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Abstract: It is interesting and challenging to study chaotic phenomena in partial differential equations.
In this paper, we mainly study the problems for oscillations governed by 1D wave equation with general
nonlinear feedback control law and energy-conserving or energy-injecting effects at the boundaries. We
show that i) energy-injecting effect at the boundary is the necessary condition for the onset of chaos
when the nonlinear feedback law is an odd function; ii) chaos never occurs if the nonlinear feedback
law is an even function; iii) when one of the two ends is fixed, only the effect of self-regulation at the
other end can still cause the onset of chaos; whereas if one of the two ends is free, there will never be
chaos for any feedback control law at the other end. In addition, we give a sufficient condition about
the general feedback law at one of two ends to ensure the occurrence of chaos. Numerical simulations
are provided to demonstrate the effectiveness of the theoretical outcomes.
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1. Introduction

First, I take this opportunity to express my great admiration toward Professor Goong Chen by
dedicating this paper to him on the occasion of his 70th birthday.

In this paper, we mainly consider the problem of vibrations governed by 1D wave equation wtt −

c2wxx = 0, where c denotes wave propagation speed, associated with a generalized boundary condition.
Recall the definition of chaos for this kind of system, which is firstly introduced in [1], as below:

Definition 1.1. Consider an initial-boundary problem (S ) governed by 1D wave equation wtt− c2wxx =

0 defined on a segment I, where c > 0 denotes the propagation speed of the wave. The system is said
to be chaotic if there exists a large class of initial data (w0,w1) such that

(i) |wx| + |wt| is uniformly bounded,

(ii) V(t)
de f
= VI(wx(·, t)) + VI(wt(·, t)) < +∞ for all t ≥ 0,
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(iii) lim inf
t→+∞

ln V(t)
t > 0.

Remark 1.1. When chaos occurs, the function x 7→ (|wx| + |wt|) (x, t) is uniformly bounded, whereas
the length of the curve {(x, (|wx| + |wt|) (x, t)), x ∈ [0, 1]} grows exponentially w.r.t. time t. Therefore,
the system (S ) must undergo extremely complex oscillations as time t increasing.

Remark 1.2. There are lots of work about chaos studies, see e.g., [2–4] and references therein. As we
know, there is no a common mathematical definition for chaos, which is actually a challenge to give.
However, Li-Yorke chaos is probably one of the most popular and acceptable notions of chaos. We will
study the relationship between Li-Yorke chaos and chaos in the sense of Definition 1.1 in our future
work. Particularly, if chaos happens and the solution (wx,wt) can be represented by two interval maps,
denoted by K1 and K2, respectively, then K1 and K2 have positive entropy, which implies K1 and K2 are
chaotic in the sense of Li-Yorke.

Let us take a classical model to introduce the research background and our motivation, as below:
wtt − wxx = 0, x ∈ (0, 1), t > 0,
wx(0, t) = −ηwt(0, t), η , 1, t > 0,
wx(1, t) = αwt(1, t) − βw3

t (1, t), 0 < α < 1, β ≥ 0, t > 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 ≤ x ≤ 1,

(1.1)

where α, β, and η are given constants. If η = 1, the system (1.1) is not well-posed. Thus throughout
this paper we assume η , 1. The wave equation itself is linear and represents the infinite-dimensional
harmonic oscillator. Let

E(t) =
1
2

∫ 1

0
|∇w(x, t)|2dx =

1
2

∫ 1

0

[
w2

x(x, t) + w2
t (x, t)

]
dx,

be the energy function of this system. And assume that (1.1) admits a C2 solution, then the boundary
conditions show

d
dt

E(t) = ηw2
t (0, t) + w2

t (1, t)[α − βw2
t (1, t)].

The right-handed side boundary condition (at x = 1) is nonlinear when β , 0, which is usually called
a van der Pol type boundary condition (see, e.g., [1, 5–9]). The left-handed side boundary condition
(at x = 0) is linear, where η > 0 indicates that energy is being injected into the system at x = 0. Thus
if η > 0, the system (1.1) has a self-excited mechanism that supplies energy to the system itself, which
induces irregular vibrations [1, 6]. In particular, when η = 0, the free end at x = 0 has no effect to the
energy, which is also called an energy-conserving boundary condition.

The existence and uniqueness of the classical solution of (1.1) can be found in [5, 6]. Furthermore,
the system (1.1) has a smooth solution w ∈ C2 if the initial data satisfy

w0 ∈ C
2
0([0, 1]), w1 ∈ C

1
0([0, 1]), (1.2)

where
Ck

0([0, 1]) = { f ∈ Ck([0, 1]) | f (i)(0) = f (i)(1) = 0, 0 ≤ i ≤ k }, k ∈ N, (1.3)

see Theorem 6.1 in [6]. The weak solution as well as its numerical approximation are discussed in [9].
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The PDE system (1.1) has received considerable attention since it exhibits many interesting and
complicated dynamical phenomena, such as limit cycles and chaotic behavior of (wt,wx) when the
parameters α, β and η assume certain values [1, 6]. Different from dynamics of a system of ODEs, this
is a simple and useful infinite-dimensional model for the study of spatiotemporal behaviors as time
evolutes. For instance, the propagation of acoustic waves in a pipe satisfies the linear wave equation:
wtt−wxx = 0. As we know, the solution of 1D wave equation describes a superposition of two traveling
wave with arbitrary profiles, one propagating with unit speed to the left, the other with unit speed to the
right. The boundary conditions appeared in (1.1) can create irregularly acoustical vibrations ( [1,6,7]).
This type of vibrations, for example, can be generated by noise signals radiated from underwater
vehicles, and there are intensive research for the properties of acoustical vibrations in current literature
(see e.g., [10] and references therein). Hence the study of this type of vibration is not only important
but also may lead to a better understanding of the dynamics of acoustic systems.

