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Abstract: In this paper, a multi-input multi-output (MIMO) feedforward control structure is proposed 
and designed based on the linear matrix inequality (LMI) approach to improve disturbance rejection 
and reference tracking of the given feedback system. The proposed architecture consists of two MIMO 
feedforward controllers, where each controller can be designed independently using the proposed 
method. The unknown variables of the feedforward controllers are calculated using LMI restrictions 
such that the H∞-norm of the transfer function matrix from disturbance (set-point) to output (error) is 
minimized. By taking advantage of the frequency sampling techniques and using some iterative 
algorithms, convergence of the solution to a local optimal point is guaranteed. For solving this 
optimization problem the CVX optimization tool is used and the numerical results are presented. The 
proposed method can be considered as a new tractable approach for tuning the parameters of MIMO 
feedforward controllers. 
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1. Introduction  

A majority of industrial plants and chemical processes are multivariable. These systems often 
exhibit strong couplings between apparently non-related inputs and outputs. In this regard, the 
disturbance rejection and set-point tracking goals are challenging tasks. Although the importance of 
disturbance rejection is not less than the set-point tracking, in the context of linear MIMO systems it 
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has gained less attention in the literature. 
Designing and exerting a feedforward controller is a possible solution to improve the set-point 

tracking and disturbance rejection properties of the feedback system. A technique for determination of 
a feedforward control law to be applied to a closed-loop PID-based control system with a MIMO 
process in the loop is presented in [1]. Experimental evaluation of feedforward tuning rules is presented 
in [2]. In [3] a dual-mode adaptive fractional order PI controller with a feedforward controller for 
quadruple tank process is presented. Disturbance attenuation using feedforward compensation for 
flight test results is studied in [4], and transient response optimization via feedforward control is 
proposed in [5]. In [6] comparison of additive and multiplicative feedforward control is presented. 
Disturbance rejection via feedforward compensation using an enhanced equivalent input disturbance 
approach is studied in [7]. The iterative tuning of a feedforward controller with disturbance 
compensator for servo systems is presented in [8]. Feedforward control techniques are also used in 
industries. For example, a method for MIMO feedforward control of multi-harmonic gearbox 
vibrations is presented in [9]. In [10] active disturbance rejection control based on feedforward inverse 
system for turbofan engines is proposed. As another example, feedforward-feedback control of a solid 
oxide fuel cell power system is presented in [11]. Finally, in [12] a review on industrial feedforward 
control technology is given. 

Linear Matrix Inequalities (LMIs) provide us with a powerful tool to solve a wide variety of 
optimization and control problems. Designing MIMO controllers, and especially MIMO PIDs, via 
LMIs had been the subject of many studies; see for example [13–16]. An important advantage of LMIs 
is that they are convex, and consequently, can be solved very effectively by using commercial software 
in a polynomial time. Many problems in the field of control theory like stability analysis of linear 
systems [17], calculating the H∞-norm of a transfer function/matrix [18], calculating the upper bound 
on μ [18] and state-feedback control [19] can be formulated using the LMI approach. There are also 
many other problems which are non-convex and cannot be represented by LMIs. Hence, a large effort 
is made to cope with the non-convexity of these problems and finding approximate solutions using 
LMIs. Convex-concave decomposition and linearization method are proposed in [20] to transform 
non-convex and bilinear matrix inequalities (BMIs) into LMIs. As an application of such techniques, 
tuning of MIMO PIDs using the LMI approach is introduced in [15]. The main idea in that paper is to 
transform a MIMO PID controller design problem to a static output feedback problem whose solution 
via LMI approach was already known. Another considerable work in this field is [16]. In this paper, 
the MIMO PID controller is obtained by minimizing the low-frequency gain of the open-loop 
system subject to constraints on infinity norms of standard closed-loop transfer functions. 

