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1. Introduction and main results

Consider periodic solution of the ordinary p(t)-Laplacian differential system{ d
dt (|u̇(t)|p(t)−2u̇(t)) + ∇F(t, u(t)) = 0, u ∈ RN ,

u(0) − u(T ) = u̇(0) − u̇(T ) = 0,
(1.1)

where T > 0, p(t) > 1 is a T -periodic continuous function, F(t, x) is T -periodic in t for any x ∈ RN .
Here we always assume that F(t, x) satisfies the following condition.

(A) F(t, x) is measurable in t for any x ∈ RN and continuously differentiable in x for a.e. t ∈ [0,T ],
and there exist two functions a ∈ C(R+;R+), b ∈ L1([0,T ];R+) such that

|F(t, x)| ≤ a(|x|)b(t), |∇F(t, x)| ≤ a(|x|)b(t), ∀ x ∈ RN and a.e. t ∈ [0,T ],

where ∇F(t, x) denotes the gradient of F(t, x) in x.
In the sequel of this paper, we set p− := min

0≤t≤T
p(t), p+ := max

0≤t≤T
p(t) and q− > 1 such that 1

p− +
1

q− = 1.

We define the generalized Lebesgue space as

Lp(t)
T = Lp(t)(S T ;RN) :=

{
u ∈ L1(S T ;RN) :

∫ T

0
|u|p(t)dt < ∞

}
, S T = R/TZ

with the norm

∥u∥Lp(t) = inf
{
λ > 0 :

∫ T

0

∣∣∣∣u
λ

∣∣∣∣p(t)
dt ≤ 1

}
.
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Lp(t)
T is a kind of generalized Orlicz space. We also define the generalized Sobolev space by

W1,p(t)
T = W1,p(t)(S T ;RN) :=

{
u ∈ Lp(t)(S T ;RN) : u̇ ∈ Lp(t)(S T ;RN)

}
with the norm

∥u∥W1,p(t)
T
= ∥u∥ = ∥u∥Lp(t) + ∥u̇∥Lp(t) .

W1,p(t)
T is a kind of generalized Orlicz-Sobolev space. In our case with the condition p(t) > 1, the two

spaces Lp(t)
T and W1,p(t)

T are both reflective Banach spaces with the norms defined above. It is known
that there is a compact embedding W1,p(t)

T ↪→ C([0,T ];RN). One can refer [1] for details.
The corresponding functional φ of (1.1) on W1,p(t)

T is given by

φ(u) =
∫ T

0

|u̇(t)|p(t)

p(t)
dt −

∫ T

0
F(t, u(t))dt, u ∈ W1,p(t)

T . (1.2)

Wang and Yuan in [2] verified that the functional φ denoted in (1.2) is continuously differentiable, i.e.,
there holds

⟨φ′(u), v⟩ =
∫ T

0
[(|u̇(t)|p(t)−2u̇(t), v̇(t)) − (∇F(t, u(t)), v(t))]dt

for any u, v ∈ W1,p(t)
T . So the critical points of φ correspond to the solutions of problem (1.1). Then

Zhang et al. in [3] proved that the functional φ defined in (1.2) is weakly lower semicontinuous on
W1,p(t)

T .
When p(t) = 2, problem (1.1) reduces to the following Hamiltonian system{

ü(t) + ∇F(t, u(t)) = 0 a.e. t ∈ [0,T ],
u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

(1.3)

which has been extensively investigated in many literatures (see, e.g., [4–8] and the references therein).
Particularly, under the following conditions:

(M1) there exists g ∈ L1([0,T ];R+) such that |∇F(t, x)| ≤ g(t) for ∀x ∈ RN and a.e. t ∈ [0,T ],
(M2)

∫ T

0
F(t, x)dt → ±∞ as |x| → +∞,

Mawhin and Willem in [6] established the existence of solutions for problem (1.3).
When N = 1, T = 2π, Habets, Manasevich and Zanolin in [4] established the existence of two

sequences of different periodic solutions for problem (1.3) when the potential F(t, x) satisfies the fol-
lowing oscillating conditions:

lim sup
a→±∞

∫ 2π

0
F(t, a)dt = +∞, lim inf

b→±∞

∫ 2π

0
F(t, b)dt = −∞.

When the nonlinearity ∇F(t, x) is sublinear, i.e., there exist f , g ∈ L1([0,T ];R+) and α ∈ [0, 1) such
that

|∇F(t, x)| ≤ f (t)|x|α + g(t), ∀x ∈ RN and a.e. t ∈ [0,T ],

and F(t, x) satisfies oscillating conditions, i.e., there holds

lim sup
r→+∞

inf
x∈RN ,|x|=r

|x|−2α
∫ T

0
F(t, x)dt = +∞,

Electronic Research Archive Volume 30, Issue 5, 1653–1667.