In this paper, we mainly consider the oscillation problems described by the following models:
wtt(x, t) − c2wxx(x, t) = 0, x ∈ (0, 1), t > 0,
wx(0, t) = −ηwt(0, t), η , c−1, t > 0,
wx(1, t) = h(wt(1, t)), t > 0,
w0(x) = w(x, 0), w1(x) = wt(x, 0), 0 ≤ x ≤ 1,

(1.4)


ztt(x, t) − c2zxx(x, t) = 0, x ∈ (0, 1), t > 0,
z(0, t) = 0, t > 0,
zx(1, t) = h(zt(1, t)), t > 0,
z0(x) = z(x, 0), z1(x) = zt(x, 0), 0 ≤ x ≤ 1,

(1.5)

where the function h ∈ C0(R) satisfies

(A1) ϕ : t 7→ 1
2

(
h(t) − 1

c t
)

strictly monotonically decreases on R,

(A2) ϕ(R) = R.

It is clear that ϕ−1 : R → R is well-defined and strictly decreases on R. In fact, the model (1.4) is a
generalized case of the van del Pol type boundary condition, h(x) = αx − βx3, say. Denote the total
energy of system (1.4) as

E(t) =
1

2c2

∫ 1

0

[
c2w2

x(x, t) + w2
t (x, t)

]
dx,

then the boundary conditions show

d
dt

E(t) = ηw2
t (0, t) + w2

t (1, t) ·
h(wt(1, t))

wt(1, t)
.

Hence η > 0 can cause the energy of system to increase. Moreover, the system (1.1) has a generalized
self-excited mechanism if we assume that, roughly speaking, h(y)

y > 0 if |y| is small and h(y)
y < 0 if |y| is

large. Thus if η > 0, the system (1.4) has a self-excited mechanism that supplies energy to the system
itself, which could induce irregular oscillations. The interesting part is that the system (1.5) may have
chaos even though there is no energy supplier at the boundary.
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We can treat the initial-boundary problems (1.4) and (1.5) by using wave propagation method. Let’s
take (1.4) as a start. It is well-known that w, a solution of 1D wave equation, has the following form:

w(x, t) = L(x + ct) + R(x − ct), (1.6)

where L and R are two C1 functions. Then the gradient of w can be represented as follows:

wt(x, t) = cL′(x + ct) − cR′(x − ct), wx(x, t) = L′(x + ct) + R′(x − ct), (1.7)

for x ∈ [0, 1], t ≥ 0. Introduce two new variables

u(x, t) = L′(x + ct), v(x, t) = R′(x − ct), (1.8)

which are called the Riemann invariants. It is evident that u and v keeps constants along the lines
x + ct = const. and x − ct = const., respectively, which are referred to as characteristics.

When t > 0 and x = 0, from the boundary condition at the left end x = 0,

v(0, t) =
cwx(0, t) − wt(0, t)

2c

=
−cηwt(0, t) − wt(0, t)

2c
= −

1 + cη
2c

wt(0, t)

= −
1 + cη

2
(u(0, t) − v(0, t)),

that is
v(0, t) =

cη + 1
cη − 1

u(0, t)
de f
= γ(η) · u(0, t). (1.9)

Without confusion, we also take γ(η) as a linear map.
When t > 0 and x = 1, from the boundary condition at the right end x = 1, it follows:

h (c(u(1, t) − v(1, t))) −
1
c
· c (u(1, t) − v(1, t)) − 2v(1, t) = 0,

that is
v(1, t) = ϕ (c(u(1, t) − v(1, t))) ,

which determines a reflection relationship between u(1, t) and v(1, t) as follow

u(1, t) =
1
c
· ϕ−1 (v(1, t)) + v(1, t)

de f
= φ (v(1, t)) , (1.10)

where
φ(x) =

1
c
· ϕ−1 (x) + x. (1.11)

When t = 0, from the initial conditions,

u0(x)
de f
= u(x, 0) =

cw′0(x) + w1(x)
2c

, v0(x)
de f
= v(x, 0) =

cw′0(x) − w1(x)
2c

, (1.12)

which are referred to as the initial date of (u, v).
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For x ∈ [0, 1] and τ ≥ 0, it follows from the boundary reflections (1.9) and (1.10) that

u
(
x, τ +

2
c

)
= L′(x + cτ + 2) = u

(
1,

1
c

x + τ +
1
c

)
= φ

(
v
(
1,

1
c

x + τ +
1
c

))
= φ

(
R′(−x − cτ)

)
= φ

(
v
(
0,

1
c

x + τ
))

