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1. Introduction

A conic bundle is a proper flat morphism π : X → Z of non-singular varieties such that it is of
relative dimension 1 and the anticanonical divisor −KX is relatively ample. We say that a variety X has
a conic bundle structure if there exists a conic bundle π : X′ → Z and a birational map X d X′.

Varieties with conic bundle structure play a very important role in the birational classification of
algebraic varieties of negative Kodaira dimension. For example, any variety with rational curve fibra-
tion has a conic bundle structure [1]. For these varieties there are well-developed techniques to solve
rationality problems [1–4].

Another important class of varieties of negative Kodaira dimension is the class of Q-Fano varieties.
Recall that a projective variety X is called Q-Fano if it has only terminal Q-factorial singularities, the
Picard number ρ(X) equals 1, and the anticanonical class −KX is ample. In fact, these two classes
overlap. Moreover, Q-Fano varieties with conic bundle structures form a large subclass in the class
of all Q-Fano varieties. It is very important for birational geometry to investigate and describe those
Q-Fano varieties that do not have conic bundle structures. This paper is an attempt to do it in dimension
three.

To formulate the main result we have to recall some definitions. A normal n-dimensional variety
X with only canonical Gorenstein singularities is called a del Pezzo variety if there exists an ample
Cartier divisor A such that −KX = (n−1)A (see [5]). Then the intersection number d(X) := An is called
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the degree of X. We consider only those del Pezzo varieties that have at worst terminal singularities.
Del Pezzo varieties of degree ≤ 2 have special names:

(i) a del Pezzo variety X of degree 1 is called double Veronese cone;
(ii) a del Pezzo variety of degree 2 is called quartic double solid.

Recall that the Fano index qQ(X) of a Q-Fano variety is the maximal integer that divides the canon-
ical class KX in the torsion free group Cl(X)/Tors (see 2.4). The following fact was proved in [6]:

1.1 Theorem. Let X be a Q-Fano threefold with qQ(X) > 7. Then X is rational. In particular, X has a
lot of conic bundle structures.

For a normal Q-factorial projective variety X, denote

df(X) := max
{
dim |M|

∣∣∣M is a Weil divisor such that −(KX + M) is ample
}
.

Our main result is the following

1.2 Theorem. Let X be a Q-Fano threefold with qQ(X) > 1. Assume that X has no conic bundle
structures. Then we have.

(i) df(X) ≤ 3.
(ii) If df(X) = 3, then X is a smooth quartic double solid.

(iii) If df(X) = 2, then there exists a birational transformation Ψ : X d X′ such that one of the
following holds:

• X′ is a smooth quartic double solid,
• X′ is a smooth double Veronese cone and Ψ is an isomorphism, or
• X′ is a double Veronese cone with terminal Q-factorial singularities and X′ is singular.

Note that a smooth double Veronese cone has no conic bundle structures according to [7]. Existence
of conic bundle structures on smooth quartic double solids and singular double Veronese cones is not
known.

2. Preliminaries

2.1. Notation and terminology

In this paper we always assume that the ground field k is algebraically closed and of characteristic
zero. Also, we use the standard notations and definitions of the Minimal Model Program (MMP). When
we say that a variety X has terminal (resp. canonical) singularities, this means that the singularities are
not worse than that, in particular, X can be smooth.

For a variety X with terminal singularities B(X) denotes the basket of its singularities (see [8]).
Typically, when describing a basket we list only indices of singularities. For example, B(X) = (r1, r2)
means that B(X) contains two points of types 1

r1
(1,−1, b1) and 1

r2
(2,−2, b2). For any normal variety X,

Cl(X) denotes the group of Weil divisors on X modulo linear equivalence. By Cl(X)T we denote the
torsion subgroup of Cl(X). If M is a linear system, then Bs(M ) denotes its base locus.
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2.2. Singularities of linear systems

2.2.1 Definition. Let X be a normal variety and let M be a (not necessarily complete) linear system of
Weil divisors. We assume that dim(M ) > 0 and M has no fixed components. Let µ be non-negative
rational number such that KX + µM is Q-Cartier. For a birational morphism f : X̃ → X, write

KX̃ + µM̃ = KX + µM +
∑

eiEi,

where M̃ := f −1
∗ M is the proper transform of M on X̃, Ei are prime exceptional divisors, and ei are

rational numbers called discrepancies. Note that in this formula discrepancies are defined with respect
to µM, where M ∈M is a general member [9, Sect. 4]. We say that the pair (X, µM ) canonical, resp.
terminal if ei ≥ 0 (resp. ei > 0) for all i and for all birational morphisms f : X̃ → X.

2.2.2 Lemma (see [10], [9], [11]). Let (X,M ) be a pair, where X is a threefold with at worst terminal
singularities and M is a movable linear system on X.

(i) If (X,M ) is canonical, then a general member S ∈ M has only Du Val singularities and in a
neighborhood of each point P ∈ Bs(M ) we have M ∼ −KX,

(ii) If (X,M ) is terminal, then a general member S ∈M is a smooth surface contained in the smooth
locus of X, and dim Bs(M ) ≤ 0.

