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Abstract: We propose a parameterized level set method (PLSM) for structural topology optimization 

based on reaction diffusion equation (RDE) and fuzzy PID control algorithm. By using the proposed 

method, the structural compliance minimization problem under volume constraints is studied. In this 

work, the RDE is used as the evolution equation of level set function, and the topological derivative of 

the material domain is used as the reaction term of the RDE to drive the evolution of level set function, 

which has little dependence on the initial design domain, and can generate holes in the material domain; 

the compactly supported radial basis function (CS-RBF) is used to interpolate the level set function and 

modify the RDE, which can improve the computational efficiency, and keep the boundary smooth in 

the optimization process. Meanwhile, the fuzzy PID control algorithm is used to deal with the volume 

constraints, so that the convergence process of the structure volume is relatively stable. Furthermore, 

the proposed method is applied to 3D structural topology optimization. Several typical numerical 

examples are provided to demonstrate the feasibility and effectiveness of this method. 

Keywords: parameterized level set method; compactly supported radial basis function; reaction 

diffusion equation; fuzzy PID control algorithm; structural topology optimization 

 

1. Introduction 

Structural topology optimization can achieve the pursuit of saving materials or improving the 

performance of structures with the given design domain and the relevant boundary conditions. Hence 
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it has already been a powerful tool for the design of engineering structure. As an important branch of 

structural topology optimization, continuum topology optimization has attracted more and more 

attention. With the development of computational mechanics, there has been significant progress 

made in the theory and methodology of continuum topology optimization over the past 30 years. 

During this period, much pioneering research has been published, advancing related theories and 

techniques, and spurring the use of practical topology optimization methods. Accordingly, a variety 

of methods and their accompanying technical schemes have been proposed to deal with continuum 

topology optimization and obtain effective solutions. The methods for continuum topology 

optimization can be commonly classified into the following categories: the homogenization method 

(Bendsøe and Kikuchi [29]; Bendsøe [31]), the SIMP method (Bendsøe and Sigmund [30]), the 

evolutionary structural optimization (ESO) method (Xie and Steven [55]), the phase field method 

(Bourdin and Chambolle [1]; Marino et al. [27]), the level set method (Allaire et al. [7]; Wang et al. [35]), 

the feature driven optimization approach, alternatively named as the moving morphable voids approach 

(Guo et al. [53]; Zhou et al. [56]; Zhang et al. [51]; Zhang et al. [52]; Zhu et al. [20]), and so on. 

The level set method was first proposed by Osher and Sethian [45] to simulate moving 

boundaries. Initially, the level set method was mainly used to simulate the evolution of interface in 

multiphase flow (Sussman et al. [32]; Sethian and Smereka [16]) and image processing technology 

(Malladi et al. [43]; Osher and Paragios [46]). Sethian and Wiegmann [15] used the immersion 

interface method to calculate the structural stress, and then used the level set method to change the 

shape of the structure. Osher and Santosa [44] employed the level set method to solve the structural 

topology optimization problem of the vibration system. 

Virtual time t  is introduced into the traditional level set method to make it more effective for 

topology optimization. By calculating the derivative of level set function relative to virtual time t  

(van Dijk et al. [38]), the Hamilton-Jacobi partial differential equation (Peng et al. [3]) (PDE) related 

to virtual time t  is established. The upwind method can be employed to solve PDE, thereby 

updating the level set equation and realizing the structural topology optimization. However, when the 

upwind method is used to solve PDE for topology optimization, the computational efficiency is not 

high because the time step is limited by the Courant-Friedrichs-Lewy (CFL) condition. Moreover, 

the holes in the structure cannot be generated, so the evolution of the structure boundary depends on 

the initial conditions. 

To improve the traditional level set method, many researches have been carried out. Xia et 

al. [42] proposed a semi-Lagrangian method to update the level set function to solve the problem that 

the time step is limited by the CFL condition when using the upwind method, and compared the 

method with the upwind method to verify the effectiveness of the method. Zhou and Wang [37] used 

the line search algorithm to determine the time step adaptively, which improves the oscillation 

problem of the objective function and volume constrained optimization curve when using the 

semi-Lagrangian method. Eschenauer et al. [8] proposed a “bubble” method, which inserts a “bubble” 

into the structure, and uses the positioning criteria and shape optimization method to determine the 

optimal position and shape of the “bubble”. This “bubble” method for structural topology 

optimization can generate holes in the structure. Sokolowski and Zochowski [19] used topological 

derivative to calculate the change of objective function when adding or deleting materials in the 

structure, and gave the topological derivative form of plane elastic system. Burger et al. [24] 

combined the topological derivative with the level set method to calculate the sensitivity of the 

objective function when the structure topology changes. 
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To further improve the level set method, Allaire et al. [6] used the adjoint method to calculate 

the shape derivative, and took the shape derivative as the normal velocity of the free boundary in the 

optimization process. At the same time, in order to control that the level set function near the 

boundary is neither too steep nor too flat, the operation of reinitializing the level set function 

periodically was introduced to ensure that the structure can converge to the best shape. Luo et al. [57] 

applied the optimization criterion method (Zhou and Rozvany [36]) to the parametric level set 

method to replace the steepest descent method to update the design variables. Allaire et al. [5] 

combined the topological derivative with shape sensitivity, thereby establishing the algorithm model 

of alternating descent of shape sensitivity and topological derivative, which deals with the boundary 

evolution problem and meanwhile can introduce holes in the structure. Wei and Wang [40] combined 

the level set method with the phase field method, and implemented the piecewise constant level set 

method by using the numerical scheme of the additive operator splitting in the phase field method, 

which describes the evolution of the structural boundary. Yamada et al. [49] proposed a new method 

to construct the reaction diffusion equation (RDE) by using the virtual energy term in the phase field 

method, and gave the derivation process of RDE. Choi et al. [18] took the design sensitivity of 

topology optimization as the reaction term of RDE, which can generate new holes in the structure 

without using the topological derivative. Otomori et al. [28] provided a MATLAB implementation of 

level set method based on RDE, and gave the derivation process of topological derivative. 

The method of topology description function (TDF) was proposed by de Ruiter and van 

Keulen [26], which utilizes a set of basis function to describe the geometric structure. Through 

adjusting the shape, parameters and distribution of the basis function, the structure can be described 

reasonably by the method of TDF. Thereafter, the TDF method has evolved into the parameterized 

level set method (Cecil et al. [48]; Wang and Wang [47]; Wei et al. [41]; Cui et al. [33]) (PLSM). The 

PLSM retains the advantage of implicit representation of evolution surface by level set function, 

thereby transforming topology optimization problem into parameter optimization problem, and 

meanwhile does not need to solve complex Hamilton-Jacobi PDE directly or carry on the 

re-initialization operation. Thus good topology optimization effect can be achieved by using the 

PLSM. Moreover, radial basis function (RBF) and level set equation are used to represent the shape 

of the structure implicitly in the PLSM. Therefore, the selection of the basis function determines the 

shape type and detail of the structure boundary described by the level set equation.  