= φ (γ(η) · u(x, τ)) ,

and

v
(
x, τ +

2
c

)
= γ(η) ◦ φ (v(x, τ)) ;

inductively,

u
(
x, τ +

2n
c

)
= (φ ◦ γ(η))n (u(x, τ)), v

(
x, τ +

2n
c

)
= (γ(η) ◦ φ)n (v(x, τ)), (1.13)

where the superscript n ∈ N denotes the nth iteration of a function. Analogously, for x ∈ [0, 1] and
τ ∈ [0, 2

c ),

u(x, τ) =


u0(x + cτ), 0 ≤ cτ ≤ 1 − x,
φ(v0(2 − x − cτ)), 1 − x < cτ ≤ 2 − x,
φ ◦ γ(η)(u0(x + cτ − 2)), 2 − x < cτ < 2,

(1.14)

and

v(x, τ) =


v0(x − cτ), 0 ≤ cτ ≤ x,
γ(η)(u0(cτ − x)), x < cτ ≤ x + 1,
γ(η) ◦ φ(v0(2 + x − cτ)), x + 1 < cτ < 2.

(1.15)

Equations (1.13)–(1.15) show that the system (1.4) is solvable and the dynamics of the solution
(w,wx,wt) to the equation (1.4) can be uniquely determined by the initial data and the following two
functions:

ψη = γ(η) ◦ φ, g = φ ◦ γ(η). (1.16)

Note that g = γ−1(η)◦ψη◦γ(η), that is to say there is topological conjugacy between ψη and g. Therefore
one only needs to consider one of them, say ψη.

The paper will be organized as follows. In the next two sections, we will present the necessary and
sufficient conditions to cause the onset of chaos, respectively. Section 4 shows, as a special case, in
which the wave equation has a fixed end, that chaos can occur with the effects of self-regulations and
energy-conservation. In Section 5, there are some applications of the theoretical outcomes. In the last
section, it is the numerical simulations.

2. Necessary conditions for the onset of chaos

In this section, we firstly give a necessary condition for the onset of chaos in the following system:
wtt(x, t) − c2wxx(x, t) = 0, x ∈ (0, 1), t > 0,
wx(0, t) = −ηwt(0, t), η , c−1, t > 0,
wx(1, t) = h(wt(1, t)), t > 0,
w0(x) = w(x, 0), w1(x) = wt(x, 0), 0 ≤ x ≤ 1,

(2.1)
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where h satisfies hypotheses (A1) and (A2). In addition, assume the function t 7→
(
h(t) + 1

c t
)

is piece-
wise monotone.

Theorem 2.1. Suppose the system (2.1) is chaotic in the sense of Definition 1.1. Then h is not even
and η , 0.

Proof. It is equivalent to prove that there is no chaos in the system (2.1) if η = 0 or h is an even
function.

Firstly, assume h is an even function. Let η ∈ R and η , c−1. Recall the function ψη given by (1.16):

ψη = γ(η) ◦ φ, φ(x) =
1
c
· ϕ−1 (x) + x.

Introduce a new map Q from R to R as follow:

Q(y) =
1
2

(
h(y) +

1
c

y
)
. (2.2)

For x ∈ R, let y = ϕ−1(x), then

ψη(x) = γ(η)
(
1
c

y + ϕ(y)
)
=

1
2
γ(η)

(
1
c

y + h(y)
)

= γ(η) · Q ◦ ϕ−1(x).

Since ϕ−1 is strictly decreasing and γ(η) ∈ R∗, ψ is monotonic if and only if Q is monotonic. Let
y1, y2 ∈ R with y1 < y2. From the hypothesis h being an even function, it follows

Q(y2) − Q(y1) =
1
2

(
h(−y2) −

1
c

(−y2)
)
−

1
2

(
h(−y1) −

1
c

(−y1)
)

= ϕ(−y2) − ϕ(−y1)
> 0,

which implies Q strictly monotonically increases. Therefore ψ strictly monotonically increases (de-
creases) if γ(η) < 0(γ(η) > 0). It is easily seen that

wt(x, t) = c
[
γ−1(η) ◦ ψn (γ(η)u(x, τ)) − ψn (v(x, τ))

]
,

wx(x, t) = γ−1(η) ◦ ψn (γ(η)u(x, τ)) + ψn (v(x, τ)) .

Hence the dynamics of (wx,wt) is simple, and the chaos doesn’t occur in the system.
Next, assume η = 0, in other words, the system is free at the left end. In this case,

ψ0(x) = −x − ϕ−1(x).

We will show that there is no period point of ψ0 with period 2. Let x0 ∈ R satisfy x0 < ψ0(x0). Define
two functions as follows:

q : x 7→ −x + ψ0(x0) + x0, k = ψ0 − q.

Electronic Research Archive Volume 30, Issue 7, 2600–2617.
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Since ϕ−1(·) strictly monotonically decreases and

k(x) = −x − ϕ−1(x) − q(x) = ϕ−1(x0) − ϕ−1(x),

k strictly monotonically increases in [x0, ψ0(x0)]. Hence

k(ψ0(x0)) = ψ2
0(x0) − x0 > k(x0) = 0.

