2L2(Ω) dt.

Using Gronwall’s inequality we have
u1 = u2.

Now back to the second equation of (3.22), we have

d
2dt
|| v1(t) − v2(t) ||2L2(Ω) +

∫
Ω

(∇(v1 − v2))2 = 0

which means that v1 = v2,
Hence

(u1, v1) = (u2, v2).

4. Discrete setting

In this section, we are interested in the numerical approximation of the proposed model. In fact,
to compute numerically the problem (2.7), we carry out a fully discretization of the model using finite
difference method.
Assume k to be the time step size and h the spatial grid size, we discretize time and space as follows:

tn = nk, n = 0, 1, 2....,
xi = ih, i = 0, 1, 2, ...,M,
y j = jh, j = 0, 1, 2, ...,N.

Denote un
i, j, vn

i, j and fi, j the approximations of u(tn, xi, y j), v(tn, xi, y j) and f (x, y) respectively, then we
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define the discrete approximations :

∂u(t, x, y)
∂t

=
un+1

i, j − un
i, j

k
and

∂v(t, x, y)
∂t

=
vn+1

i, j − vn
i, j

k

∆vn
i, j =

vn
i, j−1 + vn

i, j+1 − 4vn
i, j + vn

i−1, j + vn
i+1, j

h2

it remains now to discretize the term of diffusion div(D(Jρ(∇uσ))∇u), to do so, we consider the method
represented by Weickert [19, Chapter 3], which consists of acting by convolution on the discrete image
in any pixel with kernel, called a non-negative stencil. For that we write the diffusion tensor such as(
a b
b c

)
which is calculated by the structure tensor Jρ(∇uσ), then the term of diffusion can be rewritten as

div(D(Jρ(∇uσ))∇u) = div
[(a b

b c

)(
∂xu
∂yu

)
] = ∂x(a∂x(u)) + ∂x(b∂y(u)) + ∂y(b∂x(u)) + ∂y(c∂y(u)) (4.1)

Hence, the discretization of the diffusion term is given by[
div(D(Jρ(∇uσ))∇un)]i, j = (∂xa)i, j(∂xun)i, j + ai, j(∂xxun)i, j + (∂xb)i, j(∂yun)i, j + bi, j(∂xyun)i, j

+(∂yb)i, j(∂xun)i, j + bi, j(∂yxun)i, j + (∂yc)i, j(∂yun)i, j + ci, j(∂yyun)i, j
(4.2)

then this standard discretization is equivalent to acting by convolution on the image u at any point
(i, j) by a matrix of size 3 × 3 called by the Stencil matrix denoted by S [19, Chapter 3,p. 95], if A(u)
indicates the matrix containing the elements of term div(D(Jρ(∇uσ))∇u) after the discretization, then
an element of A(u) is calculated by[

A(un)]i, j = un
i−1, j−1s11 + un

i−1, js12 + un
i−1, j+1s13 + un

i, j−1s21

+un
i, js22 + un

i, j+1s23 + un
i+1, j−1s31 + un

i+1, js32 + un
i+1, j+1s33

Finally, the discrete explicit scheme of the problem (2.7) could be written as
un+1

i, j = un
i, j + k(

[
A(un)]i, j − αvn

i, j),
vn+1

i, j = vn
i, j + k(∆vn

i, j − fi, j + un
i, j),

u0
i, j = fi, j, v0

i, j = 0.

(4.3)

for all k ≥ 0, 0 ≤ i ≤ N and 0 ≤ j ≤ M.