According to the supporting size, there are two types of basic functions: compactly supported 

radial basis function (CS-RBF) and global supported radial basis function (GS-RBF). Wang and 

Wang [47] used the multi-quadric (MQ) function to establish the implicit RBF model interpolating 

the level set function, transformed Hamilton-Jacobi PDE into ordinary differential equation (ODE), 

and solved it by finite element method. Luo et al. [58] proposed an element-free Galerkin level set 

method, where CS-RBF is used to construct the element-free shape function and the structural 

boundary is updated to achieve structural optimization by solving the discrete level set function in 

time. Ho et al. [12] proposed a PLSM based on mobile node by using inverse multi-quadric (IMQ) 

function, which takes the position of RBF node as the design variable and uses the steepest descent 

method to push the node to a new position. Wei et al. [41] provided a MATLAB code 

implementation of level set method based on MQ function, and extended it for different boundary 

conditions and different types of RBF. Cui et al. [33] proposed a PLSM combined with CS-RBF and 

the method of moving asymptotes (Svanberg [22]) (MMA) to update the design variables, and 

introduced shape sensitivity constraint factor in the iteration process of MMA algorithm, which 
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makes the iteration step controllable and speeds up the optimization process. 

Three-dimensional (3D) structural topology optimization (Yang et al. [54]; Sigmund and 

Clausen [39]) can determine the geometric configuration of engineering structure and improve 

structural performance for engineering application. Some methods for two-dimensional (2D) 

structural topology optimization have thus far been successfully extended to 3D problem, which 

broadens the application scope of structural topology optimization. Du and Olhoff [17] studied the 

topology optimization of 3D structure under design related loads, and proposed an algorithm for 

generating loading surface of 3D structure based on iso-parametric surface theory. Abolbashari and 

Keshavarzmanesh [25] studied the influence of removal rate, evolution rate and element size on the 

optimization of 2D and 3D continuum structures by the ESO method. Zhang et al. [14] proposed a 

boundary search algorithm, which can effectively identify the load surface and deal with 3D 

topology optimization problem under design related loads. Muñoz et al. [2] used Cartesian mesh 

finite element method instead of standard finite element method in topology optimization of 3D 

structure, and combined h-adaptive mesh optimization method in optimization algorithm to improve 

the accuracy of boundary definition. Liu and Tovar [21] extended the SIMP method to the 3D field, 

and gave 169 lines of MATLAB code including sensitivity analysis, density filtering and finite 

element analysis. On this basis, Ferrari and Sigmund [4] improved the above-mentioned 169 lines of 

MATLAB code through more effective assembly of stiffness matrix to accelerate the realization of 

filter function, and obtained more concise and effective 3D MATLAB code. Zegard and Paulino [50] 

proposed a 3D topology optimization algorithm based on ground structure, which can well deal with 

the structural optimization problems of concave and internal holes, and gave the corresponding 

MATLAB code. Wang et al. [34] combined the B-spline function and the level set function, divided 

the whole design domain into a group of 3D subdomain cells, and used B-spline function to update 

design variables recursively, so as to realize the 3D topology optimization of cellular structure with 

spatial changes. Recently, Li et al. [9–11] have developed the RDE method and extended its 

applications in large-scale 3D topology optimization of multi-physics problems, i.e., mean 

compliance problem, fluid-structure interaction problem, and thermal fluid problem, by using 

adaptive mesh refinement or body-fitted mesh adaption. 

When the traditional level set method is used for structural topology optimization, the upwind 

method is often used to solve Hamilton-Jacobi PDE, and the conventional level set function is 

updated according to the solution of the PDE. In the optimization iterations, the time step is required 

to meet the CFL condition. Thus the size of the time step is limited, which reduces the computational 

efficiency. Moreover, the re-initialization operation needs to be performed in each of the 

optimization iterations to control the gradient of the level set function near the boundary, so the 

stability of numerical calculation is affected. However, when RDE is used to replace 

Hamilton-Jacobi PDE update the level set function in structural topology optimization, it allows not 

only shape but also topological changes, and allows the geometrical complexity of the optimal 

configuration to be specified. Therefore, the RDE-based level set method has significant advantages 

over the conventional level set method for structural topology optimization. In this work, a PLSM 

based on the RDE and the fuzzy adaptive PID control algorithm is proposed to address structural 

topology optimization of minimizing compliance with volume constraints. The RDE is used as the 

evolution equation of level set function, and the regularization parameters in RDE are used to adjust 

and control the geometry complexity of the optimized structure. The topological derivative is not 

only used to calculate the sensitivity of the objective function when the hole is inserted at any 
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position of the structure, but also used as the reaction term of the RDE to drive the evolution of the 

level set function. In the optimization iteration process, CS-RBF is used to interpolate the level set 

function to ensure the smoothness of the approximate surface. Furthermore, the fuzzy PID control 

algorithm is employed to address the volume constraint, so as to makes the convergence process of 

structure volume more stable. The proposed method is also applied to 3D structural topology 

optimization, so as to confirm that this method can enhance the optimization efficiency and the 

stability of the optimization process on the premise of ensuring the accuracy of the optimization 

results. The proposed method retains the merits of the PLSM, the RDE and the fuzzy adaptive PID 

control algorithm. Therefore, it can obtain the reasonable results with relatively high speed and good 

stability for structural topology optimization 

The rest of this paper is organized as follows. In Section 2, the level set method and the 

corresponding solution process which combines the compactly supported radial basis function and 

fuzzy PID control algorithm are introduced. In Section 3, the mathematical model of the topology 

optimization problem which takes the minimum compliance as the objective function and the volume 

fraction as the constraint condition is established, and the role of the initial PID control parameters is 

studied. In Section 4, 2D and 3D structural optimization examples are used to verify the feasibility 

and effectiveness of the proposed method. Finally, the conclusions are drawn in Section 5. 

2. The proposed method 

2.1. Level set method based on RDE 

The level set function uses its zero-value curve to describe the structure boundary. By solving the 

value of level set function at each time, the evolution equation of the structure boundary is obtained, and the 

shape and topology of the structure in the material domain are clearly described. By taking a 2D structure as 

an example, the level set function is used to represent the material distribution of the structure as shown in 

Figure 1. 