In this paper, we describe a method for designing MIMO feedforward controllers. The method is 
based on solving a small number of convex optimization problems, each one in the form of a 
semidefinite programming (SDP). The proposed architecture consists of two MIMO feedforward 
controllers; one from disturbance and the other from set-point to the input of the plant. In order to 
improve the disturbance rejection of feedback system the unknown variables of the feedforward 
controllers are calculated using LMIs such that the H∞-norm of the transfer matrix from disturbance to 
the output of plant is minimized. Also, to improve the tracking capability of the feedback system, the 
transfer matrix from the set-point to error is minimized. The proposed formulation to solve the problem 
is essentially non-convex and non-linear. By exerting some frequency sampling techniques and using 
some iterative algorithms such as convex-concave decomposition, a new method is developed to solve 
the problem. The proposed method is designed in the frequency domain and has an iterative nature 
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which means that an initial point, which is actually a stable transfer matrix, is required to begin the 
search. Note that finding a solution, if one exists, is not guaranteed and the resulting solution may be 
suboptimal. After presenting the theoretical results, some practical examples are presented to show the 
performance of the proposed feedforward controller design method. Efficiency of the proposed method 
is also evaluated by employing integral of absolute error (IAE), integral of squared error (ISE), integral 
of time multiplied by absolute error (ITAE), and integral of time multiplied by squared error (ITSE) 
performance indices. This method could be extended to non-linear systems using the method proposed 
in [21] 

The rest of this paper is organized as follows. The main results, including the proposed control 
structure and the proposed algorithm for tuning dual-feedforward MIMO controller using LMIs, 
is presented in Sections 2–4. Four illustrative examples are presented in Sections 5 and 6 concludes 
the paper. 

2. Statement of the problems 

The proposed dual-feedforward architecture for the closed-loop system is shown in Figure 1, 
where r(t) is the reference input, e(t) is the error, and d is a measurable output-referred plant disturbance. 
The signals u(t) and y(t) are the plant input and output, respectively. 

The plant, denoted as P(s), is linear and time-invariant which has m inputs (actuators) and p outputs 
(sensors). Also, there are at least as many actuators as plant outputs, which means that p ≤ m. It is assumed 
that the controller, C(s), has already been designed using any appropriate method. Of course, this 
controller must provide internal stability and secures a good set-point tracking performance. It is 
also desired, but not necessary, that this controller can partly reject disturbances. In this paper, we 
aim to propose an additional stage to improve disturbance rejection and set-point tracking. 

In the following we propose a new structure for the MIMO feedforward controller. For the sake 
of simplicity and without any loss of generality, we assume that the MIMO plant has two inputs and 
two outputs. In Figure 1, F1 and F2 are the proposed feedforward controllers to be designed. It is also 
assumed that each entry of these two transfer matrices is a first-order (stable) transfer function. This 
assumption simplifies the tuning and implementation of the feedforward controllers and also 
drastically reduces the complexity of computations. Hence, the structure of each of the feedforward 
controllers in Figure 1 is considered as follows 

  1
F WX WV

                                              (1) 

where W is a matrix weight function in the Laplace variable, s, X is an unstructured matrix variable 
and V is a structured matrix variable, which are defined as follows 
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where p is the order of each entry of the feedforward controller, n is the number of inputs or outputs 
of the n × n system matrix, and q = p + 1. For a two-input two-output system, the feedforward controller 
matrices will be as follows 

11 12 11

21 22 21

31 32 32

41 42 42

0

01 0 0
, ,

00 0 1

0

x x v

x x vs
W X V

x x vs

x x v

   
                
   
   

                     (2) 

The reason for proposing the above structure for both F1 and F2 in Figure 1 is that it simplifies 
the stability analysis of the whole system. More precisely, it can be easily proved that the system shown 
in Figure 1 remains stable after adding F1 and F2 if the original closed-loop system (which consists of 
C(s) and P(s)) is stable before adding these two systems, and F1 and F2 are stable and defined as given 
in (1) and (2).  

  

Figure 1. Schematic of the closed-loop system with the proposed feedforward controllers. 
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For designing a dual-feedforward MIMO controller, the LMI method is employed to calculate the 
(sub)optimal controllers. In Figure 1 the error is calculated as the following 

       1 1

2 1E I PC I PF R I PC I PF D
                          (3) 

where   1
S I PC

   is the sensitivity function. According to Eq (3), for disturbance rejection we need 

to minimize  1S I PF    . Also, to improve set-point tracking we should minimize  2S I PF    . 