2.2.3 Theorem (see [10], [11]). Let X be a variety with terminal Q-factorial singularities and let M
be a linear system on X without fixed components such that the pair (X, µM ) is canonical for some
µ ≥ 0. Let

φ : (X, µM )d (X′, µM ′)

be a step of KX+µM -MMP, that is, φ is either a KX+µM -negative extremal divisorial contraction or a
KX +µM -flip. Then the variety X′ again has terminal Q-factorial singularities and the pair (X′, µM ′)
is canonical. If moreover (X, µM ) is terminal, then so is (X′, µM ′).

2.2.4 Corollary (see [10], [12], [11]). Let X be a normal variety and let M be a linear system on
X without fixed components such that KX + µM is Q-Cartier for some µ ≥ 0. Then there exists a
projective birational morphism

f : (X̃, M̃ ) −→ (X,M ),

where M̃ := f −1
∗ M , such that the pair (X̃, µM̃ ) is terminal, KX̃ + µM̃ is f -nef, and X̃ is Q-factorial.

Moreover,
KX̃ + µM̃ ∼Q f ∗(KX + µM ) −

∑
eiEi,

where Ei are prime exceptional divisors and ei ≥ 0 for all i.

Such a pair (X̃, µM̃ ) is called terminal Q-factorial model of (X, µM ).

2.2.5 Corollary (see [13], [10], [11]). Let X be a variety with terminal Q-factorial singularities and
let M be a linear system on X without fixed components such that the pair (X, µM ) is canonical for
some µ ≥ 0. Then there exists a projective birational morphism

f : (X̃, M̃ ) −→ (X,M ),
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where M̃ := f −1
∗ M , such that X̃ is terminal Q-factorial, the pair (X̃, µM̃ ) is canonical,

KX̃ + µM̃ = f ∗(KX + µM ),

and the exceptional locus of f is a prime divisor.

Such a morphism is called an extremal log crepant blowup of (X, µM ).

2.2.6 Corollary (see [12]). Let X be a normal projective variety and let M be a linear system on X
without fixed components such that KX + µM is canonical for some µ ≥ 0. Assume that KX + µM is
not pseudo-effective. Then one can run KX + µM -MMP and end with a Mori fiber space.

Recall also the following well-known result.

2.2.7 Theorem (see [14]). Let (X ∋ P) be a terminal quotient singularity of type 1
r (1, a, r − a), let

f : X̃ → X be a divisorial Mori contraction, and let E be the exceptional divisor. Then f (E) = P,
the contraction f is a weighted blowup with weights (1, a, r − a), and the discrepancy of E equals
a(E, X) = 1/r.

2.3. Del Pezzo varieties

2.3.1 Proposition (see [5], [15]). Let X be a three-dimensional del Pezzo variety with terminal singu-
larities. Then

dim
∣∣∣−1

2 KX

∣∣∣ = d(X) + 1

and a general member M ∈
∣∣∣−1

2 KX

∣∣∣ is a smooth del Pezzo surface of degree d(X). Moreover, the pair(
X,
∣∣∣−1

2 KX

∣∣∣) is terminal.

2.3.2 Theorem (see [16], [5], [15]). Let X be a three-dimensional del Pezzo variety with terminal
singularities.

(i) If d(X) = 1 (i.e., X is a double Veronese cone), then X can be realized as a hypersurface of degree
6 in the weighted projective space P(13, 2, 3). In this case, the projection

π : X −→ P(13, 2)

is a double cover whose branch divisor has degree 6 in P(13, 2).
(ii) If d(X) = 2 (i.e., X is a quartic double solid), then X can be realized as a hypersurface of degree

4 in the weighted projective space P(14, 2). In this case, the projection

π : X −→ P(14) = P3

is a double cover whose branch divisor is a quartic hypersurface.

2.4. Q-Fano varieties

Now, let X be a Q-Fano variety. It follows from the definition that Cl(X) is a finitely generated
abelian group of rank 1. The numbers

qQ(X) := max{t ∈ Z | −KX ∼Q tA, A is a Weil divisor}
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qW(X) := max{t ∈ Z | −KX ∼ tA, A is a Weil divisor}

are called the Fano index and Fano-Weil index, respectively. Clearly, qW(X) divides qQ(X) and qQ(X) =
qW(X) if Cl(X) is torsion free. For aQ-Fano variety X throughout this paper A will denote a Weil divisor
on X such that −KX ∼Q qQ(X)A. If qQ(X) = qW(X), we take A so that −KX ∼ qQ(X)A. Since ρ(X) = 1
and X is Q-factorial, for any Weil divisor M on X we can write −KX ∼Q λM. In this situation denote

λ(X, |M|) = λ(X,M) := λ.

Thus qQ(X) = λ(X, A).

2.4.1 Theorem (see [17]). Let X be a Q-Fano threefold and let M be a smooth surface on X with
κ(M) = −∞. Assume that X is not rational. Then one of the following holds:

(i) X is a hypersurface of degree 6 in P(12, 22, 3), M is a member of the linear system |OX(2)| =∣∣∣ − 2
3 KX

∣∣∣, and so λ(X,M) = 3/2,
(ii) X is a del Pezzo threefold of degree d(X) ≤ 3, M is a member of the linear system

∣∣∣ − 1
2 KX

∣∣∣, and
λ(X,M) = 2.

Note that in [17] the surface M is supposed to have ample normal bundle. This is automatically
satisfied in our case because ρ(X) = 1 by our Q-Fano assumption.