Γ

 

 

Ω
( )x  ( ) 0x =

 

Figure 1. Relationship between level set equation and material distribution in design domain. 

The relationship between level set function   and material distribution in design domain is expressed 

by the mathematical formula as follows. 
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where, D  represents the design domain of the structure,   represents the solid part of the structure,   

represents the boundary of the structure, and x  represents element node after the finite element mesh is 

divided. ( ) > 0 x  represents the material domain, ( ) 0 =x  represents the structural boundary, and 

( ) < 0 x  represents the void. 
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Figure 2. Design domain and boundary conditions for structural topology optimization. 

A topology optimization problem with minimum compliance as objective function and volume 

fraction as constraint condition is considered. As shown in Figure 2, structural topology optimization 

problem generally involves prescribed design domain and boundary conditions. Design domain D  usually 

includes material domain   and void region. With respect to boundary conditions, displacement 

constraints are usually imposed at the boundary u , external loads F  are often applied at the boundary 

 t , and body force b is applied on the overall material domain. Under the volume constraint, the 

mathematical expression of the objective function is written as follows. 
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Ω Ω

Ω Ω. 0.





=

= − 
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min J j

V

x d

G d
                            (2) 

where, ( )J  is the objective function, ( )j x  is the function in the structural design domain, ( )G  is the 

volume constraint function, 
maxV  is the set volume constraint value, and x  represents element node after 

the structural design domain is divided into finite element meshes. 

To introduce the virtual energy term of phase field model into the objective function and regularize the 

structural topology optimization problem, it needs to be assumed that the level set function   and the 

phase field variables in the phase field method have the same distribution properties. Based on this 

assumption, the upper and lower bound constraints are imposed on the level set function  , which 

stipulates that the value of level set function must be equal to 1 or −1 in the area far enough from the 

structure boundary, so that the smoothing effect only works on the points near the structure boundary. 
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Therefore, the definition of level set function expressed in Eq (1) is modified, and the revised definition of 

level set function is shown in Eq (3). 
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By introducing the virtual energy term in the phase field method into the objective function, the 

topology optimization problem described by Eq (2) is transformed into the topology optimization problem 

shown in Eq (4). 
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where, 
21

2
  D d  is the added virtual energy term,   is the regularization parameter, which is 

always greater than zero,   is characteristic function, which can transform the structural topology 

optimization problem into the material allocation problem in the fixed design domain, so as to determine 

the optimal distribution of the structure in the design domain. 

The Lagrange method is used to deal with the topology optimization problem with the given volume 

constraints, and the constrained optimization problem of Eq (4) can be transformed into an unconstrained 

optimization problem, which is expressed as follows. 
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where,   denotes the Lagrange multiplier, which is always positive and used to deal with the volume 

constraints, and RJ  is the Lagrange function. The optimal topology of the structure can be obtained by 

solving Eq (5). 

However, it is almost impossible to find the optimal solution of Eq (5) directly. To obtain the final 

topology optimization results, Equation (5) is solved by using the time evolution equation. The time 

evolution equation is expressed as follows. 
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where, ( )( ) ( )   += − max
D

d VJ j x . Equation (6) is also called the reaction-diffusion 

equation (RDE). 

To solve the problem conveniently, on the basis of Eq (6), the normalization coefficient C  is 

introduced to normalize the reaction terms in RDE. Since the reaction term 


dJ

d
 is equivalent to the 

topological derivative td J  numerically, the topological derivative td J  is used for numerical calculation. 

The level set function is independent of the outside of the fixed design domain, so it is assumed that the 



2575 

Electronic Research Archive  Volume 30, Issue 7, 2568-2599. 

boundary conditions of the level set function are Dirichlet boundary conditions on the non-design boundary 

and Neumann boundary conditions on other boundaries. Therefore, the RDE with boundary conditions can 

be adjusted to the formulation of Eq (7). 
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0 on


 




= − − 
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−tCd i
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J n D
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where, the value of 0K  in Eq (6) is set as 1, referring to the literature (Otomori et al. [28]). The sign of 

topological derivative td J  is opposite to that of 


dJ

d
, because the sign definitions of topological 

derivative td J  and level set function   are different. The solving process of topological derivative will 

be detailed in Section 2.4. The formula for calculating the normalization coefficient C  is expressed as 

follows. 
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2.2. Level set method based on RDE combined with CS-RBF 

Through the above derivation, solving Eq (7) can update the level set function and realize the 

topology optimization of the structure. When the level set method based on RDE is used for 

structural optimization, the finite element shape function is used to interpolate the level set equation. 

In order to move the structure boundary to an ideal position, a large number of iterations are needed 

in the actual operation. 

To obtain better interpolation effect, a continuous and differentiable CS-RBF model is 

introduced into the structural topology optimization. CS-RBF is used to interpolate the level set 

equation instead of the finite element shape function to improve the solving process of RDE, which 

can not only retain the advantages of the level set method based on RDE, but also improve the 

computational efficiency. 

The second-order continuous CS-RBF proposed by Wendland [13] is selected as the 

interpolation function to parameterize the level set equation. Taking the 2D structure as an example, 

the mathematical expression of CS-RBF is given as follows. 

( ) ( ) ( )
4
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+
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The support radius r  is defined as 
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                       (10) 

where, id  represents the distance from any point ( ),x y  within the support radius r  to the fixed 
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reference point ( ),c c

i ix y . The search radius of basis function md  represents the maximum control 

range of CS-RBF centered on reference point ( ),c c

i ix y . The selection of md  is very important. If 

the value of md  is too large, the number of nodes in the interpolation radius will increase and the 

amount of calculation in the interpolation process will increase. If the value of md  is too small, the 

interpolation matrix will be singular. In other words, the value of md  can lead to mesh-dependent 

optimal solutions. To ensure the non-singularity of the function interpolation and simultaneously 

guarantee the computational efficiency, an experiential criterion in selecting a radius of support is 

often needed (Luo et al. [57]). In this paper, the value of md  is selected as 2 times of the finite 

element mesh size to simplify the calculation. 

By using CS-RBF to parameterize the level set equation, N fixed reference points are selected, 

and the level set equation is decoupled into a series of products of CS-RBF and related expansion 

coefficients as follows. 

( ) ( ) ( )
1

, 
=

=
N

i i

i

x t g x t                             (11) 

where, ( )ig x  represents the ith set of CS-RBF related to spatial variables, and ( ) i t  represent the 

expansion coefficient corresponding to the ith CS-RBF, which is closely related to virtual time t  in 

the iterative process. Since the CS-RBF matrix is only related to the type of RBF and the position of 

the reference point, ( )ig x  only needs to be calculated once in the whole iterative process when the 

reference point is fixed, and the level set equation is only affected by the expansion coefficient ( ) i t . 

