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Abstract: We consider a general stochastic linear-quadratic differential game with time-inconsistency.
The time-inconsistency arises from the presence of quadratic terms of the expected state as well as
state-dependent term in the objective functionals. We define an equilibrium strategy, which is differ-
ent from the classical one, and derive a sufficient condition for equilibrium strategies via a system of
forward-backward stochastic differential equation. When the state is one-dimensional and the coeffi-
cients are all deterministic, we find an explicit equilibrium strategy. The uniqueness of such equilib-
rium strategy is also given.
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1. Introduction

Time inconsistency in dynamic decision making is often observed in social systems and daily
life. Motivated by practical applications, especially in mathematical economics and finance, time-
inconsistency control problems have recently attracted considerable research interest and efforts at-
tempting to seek equilibrium, instead of optimal controls. At a conceptual level, the idea is that a
decision made by the controller at every instant of time is considered as a game against all the deci-
sions made by the future incarnations of the controller. An “equilibrium” control is therefore one such
that any deviation from it at any time instant will be worse off. The study on time inconsistency by
economists can be dated back to Stroz [1] and Phelps [2,3] in models with discrete time (see [4] and [5]
for further developments), and adapted by Karp [6, 7], and by Ekeland and Lazrak [8–13] to the case
of continuous time. In the LQ control problems, Yong [14] studied a time-inconsistent deterministic
model and derived equilibrium controls via some integral equations.

It is natural to study time inconsistency in the stochastic models. Ekeland and Pirvu [15] studied the
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non-exponential discounting which leads to time inconsistency in an agent’s investment-consumption
policies in a Merton model. Grenadier and Wang [16] also studied the hyperbolic discounting problem
in an optimal stopping model. In a Markovian systems, Björk and Murgoci [17] proposed a definition
of a general stochastic control problem with time inconsistent terms, and proposed some sufficient
condition for a control to be solution by a system of integro-differential equations. They constructed
some solutions for some examples including an LQ one, but it looks very hard to find not-to-harsh
condition on parameters to ensure the existence of a solution. Björk, Murgoci and Zhou [18] also
constructed an equilibrium for a mean-variance portfolio selection with state-dependent risk aversion.
Basak and Chabakauri [19] studied the mean-variance portfolio selection problem and got more details
on the constructed solution. Hu, Jin and Zhou [20, 21] studied the general LQ control problem with
time inconsistent terms in a non-Markovian system and constructed an unique equilibrium for quite
general LQ control problem, including a non-Markovian system.

To the best of our knowledge, most of the time-inconsistent problems are associated with the con-
trol problems though we use the game formulation to define its equilibrium. In the problems of game
theory, the literatures about time inconsistency is little [22, 23]. However, the definitions of equilib-
rium strategies in the above two papers are based on some corresponding control problems like before.
In this paper, we formulate a general stochastic LQ differential game, where the objective functional
of each player include both a quadratic term of the expected state and a state-dependent term. These
non-standard terms each introduces time inconsistency into the problem in somewhat different ways.
We define our equilibrium via open-loop controls. Then we derive a general sufficient condition for
equilibrium strategies through a system of forward-backward stochastic differential equations (FBS-
DEs). An intriguing feature of these FBSDEs is that a time parameter is involved; so these form a flow
of FBSDEs. When the state process is scalar valued and all the coefficients are deterministic functions
of time, we are able to reduce this flow of FBSDEs into several Riccati-like ODEs. Comparing to the
ODEs in [20], though the state process is scalar valued, the unknowns are matrix-valued because of
two players. Therefore, such ODEs are harder to solve than those of [20]. Under some more stronger
conditions, we obtain explicitly an equilibrium strategy, which turns out to be a linear feedback. We
also prove that the equilibrium strategy we obtained is unique.

The rest of the paper is organized as follows. The next section is devoted to the formulation of our
problem and the definition of equilibrium strategy. In Section 3, we apply the spike variation technique
to derive a flow of FBSEDs and a sufficient condition of equilibrium strategies. Based on this general
results, we solve in Section 4 the case when the state is one dimensional and all the coefficients are
deterministic. The uniqueness of such equilibrium strategy is also proved in this section.

2. Problem setting

Let T > 0 be the end of a finite time horizon, and let (Wt)0≤t≤T = (W1
t , ...,W

d
t )0≤t≤T be a d-

dimensional Brownian motion on a probability space (Ω,F ,P). Denote by (Ft) the augmented filtration
generated by (Wt).

Let Sn be the set of symmetric n × n real matrices; L2
F

(Ω,Rl) be the set of square-integrable
random variables; L2

F
(t,T ;Rn) be the set of {Fs}s∈[t,T ]-adapted square-integrable processes; and

L2
F

(Ω; C(t,T ;Rn)) be the set of continuous {Fs}s∈[t,T ]-adapted square-integrable processes.
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We consider a continuous-time, n-dimensional nonhomogeneous linear controlled system:

dXs = [AsXs + B′1,su1,s + B′2,su2,s + bs]ds +
d∑

j=1

[C j
sXs + D j

1,su1,s + D j
2,su2,s + σ

j
s]dW j

s , X0 = x0. (2.1)

Here A is a bounded deterministic function on [0,T ] with value in Rn×n. The other param-
eters B1, B2,C,D1,D2 are all essentially bounded adapted processes on [0,T ] with values in
Rl×n,Rl×n,Rn×n,Rn×l,Rn×l, respectively; b and σ j are stochastic processes in L2

F
(0,T ;Rn). The pro-

cesses ui ∈ L2
F

(0,T ;Rl), i = 1, 2 are the controls, and X is the state process valued in Rn. Finally,
x0 ∈ R

n is the initial state. It is obvious that for any controls ui ∈ L2
F

(0,T ;Rl), i = 1, 2, there exists a
unique solution X ∈ L2

F
(Ω,C(0,T ;Rn)).