2.4.2 Corollary. Let X be a Q-Fano threefold and let M be a linear system without fixed components
on X such that λ(X,M ) > 1 and the pair (X,M ) is terminal. Assume that X has no conic bundle
structures. Then one of the following holds:

(i) X = X6 ⊂ P(13, 2, 3) is a double Veronese cone,
(ii) X = X4 ⊂ P(14, 2) is a smooth quartic double solid.

Proof. By Lemma 2.2.2(ii) a general member M ∈M is smooth and is contained in the smooth locus
of X. By the adjunction formula M is a del Pezzo surface. In particular, M is rational. Thus we can
apply Theorem 2.4.1.

Assume that X is such as in 2.4.1(i). Let ψ(x1, x′1, x2, x′2, x3) = 0 be an equation of X = X6 ⊂

P(12, 22, 3), where the subscript index of the variables xi and x′j is its degree. Since the singularities of
X are terminal, ψ contains the term x2

3. Thus ψ can be written in the form

ψ = x2
3 + γ3(x2, x′2) + ϕ(x1, x′1, x2, x′2),

where γ3 is a homogeneous polynomial of degree 3 and ϕ does not contain cubic terms in x2, x′2.
Clearly, γ3 , 0 (otherwise X would be singular along the line {x1 = x′1 = x3 = 0}). Thus after a linear
coordinate change we may assume that γ3 = x2x′2(x2 + x′2), x2x′22 , or x′32 . Then the projection

X d P(1, 1, 2), (x1, x′1, x2, x′2, x3) 7−→ (x1, x′1, x
′
2)

is a rational curve fibration because in the affine chart x′2 = 1 the equation ψ becomes quadratic in
x3, x2. Hence X has a conic bundle structure in this case.

Thus we may assume that X is a del Pezzo threefold of degree d(X) ≤ 3 (see 2.4.1(ii)). If d(X) = 3,
then X = X3 ⊂ P

4 is a cubic with terminal singularities and M is its smooth hyperplane section. In this
case the projection X d P2 from a line l ⊂ X is a rational curve fibration.
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It remains to consider the case d(X) = 2, i.e., the case where X = X4 ⊂ P(14, 2) is a quartic double
solid. Suppose that X has a singular point, say P ∈ X. Let ψ(x0, x1, x2, x3, y) = 0 be an equation
of X = X4 ⊂ P(14, 2), where deg(xi) = 1 and deg(y) = 2. Since the singularities of X are terminal
Gorenstein, ψ contains the term y2. By an obvious coordinate change we may assume that ψ has the
form

ψ = y2 + ϕ(x0, x1, x2, x3),

where deg(ϕ) = 4. Clearly, P is contained in the hyperplane {y = 0}. Hence, by a linear coordinate
change we may assume that P = (1, 0, 0, 0, 0) and so

ψ = y2 + ϕ4(x1, x2, x3) + x0ϕ3(x1, x2, x3) + x2
0ϕ2(x1, x2, x3),

where deg(ϕi) = i. As above, the projection

X d P(1, 1, 1) = P2, (x0, x1, x2, x3, y) 7−→ (x1, x2, x3)

is a rational curve fibration. Hence X has a conic bundle structure. □

3. Construction

We recall the construction used in the papers [18–21].

3.1 Assumptions. Let X be a Q-Fano threefold. Consider a linear system M on X without fixed
components. Let c := ct(X,M ) be the canonical threshold of the pair (X,M ) [13]. Assume that
λ(X,M ) > c.

3.1.1 Lemma (see [19, Lemma 4.2]). Let P ∈ X be a point of index r > 1. Assume that M ∼ −tKX

near P, where 0 < t < r. Then ct(X,M ) ≤ 1/t and β ≥ tα.

Consider an extremal log crepant blowup f : X̃ → X with respect to KX + cM (Corollary 2.2.5).
Let E be the exceptional divisor. Recall that X̃ has only terminalQ-factorial singularities. We can write

KX̃ ∼Q f ∗KX + αE,
M̃ ∼Q f ∗M − βE.

(3.1.2)

where α, β ∈ Q>0. Then c = α/β and

KX̃ + cM̃ ∼Q f ∗(KX + cM ).

Since λ(X,M ) > c, the divisor −(KX̃ + cM̃ ) is nef. Take λ = λ(X,M ). Then

KX̃ + λM̃ ∼Q f ∗(KX + λM ) + α(1 − λ/c)E ∼Q α(1 − λ/c)E.

Put δ := α(λ/c − 1). Then
KX̃ + λM̃ + δE ∼Q 0, where δ > 0. (3.1.3)

Run the MMP with respect to KX̃ + cM̃ . We obtain the following diagram (Sarkisov link)

X̃
f

��

χ // X̄
f̄

��
X // X̂

(3.1.4)
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Here the varieties X̃ and X̄ have only terminal Q-factorial singularities, χ is a composition of KX̃+cM̃ -
log flips, ρ(X̃) = ρ(X̄) = 2, and f̄ : X̄ → X̂ is an extremal KX̄-negative Mori contraction. In particular,
rk Cl(X̂) = 1.

In what follows, for a divisor (or a linear system) N on X by Ñ and N̄ we denote proper transforms
of N on X̃ and X̄ respectively. If f̄ is birational, then N̂ denotes the proper transform of N on X̂. Apply
χ∗ to (3.1.3):

KX̄ + λM̄ + δĒ ∼Q 0. (3.1.5)

3.1.6 Lemma (cf. [6, Lemma 4.7]). If M is not composed of a pencil and f̄ is not birational, then X
has a conic bundle structure.