That implies there are no period points of ψ0 with period 2. By Sharkovsky’s Theorem, there are no
periods of ψ0 with period lager than 2. By virtue of the Main Theorem 6 in [12], there is still no chaos
in the system when η = 0. □

Next, we consider the following system governed by 1D wave equation with a fixed end:
ztt(x, t) − c2zxx(x, t) = 0, x ∈ (0, 1), t > 0,
z(0, t) = 0, t > 0,
zx(1, t) = h(zt(1, t)), t > 0,
z0(x) = z(x, 0), z1(x) = zt(x, 0), 0 ≤ x ≤ 1,

(2.3)

where h satisfies hypotheses (A1) and (A2).

Theorem 2.2. Suppose the system (2.3) is chaotic in the sense of Definition 1.1. Then h is neither an
even function nor an odd function.

Proof. Put
ψ∞(x) = x + ϕ−1(x).

By the analysis in Section 1, it is clear that (zx, zt) can be represented by iterations of ψ∞ and initial
data. Hence, the dynamics of (zx, zt) is completely determined by ψ∞.

If h is even, ψ∞ is monotonically monotone. If h is odd, −ψ∞ has no periodic points of period
larger than 2. Therefore, chaos never occurs in the system 2.3 if h is either an even function or an odd
function. □

Remark 2.1. Chaos can definitely happen in the system 2.3 for a special kind of h. One can find more
details about that in the later section.

3. Chaotic oscillations of 1D wave equation with a general boundary feedback control law

In this section, we mainly try to determine some sufficient conditions to ensure the onset of chaotic
oscillations in the following system:

wtt(x, t) − c2wxx(x, t) = 0, x ∈ (0, 1), t > 0,
wx(0, t) = −ηwt(0, t), η , c−1, t > 0,
wx(1, t) = h(wt(1, t)), t > 0,
w0(x) = w(x, 0), w1(x) = wt(x, 0), 0 ≤ x ≤ 1,

(3.1)

where h ∈ C0(R) satisfies h(0) = 0, hypotheses (A1) and (A2). When wt(1, t) ≡ 0, there should be no
signals feedback to wx(1, t), that’s to say the right end should be free. Therefore it is reasonable to let
h(0) = 0.
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According to the analysis in the first section, we have known that the function ψη given by (1.16)
plays a vital role in studying the dynamics of system (3.1). We firstly give two lemmas that are useful
in analyzing dynamics of ψη, as follow:

Lemma 3.1. Let I be a non-degenerate closed interval, J ⊆ R and F : I → J, G : J → R. Assume
that VJG < +∞ and F is piecewise monotone. Then

VF(I)G ≤ VIG ◦ F < +∞.

Proof. Let I1 = [a, b] be a monotone interval of F. Without loss of generality, let F monotonically
increase in I1. Let

P : a = t0 ≤ t1 ≤ · · · ≤ tn = b,

be a partition of I1. Then
VI1 [G ◦ F, P] = VF(I1)

[
G, P′

]
≤ VF(I1)G,

where
P′ : F(a) = F(t0) ≤ F(t1) ≤ · · · ≤ F(tn) = F(b),

is a partition of F(I1). Consequently, VI1G ◦ F ≤ VF(I1)G. Conversely, if

P′ : F(a) = q0 ≤ q1 ≤ · · · ≤ qn = F(b),

is a partition of of F(I1), then

P : a = F̃−1(q0) ≤ F̃−1(q1) ≤ · · · ≤ F̃−1(qn) ≤ qn+1 = b,

where F̃−1(q) = min{x ∈ I1, F(x) = q}, is a partition of I1. That implies

VF(I1)
[
G, P′

]
= VI1 [G ◦ F, P] ≤ VI1G ◦ F.

Therefore, VI1G ◦ F = VF(I1)G.
Let (I j)1≤ j≤n be a finite sequence consisting of monotone intervals of F. Assume ⊔1≤ j≤nI j = I and

#(Ii ∩ I j) ≤ 1 provided i , j. Then,

VIG ◦ F =
n∑

j=1

VI jG ◦ F =
n∑

j=1

VF(I j)G

≥ V⊔1≤ j≤nF(I j)G = VF(I)G.

□

Lemma 3.2. Let I be a closed interval and F ∈ C0(I, I) be piecewise monotone. If there exist non-
degenerate subintervals I1, I2 ⊆ A with Card(I1 ∩ I2) ≤ 1 such that I2 ⊆ F(I1) and I1 ∪ I2 ⊆ F(I2),
then

lim inf
n→+∞

ln VI1∪I2 Fn

n
≥ ln

1 +
√

5
2

. (3.2)
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Proof. Let two subintervals I1, I2 ⊆ A satisfy the hypothesis. Let n ∈ N. Put

xn = VI2 Fn, yn = VI1∪I2 Fn,

where F0 = IdR if n = 0. Note that F(·) is continuous and piecewise monotone, it follows from
Lemma 3.1 that

xn+1 = VI2 Fn ◦ F ≥ VF(I2)Fn ≥ VI1∪I2 Fn = yn,

and

yn+2 = VI1 Fn+1 ◦ F + VI2 Fn+1 ◦ F

≥ VF(I1)Fn+1 + VF(I2)Fn+1

≥ VI2 Fn+1 + VI1∪I2 Fn+1 = xn+1 + yn+1

≥ yn + yn+1.