1655

lim inf
R→+∞

sup
x∈RN ,|x|=R

|x|−2α
∫ T

0
F(t, x)dt = −∞,

Zhang and Tang in [8] obtained the existence of two sequences of different periodic solutions for
problem (1.3).

When p(t) = p is a constant for general p > 1, problem (1.1) reduces to the following ordinary
p-Laplacian problem { d

dt (|u̇(t)|p−2u̇(t)) + ∇F(t, u(t)) = 0, a.e. t ∈ [0,T ],
u(0) − u(T ) = u̇(0) − u̇(T ) = 0.

(1.4)

In recent years, the existence results for problem (1.4) was considered via the variational methods (see,
e.g., [9–11] and references therein). Specially, Lü, O’Regan and Agarwal in [10] generalized the re-
sults of [4] to the p-Laplacian problem (1.4) and established the existence of two sequences of different
periodic solutions for problem (1.4). Li, Agarwal and Tang in [9] also established the existence of two
sequences of different periodic solutions for problem (1.4) for the case with the potential F(t, x) pos-
sessing the mixed nonlinearity, that is, F(t, x) = F1(t, x) + F2(t, x) with F1(t, x) being (λ, µ)-subconvex
in x, i.e., function F1(t, ·) : RN → R satisfies

F1(t, λ(x + y)) ≤ µ(F1(t, x) + F1(t, y)) (1.5)

for some λ, µ > 0 and each x, y ∈ RN (see [7] for details) and ∇F2(t, x) being p-sublinear, namely, there
exist f , g ∈ L1([0,T ];R+) and α ∈ [0, p − 1) such that

|∇F2(t, x)| ≤ f (t)|x|α + g(t), ∀ x ∈ RN and a.e. t ∈ [0,T ].

Then they also considered the other case with the nonlinearity ∇F(t, x) being p-linear, i.e., there exist
f , g ∈ L1([0,T ];R+) such that

|∇F(t, x)| ≤ f (t)|x|p−1 + g(t), ∀ x ∈ RN and a.e. t ∈ [0,T ].

Many scholars are interested in the nonlinear problems including the p(t)-Laplacian problem, this
kind of problems can be used to model the dynamical phenomena arising from the field of elastic me-
chanics. One can refer [12, 13] and the references therein for more application of the p(t)-Laplacian
problem to various practical issues. The p(t)-Laplacian problem has more complicated nonlinearity
than that of the p-Laplacian problem, for example, the second order differential operator is not homo-
geneous, this may causes some troubles such as some classical theories and methods, for instance, the
Sobolev spaces theory are not applicable.

In recent years, the study of variational problems and elliptic partial differential equations with
nonstandard growth conditions has been an interesting topic (see, e.g., [13,14] and references therein).
In 2001, Fan et al. in [14, 15] established some basic theory of space Lp(x)(Ω) and Wk,p(x)(Ω). In
2003, Fan et al. in [1] first studied the ordinary p(t)-Laplacian problem (1.1). Subsequently, Wang
and Ruan in [2] established the existence and multiplicity of periodic solutions for the ordinary p(t)-
Laplacian problem (1.1) under the generalized Ambrosetti-Rabinowitz conditions. Recently, many
scholars considered the existence of periodic solutions of the ordinary p(t)-Laplacian problem (1.1).
Some existence theorems of the ordinary p(t)-Laplacian problem (1.1) are established by using the least
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action principle and minimax methods in critical point theory (see, e.g., [1, 3, 16] and the references
therein ).

In this paper, motivated by the results of [4, 5, 8–10], we first aim to consider the ordinary p(t)-
Laplacian problem (1.1) with a mixed nonlinearity, that is, F(t, x) = F1(t, x) + F2(t, x) with F1(t, x)
being (λ, µ)-subconvex and ∇F2(t, x) being p−-sublinear. Then we consider the other case with the
nonlinearity ∇F(t, x) being p−-linear. Following the idea of paper [8,9], we obtain the existence of two
sequences of different periodic solutions for problem (1.1). The main results of this paper are stated as
follows.
Theorem 1.1 Assume that F(t, x) = F1(t, x) + F2(t, x) where F1(t, x) and F2(t, x) satisfy condition (A)
and the following conditions.