As time evolves, we need to consider the controlled system starting from time t ∈ [0,T ] and state
xt ∈ L2

Ft
(Ω;Rn):

dXs = [AsXs + B′1,su1,s + B′2,su2,s + bs]ds +
d∑

j=1

[C j
sXs + D j

1,su1,s + D j
2,su2,s + σ

j
s]dW j

s , Xt = xt. (2.2)

For any controls ui ∈ L2
F

(0,T ;Rl), i = 1, 2, there exists a unique solution Xt,xt ,u1,u2 ∈ L2
F

(Ω,C(0,T ;Rn)).
We consider a two-person differential game problem. At any time t with the system state Xt = xt, the

i-th (i = 1, 2) person’s aim is to minimize her cost (if maximize, we can times the following function
by −1):

Ji(t, xt; u1, u2) =
1
2
Et

∫ T

t
[⟨Qi,sXs, Xs⟩ + ⟨Ri,sui,s, ui,s⟩]ds +

1
2
Et[⟨GiXT , XT ⟩]

−
1
2
⟨hiEt[XT ],Et[XT ]⟩ − ⟨λixt + µi,Et[XT ]⟩ (2.3)

over u1, u2 ∈ L2
F

(t,T ;Rl), where X = Xt,xt ,u1,u2 , and Et[·] = E[·|Ft]. Here, for i = 1, 2, Qi and Ri

are both given essentially bounded adapted process on [0,T ] with values in Sn and Sl, respectively,
Gi, hi, λi, µi are all constants in Sn, Sn, Rn×n and Rn, respectively. Furthermore, we assume that Qi,Ri

are non-negative definite almost surely and Gi are non-negative definite.
Given a control pair (u∗1, u

∗
2). For any t ∈ [0,T ), ϵ > 0, and v1, v2 ∈ L2

Ft
(Ω,Rl), define

ut,ϵ,vi
i,s = u∗i,s + vi1s∈[t,t+ϵ), s ∈ [t,T ], i = 1, 2. (2.4)

Because each person at time t > 0 wants to minimize his/her cost as we claimed before, we have

Definition 2.1. Let (u∗1, u
∗
2) ∈ L2

F
(0,T ;Rl)×L2

F
(0,T ;Rl) be a given strategy pair, and let X∗ be the state

process corresponding to (u∗1, u
∗
2). The strategy pair (u∗1, u

∗
2) is called an equilibrium if

lim
ϵ↓0

J1(t, X∗t ; ut,ϵ,v1
1 , u∗2) − J1(t, X∗t ; u∗1, u

∗
2)

ϵ
≥ 0, (2.5)

lim
ϵ↓0

J2(t, X∗t ; u∗1, u
t,ϵ,v2
2 ) − J2(t, X∗t ; u∗1, u

∗
2)

ϵ
≥ 0, (2.6)

where ut,ϵ,vi
i , i = 1, 2 are defined by (2.4), for any t ∈ [0,T ) and v1, v2 ∈ L2

Ft
(Ω,Rl).

Remark. The above definition means that, in each time t, the equilibrium is a static Nash equilib-
rium in a corresponding game.
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3. Main result

Let (u∗1, u
∗
2) be a fixed strategy pair, and let X∗ be the corresponding state process. For any

t ∈ [0,T ), as a similar arguments of Theorem 5.1 in pp. 309 of [24], defined in the time inter-
val [t,T ], there exist adapted processes (pi(·; t), (k j

i (·; t) j=1,2,...,d)) ∈ L2
F

(t,T ;Rn) × (L2
F

(t,T ;Rn))d and
(Pi(·; t), (K j

i (·; t) j=1,2,...,d)) ∈ L2
F

(t,T ;Sn) × (L2
F

(t,T ;Sn))d for i = 1, 2 satisfying the following equations:{
dpi(s; t) = −[A′s pi(s; t) +

∑d
j=1(C j

s)′k
j
i (s; t) + Qi,sX∗s ]ds +

∑d
j=1 k j

i (s; t)dW j
s , s ∈ [t,T ],

pi(T ; t) = GiX∗T − hiEt[X∗T ] − λiX∗t − µi,
(3.1)

dPi(s; t) = −
{
A′sPi(s; t) + Pi(s; t)As + Qi,s +

∑d
j=1[(C j

s)′Pi(s; t)C j
s + (C j

s)′K
j
i (s; t) + K j

i (s; t)C j
s]
}
ds

+
∑d

j=1 K j
i (s; t)dW j

i , s ∈ [t,T ],
Pi(T ; t) = Gi,

(3.2)

for i = 1, 2. From the assumption that Qi and Gi are non-negative definite, it follows that Pi(s; t) are
non-negative definite for i = 1, 2.

Proposition 1. For any t ∈ [0,T ), ϵ > 0, and v1, v2 ∈ L2
Ft

(Ω,Rl), define ut,ϵ,vi
i , i = 1, 2 by (2.4). Then

J1(t, X∗t ; ut,ϵ,v1
1 , u∗2) − J1(t, X∗t ; u∗1, u

∗
2) = Et

∫ t+ϵ

t

{
⟨Λ1(s; t), v1⟩ +

1
2
⟨H1(s; t)v1, v1⟩

}
ds + o(ϵ), (3.3)

J2(t, X∗t ; u∗1, u
t,ϵ,v2
2 ) − J2(t, X∗t ; u∗1, u

∗
2) = Et

∫ t+ϵ

t

{
⟨Λ2(s; t), v2⟩ +

1
2
⟨H2(s; t)v2, v2⟩

}
ds + o(ϵ), (3.4)

where Λi(s; t) = Bi,s pi(s; t) +
∑d

j=1(D j
i,s)
′k j

i (s; t) + Ri,su∗i,s and Hi(s; t) = Ri,s +
∑d

j=1(D j
i,s)
′Pi(s; t)D j

i,s for
i = 1, 2.

Proof. Let Xt,ϵ,v1,v2 be the state process corresponding to ut,ϵ,vi
i , i = 1, 2. Then by standard perturbation

approach (cf. [20, 25] or pp. 126-128 of [24]), we have

Xt,ϵ,v1,v2
s = X∗s + Y t,ϵ,v1,v2

s + Zt,ϵ,v1,v2
s , s ∈ [t,T ], (3.5)

where Y ≡ Y t,ϵ,v1,v2 and Z ≡ Zt,ϵ,v1,v2 satisfy{
dYs = AsYsds +

∑d
j=1[C j

sYs + D j
1,sv11s∈[t,t+ϵ) + D j

2,sv21s∈[t,t+ϵ)]dW j
s , s ∈ [t,T ],

Yt = 0,
(3.6){

dZs = [AsZs + B′1,sv11s∈[t,t+ϵ) + B′2,sv21s∈[t,t+ϵ)]ds +
∑d

j=1 C j
sZsdW j

s , s ∈ [t,T ],
Zt = 0.