Let (zn)n∈N be Fibonacci sequence, i.e., zn+2 = zn+1 + zn, with the initial data z0 = 0, z1 = 1. It is well
known that

zn =
1
√

5

1 +
√

5
2

n

−

1 −
√

5
2

n , n ∈ N.

It is clear that y1 > 0 and ∀n ∈ N, yn ≥ y1zn. Therefore,

lim inf
n→+∞

ln VI1∪I2 Fn

n
= lim inf

n→+∞

ln yn

n
≥ lim

n→+∞

ln y1zn

n
= ln

1 +
√

5
2

.

This competes the proof. □

Proposition 3.1. Let h ∈ C0(R) satisfy the hypothesises (A1) − (A2) and ψη be given by (1.16). In
addition, assume h(0) = 0 and

(i) non-constant function Q : t 7→ 1
2

(
h(t) + 1

c t
)

is piecewise monotone,

(ii) there is at least one solution to the equation h(y) + c−1y = 0 in R∗.

Then there exist A > 0 and a non-degenerate interval I ⊆ (0,+∞) \ {c−1} such that for any η ∈ I, [0, A]
is an invariant set of ψη and

lim inf
n→+∞

ln V[0,A]ψ
n
η

n
≥ ln

1 +
√

5
2

. (3.3)

Proof. We need to finish the following two steps:

(1) Determine an invariant interval [0, A] of ψη.

(2) To make sure the hypothesises of Lemma 3.2 holds.

It has been known that
ψη = γ(η) · φ = γ(η) · Q ◦ ϕ−1.

Put
S − = {y < 0 | Q(y) = 0 and ∃ t ∈ (y, 0),Q(t) , 0}
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and
S + = {y > 0 | Q(y) = 0 and ∃ t ∈ (0, y),Q(t) , 0}.

By the hypothesises (i) − (ii), S − , ∅ or S + , ∅. Without loss of generality, assume S − , ∅. We take

ȳ = max S −, A = −c−1ȳ, (3.4)

then
ȳ < 0, A = ϕ(ȳ) > 0, ψη(A) = 0. (3.5)

Moreover, let
M = max{Q(t) | t ∈ [ȳ, 0]}, m = min{Q(t) | t ∈ [ȳ, 0]}.

By the definition of S −, it is evident that M = 0 or m = 0.
Case 1: Assume M = 0. That implies m < 0. Put

y0 = max{t ∈ [ȳ, 0] | Q(t) = m}, x0 = ϕ(y0).

For any η ∈ [0, c−1), it is easily seen that

ψη(x0) = max{ψη(x) | x ∈ [0, A]} = m · γ(η).

and ψη(x) < ψη(x0) provided that x ∈ [0, x0). We need to prove that m · γ(0) < A. Proceed the proof by
contradiction. Assume m · γ(0) ≥ A, which implies

ψ0 ([0, x0]) ∩ ψ0 ([x0, A]) ⊇ [0, ψ0(x0)] ⊇ [0, A] = [0, x0] ∪ [x0, A].

Thus ψ0 is turbulent. According to Lemma 3 in [11], ψ0 has periodic points of all periods. But from the
proof of Theorem 2.1, ψ0 has no periodic points whose period is larger than 2. We have thus reached a
contradiction. Since that m · γ(·) is strictly increasing in [0, c−1) and m · γ(η) → +∞ as η → (c−1)−, it
is reasonable to put

η̄ = γ−1
(m

A

)
∈ (0, c−1). (3.6)

Then for η ∈ [0, η̄], we have
∀x ∈ [0, A], 0 ≤ ψη(x) ≤ A,

that is to say [0, A] is an invariant set of ψη provided η ∈ [0, η̄]. Put

η =

 γ−1
(

m
x0

)
, if m

x0
< −1,

0, else,
(3.7)

then η < η̄ and ψ(x0) > x0 if η > η. For η ∈ [η, c−1), consider the following set:

S (η, x0) = {x ∈ (0, x0) | γ(η) · φ(x) = x0}.

It is clear that S (η, x0) is closed. Since x0 is uniquely determined by h and h is independent of η, the
following function is well-defined:

α(η) = max S (η, x0), η ∈ [η, c−1). (3.8)
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We first prove that α(·) is strictly monotonically decreasing in [η, c−1). Let t1, t2 ∈ (η, c−1) with
t1 < t2. From the definition of α(·), it follows

γ(t1) · φ(α(t1)) = x0, γ(t1) · φ(x) > x0, x ∈ (α(t1), x0],
γ(t2) · φ(α(t2)) = x0, γ(t2) · φ(x) > x0, x ∈ (α(t2), x0].

(3.9)

Since that
γ(t1) · φ(α(t2)) < γ(t2) · φ(α(t2)) = x0, γ(t1) · φ(x0) > x0,

by applying the continuity of γ(t1) ·φ(·) there exists x ∈ (α(t2), x0) such that γ(t1) ·φ(x) = x0. According
to the definition of α(t1), we have

α(t2) < x ≤ α(t1).