Proof. If dim(X̂) = 2, then f̄ is a Q-conic bundle and we are done. Assume that dim(X̂) = 1. Then f̄
is a del Pezzo fibration and X̂ ≃ P1. By our assumption dim(M ) ≥ 2 and a general member of M is
irreducible. Hence M is not f̄ -horizontal, i.e., M is not a pull-back of a linear system on X̂. Since the
divisor Ē is not movable, it is not contained in fibers and so Ē is f̄ -ample. For a general fiber F by the
adjunction formula and (3.1.5) we have

−KF = −KX̄ |F = λM̄ |F + δĒ|F ,

where both M̄ |F and Ē|F are integral ample divisors. Since λ > 1, the surface F is isomorphic either
P2 or P1 × P1. In this case, X̄ is rational and so it has a lot of conic bundle structures. □

3.2. Birational contractions

Assume that the contraction f̄ is birational. Then X̂ is a Q-Fano threefold. Denote q̂ := qQ(X̂).

3.2.1 Lemma. If the contraction f̄ is birational, then the divisor Ē is not contracted by f̄ .

Proof. Indeed, otherwise the map f̄ ◦ χ ◦ f −1 : X d X̂ would be an isomorphism in codimension one.
Hence it is an isomorphism. On the other hand, the number of KX̂ + cM̂ -crepant divisors on X̂ is
strictly less than the number of KX + cM -crepant divisors on X, a contraction. □

It follows from (3.1.5) that
KX̂ + λM̂ + δÊ ∼Q 0.

Therefore,
λ(X̂, M̂ ) > λ(X,M ). (3.2.2)

3.3. Linear systems

Let Nk be a non-empty linear system on X such that qNk ∼ k(−KX) (here we allow Nk have fixed
components). Let Θ be an ample Weil divisor on X̂ generating Cl(X̂)/Cl(X̂)T. We can write

Ê ∼Q eΘ, ˆNk ∼Q skΘ,

where e ∈ Z>0 by Lemma 3.2.1 and sk ∈ Z≥0. Thus sk = 0 if and only if dim(Nk) = 0 and a unique
element N̄ of ¯Nk is f̄ -exceptional. As in (3.1.2), we write

˜Nk ∼Q f ∗Nk − βkE. (3.3.1)
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The relations (3.1.2) and (3.3.1) give us

kKX̃ + q ˜Nk ∼ −(qβk − kα)E,

where qβk − kα is an integer. From this we obtain

kq̂ = qsk + (qβk − kα)e. (3.3.2)

3.4. Dimensions of linear systems via computer search

We need certain information on linear systems on Q-Fano threefolds of large Fano index. Most of
these facts are contained in the Graded Ring Database [22] or can be obtained by direct computations
using algorithms described in [6, 19, 23, 24].

3.4.1 Proposition. Let X be a Q-Fano threefold and let M be a Weil divisor on X such that dim |M| ≥ 2
and λ(X,M) > 1. Then the linear system |M| is not composed of a pencil.

Proof. Assume the contrary, that is, |M| = D +m|L|, where D is the fixed part of |M| and |L| is a pencil
without fixed components. Then dim |M| = m ≥ 2. Replacing |M| with m|L| we may assume that
D = 0. Clearly, dim |2L| = 2 and qQ(X) ≥ 3 in our case. Now, running computer search for Q-Fano
threefolds with dim |L| = 1 and dim |2L| = 2, we get a contradiction. Interested readers can find a
simple PARI/GP code [25] on the author’s webpage https://homepage.mi-ras.ru/˜prokhoro/
programs/pencil.gp. □

As above, using computer search one can find that there are 30 possible Hilbert series of Q-Fano
threefolds such that qQ(X) ≥ 3, Cl(X)T = 0, and df(X) = 3. As a consequence of this list one obtains.

3.4.2 Proposition. Let X be a Q-Fano threefold with qQ(X) ≥ 3, Cl(X) ≃ Z and df(X) = 3. Then the
following assertions hold.

(i) qQ(X) ≤ 7, qQ(X) , 6, and the basket B(X) contains at most one point of index ≥ 8.
(ii) If qQ(X) = 7, then |A| = ∅ and dim |2A| = dim |3A| = 0.

(iii) If qQ(X) = 5, then dim |2A| = 0 and dim |3A| = 1.
(iv) If qQ(X) = 4, then dim |A| ≤ 0 and 1 ≤ dim |2A| ≤ 2. If moreover, dim |2A| = 2, then dim |A| = 0,

A3 = 2/11 and B(X) = (11).

Similarly, we have.

3.4.3 Proposition. Let X be a Q-Fano threefold with qQ(X) ≥ 3, df(X) = 3 and Cl(X)T ≃ Z/nZ, where
n > 1. Let T be a generator of Cl(X)T. Then the following assertions hold.

(i) qQ(X) ≤ 5,
(ii) If qQ(X) = 5, then qQ(X) = 5, n = 2, B = (42, 12), A3 = 1/12. Moreover, dim |A| = 0, |A + T | = ∅,

dim |2A| = dim |2A + T | = 0, dim |3A| = dim |3A + T | = 1.
(iii) Assume that qQ(X) = 4 and df(X) = 3. Then n ∈ {2, 5} and for a suitable choice of A we have
|A| = ∅, dim |2A| = 1, and dim |3A + kT | = 3 for any k. Moreover,

(a) if n = 2, then dim |A + T | = 0 and 0 ≤ dim |2A + T | ≤ 1;
(b) if n = 5, then dim |A + kT | = 0 and dim |2A + kT | = 1 for k . 0 mod 5.