(3.7)

Moreover, by Theorem 4.4 in [24], we have

Et

[
sup

s∈[t,T )
|Ys|

2
]
= O(ϵ), Et

[
sup

s∈[t,T )
|Zs|

2
]
= O(ϵ2). (3.8)

With A being deterministic, it follows from the dynamics of Y that, for any s ∈ [t,T ], we have

Et[Ys] =
∫ s

t
Et[AsYτ]dτ =

∫ s

t
AsEt[Yτ]dτ. (3.9)
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Hence we conclude that
Et[Ys] = 0 s ∈ [t,T ]. (3.10)

By these estimates, we can calculate

Ji(t, X∗t ; ut,ϵ,v1
1 , ut,ϵ,v2

2 ) − Ji(t, X∗t ; u∗1, u
∗
2)

=
1
2
Et

∫ T

t
[⟨Qi,s(2X∗s + Ys + Zs),Ys + Zs⟩ + ⟨Ri,s(2u∗i + vi), vi⟩1s∈[t,t+ϵ)]ds

+Et[⟨GiX∗T ,YT + ZT ⟩] +
1
2
Et[⟨Gi(YT + ZT ),YT + ZT ⟩]

−⟨hiEt[X∗T ] + λiX∗t + µi,Et[YT + ZT ]⟩ −
1
2
⟨hiEt[YT + ZT ],Et[YT + ZT ]⟩

=
1
2
Et

∫ T

t
[⟨Qi,s(2X∗s + Ys + Zs),Ys + Zs⟩ + ⟨Ri,s(2u∗i + vi), vi⟩1s∈[t,t+ϵ)]ds

+Et[⟨GiX∗T − hiEt[X∗T ] − λiX∗t − µi,YT + ZT ⟩ +
1
2
⟨Gi(YT + ZT ),YT + ZT ⟩] + o(ϵ). (3.11)

Recalling that (pi(·; t), ki(·; t)) and (Pi(·; t),Ki(·; t)) solve, respectively, BSDEs (3.1) and (3.2) for i =
1, 2, we have

Et[⟨GiX∗T − hiEt[X∗T ] − λiX∗t − µi,YT + ZT ⟩]
= Et[⟨pi(T ; t),YT + ZT ⟩]

= Et

[ ∫ T

t
d⟨pi(s; t),Ys + Zs⟩

]
= Et

∫ T

t

[
⟨pi(s; t), As(Ys + Zs) + B′1,sv11s∈[t,t+ϵ) + B′2,sv21s∈[t,t+ϵ)⟩

−⟨A′s pi(s; t) +
d∑

j=1

(C j
s)
′k j

i (s; t) + Qi,sX∗s ,Ys + Zs⟩

+

d∑
j=1

⟨k j
i (s; t),C j

s(Ys + Zs) + D j
1,sv11s∈[t,t+ϵ) + D j

2,sv21s∈[t,t+ϵ)⟩

]
ds

= Et

∫ T

t

[
⟨−Qi,sX∗s⟩ +

〈
B1,s pi(s; t) +

d∑
j=1

(D j
1,s)
′k j

i (s; t), v11s∈[t,t+ϵ)

〉
+

〈
B2,s pi(s; t) +

d∑
j=1

(D j
2,s)
′k j

i (s; t), v21s∈[t,t+ϵ)

〉]
ds (3.12)

and

Et[
1
2
⟨Gi(YT + ZT ),YT + ZT ⟩]

= Et[
1
2
⟨Pi(T ; t)(YT + ZT ),YT + ZT ⟩]

= Et

[ ∫ T

t
d⟨Pi(s; t)(Ys + Zs),Ys + Zs⟩

]
Electronic Research Archive Volume 30, Issue 7, 2550–2567.
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= Et

∫ T

t

{
⟨Pi(s; t)(Ys + Zs), As(Ys + Zs) + B′1,sv11s∈[t,t+ϵ) + B′2,sv21s∈[t,t+ϵ)⟩

+⟨Pi(s; t)[As(Ys + Zs) + B′1,sv11s∈[t,t+ϵ) + B′2,sv21s∈[t,t+ϵ)],Ys + Zs⟩

−⟨[A′sPi(s; t) + Pi(s; t)As + Qi,s

+

d∑
j=1

((C j
s)
′Pi(s; t)C j

s + (C j
s)
′K j

i (s; t) + K j
i (s; t)C j

s)](Ys + Zs),Ys + Zs⟩

+

d∑
j=1

⟨K j
i (s; t)(Ys + Zs),C j

s(Ys + Zs) + D j
1,sv11s∈[t,t+ϵ) + D j

2,sv21s∈[t,t+ϵ)⟩

+

d∑
j=1

⟨K j
i (s; t)[C j

s(Ys + Zs) + D j
1,sv11s∈[t,t+ϵ) + D j

2,sv21s∈[t,t+ϵ)],Ys + Zs⟩

+

d∑
j=1

⟨Pi(s; t)[C j
s(Ys + Zs) + D j

1,sv11s∈[t,t+ϵ) + D j
2,sv21s∈[t,t+ϵ)],

C j
s(Ys + Zs) + D j

1,sv11s∈[t,t+ϵ) + D j
2,sv21s∈[t,t+ϵ)⟩

}
ds

= Et

∫ T

t

[
− ⟨Qi,s(Ys + Zs),Ys + Zs⟩

+

d∑
j=1

⟨Pi(s; t)[D j
1,sv1 + D j

2,sv2],D j
1,sv1 + D j

2,sv2⟩1s∈[t,t+ϵ)

]
ds + o(ϵ) (3.13)

Combining (3.11)-(3.13), we have

Ji(t, X∗t ; ut,ϵ,v1
1 , ut,ϵ,v2

2 ) − Ji(t, X∗t ; u∗1, u
∗
2)

= Et

∫ T

t

[1
2
⟨Ri,s(2u∗i + vi), vi⟩1s∈[t,t+ϵ) +

〈
B1,s pi(s; t) +

d∑
j=1

(D j
1,s)
′k j

i (s; t), v11s∈[t,t+ϵ)

〉
+

〈
B2,s pi(s; t) +

d∑
j=1

(D j
2,s)
′k j

i (s; t), v21s∈[t,t+ϵ)

〉
+

1
2

d∑
j=1

⟨Pi(s; t)[D j
1,sv1 + D j

2,sv2],D j
1,sv1 + D j

2,sv2⟩1s∈[t,t+ϵ)

]
ds + o(ϵ). (3.14)

Take i = 1, we let v2 = 0, then ut,ϵ,v2
2 = u∗2, from (3.14), we obtain

J1(t, X∗t ; ut,ϵ,v1
1 , u∗2) − J1(t, X∗t ; u∗1, u

∗
2)