(H1) F1(t, ·) is (λ, µ)-subconvex defined in (1.5) with λ > 1
2 and 1 ≤ 2µ < (2λ)p− for a.e. t ∈ [0,T ],

and there exist α ∈ [0, p− − 1), f , g ∈ L1([0,T ];R+) such that

|∇F2(t, x)| ≤ f (t)|x|α + g(t), f or ∀ x ∈ RN and a.e. t ∈ [0,T ].

(H2) There exists a positive sequence {Rn} with lim
n→+∞

Rn = +∞, such that

lim
n→+∞

inf
x∈RN ,|x|=Rn

∫ T

0
F(t, x)dt = +∞

and there exists a positive sequence {rm} with lim
m→+∞

rm = +∞, such that

lim
m→+∞

sup
x∈RN ,|x|=rm

1

rq−α
m

(
µ

∫ T

0
F1(t,

x
λ

)dt +
∫ T

0
F2(t, x)dt

)
= −∞.

Then problem (1.1) possesses two sequences of solutions {u±n } with φ(u±n )→ ±∞ as n→ +∞.
Remark 1.2 Theorem 1.1 above generalizes Theorem 1.1 of [10], Theorem 1.1 of [8], Theorem 1
of [5] and Theorem 1.1 of [9]. There are functions F(t, x) satisfying the conditions in Theorem 1.1 but
not satisfying the conditions in [5, 8–10]. For example, for p(t) = 4 + cosωt with ω = 2π

T , we take

F1(t, x) = 5 + sin |x|6, F2(t, x) = |x|7/4 sin(ln(|x|2 + 1)) + (e(t), x),

where e ∈ L1([0,T ];RN) and
∫ T

0
e(t)dt = 0. Then F(t, x) = F1(t, x) + F2(t, x) is such a function.

Theorem 1.3 Assume that F(t, x) satisfies condition (A) and the following conditions.
(H3) There exist f , g ∈ L1([0,T ];R+) with ∥ f ∥L1 < α(p) such that

|∇F(t, x)| ≤ f (t)|x|p
−−1 + g(t), ∀ x ∈ RN and a.e. t ∈ [0,T ],

where α(p) is a positive constant depending on the function p(t), and so on the constants p±.
(H4) There exists a positive sequence {Rn} with lim

n→+∞
Rn = +∞, such that

lim
n→+∞

inf
x∈RN ,|x|=Rn

∫ T

0
F(t, x)dt = +∞

and there exists a positive sequence {rm} with lim
m→+∞

rm = +∞, such that

lim
m→+∞

sup
x∈RN ,|x|=rm

1

rp−
m

∫ T

0
F(t, x)dt < −β(p),
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where β(p) is a positive constant depending on the function p(t), and so on the constants p±. Then
problem (1.1) possesses two sequences of solutions {u±n } such that φ(u±n )→ ±∞ as n→ +∞.
Remark 1.4 In the process of the proof of Theorem 1.3, the constants α(p) and β(p) will be defined
clearly (see (3.20) and (3.26)). Theorem 1.3 above generalizes Theorem 1.3 of [9] since here the range
of the function p(t) is wider than theirs. There exist functions satisfying the conditions of Theorem 1.3.
For example, for p(t) = 5

4 +
1
8cosωt, one can take

F(t, x) =
1
T
|x|

17
8 sin(

7
16

ln(|x|2 + 1)).

Then F(t, x) satisfies the conditions of Theorem 1.3 with p− = 9
8 , p

+ = 11
8 , q

− = 9, θp− = 1, f (t) = 3
T .

2. Preliminaries

For the convenience of readers, we first introduce two important properties of the variable exponent
Lebesgue-Sobolev spaces Lp(t) and W1,p(t)

T .
We define

W̃1,p(t)
T =

{
u ∈ W1,p(t)

T :
∫ T

0
u(s)ds = 0

}
.

For u ∈ W1,p(t)
T , let

ū =
1
T

∫ T

0
u(s)ds,

then ũ(t) = u(t) − ū ∈ W̃1,p(t)
T . So we get

W1,p(t)
T = RN ⊕ W̃1,p(t)

T .

Lemma 2.1 [16] For all u ∈ W̃1,p(t)
T , there exist constants C′0, C0 such that

∥u∥∞ ≤ C′0∥u̇∥Lp(t) ,

∥u∥∞ ≤ 2C0

[( ∫ T

0
|u̇(t)|p(t)dt

) 1
p−
+ T

1
p−
]
,

where C′0, C0 > 0.
Lemma 2.2 [1] Let u = ū + ũ ∈ W1,p(t)

T with ū ∈ RN and ũ ∈ W̃1,p(t)
T , then the norm ∥ ˙̃u∥Lp(t) is an

equivalent norm on W̃1,p(t)
T and |ū| + ∥u̇∥Lp(t) is an equivalent norm on W1,p(t)

T . Therefore, for u ∈ W1,p(t)
T ,

∥u∥ → +∞ ⇒ |ū| +
∫ T

0
|u̇(t)|p(t)dt → +∞.