Therefore, the expansion coefficient ( ) i t  is selected as the design variable of PLSM. 

By substituting the level set function interpolated by the CS-RBF into the RDE, the following 

equations can be obtained 
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By solving Eq (12), the following equations can be obtained 

( ) ( )
( ) ( )

( ) ( )1 2

1

 
 +

+= +  +
 

t

i i

i

g x t g x t
C g x

t
d J t

t
              (13) 

where, t  is the time step of the equation evolution. According to Eq (13), the updated form of the 

expansion coefficient ( ) i t  is shown as follows. 

( ) ( ) ( ) ( ) ( )
1

2

1  
−

+
   = −   +   itit g x t g x tC g td J x         (14) 

In Eq (3), the upper and lower limit constraints are imposed on the level set function to smooth 

the points near the structure boundary. Therefore, in the actual calculation, the level set function 
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update formula after CS-RBF parameterization is shown as Eq (15). 
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2.3. Volume constraint processing via fuzzy PID control algorithm 

Fuzzy PID controller (Zadeh [23]) is composed of fuzzy controller and PID controller. The block 

diagram of the fuzzy PID controller is shown in Figure 3. 

 

Figure 3. Block diagram of fuzzy PID controller. 

In Figure 3, ( )r t  is the target setting value of the control system, and ( )y t  is the measured 

value. Firstly, the input variables of ( )ER t  and ( )EC t  are transferred to the fuzzy controller for 

processing, and the output variables of , ,  kp ki kd  are obtained. Then, the output variables are 

transferred to the PID controller to modify the parameters 0 0 0, ,kp ki kd , and the modified PID 

parameters are used to control the system.  

In structural topology optimization, the augmented Lagrange method is usually used to deal 

with volume constraints. However, at the end of the iteration process, the value of Lagrange 

multiplier cannot continue to increase. If the volume constraint still does not meet the convergence 

conditions, the volume fraction cannot be effectively reduced, and the iteration process will oscillate 

or even fail to converge. 

Therefore, in order to obtain better convergence effect of volume constraint and solve the 

problem that Lagrange multiplier cannot be effectively increased, fuzzy PID control algorithm is 
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introduced into structural topology optimization. Fuzzy PID controller can calculate the value of 

Lagrange multiplier according to the difference between the current volume fraction and the target 

volume fraction, thereby obtaining good convergence effect of volume constraint. 

Fuzzy PID controller uses Mamdani fuzzy controller, and the triangular membership function is 

used to fuzzify the input variables because of its uniform distribution and high sensitivity in the 

universe. The Max-Min rule is employed for the fuzzy control decision-making, and the gravity 

center method is employed for the de-blurring. 

The input variables of the fuzzy controller are: volume deviation ER  between the set volume 

fraction value and the current volume fraction, and volume deviation change rate EC . And the 

calculation formulas of input variables ER  and EC  are expressed respectively as follows. 

max

-1

= −

= −

iT iT

iT iT iT

ER vol V

EC ER ER
                              (16) 

where, iTER
 
is the volume deviation value in the thiT  iteration, and iTEC  is the volume 

deviation change rate in the thiT  iteration. 

The vector, consisting of the output variables , ,  kp ki kd  of the fuzzy controller, is 

defined as the correction value of PID controller, and the calculating formula of the output variables 

, ,  kp ki kd  of the fuzzy controller is expressed as follows. 

 ( ), , =pid evalfis ER EC

 

                         (17) 

where,  =   
T

pid kp ki kd ,   is the fuzzy rules defined according to Table 1, evalfis  is 

the MATLAB function, which is used to calculate the output variables. 

Table 1. Fuzzy rules of the change amount of the proportional coefficient kp , the 

change amount of the integral coefficient ki , and the change amount of the differential 

coefficient kd . 

iTER  
iTEC

 

NB NM NS Z PS PM PB 

NB PB/NB/PS PB/NB/NS PM/NM/NB PN/NM/NB PS/NM/NB Z/Z/PM Z/Z/PS 

NM PB/NB/PS PB/NB/NS PM/NM/NB PM/NM/NB PS/NS/NM Z/Z/PS NS/PS/Z 

NS PM/NM/Z PM/NM/NS PM/NS/NB PM/NS/NM PS/NS/NM NS/PM/NS NS/PM/Z 

Z PS/NM/Z PM/NM/NS PS/NS/NS PS/NS/NS Z/Z/NS NM/PM/Z NM/PM/Z 

PS PS/NM/Z PS/NS/Z PS/NS/Z Z/Z/Z NS/PS/Z NM/PM/PS NM/PB/Z 

PM PS/Z/PB Z/Z/PM Z/Z/PM NS/PS/NM NM/PS/PM NM/PB/NS NB/PB/PB 

PB Z/Z/PB Z/Z/PM Z/Z/PM NM/PS/PM NM/PM/PM NM/PB/PS NB/PB/PB 

In Table 1, iTER  and iTEC  are the input variables of the fuzzy controller. kp , ki , and 

kd  are the output variables of the fuzzy controller. NS, NM, NB, Z, PS, PM, and PB indicate the 

seven values of triangular membership functions used to fuzzify the input and output variables 

following the fuzzy rules, which are the abbreviated forms of negative small, negative middle, 

negative big, zero, positive small, positive middle, positive big, respectively. 

Then the output variables are used to modify the PID initial parameters 0 0 0, ,kp ki kd . The 
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calculation formula of the modified PID initial parameters is formulated as follows. 

0

0

0





= +

= +

= + 

kp

ki

kd

kp kp

ki ki

kd kd

                               (18) 

The corrected PID parameters can be used to calculate the Lagrange multiplier and deal with the 

volume constraint. The calculation formula of the improved Lagrange multiplier is formulated as 

follows. 

1

* * *
 

= + + 
 

iT

iT iT iT iTkp ER ki ER kd EC                   (19) 

where, iT  is the Lagrange multiplier at the thiT  iteration. By substituting the Lagrange multiplier 

updating formula proposed in Eq (19) into Eq (5), the volume constraint can be treated. 

2.4. Calculation of topological derivatives 

The calculation of topological derivative plays an important role in the process of topology 

optimization. To simplify the calculating process of topological derivatives and improve the 

calculating efficiency of topology optimization, the topological derivative is calculated by using the 

variation of the objective function. The finite difference has the advantages of relatively simple 

equations and convenient calculation procedures, by which the grid can be easily divided and time 

can be saved. Moreover, it can make use of the structural topological meshes to easily construct 

high-precision schemes. Therefore, the finite difference is adopted for sensitivity calculation. 