= Et

∫ T

t

{〈
R1,su∗1 + B1,s p1(s; t) +

d∑
j=1

(D j
1,s)
′k j

1(s; t), v11s∈[t,t+ϵ)

〉
+

1
2

〈[
R1,s +

d∑
j=1

(D j
1,s)
′P1(s; t)D j

1,s

]
v1, v1

〉}
ds

Electronic Research Archive Volume 30, Issue 7, 2550–2567.
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= Et

∫ t+ϵ

t

{
⟨Λ1(s; t), v1⟩ +

1
2
⟨H1(s; t)v1, v1⟩

}
ds + o(ϵ). (3.15)

This proves (3.3), and similarly, we obtain (3.4). □

Because of Ri,s and Pi(s; t), i = 1, 2 are non-negative definite, Hi(s; t), i = 1, 2 are also non-negative
definite. In view of (3.3)-(3.4), a sufficient condition for an equilibrium is

Et

∫ T

t
|Λi(s; t)|ds < +∞, lim

s↓t
Et[Λi(s; t)] = 0 a.s. ∀t ∈ [0,T ], i = 1, 2. (3.16)

By an arguments similar to the proof of Proposition 3.3 in [21], we have the following lemma:

Lemma 3.1. For any triple of state and control processes (X∗, u∗1, u
∗
2), the solution to BSDE (3.1) in

L2(0,T ;Rn) × (L2(0,T ;Rn))d satisfies ki(s; t1) = ki(s; t2) for a.e. s ≥ max{t1, t2}, i = 1, 2. Furthermore,
there exist ρi ∈ L2(0,T ;Rl),δi ∈ L2(0,T ;Rl×n) and ξi ∈ L2(Ω; C(0,T ;Rn)), such that

Λi(s; t) = ρi(s) + δi(s)ξi(t), i = 1, 2. (3.17)

Therefore, we have another characterization for equilibrium strategies:

Proposition 2. Given a strategy pair (u∗1, u
∗
2) ∈ L2(0,T ;Rl) × L2(0,T ;Rl). Denote X∗ as the state

process, and (pi(·; t), (k j
i (·; t) j=1,2,...,d)) ∈ L2

F
(t,T ;Rn) × (L2

F
(t,T ;Rn))d as the unique solution for the

BSDE (3.1), with ki(s) = ki(s; t) according to Lemma 3.1 for i = 1, 2 respectively. For i = 1, 2, letting

Λi(s, t) = Bi,s pi(s; t) +
d∑

j=1

(D j,s)′k(s; t) j + Ri,su∗i,s, s ∈ [t,T ], (3.18)

then u∗ is an equilibrium strategy if and only if

Λi(t, t) = 0, a.s., a.e. t ∈ [0,T ], i = 1, 2. (3.19)

Proof. From (3.17), we have Λ1(s; t) = ρ1(s) + δ1(s)ξ1(t). Since δ1 is essentially bounded and ξ1 is
continuous, we have

lim
ϵ↓0
Et

[
1
ϵ

∫ t+ϵ

t
|δ1(s)(ξ1(s) − ξ1(t))|ds

]
≤ c lim

ϵ↓0

1
ϵ

∫ t+ϵ

t
Et[|ξ1(s) − ξ1(t)|]ds = 0,

and hence

lim
ϵ↓0

1
ϵ

∫ t+ϵ

t
Et[Λ1(s; t)]ds = lim

ϵ↓0

1
ϵ

∫ t+ϵ

t
Et[Λ1(s; s)]ds.

Therefore, if (3.19) holds, we have

lim
ϵ↓0

1
ϵ

∫ t+ϵ

t
Et[Λ1(s; t)]ds = lim

ϵ↓0

1
ϵ

∫ t+ϵ

t
Et[Λ1(s; s)]ds = 0.

When i = 2, we can prove (3.19) similarly.
Conversely, if (3.16) holds, then limϵ↓0 1

ϵ

∫ t+ϵ

t
Et[Λi(s; s)]ds = 0, i = 1, 2 leading to (3.19) by virtue

of Lemma 3.4 of [21]. □
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The following is the main general result for the stochastic LQ differential game with time-
inconsistency.

Theorem 3.2. A strategy pair (u∗1, u
∗
2) ∈ L2

F
(0,T ;Rl) × L2

F
(0,T ;Rl) is an equilibrium strategy pair if

the following two conditions hold for any time t:
(i) The system of SDEs

dX∗s = [AsX∗s + B′1,su
∗
1,s + B′2,su

∗
2,s + bs]ds +

∑d
j=1[C j

sX∗s + D j
1,su

∗
1,s + D j

2,su
∗
2,s + σ

j
s]dW j

s ,

X∗0 = x0,

dp1(s; t) = −[A′s p1(s; t) +
∑d

j=1(C j
s)′k

j
1(s; t) + Q1,sX∗s ]ds +

∑d
j=1 k j

1(s; t)dW j
s , s ∈ [t,T ],

p1(T ; t) = G1X∗T − h1Et[X∗T ] − λ1X∗t − µ1,

dp2(s; t) = −[A′s p2(s; t) +
∑d

j=1(C j
s)′k

j
2(s; t) + Q2,sX∗s ]ds +

∑d
j=1 k j

2(s; t)dW j
s , s ∈ [t,T ],

p2(T ; t) = G2X∗T − h2Et[X∗T ] − λ2X∗t − µ2,

(3.20)

admits a solution (X∗, p1, k1, p2, k2);
(ii) Λi(s; t) = Ri,su∗i,s + Bi,s pi(s; t) +

∑d
j=1(D j

i,s)
′k j

i (s; t), i = 1, 2 satisfy condition (3.19).

Proof. Given a strategy pair (u∗1, u
∗
2) ∈ L2

F
(0,T ;Rl) × L2

F
(0,T ;Rl) satisfying (i) and (ii), then for any

v1, v2 ∈ L2
Ft

(Ω,Rl), define Λi,Hi, i = 1, 2 as in Proposition 1. We have

lim
ϵ↓0

J1(t, X∗t ; ut,ϵ,v1
1 , u∗2) − J1(t, X∗t ; u∗1, u

∗
2)

ϵ

= lim
ϵ↓0

Et

∫ t+ϵ

t

{
⟨Λ1(s; t), v1⟩ +

1
2⟨H1(s; t)v1, v1⟩

}
ds

ϵ

≥ lim
ϵ↓0

Et

∫ t+ϵ

t
⟨Λ1(s; t), v1⟩ds

ϵ
= 0, (3.21)

proving the first condition of Definition 2.1, and the proof of the second condition is similar. □

Theorem 3.2 involve the existence of solutions to a flow of FBSDEs along with other conditions.
The system (3.20) is more complicated than system (3.6) in [20]. As declared in [20], “proving the
general existence for this type of FBSEs remains an outstanding open problem”, it is also true for our
system (3.20).