Next we give two important properties of minimax methods as follows.
Lemma 2.3 [6] Let K be a compact metric space, X a Banach space and K0 ⊂ K is a closed subset,
χ ∈ C(K0; X). We define a complete metric space M as

M = {γ ∈ C(K; X) : γ(s) = χ(s), ∀ s ∈ K0}
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with the usual norm and metric. Let φ ∈ C1(X; R) and

c = inf
γ∈M

max
s∈K
φ(γ(s)), c1 = max

χ(K0)
φ.

If c > c1, then for each ε > 0 and each γ ∈ M such that

max
s∈K
φ(γ(s)) ≤ c + ε,

there exists v ∈ X such that

c − ε ≤ φ(v) ≤ max
s∈K
φ(γ(s)), dist(v, γ(K)) ≤ ε1/2, |φ′(v)| ≤ ε1/2.

Corollary 2.4 [6] Under the conditions of Lemma 2.3, for each sequence (γk) in M such that

max
K
φ(γk)→ c,

there exists a sequence (vk) in X such that

φ(vk)→ c, dist(vk, γk(K))→ 0, |φ′(vk)| → 0 as k → +∞.

3. Proofs of theorems

Proof of Theorem 1.1. The proof is divided into four steps.
Step 1. We demonstrate that φ(u)→ +∞ as ∥u∥ → ∞ for u ∈ W̃1,p(t)

T .
Let β = log2λ(2µ), then one gets 0 ≤ β < p−. For |x| > 1, there exists a positive integer n such that

n − 1 < log2λ |x| ≤ n.

Therefore one has |x|β > (2λ)(n−1)β = (2µ)n−1 and |x| ≤ (2λ)n. Combining the conditions (A) and
(H1), one obtains

F1(t, x) ≤ 2µF1(t,
x

2λ
) ≤ · · · ≤ (2µ)nF1(t,

x
(2λ)n ) ≤ 2µ|x|βa0b(t)

for any |x| > 1 and a.e. t ∈ [0,T ], where a0 = max
0≤s≤1

a(s). Therefore one gets

F1(t, x) ≤ (2µ|x|β + 1)a0b(t) (3.1)

for any |x| > 1 and a.e. t ∈ [0,T ]. In the sequel, we denote by C a suitable positive constant which may
take different value in various estimations.

Combining Lemma 2.1, (H1) and (3.1), for the functional φ defined in (1.2), we obtain

φ(u) =
∫ T

0

|u̇(t)|p(t)

p(t)
dt −

∫ T

0
F(t, u(t))dt

≥
1
p+

∫ T

0
|u̇(t)|p(t)dt −

∫ T

0
F1(t, u(t))dt −

∫ T

0
F2(t, u(t))dt
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≥
1
p+

∫ T

0
|u̇(t)|p(t)dt −

∫ T

0
(2µ|u(t)|β + 1)a0b(t)dt

−
1
α + 1

∫ T

0
f (t)|u(t)|α+1dt −

∫ T

0
g(t)|u(t)|dt

≥
1
p+

∫ T

0
|u̇(t)|p(t)dt − 2µa0∥u∥β∞

∫ T

0
b(t)dt

−

∫ T

0
a0b(t)dt − ∥u∥α+1

∞

∥ f ∥L1

α + 1
− ∥u∥∞∥g∥L1

≥
1
p+

∫ T

0
|u̇(t)|p(t)dt −C

( ∫ T

0
|u̇(t)|p(t)dt

) β
p−
−C

( ∫ T

0
|u̇(t)|p(t)dt

) α+1
p−

−C
( ∫ T

0
|u̇(t)|p(t)dt

) 1
p−
−C (3.2)

for any u ∈ W̃1,p(t)
T . From Lemma 2.2, estimate (3.2) implies that

φ(u)→ +∞ as ∥u∥ → +∞ f or u ∈ W̃1,p(t)
T .