Therefore, α(·) strictly monotonically decreases in [η, c−1).
Next, prove that α(·) is continuous from the left. Let t0 ∈ (η, x0) be fixed. Since α is monotone, we

have
α(t0) ≤ L

de f
= lim

t→t−0
α(t) < +∞. (3.10)

By the continuity of η 7→ γ(η) and x 7→ φ(x), we obtain

lim
ε→0+

γ(t0 − ε) = γ(t0), lim
ε→0+

φ(α(t0 − ε)) = φ(L), (3.11)

which gives γ(t0) · φ(L) = γ(t0) · φ(α(t0)) = x0. From the definition of α(·) and (3.10), it follows

L ≤ α(t0) ≤ L = lim
t→t−0

α(t).

Therefore α(·) is continuous from the left.
In particular, ψη̄(α(η)) = γ(η) · φ (α(η̄)) = x0 and ψη̄(x0) = γ(η) · φ(x0) = A. Define a function as

follow:
K(s) = α(η − s) − ψ2

η̄−s(x0). (3.12)

It is easily seen that K(·) is continuous from right at s = 0. Note that

K(0) = α(η) − ψη̄(ψη̄(x0)) = α(η) − ψη̄(A) = α(η) > 0,

hence there exists ρ0 ∈ (0, η̄ − η) such that

∀s ∈ [0, ρ0],K(s) = α(η − s) − ψ2
η̄−s(x0) > 0. (3.13)

Put
I = [η̄ − ρ0, η̄] (3.14)

and
J1 = [α(η), x0], J2 = [x0, ψη(x0)], η ∈ I. (3.15)

Let η ∈ I be fixed. By (3.13),

ψη(J1) ⊇
[
ψη(α(η)), ψη(x0)

]
= J2,

ψη(J2) ⊇
[
ψ2
η(x0), ψη(x0)

]
⊇ [α(η), ψη(x0)] ⊇ J1 ∪ J2,
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which is to say hypotheses of Lemma 3.2 holds. Therefore for any η ∈ I, by applying Lemma 3.2 we
have

lim inf
n→+∞

ln V[0,A]ψ
n
η

n
≥ lim inf

n→+∞

ln VJ1∪J2ψ
n
η

n
≥ ln

1 +
√

5
2

. (3.16)

For the case m = 0, one just needs to consider η > c−1. The proof is similar, we omit it. □

Theorem 3.1. Consider the system (3.1) with the hypotheses (A1) − (A2). Suppose h(0) = 0 and

(i) non-constant function Q : t 7→ 1
2

(
h(t) + 1

c t
)

is piecewise monotone,

(ii) there is at least one solution to the equation h(y) + c−1y = 0 in R∗.

Then there exists a non-degenerate interval I such that for all η ∈ I the system (3.1) is chaotic in the
sense of Definition 1.1.

Proof. Without loss of generality, assume the equation h(y) + c−1y = 0 has at least one solution in
(−∞, 0). We still use the symbols given in the proof of Proposition 3.1, such as A, x0, α(η) and so on.
Let I and J1, J2 be given by (3.14) and (3.15), respectively. Take η ∈ I.

Let (w0,w1) be the initial data of system (3.1) and (w,wx,wt) be a solution of system (3.1). Recall
the Riemann invariants as follow

u(x, t) =
cwx(x, t) + wt(x, t)

2c
, v(x, t) =

cwx(x, t) − wt(x, t)
2c

, x ∈ [0, 1], t ≥ 0,

and u0(·) = u(·, 0) and v0(·) = v(·, 0) are the initial data. Let t > 2c−1, n = [ ct
2 ] and τ = t − 2nc−1 be

fixed. It is clear that 0 ≤ cτ < 2. By using (1.13), (1.14) and (1.15), we obtain

u(x, t) =


γ−1(η) ◦ ψn

η (γ(η) · u0(x + cτ)) , 0 ≤ cτ ≤ 1 − x,
γ−1(η) ◦ ψn+1

η (v0(2 − x − cτ)) , 1 − x < cτ ≤ 2 − x,
γ−1(η) ◦ ψn

η (γ(η) · u0(x + cτ − 2)) , 2 − x < cτ < 2,
(3.17)

and

v(x, t) =


ψn
η (v0(x − cτ)) , 0 ≤ cτ ≤ x,
ψn
η (γ(η) · u0(cτ − x)) , x < cτ ≤ x + 1,
ψn+1
η (v0(2 + x − cτ)) , x + 1 < cτ < 2.

(3.18)

Since [0, A] is an invariant set of ψη, |u| + |v| is uniformly bounded if

Range(γ(η) · u0) ∪ Range(v0) ⊆ [0, A]. (3.19)

In addition, assume that u0 and v0 are piecewise monotone and

[0, α(η)] ⊆ Range(γ(η) · u0) ∩ Range(v0). (3.20)

Consider the total variations of u(·, t) and v(·, t) on [0, 1]. When 0 ≤ cτ < 1, from (1.13)-(1.15) and
Lemma 3.1, it follows

V[0,1]u(·, t) = V[0,1−cτ]u(·, t) + V[1−cτ,1]u(·, t)
= V[cτ,1]γ

−1(η) ◦ ψn
η ◦ γ(η) ◦ u0 + V[1−cτ,1]γ

−1(η) ◦ ψn+1
η ◦ v0

=
∣∣∣γ−1(η)

∣∣∣ (V[cτ,1]ψ
n
η ◦ γ(η) ◦ u0 + V[1−cτ,1]ψ

n+1
η ◦ v0

)
,
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V[0,1]v(·, t) = V[0,cτ]v(·, t) + V[cτ,1]v(·, t)
= V[0,cτ]ψ

n
η ◦ γ(η) ◦ u0 + V[0,1−cτ]ψ

n
η ◦ v0.