In the rest of this paper, we will focus on the case when n = 1. When n = 1, the state process X is a
scalar-valued rocess evolving by the dynamics

dXs = [AsXs + B′1,su1,s + B′2,su2,s + bs]ds + [CsXs + D1,su1,s + D2,su2,s + σs]′dWs, X0 = x0, (3.22)

where A is a bounded deterministic scalar function on [0,T ]. The other parameters B,C,D are all
essentially bounded and Ft-adapted processes on [0,T ] with values in Rl,Rd,Rd×l, respectively. More-
over, b ∈ L2

F
(0,T ;R) and σ ∈ L2

F
(0,T ;Rd).

In this case, the adjoint equations for the equilibrium strategy become{
dpi(s; t) = −[A′s pi(s; t) + (Cs)′ki(s; t) + Qi,sX∗s ]ds + ki(s; t)′dWs, s ∈ [t,T ],
pi(T ; t) = GiX∗T − hiEt[X∗T ] − λiX∗t − µi,

(3.23)
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dPi(s; t) = −[(2As + |Cs|

2)Pi(s; t) + 2C′sK(s; t) + Qi,s]ds + Ki(s; t)′dWs, s ∈ [t,T ],
Pi(T ; t) = Gi,

(3.24)

for i = 1, 2. For convenience, we also state here the n = 1 version of Theorem 3.2:

Theorem 3.3. A strategy pair (u∗1, u
∗
2) ∈ L2

F
(0,T ;Rl) × L2

F
(0,T ;Rl) is an equilibrium strategy pair if,

for any time t ∈ [0,T ),
(i) The system of SDEs

dX∗s = [AsX∗s + B′1,su
∗
1,s + B′2,su

∗
2,s + bs]ds + [CsX∗s + D1,su∗1,s + D2,su∗2,s + σs]′dWs,

X∗0 = x0,

dp1(s; t) = −[As p1(s; t) + (Cs)′k1(s; t) + Q1,sX∗s ]ds + k1(s; t)′dWs, s ∈ [t,T ],
p1(T ; t) = G1X∗T − h1Et[X∗T ] − λ1X∗t − µ1,

dp2(s; t) = −[As p2(s; t) + (Cs)′k2(s; t) + Q2,sX∗s ]ds + k2(s; t)′dWs, s ∈ [t,T ],
p2(T ; t) = G2X∗T − h2Et[X∗T ] − λ2X∗t − µ2,

(3.25)

admits a solution (X∗, p1, k1, p2, k2);
(ii) Λi(s; t) = Ri,su∗i,s + Bi,s pi(s; t) + (Di,s)′ki(s; t), i = 1, 2 satisfy condition (3.19).

4. The deterministic coefficients case

The unique solvability of (3.25) remains a challenging open problem even for the case n = 1.
However, we are able to solve this problem when the parameters A, B1, B2,C,D1,D2, b, σ,Q1,Q2,R1

and R2 are all deterministic functions.
Throughout this section we assume all the parameters are deterministic functions of t. In this case,

since G1,G2 have been also assumed to be deterministic, the BSDEs (3.24) turns out to be ODEs
with solutions Ki ≡ 0 and Pi(s; t) = Gie

∫ T
s (2Au+|Cu |

2)du +
∫ T

s
e
∫ T

s (2Au+|Cu |
2)duQi,vdv for i = 1, 2. Hence, the

equilibrium strategy will be characterized through a system of coupled Riccati-type equations.

4.1. The uniqueness of the equilibrium strategy

As in classical LQ control, we attempt to look for a linear feedback equilibrium strategy pair. For
such purpose, motivated by [20], given any t ∈ [0,T ], we consider the following process:

pi(s; t) = Mi,sX∗s − Ni,sEt[X∗s ] − Γi,sX∗t + Φi,s, 0 ≤ t ≤ s ≤ T, i = 1, 2, (4.1)

where Mi,Ni,Γi,Φi are deterministic differentiable functions with Ṁi = mi, Ṅi = ni, Γ̇i = γi and Φ̇i = ϕi

for i = 1, 2. The advantage of this process is to separate the variables X∗s ,Et[X∗s ] and X∗t in the solutions
pi(s; t), i = 1, 2, thereby reducing the complicated FBSDEs to some ODEs.

For any fixed t, applying Ito’s formula to (4.1) in the time variable s, we obtain, for i = 1, 2,

dpi(s; t) = {Mi,s(AsX∗s + B′1,su
∗
1,s + B′2,su

∗
2,s + bs) + mi,sX∗s − Ni,sEt[AsX∗s + B′1,su

∗
1,s + B′2,su

∗
2,s + bs]

−ni,sEt[X∗s ] − γi,sX∗t + ϕi,s}ds + Mi,s(CsX∗s + D1,su∗1,s + D2,su∗2,s + σs)′dWs. (4.2)

Comparing the dWs term of dpi(s; t) in (3.25) and (4.2), we have

ki(s; t) = Mi,s[CsX∗s + D1,su∗1,s + D2,su∗2,s + σs], s ∈ [t,T ], i = 1, 2. (4.3)
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Notice that k(s; t) turns out to be independent of t.
Putting the above expressions (4.1) and (4.3) of pi(s; t) and ki(s; t), i = 1, 2 into (3.19), we have

Ri,su∗i,s+Bi,s[(Mi,s−Ni,s−Γi,s)X∗s +Φi,s]+D′i,sMi,s[CsX∗s +D1,su∗1,s+D2,su∗2,s+σs] = 0, s ∈ [0,T ], (4.4)

for i = 1, 2. Then we can formally deduce

u∗i,s = αi,sX∗s + βi,s, i = 1, 2. (4.5)

Let Ms = diag(M1,sIl,M2,sIl),Ns = diag(N1,sIl,N2,sIl),Γs = diag(Γ1,sIl,Γ2,sIl),Φs = diag(Φ1,sIl,Φ2,sIl),