Hence, F1 and F2 are mainly responsible to improve disturbance rejection and set-point tracking, 

respectively. For the sake of clarity, these two objectives are discussed in two separate sections in the 

following. 

3. Disturbance rejection problem: Theorem, proof, and controller design algorithm 

The procedure of designing the feedforward controller F1 to improve disturbance rejection is 
considered here. Therefore, the following theorem is performed to obtain the F1 parameters. 
Theorem 1: A sufficient condition to obtain the values of the feedforward controller parameters F1(s) to 
improve the disturbance rejection time is obtained by solving the following optimization problem. 

min t                                    (4.a) 

. .s t   1 t                                                  (4.b) 

    3 0  ,     k = 1, … , N                                         (4.c) 

where, 1  and 3  are introduced in the rest of this section. 

Proof: As mentioned earlier, for this purpose we should minimize  1S I PF     . the design 

problem is formulated as follows 

min t                                                           (5.a) 

. .s t      1 1

1 1 (0) (0) (0) (0)II P K I P W X W V t     
                    (5.b) 

  1

1 1 max ,S I PWX WV S   
                                    (5.c) 

Note that since the energy of disturbance is mainly concentrated at low frequencies, Eqs (5.a) and 
(5.b) minimize the singular value of the corresponding transfer matrix at zero frequency. On the other 
hand, it is a well-known fact that minimizing the sensitivity function, S, at low frequencies leads to 
increasing the peak of S at higher frequencies, which is not desired. So, the constraint in (5.c) is taken 
into account to make sure that the resulting control system has a good stability margin and the 
overshoots in the step response do not exceed the specified amount. Reasonable values of Smax are in 
the range of 1.1 to 1.6; this is for sensitivity and complementary sensitivity peaking constraint in our 
design problem, lower values give a more damped closed-loop system. 

Finding a solution to the optimization problem in (5) is not straightforward since (5.b) and (5.c) 
are not linear in the unknown matrices X and V containing the coefficients of controllers. Hence, an 
approximate method to find a (sub)optimal solution to this problem is developed in the following.  

Consider   1

1 1 maxS I PW X W V S   
 

 for all ω’s as given in (5.c). Since the frequency can take 

all values greater than or equal to zero, this statement actually consists of an infinite number of 
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constraints, and for this reason it is called a semi-infinite constraint. A Semi-infinite constraint can be 

handled by replacing it with a finite set of constraints obtained by evaluating the frequency-dependent 

function at given frequencies. For example, we use  ( )k maxS i S    , 1, ,k N    instead of the 

constraint maxS S ǁ  in Eq (5.b). For the sake of simplicity in notation, in the following we will use 

subscripts to denote a transfer matrix evaluated at the frequency ks i . For example, for a given 

complex matrix, the notation ( )k kP P i   is used. The sampled problem is then obtained in the 

following form, 

min t                                                      (6.a) 

. .s t      1 1

1 1(0) (0) (0) (0)II P K I P W X W V t     
 

                                 (6.b) 

  1

1 1 max ,k K K KS I P W X W V S   
    1, ,k N                          (6.c) 

Now, in order to convert the above sampled problem into LMI form, we need to eliminate the non-
linearity from it.  

In order to represent the constraint in Eq (6.b) in the form of an LMI write it as follows 

    1 1

1 1 1(0) (0) (0) (0) (0)II P K W V P W X W V t                    (7) 

Or equivalently,  

       
  

1 *

1 1 1 1

* * 2
1 1

(0) (0) (0) (0) (0)

(0) (0) (0) ,

S W V P W X W V W V

W V P W X S t I

 

 
            (8) 

where for a complex matrix p qZ C  , Z   is its (hermitian) conjugate transpose. We used the notation 
* * 1(Z )Z    . The matrix inequality symbol 0Z    means that Z is Hermitian and negative 

semidefinite. Define 1 1 1( (0) (0) (0) )Z S W V P W X    and 1 *
1 1 1( (0) ) ( (0) )A W V W V    . Now, rearranging 