(iv) Assume that qQ(X) = 3 and df(X) = 3. Then n ∈ {2, 3} and |A + Λ| , ∅ for any Λ ∈ Cl(X)T.
Moreover, if n = 2 and dim |2A| < 3, then A3 = 15/28 and B = (2, 4, 14), and |A| , ∅.
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4. Proof of Theorem 1.2

4.1 Assumptions. Let X be a Q-Fano threefold with qQ(X) > 1 and df(X) ≥ 2 and let M be a linear
system without fixed components such that dim(M ) = df(X) and λ(X,M ) > 1. Assume that X has no
conic bundle structures.

4.1.1 Claim. There exists a sequence of links of the form (3.1.4)

Φ : X = X(1) Ψ199999K X(2) Ψ299999K · · ·
Ψn−19999999K X(n) = X′ (4.1.2)

where each X(i) is a Q-Fano threefold,

λ
(
X(i+1),M (i+1)

)
≥ λ
(
X(i),M (i)

)
.

for M (i+1) = Ψi∗M (i), and the pair
(
X′,M ′ =M (n)

)
is terminal.

Proof. If the pair (X,M ) is terminal, we are done. Thus we may assume that c := ct(X,M ) ≤ 1. By
Proposition 3.4.1 the linear system M is not composed of a pencil. Apply the construction (3.1.4)
to (X,M ). By Lemma 3.1.6 the contraction f̄ is birational and so we obtain a new pair (X̂, M̂ ),
where X̂ is a Q-Fano threefold and M̂ := Ψ∗M is a linear system without fixed components such that
λ(X̂, M̂ ) > λ(X,M ) (see (3.2.2)). If the pair (X̂, M̂ ) is terminal, we are done. Otherwise we can repeat
the process applying the construction (3.1.4) to (X̂, M̂ ) and continue. We get a sequence of pairs

(X,M ) = (X(1),M (1))d (X(2),M (2))d · · ·d (X(n),M (n))d · · · (4.1.3)

Since the set of all Q-Fano threefolds is bounded [29], the process terminates with a pair (X′,M ′) =
(X(n),M (n)) having terminal singularities. □

By Corollary 2.4.2 X′ is a del Pezzo threefold of degree d(X′) ≤ 2 and M ′ = Ψ∗M ⊂ | − 1
2 KX′ |. In

particular, dim(M ) = dim(M ′) ≤ 3. This proves 1.2(i).
If X′ = X′6 ⊂ P(1

3, 2, 3) is a double Veronese cone, then dim(M ) = dim(M ′) = 2. If, furthermore,
X′ is smooth, then according to [7], any birational model of X′ which is a Mori fiber space non-
isomorphic to X′ is a degree 1 del Pezzo fibration over P1. In particular, this implies that X ≃ X′. If X′

is a quartic double solid, then it must be smooth (see Corollary 2.4.2). This proves 1.2(iii).
It remains to prove the assertion of 1.2(ii), i.e., Ψ is an isomorphism in the case dim(M ) = 3. For

this purpose we can consider the last step of (4.1.2). We show that X(n) ≃ X(n−1).

4.2 Assumptions. Thus we assume that dim(M ) = 3. We put X = X(n−1) and X̂ = X(n). Recall that
X̂ is a smooth quartic double solid in our case. We are going to use all the notation of Sect. 3. Since
(X,M ) is not terminal, c = ct(X,M ) ≤ 1. Recall also the commutative diagram (3.1.4):

X̃
f

��

χ // X̄
f̄

��
X // X̂ = X̂6 ⊂ P(14, 2)

(4.2.1)
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Denote by F̄ the f̄ -exceptional divisor and by F̃ ⊂ X̃ its proper transform. By Lemma 3.2.1 F̄ , Ē.
Hence F := f (F̃) is a prime divisor on X. Write

M ∼Q bA, F ∼Q dA, b, d ∈ Z>0.

Thus λ := λ(X,M ) = q/b > 1. Clearly,

KX̄ ∼ f̄ ∗KX̂ + aF̄,

where a is the discrepancy of F̄. Since X̂ is smooth, a is a positive integer.

4.2.2 Remark. • If f̄ (F̄) is a point, then by [26] f̄ is a weighted blowup of f̄ (F̄) ∈ X̂ with weights
(1,w1,w2), where gcd(w1,w2) = 1. In particular, a = w1 + w2 ≥ 2. Moreover, a = 2 if and only if
f̄ is a usual blowup.

• If f̄ (F̄) is a curve, then the contraction f̄ is the usual blowup at its general point. In particular,
a = 1.

4.2.3 Claim. 2b = q + ad. In particular, q < 2b.

Proof. Since Bs(M̂ ) = ∅, we have

KX̄ + 2M̄ = f̄ ∗(KX̂ + 2M̂ ) + aF̄ ∼ aF̄.