5. Numerical results

In this section, we illustrate the performance of the proposed model for image denoising. For a
fair comparison, these methods are implemented using Matlab 2012a on the platform: 3 GHz dual-
core CPU and 8 Gbytes RAM. We use the relative error (Er) as a stopping criteria of the following
numerical simulations, which is defined by

Er =
∥un+1 − un∥L2

∥un∥L2
< 10−5,

where un is the restored image at the iteration n.
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We have tested the proposed multi-frame SR method on a large database image using different
applications, we present in the following experiments only some of them. Two commonly used quality
measures are considered to evaluate the denoising performance, i.e., PSNR and the SSIM indexes. For
the following tests we fix the parameters of our method such as k = 0.15, α = 0.01, ρ = 1.4 σ = 1.6
and maxIter = 500. While the values of k1 and k2 are chosen with respect to the best PSNR values.
For the following tests, we chose k1 ∈ [30, 150] and k2 ∈ [10, 250], respectively.

In order to validate our model in computing the component u and v, we begin with validation tests,
where we select four noisy images (with different standard deviationσ). In Figure 2, we have presented
the restored image u and the computed component v for each test. From this figure it is clear that our
model is able to recover image features even if the noise level is high.

For a convenient comparison, we compare our method with some competitive denoising methods,
among them: the TV-H−1 [13], the telegraph coupled partial differential equation (TCPDE) proposed
in [27], TV-L2-H−1 [17], the fourth-order PDE (FOPDE) [28] and also the nonlinear fractional reaction-
diffusion system (NFAD) [15]. Note that concerning the chosen parameters for the proposed algorithm,
we take k1 = 55, k2 = 45, k = 0.1, α = 0.01, ρ = 3.2, time step size k = 0.1, σ = 2.2 and
maxIter = 1000. In contrast, the used parameters for the compared methods are chosen inspired
from the given parameters in numerical results of their respective papers. In fact, the used parameters
for these methods (including the proposed one) corresponding to the following tests are depicted in
Table 1.

Table 1. The set of parameters being used in denoising results presented in the three follow-
ing tests.

Parameters Method
FOPDE TV-H−1 TV-L2-H−1 TCPDE NFAD Our Method

Iteration number N 1000 1000 1000 1000 1000 1000
The time step size ∆t 0.1 0.001 1 0.1 — 0.1
The parameter α1 0.06 — — 0.02 0.065 —
Spatially decaying effect (k1, k2) (100, 44) — — — — (35, 35)
The fractional order derivative β — — — — 1.77 —
Regularization parameter η — 0.01 0.01 0.01 — —
The parameter λ — 1 10 — — —

• Firstly, we consider the ”Motif” image and we configure a simulated test. We add a Gaussian
noise with parameter σ = 30. The restored images using different denoising approaches are
shown in Figure 3 and the associated 3D surfaces in Figure 4. We can see that the proposed
reaction-diffusion equation outperforms the other methods and we can see the difference better in
the smooth areas, where the staircasing effect is efficiently avoided.

• The next experiments deals with Drop image, which is contaminated by a Gaussian noise with
standard deviation σ = 40. The aim is to restore the clean image and compare it with the other
denoising methods. The obtained results for the three tests are shown in Figure 5. As the previous
test, the proposed PDE-constrained equation gives the better result. We can see the difference
better in the 3D plots, where we show the image region surfaces of each restored image in Fig-
ure 6. As a result, it is quite visible that the proposed method demonstrates clearly it performance
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as seen in the restored image: edges are efficiently preserved, homogeneous areas are free from
noise and low-contrast objects are quite visible. This conforms the fact, that the idea of com-
puting the couple u and v with the tensor diffusion deals with the competitive image denoising
techniques.

(a) Synthetic (b) Noisy (σ = 30) (c) u (d) v

(e) Texture (f) Noisy (σ = 20) (g) u (h) v

(i) Brain (j) Noisy (σ = 40) (k) u (l) v

(m) Flower (n) Noisy (σ = 50) (o) u (p) v

Figure 2. The restored image u, its corresponding v for the four images with different Gaus-
sian noise levels.
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(a) Original (b) Noisy (c) TV-H−1 (d) TCPDE

(e) TV-L2-H−1 (f) FOPDE (g) NFAD (h) Our

Figure 3. Motif image corrupted by Gaussian noise with σ = 55 and restored by different
denoising models.