Rs = diag(R1,s,R2,s), Bs =

(
B1,s

B2,s

)
,Ds =

(
D1,s, D2,s

)
, u∗s =

(
u∗1,s
u∗2,s

)
, αs =

(
α1,s

α2,s

)
and βs =

(
β1,s

β2,s

)
. Then from

(4.4), we have

Rsu∗s + [(Ms − Ns − Γs)X∗s + Φs]Bs + MsD′s[CsX∗s + Ds(αsX∗s + βs) + σs] = 0, s ∈ [0,T ] (4.6)

and hence

αs = −(Rs + MsD′sDs)−1[(Ms − Ns − Γs)Bs + MsD′sCs], (4.7)
βs = −(Rs + MsD′sDs)−1(ΦsBs + MsD′sσs). (4.8)

Next, comparing the ds term of dpi(s; t) in (3.25) and (4.2) (we supress the argument s here), we
have

Mi[AX∗ + B′(αX∗ + β) + b] + miX∗ − Ni{AEt[X∗] + B′Et[αX∗ + β] + b} − niEt[X∗] − γiX∗t + ϕi

= −[A(MiX∗ − NiEt[X∗] − ΓiX∗t + Φi) + MiC′(CX∗ + D(αX∗ + β) + σ)]. (4.9)

Notice in the above that X∗ = X∗s and Et[X∗] = Et[X∗s ] due to the omission of s. This leads to the
following equations for Mi,Ni,Γi,Φi:{

Ṁi = −(2A + |C|2)Mi − Qi + Mi(B′ +C′D)(R + MD′D)−1[(M − N − Γ)B + MD′C], s ∈ [0,T ],
Mi,T = Gi;

(4.10){
Ṅi = −2ANi + NiB′(R + MD′D)−1[(M − N − Γ)B + MD′C], s ∈ [0,T ],
Ni,T = hi;

(4.11){
Γ̇i = −AΓi, s ∈ [0,T ],
Γi,T = λi;

(4.12)
Φ̇i = −{A − [B′(M − N) +C′DM](R + MD′D)−1B}Φi − (Mi − Ni)b − MiC′σ

−[(Mi − Ni)B′ + MiC′D](R + MD′D)−1MD′σ, s ∈ [0,T ],
Φi,T = −µi.

(4.13)

Though Mi,Ni,Γi,Φi, i = 1, 2 are scalars, M,N,Γ,Φ are now matrices because of two players. There-
fore, the above equations are more complicated than the similar equations (4.5)–(4.8) in [20]. Before
we solve the equations (4.10)–(4.13), we first prove that, if exist, the equilibrium constructed above is
the unique equilibrium. Indeed, we have
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Theorem 4.1. Let

L1 =

{
X(·; ·) : X(·; t) ∈ L2

F
(t,T ;R), sup

t∈[0,T ]
E

[
sup
s≥t
|X(s; t)|2

]
< +∞

}
(4.14)

and

L2 =

{
Y(·; ·) : Y(·; t) ∈ L2

F
(t,T ;Rd), sup

t∈[0,T ]
E

[∫ T

t
|X(s; t)|2ds

]
< +∞

}
. (4.15)

Suppose all the parameters A, B1, B2,C,D1,D2, b, σ,Q1,Q2,R1 and R2 are all deterministic.
When (Mi,Ni,Γi,Φi), i = 1, 2 exist, and for i = 1, 2, (pi(s; t), ki(s; t)) ∈ L1×L2, the equilibrium strategy
is unique.

Proof. Suppose there is another equilibrium (X, u1, u2), then the BSDE (3.1), with X∗ replaced by X,
admits a solution (pi(s; t), ki(s), ui,s) for i = 1, 2, which satisfies Bi,s pi(s; s) + D′i,ski(s) + Ri,sui,s = 0 for
a.e. s ∈ [0,T ]. For i = 1, 2, define

p̄i(s; t) ≜ pi(s; t) − [Mi,sXs − Ni,sEt[Xs] − Γi,s + Φi,s], (4.16)
k̄i(s; t) ≜ ki(s) − Mi,s(CsXs + D1,su1,s + D2,su2,s + σs), (4.17)

where ki(s) = ki(s; t) by Lemma 3.1.

We define p(s; t) = diag(p1(s; t)Il, p2(s; t)Il), p̄(s; t) = diag(p̄1(s; t)Il, p̄2(s; t)Il), and u =
(
u1,s

u2,s

)
. By

the equilibrium condition (3.19), we have

0 =

(
B1,s p1(s; s) + D′1,sk1(s) + R1,su1,s

B2,s p2(s; s) + D′2,sk2(s) + R2,su2,s

)
= p(s; s)Bs +

(
D′1,sk1(s)
D′2,sk2(s)

)
+ Rsus

= [ p̄(s; s) + Xs(Ms − Ns − Γs) + Φs]Bs +

(
D′1,sk̄1(s)
D′2,sk̄2(s)

)
+ MsD′s(CsXs + Dsus + σs) + Rsus

= p̄(s; s)Bs +

(
D′1,sk̄1(s)
D′2,sk̄2(s)

)
+ Xs[(Ms − Ns − Γs)Bs + MsD′sCs] + ΦsBs + MsD′sσs

+(Rs + MsD′sDs)us. (4.18)

Since Rs + MsD′sDs is invertible, we have

us = −(Rs + MsD′sDs)−1
{

p̄(s; s)Bs +

(
D′1,sk̄1(s)
D′2,sk̄2(s)

)
+Xs[(Ms − Ns − Γs)Bs + MsD′sCs] + ΦsBs + MsD′sσs

}
, (4.19)

and hence for i = 1, 2,

dp̄i(s; t) = dpi(s; t) − d[Mi,sXs − Ni,sEt[Xs] − Γi,s + Φi,s]
= −[As pi(s; t) +C′ski(s) + Qi,sXs]ds + k′i (s)dWs − d[Mi,sXs − Ni,sEt[Xs] − Γi,sXt + Φi,s]

Electronic Research Archive Volume 30, Issue 7, 2550–2567.