Step 2. We verify that for the positive sequence {rm} defined in (H2), there holds

lim
m→+∞

inf
u∈Wrm

φ(u) = +∞, (3.3)

where Wrm = {u ∈ R
N ||u| = rm} ⊕ W̃1,p(t)

T .
By Lemma 2.1, (H1) and Young inequality, we obtain∣∣∣∣ ∫ T

0
(F2(t, u(t)) − F2(t, ū))dt

∣∣∣∣
=
∣∣∣∣ ∫ T

0

∫ 1

0
(∇F2(t, ū + sũ(t)), ũ(t))dsdt

∣∣∣∣
≤

∫ T

0

∫ 1

0
f (t)|ū + sũ(t)|α|ũ(t)|dsdt +

∫ T

0

∫ 1

0
g(t)|ũ(t)|dsdt

≤2p−−1(|ū|α + ∥ũ∥α∞)∥ũ∥∞

∫ T

0
f (t)dt + ∥ũ∥∞

∫ T

0
g(t)dt

=
(
(

p−

2p+
)1/p− ∥ũ∥∞

2C0

)(
(

p−

2p+
)−1/p−2p−C0

∫ T

0
f (t)dt

)
|ū|α

+ 2p−−1∥ũ∥α+1
∞

∫ T

0
f (t)dt + ∥ũ∥∞

∫ T

0
g(t)dt

≤
1

2p+

∫ T

0
|u̇(t)|p(t)dt +C|ū|q

−α +C
( ∫ T

0
|u̇(t)|p(t)dt

) α+1
p−

+C
( ∫ T

0
|u̇(t)|p(t)dt

) 1
p−
+C (3.4)

for any u ∈ W1,p(t)
T , where C0 is the constant defined in Lemma 2.1.
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Hence from (H1), (3.1) and (3.4), for the functional φ defined in (1.2), we have

φ(u) =
∫ T

0

|u̇(t)|p(t)

p(t)
dt −

∫ T

0
F(t, u(t))dt

≥
1
p+

∫ T

0
|u̇(t)|p(t)dt −

∫ T

0
F1(t, u(t))dt −

∫ T

0
F2(t, u(t))dt

≥
1
p+

∫ T

0
|u̇(t)|p(t)dt − µ

∫ T

0
F1(t,

ū
λ

)dt − µ
∫ T

0
F1(t,

ũ(t)
λ

)dt

−

∫ T

0
(F2(t, u(t)) − F2(t, ū))dt −

∫ T

0
F2(t, ū)dt

≥
1

2p+

∫ T

0
|u̇(t)|p(t)dt − µ

∫ T

0
F1(t,

ū
λ

)dt − µ(2µλ−β∥ũ∥β∞ + 1)
∫ T

0
a0b(t)dt −C|ū|q

−α

−

∫ T

0
F2(t, ū)dt −C

( ∫ T

0
|u̇(t)|p(t)dt

) α+1
p−
−C

( ∫ T

0
|u̇(t)|p(t)dt

) 1
p−
−C

≥
1

2p+

∫ T

0
|u̇(t)|p(t)dt −C

( ∫ T

0
|u̇(t)|p(t)dt

) α+1
p−

−C
( ∫ T

0
|u̇(t)|p(t)dt

) 1
p−
−C

( ∫ T

0
|u̇(t)|p(t)dt

) β
p−

− |ū|q
−α

( 1
|ū|q−α

(
µ

∫ T

0
F1(t,

ū
λ

)dt +
∫ T

0
F2(t, ū)dt +C

))
−C. (3.5)

One can check that

B = inf
ũ∈W̃1,p(t)

T

( 1
2p+

∫ T

0
|u̇(t)|p(t)dt −C

( ∫ T

0
|u̇(t)|p(t)dt

) α+1
p−

−C
( ∫ T

0
|u̇(t)|p(t)dt

) 1
p−
−C

( ∫ T

0
|u̇(t)|p(t)dt

) β
p−
)
> −∞

and

inf
u∈Wrm

φ(u) ≥B −C − sup
ū∈RN ,|ū|=rm

|rm|
q−α

( 1
|rm|

q−α

(
µ

∫ T

0
F1(t,

ū
λ

)dt +
∫ T

0
F2(t, ū)dt

))
.

Thus the above inequality and (H2) imply (3.3).
Step 3. Prove (i) of Theorem 1.1. For the positive sequence {Rn} defined in the condition (H2), we
define

Γn = {γ ∈ C(BRn; W1,p(t)
T ) | γ|∂BRn = id|∂BRn}

and

cn = inf
γ∈Γn

max
x∈BRn

φ(γ(x)), (3.6)

where
Bδ = {x ∈ RN ||x| ≤ δ}.
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One can verify that γ(BRn) ∩ W̃1,p(t)
T , ∅ ( for more details see [10]).