When only the fixed external load is considered, the objective function, the stiffness matrix and 

the global displacement vector of structure will change when the internal material is added or deleted. 

Therefore, according to the variation of the objective function before and after the insertion of hole, 

the calculating formula of objective function change J  can be obtained as follows. 
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        (20) 

where, J  is the variation of the objective function; K  is the stiffness matrix of structure; U  is 

the global displacement vector; K  is the variation of the stiffness matrix; U  is the variation of 

the global displacement vector; ( ) +  T
U K K U  is the high-order infinitesimal term, which can 

be ignored. Therefore, the calculating formula of the variation of objective function expressed by 

Eq (20), namely the calculating formula of the topological derivative, can be expressed as follows. 

1

2
 = = − T

td JJ U KU                             (21) 
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3. Formulation of topology optimization problem 

3.1. Topology optimization for minimizing the structural compliance 

The mathematical expression of the minimum compliance problem is formulated as follows. 
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where, J  represents the overall compliance value of the structure; u  is the actual displacement;

U  is the allowable displacement in the displacement field; v  is the virtual displacement; 

( ) ( ), =a u v l v  is the weak form of the elastic balance equation; ( ),a u v  is the internal force virtual 

work of the elastic body, and ( )l v  is the virtual work of external force, which are expressed 

respectively as follows. 
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where, E  is the elastic modulus of the material,   is the strain tensor. 

In this work, we mainly study the optimization problem in the static load equilibrium state 

where the virtual displacement v  and the actual displacement u  of the elastic equilibrium 

equation are equal. The elastic equilibrium equation always satisfies the constraint. Therefore, the 

mathematical model of Eq (23) can be transformed into a minimum compliance problem with only 

one volume constraint as follows. 
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Here, the Lagrange multiplier method is employed to transform Eq (24) into an unconstrained 

structural topology optimization problem, as shown in Eq (25). 

( )
t

  


= −  +  +   max
DD

J F vd b v Vdd                (25) 

where,   denotes the Lagrange multiplier. 

3.2. Implementation of the numerical algorithm 

Figure 4 shows the flow chart of the PLSM based on RDE and fuzzy PID control algorithm. 
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Start

Initialize control parameter 

Initialize  fuzzy PID 
controller

Calculate the element 
stiffness matrix

Establish the relationship 
between CS-RBF and level 

set equation 

Define structural boundary 
conditions

Calculate the displacement, 
stiffness matrix and overall 
compliance of the structure 

by finite element analysis

Calculate topological 
derivatives

Update the value of 
Lagrange multiplier to deal 

with volume constraint

Update level set function

End

No

Yes

Output optimization results

Judge whether 
convergence condition 

is satisfied

 

Figure 4. Flow chart of numerical algorithm corresponding to the proposed method. 

The implementation process of the optimization algorithm shown in Figure 4 can be also 

described as the following iterative steps. 

Step 1: Discretize the structure design domain into finite element meshes, define the initial state 

of level set function  , calculate the CS-RBF matrix ( )xg  at the reference point, and calculate 

the initial values of design variables ( )t . 

Step 2: Initialize fuzzy PID controller: define the input variables ER  and EC , the output 

variables , ,  kp ki kd  of the fuzzy adaptive PID controller according to Eqs (16) and (17). 

Formulate the fuzzy rules, and set the PID initial parameters 0 0 0, ,kp ki kd . 

Step 3: Prescribe the boundary constraints and load conditions of the structure, and calculate 

the element stiffness matrix. 

Step 4: Start iteration, and set the number of iterations as 1: 200=iT . 

Step 5: Calculate the structural displacement matrix U , the structural stiffness matrix K , the 

value of structural compliance J , and the values of topological derivative according to Eq (21).  

Step 6: Update the value of Lagrange multiplier iT  according to Eq (19), and deal with the 

volume constraint. 

Step 7: Update the design variables ( )t  and the level set functions   according to Eq (15). 
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Step 8: Set the convergence value as 1 3 = −e , and judge whether the optimization results 

satisfy the convergence condition dΩ  max
D

V  and 1 −− iT iTJ J . If the convergence condition is 

not satisfied, repeat steps (5) to (8); if the convergence condition is satisfied, stop the iteration and 

output the optimization results, the corresponding optimization curves of objective function and 

volume fraction. 

3.3. Case study on two methods for processing volume constraint 

In this section, to verify that using fuzzy PID control algorithm to calculate Lagrange multiplier 

can get good effect on processing volume constraint, topology optimization of the Michell beam 

structure by the PLSM based on the RDE is used for case study. Where, two methods, namely the 

fuzzy PID control algorithm and the augmented Lagrange method, are used for processing volume 

constraint, respectively. 

The design domain and boundary conditions of the Michell beam structure are shown in 

Figure 5. The aspect ratio of the design domain is 5:2, which is divided into 100 times 40 

quadrilateral meshes. The lower left boundary is fixed, whereas the lower right boundary is simply 

supported. The concentrated load of 100=F  is applied at the midpoint of the lower side. Elastic 

modulus of material is set as 0 1=E . To avoid the singularity of structural stiffness during calculation, 

elastic modulus of the void is set as 1 9= −minE e . Poisson’s ratio is set as 0.3 = . The volume 

fraction constraint is set as 0.5=maxV . The regularization parameter is set as 2 4 = −e . The initial 

values of fuzzy PID controller are set as 0 10 0 10 0 5, ,= = =kp ki kd , respectively. Figure 5 shows 

the history curves of Lagrange multiplier and volume fraction obtained by the two different methods 

during topology optimization of the Michell beam structure. Where, Figure 6(a) shows the history 

curves of Lagrange multiplier and volume fraction obtained by the fuzzy PID control algorithm; and 

Figure 6(b) shows the history curves of Lagrange multiplier and volume fraction obtained by the 

augmented Lagrange method. 

F=100

100

40

 

Figure 5. Initial design domain and boundary condition of Michell beam structure. 
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(a) By fuzzy PID control algorithm          (b) By augmented Lagrange method 

Figure 6. History curves of Lagrange multiplier and volume fraction obtained by two methods 

for processing volume constraint during topology optimization of the Michell beam structure. 

From Figure 6(a), it can be seen that: at the beginning of the iteration process, the Lagrange 

multiplier obtained by fuzzy PID control algorithm increases greatly; at the end of the iteration 

process, the growth rate of Lagrange multiplier gradually decreases; when the value of Lagrange 

multiplier remains stable, the volume fraction is optimized to its target value and remains stable. 