Eq (8) yields     

2 *
1 1 1( ) 0t I Z A Z                                         (9) 

Using Schur complement lemma it is concluded from Eq (9) that 

2
1

* 1
1 1

0
t I Z

Z A 

 
 
  

                                       (10) 

or equivalently 

 
     

2
1 1

* **
1 1 1 1

(0) (0) (0)
0

(0) (0) (0) (0) (0)

t I S W V P W X

W V P W X S W V W V

  
 

   
            (11) 
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Note that the term *
1 1( (0) ) ( (0) )W V W V  in Eq (11) is non-linear in variables. To remove this difficulty, 

first we write Eq (11) as follows 

 
     

2
1 1

** *
1 11 1

0 0(0) (0) (0)
0,

0 (0) (0)(0) (0) (0) 0

t I S W V P W X

W V W VW V P W X S

    
   

     
   (12) 

Now, according to the approximate linearization of quadratic matrix inequalities (QMI) from [16] we 
can write * * * *

1 1 1 1 1 1 1 1( (0) ) ( (0) ) ( (0) ) ( (0) ) ( (0) ) ( (0) ) ( (0) ) ( (0) )W V W V W V W V W V W V W V W V        where 1V   is an 
arbitrary matrix of suitable dimension. Applying it to Eq (12) turns out 

 

 

2
1 1

*
1 1

*1 * *
1 1 1 1

*
1 1

(0) (0) (0)

[( (0) ) ( (0) )
0

(0) (0) (0) ( (0) ) ( (0) )

( (0) ) ( (0) )]

t I S W V P W X

W V W V

W V P W X S W V W V

W V W V

  
 

 
    





 



 

          (13) 

The constraint in Eq (13) is in the form of an LMI. Because 1  is real-valued and does not have an 
imaginary part, we can use it directly for problem solving. 

The constraint in Eq (6.c) can be represented in the form of LMIs by following similar steps. 
More precisely, rearranging Eq (6.c) yields 

   1

1 1 1 maxS WV PWX WV S                                 (14) 

which turns out 

          1 * * * 2
1 1 1 1 1 1 maxS WV PWX WV WV WV PWX S S I

             (15) 

Define 2 1 1( )Z S WV PWX   and 1 *
2 1 1( ) ( )A W V W V   . Using these new variables Eq (15) results in the 

following  

2 *
max 2 2 2( ) 0S I Z A Z                                              (16) 

which using Schur complement lemma can be written as 

2
2

* 1
2 2

0maxS I Z

Z A 

 
 
  

                                            (17) 

or equivalently 

 
     

2
1 1

* **
1 1 1 1

0
maxS I S WV PWX

WV PWX S WV WV

  
 

   
                            (18) 

In order to get rid of the nonlinear term *
1 1( ) ( )W V W V  in Eq (18) first we rearrange it as follows 
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2
1 1

** *
1 11 1

0 0

00

maxS I S WV PWX

WV WVWV PWX S

    
   

     
               (19) 

by applying the matrix inequality * * * *
1 1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )WV WV WV WV WV WV WV WV       to 

Eq (19) the following LMI is obtained 

2
1 1

*
1 1

2 * * *
1 1 1 1

*
1 1

( )

[( ) ( )
0

( ) ( ) ( )

( ) ( )]

maxS I S WV PWX

WV WV

WV PWX S WV WV

WV WV

  
 

 
     

  



 

                         (20) 

Since Eq (20) has imaginary terms, we use the following equivalent real-valued form for problem solving 

2 2

3
2 2

( ) ( )
0

( ) ( )

re im

im re

  
      

                                       (21) 

To summarize the results, the optimization problem described through Eq (6) with some 
conservativity can be written as Theorem 1.  

The above optimization problem can be used in practice to find the unknown parameters of the 
optimal feedforward controller F1 which improves the disturbance rejection of system. 