From Step 1, we know that φ is coercive on W̃1,p(t)
T . Since W1,p(t)

T is a reflective Banach space, hence
there is a constant M such that

max
x∈BRn

φ(γ(x)) ≥ inf
u∈W̃1,p(t)

T

φ(u) = M. (3.7)

Combining (3.6) and (3.7), one obtains that cn ≥ M.
As in (3.3), we can easily verify that

lim
n→+∞

sup
u∈RN ,|u|=Rn

φ(u) = −∞. (3.8)

From (3.8), for large enough n, we obtain

cn > sup
u∈RN ,|u|=Rn

φ(u).

Now in Lemma 2.3 and Corollary 2.4, we take the compact set K = BRn and K0 = ∂BRn , then for any
sequence {γk} ⊂ Γn such that

max
x∈BRn

φ(γk(x))→ cn, (3.9)

there exists a sequence {vk} ⊂ W1,p(t)
T satisfying

φ(vk)→ cn, dist(vk, γk(BRn))→ 0, |φ′(vk)| → 0, as k → ∞. (3.10)

Combining (3.6), (3.9) and (3.10), for k large enough, we have

cn ≤ max
x∈BRn

φ(γk(x)) ≤ cn + 1 (3.11)

Define π : W1,p(t)
T → RN as

π(u) =
1
T

∫ T

0
u(t)dt, f or u ∈ W1,p(t)

T .

For fixed n, we obtain
|π(γk(BRn))| ≤ Kn.

for some positive constant Kn, here |S | := supx∈S ∥x∥ for a set S ⊂ RN .
We now take ωk ∈ γk(BRn) such that

∥vk − ωk∥ ≤ 1. (3.12)

We write ωk = ω̄k + ω̃k with ω̄k ∈ R
N and ω̃k ∈ W̃1,p(t)

T . So there holds |ω̄k| ≤ Kn, which implies that

µ

∫ T

0
F1(t,

ω̄k

λ
)dt +

∫ T

0
F2(t, ω̄k)dt
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is bounded. Combining (H1), (3.1), (3.4), (3.11) and Lemma 2.1, we obtain

cn + 1 ≥φ(ωk)

=

∫ T

0

|ω̇k(t)|p(t)

p(t)
dt −

∫ T

0
F(t, ωk(t))dt

≥
1
p+

∫ T

0
|ω̇k(t)|p(t)dt −

∫ T

0
F1(t, ωk(t))dt −

∫ T

0
F2(t, ωk(t))dt

≥
1
p+

∫ T

0
|ω̇k(t)|p(t)dt − µ

∫ T

0
F1(t,

ω̄k

λ
)dt − µ

∫ T

0
F1(t,

ω̃k(t)
λ

)dt

−

∫ T

0
(F2(t, ωk(t)) − F2(t, ω̄k))dt −

∫ T

0
F2(t, ω̄k)dt

≥
1

2p+

∫ T

0
|ω̇k(t)|p(t)dt − µ

∫ T

0
F1(t,

ω̄k

λ
)dt − µ(2µλ−β∥ω̃k∥

β
∞ + 1)

∫ T

0
a0b(t)dt −C

−

∫ T

0
F2(t, ω̄k)dt −C|ω̄k|

q−α −C
( ∫ T

0
|ω̇k(t)|p(t)dt

) α+1
p−
−C

( ∫ T

0
|ω̇k(t)|p(t)dt

) 1
p−

≥
1

2p+

∫ T

0
|ω̇k(t)|p(t)dt −C

( ∫ T

0
|ω̇k(t)|p(t)dt

) α+1
p−

−C
( ∫ T

0
|ω̇k(t)|p(t)dt

) 1
p−
−C

( ∫ T

0
|ω̇k(t)|p(t)dt

) β
p−
−C. (3.13)

Therefore one can check that {ω̃k} and {ωk} is bounded from Lemma 2.2 and (3.13). By (3.12), we
obtain that {vk} is bounded. By a standard argument, one can easy to verify that {vk} possesses a
convergent subsequence. It is still denoted by {vk}. One can refer [2] for more details about the proof
of (PS) condition.

Let
u+n = lim

k→+∞
vk.

Then from (3.10), we obtain

φ(u+n ) = lim
k→+∞

φ(vk) = cn, φ
′(u+n ) = lim

k→+∞
φ′(vk) = 0.

This means u+n is a solution of problem (1.1) with φ(u+n ) = cn.
For all γ ∈ Γn, by definition, there holds γ(BRn) ∩Wrm , ∅. Then we get

max
x∈BRn

φ(γ(x)) ≥ inf
u∈Wrm

φ(u). (3.14)

Now combining (3.3), (3.6) and (3.14), we obtain

lim
n→+∞

cn = +∞.