The iterative format of the augmented Lagrange multiplier with the curves shown in Figure 6(b) 

is expressed by Eq (26). 

max

[ ( )]

= exp
+







G
p dt GD

D

d Fd

d
                         (26) 

According to Eq (26), the value of   is not zero at the beginning of iteration. During the 

iterative optimization process, the topology optimization of the structure is realized by continuously 

deleting the elements with small topological derivative. 

From Figure 6(b), it can be seen that: at the beginning of the iteration process, the value of 

Lagrange multiplier gradually increases; at the end of the iteration process, the value of Lagrange 

multiplier oscillates obviously, which leads to the corresponding fluctuation in volume fraction. The 

fluctuation in volume fraction is not conducive to the convergence of topology optimization. 

Moreover, the volume fraction is finally optimized to 0.46, which is lower than its target value. 

According to the curves of Lagrange multiplier and volume fraction in Figure 6, it can be concluded 

that: compared with the augmented Lagrange method, fuzzy PID control algorithm has obviously 

good numerical stability and high optimization convergence efficiency. In other words, using fuzzy 

PID control algorithm to deal with volume constraints can get relatively stable Lagrange multiplier 

optimization curve, and make the optimization process of volume constraints relatively stable. 

The final topology optimization results of the Michell beam structure obtained by the two 

different methods for processing volume constraint are shown in Figure 7. Where, Figure 7 (a) shows 

the final optimization results obtained by the fuzzy PID control algorithm, and Figure 7(b) shows the 

final optimization results by the augmented Lagrange method. From Figure 7, it can be concluded 
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that the correct and reasonable structure can be obtained by both of the two methods for processing 

volume constraint. 

  

(a) By fuzzy PID control algorithm        (b) By augmented Lagrange method 

Figure 7. Topology optimization results of the Michell beam structure obtained by two 

methods for processing volume constraint. 

3.4. Selection of initial PID control parameters 

In fuzzy PID control algorithm, the suitable initial PID control parameters can greatly reduce 

the calculating burden, accelerate the convergence speed and improve the convergence stability. In 

this paper, the initial PID control parameters are selected by the trial method. In other words, the 

initial PID control parameters are determined according to the specific optimization requirements 

and effect. To illustrate the influence of different values of 0 0 0, ,kp ki kd  on the optimization 

results, topology optimization of the cantilever beam structure by the proposed method is used as a 

case in this section. 

The design domain and boundary condition of the cantilever beam structure are shown in 

Figure 8. The aspect ratio of the design domain is 5:3, which is divided into 100 times 60 

quadrilateral meshes. The left side of the structure is fully fixed, whereas the other three sides are 

free. The concentrated load of 100=F  is applied at the midpoint of the right side. Elastic modulus 

of material is set as 0 1=E . To avoid the singularity of structural stiffness during calculation, elastic 

modulus of the void is set as 1 9= −minE e . Poisson’s ratio is set as 0.3 = . The regularization 

parameter is set as 2 4 = −e . The volume fraction constraint is set as 0.5=maxV . 

F=100

100

60

 

Figure 8. Initial design domain and boundary conditions of the cantilever beam structure. 
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To verify the influence of initial PID control parameters on the optimization results, the initial 

PID control parameters are taken as ( 0=5 0=5 0=5, ,kp ki kd ), ( 0=5 0=5 0=15, ,kp ki kd ), 

( 0=5 0=8 0=15, ,kp ki kd ) and ( 0=15 0=8 0=15, ,kp ki kd ), respectively. Table 2 lists the numerical 

results during topology optimization of the cantilever beam structure with the four groups of 

different initial PID control parameters for comparison. 

Table 2. Numerical results during topology optimization of the cantilever beam structure 

with the four groups of different initial PID control parameters. 

Initial value of PID Iterations Objective function Volume fraction 

0=5 0=5 0=5kp ki kd, ,  250 3.96 times 105 0.50 

0=5 0=5 0=15kp ki kd, ,  250 3.99 times 105 0.50 

0=5 0=8 0=15kp ki kd, ,  250 3.99 times 105 0.50 

0=15 0=8 0=15kp ki kd, ,  250 4.00 times 105 0.50 

 

Figures 9, 10 and 11 show the history curves of Lagrange multiplier, objective function and 

volume fraction during topology optimization of the cantilever beam structure with the four groups 

of different initial PID control parameters, respectively. Where, the red curves a correspond to the 

initial PID control parameters 0=5 0=5 0=5, ,kp ki kd , the blue curves b correspond to the initial 

PID control parameters 0=5 0=5 0=15, ,kp ki kd , the green curves c correspond to the initial PID 

control parameters 0=5 0=8 0=15, ,kp ki kd  and the black curves d correspond to the initial PID 

control parameters 0=15 0=8 0=15, ,kp ki kd . 

 

Figure 9. History curves of Lagrange multiplier during topology optimization of the 

cantilever beam structure with four groups of different initial PID control parameters. 

By comparing curve a and curve b in Figure 9, it can be found that the optimization history 

curve of Lagrange multiplier does not change obviously when only increasing the value of initial 

parameter 0kd . By comparing curve b and curve c in Figure 9, it can be found that the growth rate 

of Lagrange multiplier is obviously accelerated when only increasing the value of initial parameter 
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0ki . By comparing curve c and curve d in Figure 9, it can be found that the growth rate of Lagrange 

multiplier will also increase by a relatively small margin when only increasing the value of initial 

parameter 0kp . Accordingly, it can be concluded that the value of Lagrange multiplier can be 

adjusted and controlled by changing the values of initial PID control parameters. Specifically, 

increasing the value of initial parameters 0kp  and 0ki  can accelerate the growth rate of Lagrange 

multiplier, and the change of initial parameter 0ki  can control the growth rate of Lagrange multiplier 

more obviously. 

 

Figure 10. History curves of objective function during topology optimization of the 

cantilever beam structure with four groups of different initial PID control parameters. 

 

Figure 11. History curves of volume fraction during topology optimization of the 

cantilever beam structure with four groups of different initial PID control parameters. 
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From Figures 10 and 11, it can be found that: when the initial PID parameters are taken as 

0=5 0=5 0=5, ,kp ki kd , about 150 iterations are needed to make the optimization process converge, 

the final objective function value is 3.96 times 105, and the optimization history curves of objective 

function and volume fraction have small fluctuations, resulting in long adjustment time and poor 

stability of optimization process. 

By comparing curve a and curve b in Figures 10 and 11, it can be found that: when keeping the 

values of initial parameters 0kp  and 0ki  unchanged and only increasing the value of initial 

parameter 0kd , it also takes about 150 iterations to make the optimization process converge, and the 

final objective function value is 3.99 times 105. It is certified that increasing the value of initial 

parameter 0kd  can make the optimization history curves of objective function and volume fraction 

more smooth and improve the stability of optimization process. 