4. Set-point tracking problem: Theorem, proof, and controller design algorithm 

The feedforward controller F2 is considered to improve set-point tracking. As mentioned before, 
according to Eq (3) we should minimize  2S I PF      to improve tracking property. Therefore, 
unknown parameters of F2 can be obtained by solving the optimization problem in Theorem 2. 
Theorem 2: A sufficient condition to obtain the values of the feedforward controller parameters F2(s) 
to improve the set-point tracking is obtained by solving the following optimization problem. 

min t                                            (22.a) 

. .s t   4 t                                                                     (22.b) 

6 0  ,   k = 1, … , N                                       (22.c) 

Proof: Because the structure of both feedforward controllers is similar, the procedure of designing 
the feedforward controller F2 is analogous to the designing of F1. More precisely, the corresponding 
LMI constraints are obtained as follows 

 

 

2
2 2

*
2 2

*4 * *
2 2 2 2

*
2 2

(0) (0) (0)

[( (0) ) ( (0) )
0

(0) (0) (0) ( (0) ) ( (0) )

( (0) ) ( (0) )]

t I S W V P W X

W V W V

W V P W X S W V W V

W V W V

  
 

 
     

  



 

       (23) 
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2
2 2

*
2 2

*5 * *
2 2 2 2

*
2 2

[( ) ( )
0

( ) ( )

( ) ( )]

maxS I S WV PWX

WV WV

WV PWX S WV WV

WV WV

  
 

 
     

  



 

                  (24) 

Again, since Eq (24) has an imaginary part, we use the real-valued LMI in (25) instead of that 

5 5

6
5 5

( ) ( )
0

( ) ( )

re im

im re

  
      

                                (25) 

hence, according to Eqs (23) and (25) the optimization problem in Eq (6) can be restated (with some 
conservativity) in the LMI form of Theorem 2. 

It is worth saying that due to choosing the same structure for both feedforward controllers F1 and 
F2, and also considering the fact that the objectives of designing both feedforward controllers are 
similar to each other, the resulting controllers F1 and F2 will also be equal.  

5. Numerical examples 

In this section, three numerical examples are presented to show the efficiency of the proposed 
dual-feedforward controller design method to improve the disturbance rejection and set-point tracking. 
The computations were carried out using the Matlab-based convex modeling framework CVX [22] 
using the SDPT3 4.0 software [23] for solving the semidefinite program (SDP).  
Example 1: The plant considered here is a simplified model of the classic two-input two-output 
Wood-Berry binary distillation column described in [24]. The plant transfer matrix is in the 
following form, 

1

12.8 18.9

16.7 1 21 1( )
6.6 19.4

10.9 1 14.2 1

s sP s

s s

 
    

 
   

                                       (26) 

Each entry in this plant is a first-order transfer function. The dynamics are quite coupled, so 
finding a good MIMO PID controller is not simple. The main controller used here is a PID controller 
obtained in the following form using the method proposed in [16], 

0.4401 0.4787 0.0099 0.0097 0.0007 0.0058
, ,

0.2105 0.2829 0.0031 0.0068 0.0005 0.0040p i dK K K
       

              
    (27) 

By considering the above PID controller, the transfer matrix of dual-feedforward MIMO 
controllers using the proposed LMI approach is obtained as follows 
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1 2

19.72 0.9617 10.62 0.8911

6.126 5.826
9.019 0.3272 9.022 0.3272

6.126 5.826

( ) ( )

s s

s sF
s

s sF
s

s s

   
     

   
   

                        (28) 

Figure 2 shows the simulation results with and without using the proposed feedforward controllers. 

As it is seen, disturbance rejection and tracking are significantly improved by using the proposed 

feedforward controllers. In this figure, the complementary sensitivity function is   1
T I PC PC

  . It 

is the closed-loop transfer function from r to y.  Also, control signals are derived in Figure 3. In this 

figure, Q-parameter defined as   1
Q I P CC

  , is the transfer function from r to u. Its size is a measure 

of the actuator effort. Moreover, in order to make a more accurate comparison, various performance 

indices are also calculated and the results are summarized in Tables 1 and 2. The results of Tables 1 

and 2 clearly verify the efficiency of the proposed feedforward controllers to improve the performance 

of the control system. 