Taking the pushforward of this relation to X, we get the desired equality. □

4.2.4 Claim. gcd(b, d) = 1 and Cl(X)T is a cyclic group of order e/d.

Proof. The group Cl(X̄) is generated by the classes of M̄ and Ē:

Cl(X̄) = Z · [M̄ ] ⊕ Z · [F̄].

Hence, Cl(X̃) = Z · [M̃ ] ⊕ Z · [F̃] and we can write

E ∼ uM̃ + vF̃. (4.2.5)

Since E is contracted by f , we have Cl(X) = Cl(X̃)/Z · [E] and so Cl(X) = Z ⊕ Z/nZ, where n =
gcd(u, v). Taking pushforward of (4.2.5) to X and X̂ we get ub + vd = 0 and e = u, respectively. Since
the classes of M and F generate Cl(X), we have gcd(b, d) = 1. Hence, v = −nb and e = nd. □

4.2.6 Claim. Assume that M ∋ tN, where N is an (effective) Weil divisor and t ≥ 2. Then e = d = 1,
Cl(X) is torsion free, Supp(N) = F, f̄ (F̄) is a point, and a ≥ 2.

Proof. We can write M̃ ∼ tÑ + δE, where δ is an non-negative integer. Hence, M̂ ∼ t f̄∗N̄ + δÊ. Since
the class of M̂ is not divisible in Cl(X̂), we have Supp(N̄) = F̄ and so δ = 1 and Ê ∼M , i.e., e = 1.
By Claim 4.2.4 d = 1 and Cl(X) is torsion free. Further,

Ē ∼ M̄ − tF̄ ∼ f̄ ∗Ê − tF̄,

where t ≥ 2. If f̄ (F̄) is a curve, then Ê must be singular along f̄ (F̄). This contradicts [27]. Hence f̄ (F̄)
is a point and a ≥ 2 by Remark 4.2.2. □
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4.2.7 Claim. Assume that M ∋ N1 + N2, where N1 and N2 are effective non-zero Weil divisors without
common components. If F , Supp(N1), then F = Supp(N2) and N1 is a prime divisor.

Proof. As above, write M̃ ∼ Ñ1 + Ñ2 + δE, where δ ≥ 0. Hence, M̂ ∼ f̄∗N̄1 + f̄∗N̄2 + δÊ. By our
assumption f∗N̄1 , 0. Since the class of M̂ is not divisible in Cl(X̂), we have δ = 0, f̄∗N̄2 = 0, and N̄1

is a prime divisor. □

4.2.8 Claim. If a > 1, then M ∼ N + δF, where δ is a positive integer and N is an effective Weil
divisor such that dim |N | ≥ 2.

Proof. By Remark 4.2.2 f̄ (F̄) is a point, say P̂. Let M̂P ⊂ M̂ be the linear subsystem consisting of all
divisors from M̂ passing through P̂. Then dim(M̂P) = 2 and

M̄P ∼ f̄ ∗M̂P − δF̄ ∼ f ∗M̂ − δF̄,

where δ ≥ 1. Therefore, M ∼MP + δF, where dim(MP) = 2. □

Now we are in position to prove Theorem 1.2(ii). We show that in our assumptions 4.2 the diagram
4.2.1 does not exist. Consider possibilities for X̂ case by case.

4.3. Case Cl(X) ≃ Z

Then e = d by Claim 4.2.4. Apply Proposition 3.4.2. We obtain the following subcases.

Subcase qQ(X) = 7

Then by 3.4.2(ii) there are prime divisors M2 and M3 such that M ∼ 3M2 ∼ 2M3. But then by
Claim 4.2.6 we have M2 = M3 = F, a contradiction.

Subcase qQ(X) = 5

Then dim |2A| = 0 and dim |3A| = 1 by 3.4.2(iii). Hence, b = 4 and M ∋ 2D, where D ∈ |2A|. By
Claim 4.2.6 we have Supp(D) = F, d = 1 and a ≥ 2. Then by Claim 4.2.8 we have dim |kA| ≥ 2, where
k ≤ 3, a contradiction.

Subcase qQ(X) = 4.

It follows from Claim 4.2.3 that b = 3 and ad = 2. Thus M ∼ 3A and s3 = 1. According to
Proposition 3.4.2(iv) we have dim |A| ≤ 0 and dim |2A| ≥ 1. The relation (3.3.2) for k = 3 has the form

2 = (4β3 − 3α)e,

where β3 ≥ 2α by Lemma 3.1.1. Hence α ≤ 2/(5e) < 1 and so P := f (E) is a non-Gorenstein point of
X. Let r be its index. Similarly, the relation (3.3.2) for k = 2 has the form

(α − 2β2)e = 2(s2 − 1).

Since dim |2A| > 0, a general member of M2 = |2A| is not contracted on X̂, hence s2 ≥ 1. There-
fore, β2 ≤ α/2. Since rM2 is Cartier at P, rβ2 is an integer. So, α ≥ 2/r. Hence f cannot be a
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Kawamata blowup of P ∈ X and P ∈ X is not a cyclic quotient singularity (see Theorem 2.2.7). By
Proposition 3.4.2(i) we have r ≥ 7. Then

1
5e
≥
α

2
≥ β2 ≥

1
7
, e = 1.

By Claim 4.2.4 d = 1, a = 2, and dim |2A| ≥ 2 by Claim 4.2.8. Then by 3.4.2(iv) we have only one
possibility: A3 = 2/11 and B(X) = (11). But this means that P ∈ X is a cyclic quotient singularity, a
contradiction.

