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Abstract: The largest C-eigenvalue of a piezoelectric tensor determines the highest piezoelectric
coupling constant. In this paper, we first provide a new C-eigenvalue localization set for a piezoelectric-
type tensor and prove that it is tighter than some existing sets. And then, we present a direct method to
find all C-eigentriples of a piezoelectric-type tensor of dimension 3. Finally, we show the effectiveness
of the direct method by numerical examples.
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1. Introduction

A piezoelectric-type tensor is a third-order tensor, which plays an important role in physics [1–6]
and engineering [7–11]. In particular, the largest C-eigenvalue of a piezoelectric tensor and its
associated left and right C-eigenvectors play an important role in the piezoelectric effect and the
converse piezoelectric effect in the solid crystal [12, 13]. Moreover, in the process of manufacturing
and developing micro/nano-electromechanical devices, the development of new multifunctional
intelligent structures needs consideration piezoelectric effect [14, 15]. In order to explore more
information about piezoelectric-type tensors, Chen et al. [12] introduced piezoelectric-type tensors
and their C-eigentriples.

Definition 1.1. [12, Definition 2.1] Let A = (ai jk) ∈ Rn×n×n be a third-order n-dimensional tensor. If
the latter two indices of A are symmetric, i.e., ai jk = aik j, where i, j, k ∈ [n] := {1, 2, . . . , n}, then A is
called a piezoelectric-type tensor. When n = 3,A is called a piezoelectric tensor.

Definition 1.2. [12, Definition 2.2] LetA = (ai jk) ∈ Rn×n×n be a piezoelectric-type tensor. If there is a
real number λ ∈ R, two vectors x := (x1, x2, . . . , xn)> ∈ Rn\{0} and y := (y1, y2, . . . , yn)> ∈ Rn\{0} such
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that 
Ayy = λx, (1.1)
xAy = λy, (1.2)
x>x = 1, (1.3)
y>y = 1, (1.4)

where

(Ayy)i :=
∑

j,k∈[n]

ai jky jyk, (xAy)k :=
∑

i, j∈[n]

ai jkxiy j,

then λ is called a C-eigenvalue of A, and x and y are its associated left and right C-eigenvectors,
respectively. Then, (λ, x, y) is called a C-eigentriple of A and σ(A) is used to denote the spectrum of
A, which is a set of all C-eigenvalues ofA.

Chen et al. provided the following results for the C-eigenvalues and C-eigenvectors of a piezoele-
ctric-type tensor.

Property 1.1. [12, Theorem 2.3] LetA = (ai jk) ∈ Rn×n×n be a piezoelectric-type tensor.
(a) The C-eigenvalues ofA and their associated left and right C-eigenvectors always exist.
(b) Let λ be a C-eigenvalue and (x, y) be its associated left and right C-eigenvectors. Then

λ = xAyy :=
∑

i, j,k∈[n]

ai jkxiy jyk.

Furthermore, (λ, x,−y), (−λ,−x, y) and (−λ,−x,−y) are also C-eigentriples ofA.
(c) Let λ∗ be the largest C-eigenvalue ofA. Then

λ∗ = max{xAyy : x>x = 1, y>y = 1}.

As we all know, the largest C-eigenvalue of a piezoelectric-type tensor and its associated
C-eigenvectors constitute the best rank-one piezoelectric-type approximation. In view of this, Liang
and Yang [16, 17] designed two methods to calculate the largest C-eigenvalue of a piezoelectric-type
tensor. Later, Zhao and Luo [18] provided a method to calculate all C-eigentriples of a
piezoelectric-type tensor by converting the C-eigenvalue problem to the Z-eigenvalue problem of
tensors. Moreover, many researchers considered the C-eigenvalue localization problem and provided
many C-eigenvalue localization sets [19–24]. For instance, Che et al. [25] presented the following
Geršgorin-type C-eigenvalue localization set.