  

Figure 2. Closed-loop step responses without (red line) and with (blue line) employing the 
feedforward controllers. 
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Figure 3. Control signals without (red line) and with (blue line) employing the feedforward 
controllers. 

Table 1. Closed-loop performance indices for disturbance rejection, corresponding to 
Example 1. 

System Error IAE ISE ITAE ITSE 
With Feedforward e1 1.87 0.11 3.74 × 102 0.2104 × 104 
Without Feedforward e1 21.38 5.98 39.88 × 102 13.775 × 104 
With Feedforward e2 2.15 0.13 3.77 × 102 0.5442 × 104 
Without Feedforward e2 16.96 5.30 40.07 × 102 29.156 × 104 

Table 2. Closed-loop performance indices for set-point tracking, corresponding to Example 1. 

System Error IAE ISE ITAE ITSE 
With Feedforward e1 1.03 0.103 19.66 4.25 
Without Feedforward e1 14.11 5.131 310.18 969.7 
With Feedforward e2 0.75 0.77 × 10-2 33.21 11.39 
Without Feedforward e2 7.04 80.81 × 10-2 269.28 694.61 

Example 2: The following transfer matrix was proposed in [25] as a benchmark system whose appropriate 
input-output pairing cannot be determined effectively using the Relative Gain Array (RGA): 

2 2

1 4.19 25.96
1

( ) 6.19 1 25.96
(5 1)

1 1 1

s
P s

s

  
    

  

                       (29) 

This transfer matrix has three non-minimum phase transmission zeros at s = 1. The gains of the 
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MIMO PI controller are obtained as follows [26] 

0.0821 0.0260 0.6753 0.0022 0.0012 0.0302

0.2996 0.2071 0.6095 , 0.0136 0.0099 0.0252

0.0211 0.0601 0.2449 0.0002 0.0003 0.0021
p iK K

   
           
       

     (30) 

Assuming the above PI controller in the loop and considering the initial condition as follows 

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

y

 
 
 
 

  
 
 
 
 

                                                (31) 

The proposed design procedure results in the following feedforward MIMO controllers 

1 2

1.789 4.679 4.289 3.785 36.68 9.713

4.675 4.683 1.942
20.75 5.58 28.54 4.687 31.05 9.713

4.675 4.683 1.942
1.468 0.9008 4.988 0.9023 7.159 1.942

4.675 4.683

( ) ( )

1.942

s s s

s s s
s s s

F F
s s s

s s s

s s

s

s

s

    
    

        
    
    







                (32) 

As it could be observed in Figure 4, disturbance rejection and set-point tracking are improved by 
exerting the feedforward controllers. In this figure, the closed-loop step response of the system with 
and without the dual-feedforward MIMO method is considered. Also, the results of Tables 3 and 4 show 
the efficiency of the proposed method by considering different performance indicators for each channel 
separately. The results of Table 3 confirm that our method acts well for disturbance rejection. Also, the 
results of Table 4 verify that this method can improve the set-point tracking. 

Figure 5 shows the disturbance rejection property of each channel separately with and without 
feedforward controllers. Also, the disturbance rejection property of the proposed method for three 
different feedforward controllers obtained by using three different initial conditions is shown in Figure 
6. In this figure the blue, black and red plots correspond to the controllers obtained by using the initial 

conditions 1 1y y  , 2 5y y  and 3 10y y   respectively. Also, control signals are derived in Figure 

7. The results show that our proposed method converges with different initial conditions and it is not 
very sensitive to the initial condition used for controller design. 
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Figure 4. Closed-loop step responses without (red line) and with (blue line) employing the 
feedforward controllers. 

  

Figure 5. Disturbance rejection property of the MIMO system without (red line) and with 
(blue line) feedforward controllers. 



2478 

Electronic Research Archive  Volume 30, Issue 7, 2465–2486. 

  

Figure 6. Disturbance rejection of the system with the feedforward controllers designed 
using three different initial conditions. 

 

Figure 7. Control signals without (black line) and with (blue line) employing the 
feedforward controllers. 
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Table 3. Closed-loop performance indices for disturbance rejection, corresponding to Example 2. 