Subcase qQ(X) = 3

Then b = 2 and d = a = 1 by Claim 4.2.3. Hence, M ∼ 2F because Cl(X) ≃ Z. Then we get a
contradiction by Claim 4.2.6.

4.4. Case: Cl(X)T , 0

Let n be the order of Cl(X)T. Apply Proposition 3.4.3 and consider possibilities for qQ(X).

Subcase qQ(X) = 5.

Then n = 2. By 3.4.3(ii) we have

dim |kA| ≤ 1 and dim |kA + T | ≤ 1 for all k ≤ 3.

In particular, b = 4. If a > 1, then by Claim 4.2.8 we get a contradiction. Thus a = 1 and d = 3 (see
Claim 4.2.3). If M = |4A|, then we get a contradiction by Claim 4.2.6 because |A| , ∅ (see 3.4.3(ii)).
Let M = |4A + T |. Then M ∼ 2N1 + N2, where N1 ∈ |A| and N2 ∈ |2A + T | are prime divisors. By
Claim 4.2.7 we have F = N1 and so d = 1, a contradiction.

Subcase qQ(X) = 4

Then n = 2 or 5. It follows from Claim 4.2.3 that b = 3 and ad = 2. If a > 1, we get a contradiction
by Claim 4.2.8 and 3.4.3(iii). Thus, a = 1 and d = 2. By 3.4.3(iii) |A + T | , ∅ and dim |3A + 3T | = 3.
Take M = |3A + 3T | and apply the construction (3.1.4). Then by Claim 4.2.6 X̂ is not a smooth
quartic double solid because M ∋ 3N, N ∈ |A + T |. By (3.2.2) we have λ(X̂, M̂ ) > λ(X,M ) = 4/3.
Therefore, qQ(X̂) > 4. Hence we can proceed with the sequence of Sarkisov links (4.1.2) so that
λ(X(i),M (i)) > 4/3 and qQ(X(i)) > 4. By the above considered cases we get a contradiction.

Subcase qQ(X) = 3.

It follows from Claim 4.2.3 that b = 2, a = d = 1. Hence, M ∼Q 2F. If M ∼ 2F, we get a
contradiction by Claim 4.2.6. Therefore, T := M − 2F is a non-trivial torsion element. We have
KX̄ + 2M̄ − F̄ ∼ 0. Hence −KX ∼ 2M − F ∼ 3F + 2T . Moreover, the group Cl(X) is generated by the
classes of F and T . By Claim 4.2.4 Ê / M̂ because d = 1.

Assume that 3T ∼ 0. Then M ∼ 2(F + 2T ) and |F + 2T | = ∅ by Claim 4.2.6. This contra-
dicts 3.4.3(iv). Therefore, 2T ∼ 0. Hence, −KX ∼ 3F. If dim |2F| = 3, then we take M = |2F| and
apply the construction (3.1.4). Then by Claim 4.2.6 X̂ is not a smooth quartic double solid. By (3.2.2)

Electronic Research Archive Volume 30, Issue 5, 1881–1897.



1893

we have λ(X̂, M̂ ) > λ(X,M ) = 3/2. Therefore, qQ(X̂) > 3. Hence we can proceed with the sequence
of Sarkisov links (4.1.2) so that λ(X(i),M (i)) > 3/2 and qQ(X(i)) > 3. By the above considered cases we
get a contradiction.

Therefore, dim |2F| < 3. Thus by 3.4.3(iv) we have B = (2, 4, 14). Then |F + T | , ∅ and for
D ∈ |F + T | we have −KX ∼M + D,

KX̃ + M̃ + D̃ + γE = f ∗(KX +M + D) ∼ 0.

where γ ≥ β−α = α(c−1) ≥ 0. Since D , F, taking pushforward to X̂ we obtain −KX̂ ∼ M̂ + D̂+γÊ,
where D̂ , 0. This is possible only if γ = 0. Then the pair (X,M ) is canonical. In this case by Lemma
2.2.2(i) near each singular point either D or M is Cartier. Since −4KX ∼ 12D ∼ 6M , the divisor 4KX

is Cartier. This contradicts B = (2, 4, 14).

5. Applications

In this section we consider applications of Theorem 1.2 to the existence of conic bundle structures
on rationally connected threefolds.

5.1 Proposition. Let X be a normal projective threefold and let M be a non-empty linear system of
Weil divisors on X such that

(i) M is not composed of a pencil,
(ii) −(KX +M ) ∼Q Θ, where Θ is a Q-divisor which is Q-Cartier, and

(iii) either Θ > 0 or Θ = 0 and the pair (X, M ) is not canonical.

Assume that the variety X has no conic bundle structures. Then there exists a birational transformation
Ψ : X d X′, where X′ is del Pezzo threefold as in 1.2(iii). Moreover,

dim(M ) ≤ d(X′) + 1.