By comparing curve b and curve c in Figures 10 and 11, it can be found that when keeping the 

values of initial parameters 0kp  and 0kd  unchanged and only increasing the value of initial 

parameter 0ki , the increasing rate of objective function and the decreasing rate of volume fraction 

are both obviously accelerated, it takes about 80 iterations to make the optimization process converge, 

the final objective function value is 3.99 times 105, and the optimization history curves of objective 

function and volume fraction are relatively smooth, without wild fluctuations and oscillations. It is 

certified that increasing the value of initial parameter 0ki  can reduce the number of iterations and 

improve the optimization efficiency.  

By comparing curve c and curve d in Figures 10 and 11, it can be found that when keeping the 

values of initial parameters 0ki  and 0kd  unchanged and only increasing the value of initial 

parameter 0kp , the increasing rate of objective function and the decreasing rate of volume fraction 

are both further accelerated, it takes about 50 iterations to make the optimization process converge, 

the final objective function value is 4.00 times 105, and the optimization history curves of objective 

function and volume fraction are smooth, implying that the optimization process is stable. It is 

proved that increasing the value of initial parameter 0kp  can also improve the optimization 

efficiency and obtain satisfactory results. The maximum difference between the final objective 

function values obtained by the four groups of initial PID control parameters is less than 2%, which 

proves that changing the values of the initial PID control parameters will not affect the objective 

function significantly. 

Therefore, according to the specific effects of the initial PID control parameters on the 

optimization results, the values of the initial PID control parameters can be selected appropriately, so 

as to obtain stable and fast topology optimization process and accurate topology optimization results. 

4. Numerical examples 

In this section, several typical 2D and 3D structures are optimized as numerical examples to 

illustrate the effectiveness of the proposed method. Taking the minimum compliance as the objective 

function and the volume fraction as the constraint condition, the optimization results obtained by the 

proposed method are analyzed and compared with those obtained by other methods to demonstrate 

the stability and effectiveness of this method. 

4.1. The L-beam structure 

Figure 12 shows the design domain and boundary conditions of the L-beam structure, which is 
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divided into 3200 quadrilateral meshes. The upper boundary is fixed, whereas a vertical downward 

force 100=F  is applied at the midpoint of the right boundary. The design domain is divided into 

3200 elements. Elastic modulus of material is set as 0 1=E . To avoid the singularity of structural 

stiffness during calculation, elastic modulus of the void is set as 1 9= −minE e . Poisson's ratio is set as 

0.3 = . The volume fraction constraint is set as 0.5=maxV . The regularization parameter is set as 

2 4 = −e . The initial values of fuzzy PID controller are set as 0 15 0 12 0 15, ,= = =kp ki kd , 

respectively. 

F=100

40

40

40 40
 

Figure 12. Initial design domain and boundary conditions of the L-beam structure. 

Figure 13 shows the topology optimization result of the L-beam structure obtained by the 

proposed method. Figure 14 shows the history curves of objective function and volume fraction 

during topology optimization of the L-beam structure by the proposed method. 

From Figure 13, the reasonable topology configuration of the L-beam structure is obtained by 

the proposed method, and the structure boundary is smooth and clear. From Figure 14, the L-beam 

structure from initial volume fraction of 0.75 to target volume fraction of 0.4, it takes about 50 

iterations, and the final value of objective function is 6.40 times 105. In the optimization process, the 

optimization curves of objective function and volume fraction are relatively smooth, almost no 

fluctuations, and the optimization process is stable. 

 

 

Figure 13. Topology optimization result of the L-beam structure obtained by the 

proposed method. 
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Figure 14. History curves of objective function and volume fraction during topology 

optimization of the L-beam structure by the proposed method. 

4.2. The multi-load bridge structure 

Figure 15 shows the design domain and boundary conditions of the multi-load bridge structure. 

The aspect ratio of the design domain is 8:3, which is divided into 80 times 30 quadrilateral meshes. 

The lower left boundary is fixed, whereas the lower right boundary is simply supported. A 

concentrated load of 60=F  is applied at the midpoint of the bottom of bridge, and two 

concentrated loads of 30=F  are applied at the one-fourth point and the three-fourth point of the 

bottom of bridge, respectively. Elastic modulus of material is set as 0 1=E . To avoid the singularity 

of structural stiffness during calculation, elastic modulus of the void is set as 1 9= −minE e . Poisson's 

ratio is set as 0.3 = . The volume fraction constraint is set as 0.5=maxV . The regularization 

parameter is set as 2 4 = −e . The initial values of fuzzy PID controller are set as 

0 15 0 12 0 15, ,= = =kp ki kd , respectively. 

F=60

80

30

F=30 F=30

 

Figure 15. Design domain model and boundary conditions of the multi-load bridge 

structure. 
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To further verify the effectiveness of the proposed method, the proposed method, level set 

method based on RDE (Otomori et al. [28]) and PLSM based on CS-RBF (Cui et al. [33]) are 

respectively utilized to address topology optimization of the multi-load bridge structure, and the 

optimization results are analyzed and compared in the meanwhile. Figure 16 shows the topology 

optimization results of the multi-load bridge structure obtained by the above-mentioned three 

methods. Figure 17 shows the history curves of objective function during topology optimization of 

the multi-load bridge structure by the above-mentioned three methods. Figure 18 shows the history 

curves of volume fraction during topology optimization of the multi-load bridge structure by the 

above-mentioned three methods. In Figures 17 and 18, the red curve b represents the curve obtained 

by the proposed method, the blue curve c represents the curve obtained by the level set method based 

on RDE, and the green curve d represents the curve obtained by the PLSM based on CS-RBF. 

Table 3 lists the numerical results in topology optimization of the multi-load bridge by the three 

methods for comparison. 

       

      (a) Initial structure                  (b) By the proposed method 

      

  (c) By the level set method based on RDE     (d) By the PLSM based on CS-RBF 

Figure 16. Topology optimization results of the multi-load bridge structure by the three 

methods. 

 

Figure 17. History curves of objective function during topology optimization of the 

multi-load bridge structure by the three methods. 
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Figure 18. History curves of volume fraction during topology optimization of the 

multi-load bridge structure by the three methods. 

Table 3. Numerical results for topology optimization of the multi-load bridge by the 

three methods. 