2561

= −

{
As p̄i(s; t) +C′sk̄i(s) + As(Mi,sXs − Ni,sEt[Xs] − Γi,sXt + Φi,s)

+C′sMi,s(CsXs + D1,su1,s + D2,su2,s + σs)
}
ds

+[k̄i(s) − Mi,s(CsXs + D1,su1,s + D2,su2,s + σs)]′dWs

−

{
Mi,s[AsXs + B′sus + bs] + mi,sXs − Ni,s(AsEt[Xs] + B′sEt[us] + bs)

−ni,sEt[Xs] − γi,sXt + ϕi,s

}
ds

−Mi,s[CsXs + Dsus + σs]′dWs

= −

{
As p̄i(s; t) +C′sk̄i(s) − Mi,s(B′s +C′sDs)(Rs + MsD′sDs)−1

[
Bs p̄(s; s) +

(
D′1,sk̄1(s)
D′2,sk̄2(s)

)]
Ni,sB′s(Rs + MsD′sDs)−1Et

[
Bs p̄(s; s) +

(
D′1,sk̄1(s)
D′2,sk̄2(s)

)] }
ds + k̄i(s)′dWs, (4.20)

where we suppress the subscript s for the parameters, and we have used the equations (4.10)–(4.13)
for Mi,Ni,Γi,Φi in the last equality. From (4.16) and (4.17), we have ( p̄i, k̄i) ∈ L1 × L2. Therefore, by
Theorem 4.2 of [21], we obtain p̄(s; t) ≡ 0 and k̄(s) ≡ 0.

Finally, plugging p̄ ≡ k̄ ≡ 0 into u of (4.19), we get u being the same form of feedback strategy as
in (4.5), and hence (X, u1, u2) is the same as (X∗, u∗1, u

∗
2) which defined by (4.5) and (3.25). □

4.2. Existence of the equilibrium strategies

The solutions to (4.12) is

Γi,s = λie
∫ T

s Atdt, (4.21)

for i = 1, 2. Let Ñ = N1/N2, from (4.11), we have ˙̃N = 0, and hence

Ñ ≡
h1

h2
, N2 ≡

h2

h1
N1. (4.22)

Equations (4.10) and (4.11) form a system of coupled Riccati-type equations for (M1,M2,N1):

Ṁ1 = −[2A + |C|2 + B′Γ(R + MD′D)−1(B + D′C)]M1 − Q1

+(B + D′C)′(R + MD′D)−1M(B + D′C)M1 − B′N(R + MD′D)−1(B + D′C)M1,

M1,T = G1;
Ṁ2 = −[2A + |C|2 + B′Γ(R + MD′D)−1(B + D′C)]M2 − Q2

+(B + D′C)′(R + MD′D)−1M(B + D′C)M2 − B′N(R + MD′D)−1(B + D′C)M2,

M2,T = G2;
Ṅ1 = −2ANi + NiB′(R + MD′D)−1[(M − N − Γ)B + MD′C],
N1,T = h1.

(4.23)

Finally, once we get the solution for (M1,M2,N1), (4.13) is a simple ODE. Therefore, it is crucial to
solve (4.23).
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Formally, we define M̃ = M1
M2

and J1 =
M1
N1

and study the following equation for (M1, M̃, J1):

Ṁ1 = −[2A + |C|2 + B′Γ(R + MD′D)−1(B + D′C)]M1 − Q1

+(B + D′C)′(R + MD′D)−1M(B + D′C)M1 − B′N(R + MD′D)−1(B + D′C)M1,

M1,T = G1;
˙̃M = −( Q1

M1
−

Q2
M1

M̃)M̃,
M̃T =

G1
G2

;
J̇1 = −[|C|2 −C′D(R + MD′D)−1M(B + D′C) + B′Γ(R + MD′D)−1D′C + Q1

M1
]J1

−C′D(R + MD′D)−1M diag(Il,
h2
h1

M̃Il)B,
J1,T =

G1
h1
,

(4.24)

where M = diag(M1Il,
M1
M̃ Il),N = diag( M1

J1
Il,

h2
h1

M1
J1

Il) and Γ = diag(λ1e
∫ T

s AtdtIl, λ2e
∫ T

s AtdtIl).
By a direct calculation, we have

Proposition 3. If the system (4.24) admits a positive solution (M1, M̃, J1), then the system (4.23) admits
a solution (M1,M2,N1).

In the following, we will use the truncation method to study the system (4.24). For convenienc, we
use the following notations:

a ∨ b = max{a, b}, ∀a, b ∈ R, (4.25)
a ∧ b = min{a, b}, ∀a, b ∈ R. (4.26)

Moreover, for a matrix M ∈ Rm×n and a real number c, we define

(M ∨ c)i, j = Mi, j ∨ c, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n, (4.27)
(M ∧ c)i, j = Mi, j ∧ c, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n. (4.28)

We first consider the standard case where R − δI ⪰ 0 for some δ > 0. We have

Theorem 4.2. Assume that R − δI ⪰ 0 for some δ > 0 and G ≥ h > 0. Then (4.24), and hence (4.23)
admit unique solution if

(i) there exists a constant λ ≥ 0 such that B = λD′C;
(ii) |C|

2

2l D′D − (λ + 1)D′CC′D ⪰ 0.

Proof. For fixed c > 0 and K > 0, consider the following truncated system of (4.24):

Ṁ1 = −[2A + |C|2 + B′Γ(R + M+c D′D)−1(B + D′C)]M1 − Q1

+(B + D′C)′(R + M+c D′D)−1(M+c ∧ K)(B + D′C)M1

−B′(N+c ∧ K)(R + M+c D′D)−1(B + D′C)M1,

M1,T = G1;
˙̃M = −( Q1

M1∨c −
Q2

M1∨c M̃ ∧ K)M̃,
M̃T =

G1
G2

;
J̇1 = −λ

(1)J1 −C′D(R + M+c D′D)−1(M+c ∧ K)diag(Il,
h2
h1

(M̃ ∧ K)Il)B,
J1,T =

G1
h1
,

(4.29)
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where M+c = diag((M1 ∨ 0)Il,
M1∨0
M̃∨c Il), N+c = diag( M1∨0

J1∨c Il,
h2
h1

M1∨0
J1∨c Il) and

λ(1) = |C|2 −C′D(R + M+c D′D)−1(M+c ∧ K)(B + D′C) + B′Γ(R + M+c D′D)−1D′C +
Q1

M1 ∨ c
. (4.30)

Since R−δI ⪰ 0, the above system (4.29) is locally Lipschitz with linear growth, and hence it admits
a unique solution (Mc,K

1 , M̃
c,K , Jc,K

1 ). We will omit the superscript (c,K) when there is no confusion.
We are going to prove that J1 ≥ 1 and that M1, M̃ ∈ [L1, L2] for some L1, L2 > 0 independent of c

and K appearing in the truncation functions. We denote

λ(2) = (2A + |C|2 + B′Γ(R + M+c D′D)−1(B + D′C))
−(B + D′C)′(R + M+c D′D)−1(M+c ∧ K)(B + D′C)
−B′(N+c ∧ K)(R + M+c D′D)−1(B + D′C). (4.31)