Proof. We may assume that M has no fixed components. Let

f : (X̃, M̃ ) −→ (X,M )

be a terminal Q-factorial model of the pair (X,M ) (see Corollary 2.2.4). Thus M̃ := f −1
∗ M , the pair

(X̃, M̃ ) is terminal, KX̃ + M̃ is f -nef, and the variety X̃ is Q-factorial. We can write

KX̃ + M̃ ∼Q f ∗(KX +M ) − E′,

where E′ is the exceptional Q-divisor and E′ ≥ 0. Furthermore,

f ∗Θ = Θ̃ + E′′,

where Θ̃ is the proper transform of Θ on X̃ and E′′ ≥ 0. Hence,

KX̃ + M̃ + Ξ̃ ∼Q f ∗(KX +M + Θ) ∼Q 0,
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where Ξ̃ := Θ̃ + E′ + E′′ ≥ 0. Moreover, Ξ̃ > 0 by our assumptions 5.1(iii). In particular, KX̃ + M̃ is
not nef. Run (KX̃ + M̃ )-MMP. The divisor Ξ̃ cannot be contracted, so at the end we get a Mori fiber
space (X̄, M̄ )/Z:

(X̃, M̃ ) // (X̄, M̄ )
φ
��

Z

where Ξ̄ ∼Q −(KX̄ + M̄ ) if φ-ample. If dim(Z) = 2, then φ is a Q-conic bundle and then we are done.
Assume that dim(Z) = 1. Then φ is a del Pezzo fibration and Z ≃ P1. Since dim(M ) ≥ 2 and a general
member of M is irreducible, M is not φ-horizontal, i.e., M is not a pull-back of a linear system on Z.
For a general fiber F by the adjunction formula we have

KF = KX̄ |F = M̄ |F + Ξ̄|F ,

where both M̄ |F and Ξ̄|F are ample. Since M̄ |F is an (integral) Cartier divisor, the surface F is either
P2 or P1 × P1. In this case, X̄ is rational and so it has a lot of conic bundle structures. Finally, assume
that Z is a point. Then X̄ is a Q-Fano threefold such that df(X̄) ≥ 2 and

KX̄ + M̄ + Ξ̄ ∼Q 0,

where both M̄ and Ξ̄ are ample, and dim(M̄ ) ≥ 2. Thus we can apply Theorem 1.2 to (X̄, M̄ ). □

Now we consider applications of Theorem 1.2 to Q-Fano threefolds. For simplicity we consider
only Q-Fanos whose Weil divisor class group Cl(X) has no torsions, i.e., Cl(X) ≃ Z. The collection of
invariants

(
B(X), qW(X), A3

)
determines the Hilbert series

P(X,A)(t) :=
∞∑

n=0

dim H0(X,OX(nA)) · tn.

An abstract collection (B, q, α), where B is a basket of terminal singularities, q ∈ Z>0, and α ∈ Q>0

is called a numerical candidate if there are no numerical obstructions (like orbifold Riemann-Roch
theorem [8] and Bogomolov-Miyaoka inequality [14]) for existence of a Q-Fano threefold with corre-
sponding invariants.

Computer search by using algorithm described in [6, 19, 23, 24] (see also [22]) shows that there are
at most 472 numerical candidates with q ≥ 3. Among them Theorem 1.2 is applicable in 313 cases.
Similarly, there are at most 1 492 numerical candidates with q = 2 and Theorem 1.2 is applicable in
382 cases. We expect that in most of the remaining cases the corresponding Q-Fano threefolds (if they
exist) should have conic bundle structure. However proof of this needs a case by case considerations.
Let us consider just one example.

5.2 Proposition. Let X be a Q-Fano threefold with qQ(X) = 7 and A3 = 1/78 (No. 41478 in [22]).
Then X is rational. In particular, X has a conic bundle structure.

Note however that the existence of a Q-Fano threefold X with these invariants is not known.
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Proof. In this case the group Cl(X) is torsion free, B(X) = (2, 3, 13), dim |6A| = 1, and dim |kA| = 0
for 1 ≤ k ≤ 5. Apply construction (3.1.4) with M = |6A|. Then near the point of index 13 we have
M ∼ 12(−KX). Hence, β6 ≥ 12α by Lemma 3.1.1 and so

β1 ≥ β6/6 ≥ 2α.

The relation (3.3.2) for k = 1 has the form

q̂ = 7s1 + (7β1 − α)e ≥ 7s1 + 13αe. (5.2.1)

Since q̂ ≤ 7, we have s1 = 0 and α < 1. Thus f is the Kawamata blowup of a cyclic quotient singularity
P ∈ X of index r = 2, 3 or 13. If r = 2 or 3, then A ∼ −KX near P. Hence β1 = α + m1, where m1 is an
integer, m1 ≥ α > 0. Then (5.2.1) gives us

q̂ = 6αe + 7m1e > 7.

This contradicts our assumptions. Thus r = 13 and so A ∼ 2(−KX) near P. Hence β1 = 2α+m1, where
m1 is a non-negative integer. Again, from (5.2.1) we obtain

q̂ = 13αe + 7m1e.

Thus m1 = 0, β1 = 2α, and β6 = 12α. By Theorem 2.2.7 α = 1/13. Now, the relation (3.3.2) for k = 6
has the form:

6q̂ = 7s6 + (7β6 − 6α)e = 7s6 + 6e.

Since q̂ < 8, s6 = 0. Since dim |6A| = 1, this implies that the contraction f̄ is not birational, so it is
a del Pezzo fibration. Since s1 = 0, we have M̄ ∼ 6M̄1 and so M̄1 is a fiber of multiplicity 6. By
the main result of [28] the general fiber of f̄ is a del Pezzo surface of degree 6. But then X̄ must be
rational, a contradiction. □
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