Note that 0 <
∣∣∣γ−1(η)

∣∣∣ < 1, by Lemma 3.1 and (3.20) we obtain

V[0,1]u(·, t) + V[0,1]v(·, t) ≥
∣∣∣γ−1(η)

∣∣∣ Vγ(η)·u0([0,1])ψ
n
η

≥
∣∣∣γ−1(η)

∣∣∣ V[0,α(η)]ψ
n
η ≥

∣∣∣γ−1(η)
∣∣∣ Vψ2

η[0,α(η)]ψ
n−2
η

≥
∣∣∣γ−1(η)

∣∣∣ VJ1∪J2ψ
n−2
η .

Then Proposition 3.1 and (3.16) show that

ln
(
V[0,1]u(·, t) + V[0,1]v(·, t)

)
t

≥
ln

∣∣∣γ−1(η)
∣∣∣

t
+

ln
(
VJ1∪J2ψ

n−2
η

)
t

≥
c ln

(
VJ1∪J2ψ

n−2
η

)
2n + 2

+
ln

∣∣∣γ−1(η)
∣∣∣

t

≥
c
2

ln
1 +
√

5
2

, as t → +∞.

(3.21)

When 1 ≤ cτ < 2, in the same way we can obtain

ln
(
V[0,1]u(·, t) + V[0,1]v(·, t)

)
t

≥
c ln

(
VJ1∪J2ψ

n−1
η

)
2n + 2

+
ln

∣∣∣γ−1(η)
∣∣∣

t

≥
c
2

ln
1 +
√

5
2

, as t → +∞.

(3.22)

It is evident that

V[0,1]u(·, t) + V[0,1]v(·, t) ≤ max{1, c−1}
(
V[0,1]wx(·, t) + V[0,1]wt(·, t)

)
. (3.23)

Hence

lim inf
t→+∞

ln
(
V[0,1]wx(·, t) + V[0,1]wt(·, t)

)
t

≥
c
2

ln
1 +
√

5
2

> 0.

Therefore, the system (3.1) is chaotic in the sense of Definition 1.1. □

4. Chaotic oscillations of 1D wave equation with a fixed end

In this section, we mainly consider the oscillation problem governed by 1D wave equation with a
fixed end. We will show that only the effect of self-regulation effect at one of the two ends can cause
the onset of chaos. But if the fixed end is replaced by a free end, the system never has chaos. As
we know, both a fixed end and a free end are called the energy-conserving boundary condition. Even
though either a fixed end or a free end has the same effect to the energy of the system, the systems may
show completely different dynamics: one with chaos, the other without chaos. Thus the relationship
between chaos and energy of the system is much more complicated.
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Theorem 4.1. Consider an initial-boundary problem governed by 1D wave equation with a fixed end
as follows: 

ztt(x, t) − c2zxx(x, t) = 0, x ∈ (0, 1), t > 0,
z(0, t) = 0, t > 0,
zx(1, t) = h(zt(1, t)), t > 0,
z0(x) = z(x, 0), z1(x) = zt(x, 0), 0 ≤ x ≤ 1.

(4.1)

There exists a piecewise linear function h so that the system is chaotic in the sense of Definition 1.1.

Proof. Without loss of generality, we take c = 1. Put

hθ(x) =



−2x + 2(θ2 − 3), x ∈ [2(θ2 − 3),−2),
(1 − θ2)x, x ∈ [−2, 0],
(θ − 1)x, x ∈ (0, 1],
−2x + (θ + 1), x ∈ (1, θ + 1],
−x, else,

(4.2)

where θ ∈ (0, 1) is a fixed parameter. It is clear that hθ ∈ C0(R) and

ϕθ : x 7→
1
2

(hθ(x) − x)

is strictly monotonically decreasing and ϕθ(R) = R. Then ϕ−1
θ exists. Let

Qθ(y) =
1
2

(hθ(y) + y),

then
ψθ(x) = x + ϕ−1

θ (x) = Qθ ◦ ϕ
−1
θ (x).

Let u = zx+zt
2 and u = zx−zt

2 be the Riemann invariants of system 4.1. For some initial date (u0, v0),
suppose (u, v) is solved for t ≤ 2. Then for t = 2n + τ with τ ∈ [0, 2) and n ∈ N, we have

u(x, t) = ψn
θ (u(x, τ)) , v(x, t) = ψn

θ (v(x, τ)) , x ∈ [0, 1]. (4.3)

Put
I1 = [−θ − 1,

1
2
θ − 1], I2 = [

1
2
θ − 1, 0], I3 = [0, θ2].

They are monotone intervals of ψθ, respectively. A simple calculation shows that

ψθ(−θ − 1) = 0, ψθ(
1
2
θ − 1) =

1
2
θ, ψθ(0) = 0, ψθ(θ2) = θ2 − 2.