Hence there exists a sequence of periodic solutions {u+n } which are minimax-type critical points of
the functional φ and φ(u+n )→ +∞ as n→ +∞. So (i) of Theorem 1.1 is proved.
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Step 4. Prove (ii) of Theorem 1.1. For the sequence {rn} defined in condition (H2) and as the same
from (3.3), we define Pn as

Pn = {u ∈ W1,p(t)
T |u = ū + ũ, ū ∈ RN , |ū| ≤ rn, ũ ∈ W̃1,p(t)

T }.

For u ∈ Pn, it is easy to see that

µ

∫ T

0
F1(t,

ū
λ

)dt +
∫ T

0
F2(t, ū)dt

is bounded.
Combining (H1), (3.1) and (3.4), for u ∈ Pn, by the same process as in (3.13), we get

φ(u) =
∫ T

0

|u̇(t)|p(t)

p(t)
dt −

∫ T

0
F(t, u(t))dt

≥
1

2p+

∫ T

0
|u̇(t)|p(t)dt −C

( ∫ T

0
|u̇(t)|p(t)dt

) α+1
p−
−C

( ∫ T

0
|u̇(t)|p(t)dt

) 1
p−

−C
( ∫ T

0
|u̇(t)|p(t)dt

) β
p−
−C. (3.15)

Thus the functional φ is bounded below in Pn.
Set

ρn = inf
u∈Pn
φ(u) (3.16)

and let {uk} be a sequence on Pn such that

φ(uk)→ ρn as k → ∞.

We write
uk = ūk + ũk, ūk ∈ R

N , |ūk| ≤ rn, ũk ∈ W̃1,p(t)
T .

From (3.15) and (3.16), it is easy to see that {uk} is bounded sequence in W1,p(t)
T . Then {uk} possesses a

subsequence, which is still denoted by {uk} such that

uk ⇀ u−n in W1,p(t)
T .

As Pn is a closed convex subset of W1,p(t)
T , one has u−n ∈ Pn.

Since the functional φ is weakly lower semicontinuous, we obtain

ρn = lim
k→∞
φ(uk) ≥ φ(u−n ).

Therefore we get

ρn = φ(u−n ). (3.17)

From (3.3), for large n, we get that u−n < {ū + ũ, ū ∈ RN , |ū| = rn}, and hence u−n ∈ IntPn = {u ∈
W1,p(t)

T |u = ū + ũ, |ū| < rn}. Thus combining (3.16) and (3.17), one obtains

φ′(u−n ) = 0
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and u−n is a solution of problem (1.1).
Since rn → +∞ as n→ +∞, we can choose the sequence {Rn} in the condition (H2) and as the same

in (3.8) satisfying 0 < Rn < rn. By (3.16), we obtain

φ(u−n ) ≤ sup
x∈RN ,|x|=Rn

φ(x). (3.18)

From (3.8) and (3.18), we have
φ(u−n )→ −∞ as n→ ∞.

So (ii) of Theorem 1.1 is true. The proof of Theorem 1.1 is complete.
Proof of Theorem 1.3. The proof is divided into two steps.
Step 1. We show that φ(u)→ +∞ as ∥u∥ → ∞ for u ∈ W̃1,p(t)

T .
Combining Lemma 2.1 and (H3), we obtain

φ(u) =
∫ T

0

|u̇(t)|p(t)

p(t)
dt −

∫ T

0
F(t, u(t))dt

≥
1
p+

∫ T

0
|u̇(t)|p(t)dt −

1
p−

∫ T

0
f (t)|u(t)|p

−

dt −
∫ T

0
g(t)|u(t)|dt

≥
1
p+

∫ T

0
|u̇(t)|p(t)dt −

∥ f ∥L1

p−
∥u∥p

−

∞ − ∥u∥∞∥g∥L1

≥
( 1

p+
−

(2C0)p−

p−
∥ f ∥L1

) ∫ T

0
|u̇(t)|p(t)dt −C

( ∫ T

0
|u̇(t)|p(t)dt

) 1
p−
−C, (3.19)

for any u ∈ W̃1,p(t)
T , where C0 is the positive constant defined in Lemma 2.1. We now define the constant

α(p) in Theorem 1.3 as

α(p) =
p−

2p+θp−(2C0)p− , (3.20)

where θp− is a positive constant defined by θp− = 1 for p− ∈ (1, 2], and θp− = 2p−−2 for p− > 2. Now if
∥ f ∥L1 < α(p), in view of Lemma 2.2, the estimate (3.19) implies that

φ(u)→ +∞ as ∥u∥ → +∞ f or u ∈ W̃1,p(t)
T .