System Error IAE ISE ITAE ITSE 
With Feedforward e1 140.5184 58.8827 0.55066 × 106 0.58806 × 109

Without Feedforward e1 2374.9542 2420.2779 12.075 × 106 80.517 × 109 
With Feedforward e2 138.382 63.212 0.65078 × 106 1.174 × 109 
Without Feedforward e2 2645.4945 3017.8395 13.483 × 106 100.41 × 109 
With Feedforward e3 36.5764 13.1393 0.1624 × 106 0.36435 × 109

Without Feedforward e3 495.0434 139.6994 2.467 × 106 4.374 × 109 

Table 4. Closed-loop performance indices for set-point tracking, corresponding to Example 2. 

System Error IAE ISE ITAE ITSE 
With Feedforward e1 88.8646 53.3364 0.02418 × 106 0.003082 × 108

Without Feedforward e1 1698.543 2212.4761 1.1051 × 106 6.3458 × 108 
With Feedforward e2 152.0961 313.5495 0.027849 × 106 0.004313 × 108

Without Feedforward e2 1889.8633 2752.8211 1.2242 × 106 7.7752 × 108 
With Feedforward e3 29.626 18.9988 0.04432 × 106 0.010579 × 106

Without Feedforward e3 363.2509 133.7078 1.8214 × 106 16.722 × 106 

Example 3: The transfer function matrix of an NMP MIMO system is given as follows [27], 

2 2

2 2

3

0.495   1 0.5 ( 0.495 1)

( )
0.5

0.08118 0.659 1 0.08118 0.659 1

0.32

 ( 1.98 1) 0.495  

47 2.144 1 0.08118 0.

 1

659 1

s s s s

s s s

s s

s
s s

s

P

    
 
 

    


   

    

               (33) 

Each entry of the transfer matrix is a second-order transfer function and its dynamics is quite 
coupled. The feedback controller is a PID controller and the matrix gains of the controller are obtained 
as the following 

0.3380 0.2459 0.0480 0.0271 0.0093 0.0129
, ,

0.4355 0.2454 0.0272 0.0479 0.0040 0.0011p i dK K K
      

             
              (34) 

The following dual-feedforward controller is also obtained using the proposed method 

1 2

0.1617   1.006 0.1024   0.6493

  0.7548   0.974( ) ( )
0.6174   0.5032 0.03906   1.299

  0.7548   0.974

s s

s sF s F s
s s

s s

    
     

  
   

                        (35) 

The step responses are shown in Figures 8 and 9, respectively. The corresponding ISE 
performance indices are shown in Figures 10 and 11. These results confirm that the feedforward 
method acts satisfactorily in improving the disturbance rejection and set-point tracking of the NMP 
MIMO system. 
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Figure 8. Comparing the closed-loop step response without (black line) and with (blue 
line) feedforward controller for channel 1. 

 

Figure 9. Comparing the closed-loop step response without (black line) and with (blue 
line) feedforward controller for channel 2. 
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Figure 10. Closed-loop performance indices for disturbance rejection, corresponding to Example 3. 

 

Figure 11. Closed-loop performance indices for set-point tracking, corresponding to Example 3. 

Example 4: The transfer function matrix of a boiler is given as follows [28], 
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4
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                           (33) 

Each entry of the transfer matrix is a first-order transfer function and its dynamics is quite coupled. 
The controller used here is a PID controller designed using the method proposed in [16]. The matrix 
gains of the controller are as the following 

8.5476 1.0657 0.8035 0.8051 1.1119 0.3586 0.1764 0.0187

0.9150 8.5624 1.7378 0.3342 0.1155 0.7111 0.3032 0.3792
,

0.3417 0.2676 7.7622 0.0540 0.1905 0.2993 0.9710 0.3687

0.2844 1.9745 2.0176 7.9561 0.1717

p iK K

  
   
  
 
  

,

0.3016 0.3951 1.1081

0.0055 0.0142 0.0139 0.0080

0.0047 0.0043 0.00136 0.0044

0.0013 0.0043 0.0035 0.0003

0.0022 0.0122 0.0239 0.0140

dK

 
 