Then λ(2) is bounded, and M1 satisfies

Ṁ1 + λ
(2)M1 + Q1 = 0, M1,T = G1. (4.32)

Hence M1 > 0. Similarly, we have M̃ > 0.
The equation for M̃ is  − ˙̃M = ( Q1

M1∨c M̃ − Q2
M1∨c (M̃ ∧ K)M̃,

M̃T =
G1
G2

;
(4.33)

hence M̃ admits an upper bound L2 independent of c and K. Choosing K = L2 and examining again
(4.33), we deduce that there exists L1 > 0 independent of c and K such that M̃ ≥ L1. Indeed, we can
choose L1 = min0≤t≤T

Q1,t

Q2,t
∧ G1

G2
and L2 = max0≤t≤T

Q1,t

Q2,t
∨ G1

G2
. As a result, choosing c < L1, the terms M+c

can be replaced by M = diag(M1Il,
M1
M̃ Il), respectively, in (4.29) without changing their values.

Now we prove J ≥ 1. Denote J̃ = J1 − 1, then J̃ satisfies the ODE:

˙̃J = −λ(1) J̃ − [λ(1) +C′D(R + MD′D)−1(M ∧ K)diag(Il,
h2

h1
M̃Il)B] = −λ(1) J̃ − a(1), (4.34)

where

a(1) = λ(1) +C′D(R + MD′D)−1(M ∧ K)diag(Il,
h2

h1
M̃Il)B

= |C|2 − (λ + 1)C′D(R + MD′D)−1(M ∧ K)D′C +C′DΓ(R + MD′D)−1(M ∧ K)D′C + +
Q1

M1 ∨ c

+C′D(R + MD′D)−1(M ∧ K)diag(Il,
h2

h1
M̃Il)D′C

≥ |C|2 − (λ + 1)C′D(R + MD′D)−1MD′C +C′DΓ(R + MD′D)−1(M ∧ K)D′C + +
Q1

M1 ∨ c

= tr
{

(R + MD′D)−1 |C|
2 + Q1/(M1 ∨ c)

2l
(R + MD′D)

}
− (λ + 1)tr{(R + MD′D)−1D′CC′DM}

= tr
{
(R + MD′D)−1H

}
(4.35)
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with H = |C|
2+Q1/(M1∨c)

2l (R + D′DM) − (λ + 1)D′CC′DM.
When c is small enough such that R − cD′D ⪰ 0, we have

Q1

M1 ∨ c
(R + MD′D) ≥

Q1

L2
D′D. (4.36)

Hence,

H ⪰ (
|C|2

2l
D′D − (λ + 1)D′CC′D)M ⪰ 0, (4.37)

and consequently a(1) ≥ tr{(R + MD′D)−1H} ≥ 0. We then deduce that J̃ ≥ 0, and hence J1 ≥ 1. The
boundness of M1 can be proved by a similar argument in the proof of Theorem 4.2 in [20]. □

Similarly, for the singular case R ≡ 0, we have

Theorem 4.3. Given G1 ≥ h1 ≥ 1,R ≡ 0, if B = λD′C and |C|2 − (λ + 1)C′D(D′D)−1D′C ≥ 0, then
(4.24) and (4.23) admit a unique positive solution.

Concluding the above two theorems, we can present our main results of this section:

Theorem 4.4. Given G1 ≥ h1 ≥ 1 and B = λD′C. The (4.23) admits a unique positive solution
(M1,M2,N1) in the following two cases:

(i) R − δI ⪰ 0 for some δ > 0, |C|
2

2l D′D − (λ + 1)D′CC′D ⪰ 0;
(ii) R ≡ 0, |C|2 − (λ + 1)C′D(D′D)−1D′C ≥ 0.

Proof. Define pi(s; t) and ki(s; t) by (4.1) and (4.3), respectively. It is straightforward to check that
(u∗1, u

∗
2, X

∗, p1, p2, k1, k2) satisfies the system of SDEs (3.25). Moreover, in the both cases, we can
check that αi,s and βi,s in (4.5) are all uniformly bounded, and hence u∗i ∈ L2

F
(0,T ;Rl) and X∗ ∈

L2(Ω; C(0,T ;R)).
Finally, denote Λi(s; t) = Ri,su∗i,s + pi(s; t)Bi,s + (Di,s)′ki(s; t), i = 1, 2. Plugging pi, ki, u∗i define in

(4.1),(4.3) and (4.5) into Λi, we have

Λi(s; t) = Ri,su∗i,s+(Mi,sX∗s−Ni,sEt[X∗s ]−Γi,sX∗t +Φi,s)Bi,s+Mi,sD′i,s[CsX∗s+D1,su∗1,s+D2,su∗2,s+σs] (4.38)

and hence,

Λ(t; t) ≜
(
Λ1(t; t)
Λ2(t; t)

)
= (Rt + MtD′t Dt)u∗t + Mt(Bt + D′tCt)X∗t − NtBtEt[X∗t ] − ΓtBtX∗t + (ΦtBt + MtD′tσt)
= −[(Mt − Nt − Γt)Bt + MtD′tCt]X∗t − (ΦtBt + MtD′tσt)

+Mt(Bt + D′tCt)X∗t − NtBtX∗t − ΓtBtX∗t + (ΦtBt + MtD′tσt)
= 0. (4.39)

Therefore, Λi satisfies the seond condition in (3.19). □
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5. Conclusions

We investigate a general stochastic linear-quadratic differential game, where the objective functional
of each player include both a quadratic term of the expected state and a state-dependent term. As
discussed in detail in Björk and Murgoci [17] and [18], the last two terms in each objective functional,
respectively, introduce two sources of time inconsistency into the differential game problem. That is to
say, the usual equilibrium aspect is not a proper way when the players at 0 cannot commit the players
at all intermediate times to implement the decisions they have planed. With the time-inconsistency,
the notion “equilibrium” needs to be extended in an appropriate way. We turn to adopt the concept
of equilibrium strategy between the players at all different times, which is at any time, an equilibrium
“infinitesimally” via spike variation. By applying the spike variation technique, We derive a sufficient
condition for equilibrium strategies via a system of forward-backward stochastic differential equation.
The unique solvability of such FBSDEs remains a challenging open problem.

For a special case, when the state is one-dimensional and the coefficients are all deterministic, the
equilibrium strategy will be characterized through a system of coupled Riccati-type equations. At last,
we find an explicit equilibrium strategy, which is also proved be the unique equilibrium strategy.
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