Step 2. We verify that for the positive sequence {rm} defined in condition (H4), there holds

lim
m→+∞

inf
u∈Wrm

φ(u) = +∞, (3.21)

where Wrm = {u ∈ R
N ||u| = rm} ⊕ W̃1,p(t)

T .
For u ∈ W1,p(t)

T with u = ū + ũ where |ū| = rm and ũ ∈ W̃1,p(t)
T . Here we recall that rm is defined in

condition (H4), namely we have

lim
m→+∞

sup
x∈RN ,|x|=rm

1
|rm|

p−

∫ T

0
F(t, x)dt < −β(p). (3.22)
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Combining (H3), we obtain∣∣∣∣ ∫ T

0
(F(t, u(t)) − F(t, ū))dt

∣∣∣∣
=
∣∣∣∣ ∫ T

0

∫ 1

0
(∇F(t, ū + sũ(t)), ũ(t))dsdt

∣∣∣∣
≤

∫ T

0

∫ 1

0
f (t)|ū + sũ(t)|p

−−1|ũ(t)|dsdt +
∫ T

0

∫ 1

0
g(t)|ũ(t)|dsdt

≤θp−
(
|ū|p

−−1∥ũ∥∞ +
1
p−
∥ũ∥p

−

∞

)
∥ f ∥L1 + ∥ũ∥∞∥g∥L1

≤
2θp−

p−
∥ f ∥L1∥ũ∥p

−

∞ +
α(p)θp−

q−
|ū|p

−

+C∥ũ∥∞, (3.23)

for any u ∈ W1,p(t)
T , where 1

p− +
1

q− = 1. Where in (3.23), in the second estimate, we have used the
inequality (a + b)c ≤ ac + bc for a, b ≥ 0, c ∈ (0, 1], (a + b)c ≤ 2c−1(ac + bc) for a, b ≥ 0, c ∈ (1,+∞),
and in the last estimate, we have used the Young inequality ab ≤ ap−

p− +
bq−

q− , a, b ≥ 0. In the Lemma 2.1
of [11], we know that for a fixed ρ > 1 and any ε > 0, there is a number B(ε) > 0 such that

(a + b)ρ ≤ (1 + ε)aρ + B(ε)bρ, ∀a, b > 0.

Now we take ε > 0 such that α(p) ≥ (1 + ε)∥ f ∥L1 + ε, and ρ = p−, from Lemma 2.1, there holds

∥ f ∥L1∥ũ∥p
−

∞ ≤ (α(p) − ε)(2C0)p−
∫ T

0
| ˙̃u|p(t)dt +C.

Thus we get ∣∣∣∣ ∫ T

0
(F(t, u(t)) − F(t, ū))dt

∣∣∣∣
≤

2θp−(2C0)p−(α(p) − ε)
p−

∫ T

0
| ˙̃u|p(t)dt +

θp−α(p)
q−

|ū|p
−

+C
(∫ T

0
| ˙̃u|p(t)dt

) 1
p−

+C. (3.24)

Therefore, from (H3) and (3.24), we have

φ(u) =
∫ T

0

|u̇(t)|p(t)

p(t)
dt −

∫ T

0
F(t, u(t))dt

≥
1
p+

∫ T

0
|u̇(t)|p(t)dt −

∫ T

0
(F(t, u(t)) − F(t, ū))dt −

∫ T

0
F(t, ū)dt

≥

 1
p+
−

2θp−(2C0)p−(α(p) − ε)
p−

 ∫ T

0
|u̇(t)|p(t)dt −C

( ∫ T

0
|u̇(t)|p(t)dt

) 1
p−

− |ū|p
−
( 1
|ū|p−

∫ T

0
F(t, ū)dt +

θp−α(p)
q−

)
−C (3.25)

for all u ∈ W1,p(t)
T . From (3.20), we can check that

1
p+
−

2θp−(2C0)p−(α(p) − ε)
p−

> 0.
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Hence we obtain

D = inf
ũ∈W̃1,p(t)

T

( 1
p+
−

2θp−(2C0)p−(α(p) − ε)
p−

) ∫ T

0
|u̇(t)|p(t)dt

−C
( ∫ T

0
|u̇(t)|p(t)dt

) 1
p−
)
> −∞.

Now define the constant β(p) in Theorem 1.3 as

β(p) =
p−

2p+q−(2C0)p− . (3.26)

Therefore combining the above expression and (3.22), we obtain (3.21).
The remainder is similar to that as in the proof of Theorem 1.1, we omit the detail here.
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