Optimization method Final value of compliance Final value of volume fraction 

The proposed method 1.81 times 105 0.50 

LSM based on RDE 2.02 times 105 0.50 

PLSM based on CS-RBF 1.90 times 105 0.50 

 

From the image optimization effect in Figure 16, the topological structures obtained by the three 

optimization methods are basically the same, and the correct and reasonable optimal structures can 

be obtained. However, compared with the level set method based on RDE, the structure boundary 

obtained by the proposed method is smoother and clearer, and compared with the PLSM based on 

CS-RBF has simpler topological configuration. According to the optimization curves in Figure 17, 

Figure 18 and the optimization results in Table 3, the proposed method needs about 50 iterations 

when the volume constraint converges, and the objective function value is 1.81 times 105. Compared 

with PLSM based on CS-RBF, the objective function value is reduced by 4.7%. Compared with the 

level set method based on RDE, the objective function value is reduced by 11.1%, and better 

structural performance is obtained. It can be found that the introduction of virtual interface energy 

fully relaxes the topology optimization problem, obtains the optimal structure with smooth boundary, 

and improves the numerical stability of the optimization problem. Therefore, by comparing the three 

optimization methods, it can be concluded that the proposed method can achieve satisfactory 

optimization results in terms of optimization effect and computational efficiency. 

4.3. The 3D cantilever beam structure 

Figure 19 shows the design domain and boundary conditions of the 3D cantilever beam structure. 

The ratio of the three dimensions of the design domain is 15:10:1, which is divided into 60 times 40 

times 4 elements. The left boundary is fixed, whereas the right midpoint is applied with vertical 

downward load 100F = . Elastic modulus of material is set as 0 1E = . To avoid the singularity of 

structural stiffness during calculation, elastic modulus of the void is set as 1 9minE e= − . Poisson's ratio 
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is set as 0.3 = . The target volume fraction is set as 0.5maxV = . The regularization parameter is set 

as 2 4e = − . The initial PID parameter are set as 0 40 0 20 0 15kp ki kd= = =, , , respectively. 

F=100

40

60

 

Figure 19. Initial design domain and boundary conditions of the 3D cantilever beam 

structure. 

The topology optimization result of the 3D cantilever structure obtained by the proposed method 

is shown in Figure 20. The history curves of the objective function and volume fraction during 

topology optimization of the 3D cantilever structure by the proposed method are shown in Figure 21. 

It can be seen from Figure 20, using the algorithm proposed in this paper to optimize the 3D 

cantilever structure, clear structure boundary can be obtained, and there is no bad numerical 

phenomenon such as checkerboard. From the optimization curves shown in Figure 21, the objective 

function and the volume fraction change smoothly in the whole optimization process, and there is 

almost no fluctuation and oscillation phenomenon. And the final objective function value is 9.88 

times 105. Therefore, it can be concluded that although the number of 3D structure meshing is 

several times larger than 2D structure, the proposed algorithm can improve the optimization 

efficiency, ensure the stability of the optimization process, and get a clear structure configuration. 

 

 

Figure 20. Topology optimization results of the 3D cantilever beam structure obtained by 

the proposed method. 
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Figure 21. History curves of objective function and volume fraction during topology 

optimization of the 3D cantilever beam structure by the proposed method. 

4.4. The 3D arch bridge structure 

Figure 22 shows the design domain and boundary conditions of the 3D arch bridge structure. 

The ratio of the three dimensions of the design domain is 15:5:1, which is divided into 60 times 20 

times 4 elements. The displacement of nodes within two-unit length at the left and the right ends of 

the lower boundary of the structure is fully constrained, whereas the plate area with one-unit 

thickness on the upper surface of the structure is non-design area. The vertical downward load 5F =  

is applied to all nodes on the upper surface of the structure. The design domain Elastic modulus of 

material is set as 0 1E = . To avoid the singularity of structural stiffness during calculation, elastic 

modulus of the void is set as 1 9minE e= − . Poisson's ratio is set as 0.3 = . The target volume 

fraction is set as 0.4maxV = . The regularization parameter is set as 2 4e = − . The initial PID 

parameter are set as 0 80 0 45 0 40kp ki kd= = =, , , respectively. 

F=5

60

19

1

4

 

Figure 22. Initial design domain and boundary conditions of the 3D arch bridge 

structure. 
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(a) Front view 

 

(b) Side view 

Figure 23. Topology optimization result of the 3D arch bridge structure obtained by the 

proposed method from different angles. 

 

Figure 24. History curves of objective function and volume fraction during topology 

optimization of the 3D arch bridge structure by the proposed method. 

Figure 23 shows the topology optimization results of the 3D arch bridge structure from different 

angles, in which (a) is the front view and (b) is the side view. Figure 24 shows the history curves of 

objective function and volume fraction during topology optimization of the 3D arch bridge structure 

by the proposed method. 

From Figures 23 and 24, it can be seen that the final result obtained by using the algorithm 

proposed in this paper to optimize the arch bridge structure is similar to the arch bridge structure in 
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practical application, which proves that the method proposed in this paper has certain reference value 

in practical engineering application. Due to the existence of non- design area in the optimization 

process, it takes about 70 iterations to reduce the volume fraction from the initial value of 0.95 to the 

target value of 0.4, and the final objective function value is 1.10 times 106. The results show that 

using the proposed algorithm for topology optimization of 3D structure can get the correct structure 

configuration, and the optimization efficiency is high, the convergence speed is high, and the 

iterative process is stable, which has a certain practicality in engineering applications. 

5. Conclusions 

In this paper, a PLSM based on the RDE and the fuzzy PID control algorithm is proposed to 

solve structural topology optimization problem of minimum compliance under volume constraints. 

Firstly, the RDE is used as the evolution equation of the level set function, meanwhile, the 

topological derivative of the material domain is used as the reaction term of the RDE to drive the 

update of level set function, which can generate holes in the material domain and ensure the stability 

of numerical calculation. Secondly, in the process of solving the RDE, the CS-RBF is used to 

interpolate the level set function to correct the diffusion term in RDE, which can improve the 

efficiency and accuracy of calculation because the CS-RBF owns the advantages of sparse 

coefficient matrix and local correlation of parameters. Thirdly, the fuzzy PID control algorithm is 

used to adjust the value of Lagrange multiplier so as to control the volume constraint of structural 

topology optimization. The comparative examples illustrate that a more stable optimization history 

curve of Lagrange multiplier is obtained by the fuzzy PID control algorithm, which improves the 

stability of the convergence process of volume constraint as well as topology optimization. Thus, in 

addition to inheriting the merits of the PLSM, the proposed method takes the advantages of the RDE, 

the CS-RBF and the fuzzy PID control algorithm. By this method, not only can clear and smooth 

boundary of structural topology optimization result be obtained, but also the stability and efficiency 

of structural topology optimization process can be improved. Furthermore, this method has been 

applied to 3D structural topology optimization, which broadens its application scope and confirms its 

effectiveness in the meanwhile. 
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