 
 
 
 

 
    
 
 

 

    (34) 

The following dual-feedforward controller is also obtained using the proposed method 

1 2

35.93 9.447 17.35 6.53 1.41 0.8709 0.5767 0.9073

5.403 5.391 5.49 5.355
15.2 5.293 37.19 10.11 5.202 1.267 2.69 1.723

5.403 5.391 5.49 5.355
5.588 1.738 3.355 1

(
.244

) ( )

5.403

s s s s

s s s s
s s s s

s s s s
s s

s s

F s F s
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2.868 0.9154 3.791 0.8551 17.49 6.65 35.7 9.362

5.403 5.391 5.49 5.355

s s

s s
s s s s

s s s s

 
 
 
 
 
 
 
 
 
 
 

  
  

     
   

      (35) 

The step responses and control signals are shown in Figures 12 and 13, respectively. The 
corresponding performance indices are summarized in Tables 5 and 6. These results confirm that the dual-
feedforward method acts very well in improving the disturbance rejection and set-point tracking.  
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Figure 12. Comparing the closed-loop step response without (red line) and with (blue line) 
feedforward controller. 

 

Figure 13. Control signals without (red line) and with (blue line) employing the 
feedforward controllers. 
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Table 5. Closed-loop performance indices for disturbance rejection, corresponding to Example 3. 

System Error IAE ISE ITAE ITSE 
With Feedforward e1 0.6742 7.38 × 10-2 127.93 0.1074 × 104 
Without Feedforward e1 5.5429 48.45 × 10-2 1205.89 1.1136 × 104 
With Feedforward e2 0.8164 7.64 × 10-2 183.85 0.3312 × 104 
Without Feedforward e2 7.2393 71.45 × 10-2 1698.72 3.1259 × 104 
With Feedforward e3 0.7464 7.8 × 10-2 229.06 0.37171 × 104 
Without Feedforward e3 5.6917 62.89 × 10-2 1815.58 6.4161 × 104 
With Feedforward e4 0.7506 7.55 × 10-2 236.65 1.1434 × 104 
Without Feedforward e4 5.3637 51.93 × 10-2 1778.38 2.3365 × 104 

Table 6. Closed-loop performance indices for set-point tracking, corresponding to Example 3. 

System Error IAE ISE ITAE ITSE 
With Feedforward e1 0.3371 6.73 × 10-2 2.845 0.1107 
Without Feedforward e1 2.201 35.65 × 10-2 31.327 13.9219 
With Feedforward e2 0.3935 6.68 × 10-2 4.1519 0.2351 
Without Feedforward e2 3.5614 55.92 × 10-2 57.7896 48.8058 
With Feedforward e3 0.3774 7.04 × 10-2 3.3063 0.1628 
Without Feedforward e3 2.8839 49.98 × 10-2 41.3252 25.9555 
With Feedforward e4 0.3372 6.87 × 10-2 2.8632 0.1193 
Without Feedforward e4 2.3726 39.17 × 10-2 33.5154 17.0491 

6. Conclusions 

In this paper, we introduced a dual-feedforward controller for MIMO systems to cope with 
disturbances and also improve set-point tracking. The LMI approach is employed for the first time 
to design a MIMO feedforward controller. For this purpose, an LMI approximation is proposed for 
non-convex/nonlinear terms. This method is naturally iterative and the results show that it works 
well for the objectives under consideration. Also, in this method, a new structure for the 
feedforward controller is proposed. In this structure, each entry of the feedforward controller 
transfer matrix is considered as a first-order transfer function. This assumption simplifies the 
design procedure and makes it possible to formulate the problem in the form of LMIs. In the 
numerical simulations, we mainly focused on the different practical systems with different 
dimensions and orders. The simulations revealed two main facts about the proposed dual-
feedforward method. First, regardless of the dimension and order of the plant, the proposed method 
shows satisfactory results. The second observation is that the final results exhibit a low sensitivity 
to the value assigned to the initial condition used in the process of designing feedforward 
controllers.  
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