• For the third test we use Brain image, we added a Gaussian noise with σ = 50. In Figure 7, we
present the restored image using different enhancement methods. Once again, we can see clearly
the robustness of the proposed PDE compared with the other ones. This also confirmed in Figure
10, where we present the respective 3D surfaces. A we can see the image regions recovered by our
method look very close to the ones of the original image, which is not the case of the compared
methods.

To give a fair and quantitative comparison with the other methods, we use the PSNR and SSIM
measures. Effectively, we show the evolution of the PSNR and SSIM with respect to the first 1000
iterations for the proposed and compared methods in Figure 9. We can see once again that always our
approach reaches the best PSNR and SSIM values for the three tests.

Finally, we propose two real MRI tests downloaded from*, where the images are corrupted by
unknown noise supposed to be of Poisson type. The aim is to recover a clean image with strong edges
and considerable contrast. Figure 10 illustrated the recovered MRI Head using different denoising
approaches, while Figure 11 presents the obtained clean image u for the real MRI Knee image with
comparison to other methods. The final two results obtained using the proposed equation clearly
indicates that the significant edges and textures are recovered with less blurring and staircasing. As
a conclusion, from these real images, it is easy to observe that the proposed PDE is more efficient to
remove almost all noise particles with effective structure preservation without information about the
noise type.

*www.mr-tip.com
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(a) Original (b) Noisy (c) TV-H−1

(d) TCPDE (e) TV-L2-H−1 (f) FOPDE

(g) NFAD (h) Our

Figure 4. The 3D surface representations of the recovered images in Figure 3.
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(a) Original (b) Noisy (c) TV-H−1

(d) TCPDE (e) TV-L2-H−1 (f) FOPDE

(g) NFAD (h) Our

Figure 5. Drop image corrupted by Gaussian noise with σ = 40 and restored by different
denoising models.
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(a) Original (b) Noisy (c) TV-H−1

(d) TCPDE (e) TV-L2-H−1 (f) FOPDE

(g) NFAD (h) Our

Figure 6. The 3D surface representations of the recovered images in Figure 5.
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(a) Original (b) Noisy (c) TV-H−1

(d) TCPDE (e) TV-L2-H−1 (f) FOPDE

(g) NFAD (h) Our

Figure 7. Brain image corrupted by Gaussian noise with σ = 50 and restored by different
denoising models.
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(a) Synthetic (b) Noisy (c) TV-H−1

(d) TCPDE (e) TV-L2-H−1 (f) FOPDE

(g) NFAD (h) Our

Figure 8. The 3D surface representations of the recovered images in Figure 7.
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(e) PSNR (Brain)
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Figure 9. The variation of the PSNR and SSIM values with respect to iteration number for
the sequence of Zebra.
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(a) Noisy image (b) TV-H−1 (c) TCPDE

(d) TV-L2-H−1 (e) FOPDE (f) NFAD

(g) Our Method

Figure 10. Comparisons of different denoising methods of the real (MRI Head image). Note
that the noise is unknown.

6. Conclusions

In this paper, we have proposed a coupled PDE denoising model. This PDE is based on a diffusive
tensor with efficient diffusion properties along contours. The well-posedness study of the proposed
PDE is also achieved using the Schauder theorem. Finally, experiment results demonstrate the ability of
the proposed model compared with the results of some competitive models. Since the two parametersk1

and k2 affect the smoothing phenomena near strong edges, an optimization procedure will be of interest
to compute these parameters, which will help the model to control the diffusion tackled by the tensor
term.
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(a) Noisy image (b) TV-H−1 (c) TCPDE

(d) TV-L2-H−1 (e) FOPDE (f) NFAD

(g) Our Method

Figure 11. Comparisons of different denoising methods (MRI Knee image). Note that the
noise is unknown.
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