Let θ ∈ (0, 1) be sufficiently small such that 1
2θ ≥ θ

2 and θ2 − 2 ≤ −θ − 1, which implies

I3 ⊆ ψθ(I1) ∩ ψθ(I2), I1 ∪ I2 ⊆ ψθ(I3).

Let n ∈ N. Put
xn = VI1ψ

n
θ , yn = VI2ψ

n
θ , zn = VI3ψ

n
θ .
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Lemma 3.2 shows that

xn+1 ≥ Vψθ(I1)ψ
n
θ ≥ VI3ψ

n
θ = zn, yn+1 ≥ zn, zn+2 ≥ xn+1 + yn+1,

which implies
zn+2 ≥ 2zn.

Inductively, we obtain
z2n+2 ≥ 2nz2 > 0, z2n+1 ≥ 2nz1 > 0.

Therefore,

lim inf
n→+∞

ln zn

n
≥

1
2

ln 2 > 0. (4.4)

A simple calculation shows that

ψθ(x) = 0, x ∈ (−∞,−θ − 1] ∪ [2(3 − θ2),+∞].

By (4.3), |u| + |v| is always uniformly bounded for any initial date. Analogous to the proof of Theo-
rem 3.1, there exists a large class of initial data such that

lim inf
t→+∞

ln
(
V[0,1]zx(·, t) + V[0,1]zt(·, t)

)
t

≥
1
4

ln 2 > 0.

Therefore, the proof completes. □

5. Applications

We first consider a problem about perturbations at boundaries, described by the following model:
wtt(x, t) − c2wxx(x, t) = 0, x ∈ (0, 1), t > 0,
wx(0, t) = −ηwt(0, t), η , c−1, t > 0,
wx(1, t) = −c−1wt(1, t) + ε sin(wt(1, t)), t > 0,
w0(x) = w(x, 0), w1(x) = wt(x, 0), 0 ≤ x ≤ 1.

(5.1)

If ε = 0, for any initial data (w0,w1) and η , c−1, by using wave propagation method we can obtain

∀t > 2, x ∈ [0, 1], wx(x, t) = wt(x, t) = 0.

That shows system (5.1) is of global asymptotical stability.
Assume ε , 0 and |ε| is sufficiently small. Put

hε(y) = −c−1y + ε sin(y)

It is evident that i) y 7→ hε(y) + c−1y is piecewise monotone, ii) y 7→ hε(y) − c−1y strictly monotonically
decreasing, iii) there are infinite solutions to the equation hε(y) + c−1y = 0 in R∗. That shows the
hypotheses of Theorem 3.1 hold. Therefore, system (5.1) is chaotic in the sense of Definition 1.1.

The above analysis shows that this kind of system is no longer stable under small perturbations at
one of the boundaries. That is to say this kind of system is not of structural stability.
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As we have stated in the previous sections, if the feedback control law is even chaos never happen.
In particular, consider the system described by the following model:

ztt(x, t) − zxx(x, t) = 0, x ∈ (0, 1), t > 0,
zx(0, t) = −ηzt(0, t), η , 1, or z(0, t) = 0, t > 0,
zz(1, t) = cos(zt(1, t)) − 1, t > 0,
z0(x) = z(x, 0), z1(x) = zt(x, 0), 0 ≤ x ≤ 1.

(5.2)

The feedback control law at the right end is periodic and even. Therefore there is no chaos in the
system (5.2). Moreover, there should exists a compact attractor in the system 5.2.

6. Numerical simulations

In this section, we will give some numerical simulations to validate the theoretical results of this
paper. We first consider the system as follow:

ztt(x, t) − zxx(x, t) = 0, x ∈ (0, 1), t > 0,
z(0, t) = 0, t > 0,
zx(1, t) = h(zt(1, t)), t > 0,
z0(x) = z(x, 0), z1(x) = zt(x, 0), 0 ≤ x ≤ 1,

(6.1)

where

h(x) =



−2x − 11
2 , x ∈ [−11

2 ,−2),
3
4 x, x ∈ [−2, 0],
−1

2 x, x ∈ (0, 1],
−2x + 3

2 , x ∈ (1, 3
2 ],

−x, else.

(6.2)

Choose

w0 = 0, w1(x) =
1
4

sin4(2πx), x ∈ [0, 1],

as the initial data of system (6.1). Put

ψ∞(x) =



1
3 x − 11

6 , x ∈ (1
4 ,

11
2 ],

−7x, x ∈ (0, 1
4 ],

−1
3 x, x ∈ (−3

4 , 0],
1
3 x + 1

2 , x ∈ [−3
2 ,−

3
4 ],

0, else.

(6.3)

As we show in Section 4, the solution (z, zx, zt) can be represented by the iterations of this ψ∞ and
initial data (z0, z1). Note that h and ψ∞ are piecewise linear, thus the feedback control at the boundaries
is easy to implement and the solutions of system are much simpler to be solved and represented.

We present the graphics in some detail, for zx, zt for 98 ≤ t ≤ 100. Figure 1 shows that zx, zt are
extremely oscillatory in every direction of space and time.
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Figure 1. The profile of zx (left) zt(right) for t ∈ [98, 100].
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