Theorem 1.1. [25, Theorem 2.1] LetA = (ai jk) ∈ Rn×n×n be a piezoelectric-type tensor. Then

σ(A) ⊆ Γ(A) :=
⋃
j∈[n]

Γ j(A),

where

Γ j(A) := {z ∈ R : |z| ≤ R j(A)} and R j(A) :=
∑

l,k∈[n]

|alk j|.
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Definition 1.2 and Property 1.1 indicate that a C-eigenvalue λ is real and both λ and −λ are
C-eigenvalues, which implies that a C-eigenvalue localization set is always symmetric with respect to
the origin. Therefore, the result of Theorem 1.1 is equivalent to σ(A) ⊆ [−ρΓ, ρΓ], where
ρΓ = max

j∈[n]
{R j(A)}.

The remainder of the paper is organized as follows. In Section 2, we construct a new C-eigenvalue
localization set and prove that it is sharper than some existing sets. In Section 3, we provide a direct
method to find all C-eigentriples when n = 3. In Section 4, we reviewed the practical application of C-
eigentriples of a piezoelectric-type tensor to the piezoelectric effect and converse piezoelectric effect.
In Section 5, we verify the effectiveness of obtained results by numerical examples. In Section 6, we
give a summary of this paper.

2. A new C-eigenvalue localization set

In this section, we provide a new C-eigenvalue localization set and prove that it is sharper than the
set in Theorem 1.1. Before that, the following lemma is needed.

Lemma 2.1. [26, pp. 10, Cauchy-Schwarz inequality] Let x = (x1, x2, . . . , xn)> ∈ Rn and
y = (y1, y2, . . . , yn)> ∈ Rn. Then (∑

i∈[n]

xiyi

)2
≤

∑
i∈[n]

x2
i

∑
i∈[n]

y2
i .

Theorem 2.1. LetA = (ai jk) ∈ Rn×n×n be a piezoelectric-type tensor. Then

σ(A) ⊆ Ω(A) :=
( ⋃

i∈[n]

Ω̂i(A)
)
∪

( ⋃
i, j∈[n],i, j

(
Ω̃i, j(A) ∩ Ki(A)

))
,

where

Ω̂i(A) := {z ∈ R : |z| ≤ ri
i(A)},

Ω̃i, j(A) := {z ∈ R : (|z| − ri
i(A))(|z| − r̃i

j(A)) ≤ r̃i
i(A)ri

j(A)},

Ki(A) := {z ∈ R : |z| ≤ ri(A)},

and

ri
j(A) :=

√∑
l∈[n]

a2
li j, r̃i

j(A) :=
√∑

l∈[n]

( ∑
k∈[n],k,i

|alk j|
)2
,

ri(A) :=
√∑

l∈[n]

( ∑
k∈[n]

|alki|
)2
, i, j ∈ [n].

Proof. Let (λ, x, y) be a C-eigentriple of A. Let |yt| ≥ |ys| ≥ max
k∈[n],k,t,k,s

{|yk|}. Then 0 ≤ |yt| ≤ 1. From

(1.2), we have

λyt =
∑

l,k∈[n]

alktxlyk =
∑
l∈[n]

alttxlyt +
∑

l,k∈[n],k,t

alktxlyk.
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Taking the modulus in above equation and using the triangle inequality and Lemma 2.1, we have

|λ||yt| ≤
∑

l,k∈[n]

|alkt||xl||yt| = |yt|
∑
l∈[n]

(
|xl|

∑
k∈[n]

|alkt|
)

≤ |yt|

√∑
l∈[n]

|xl|
2

√∑
l∈[n]

( ∑
k∈[n]

|alkt|
)2

= |yt|

√∑
l∈[n]

( ∑
k∈[n]

|alkt|
)2
,

i.e.,

|λ| ≤

√∑
l∈[n]

( ∑
k∈[n]

|alkt|
)2

= rt(A),

which implies that λ ∈ Kt(A), and

|λ||yt| ≤
∑
l∈[n]

|altt||xl||yt| +
∑

l,k∈[n],k,t

|alkt||xl||yk|

≤
∑
l∈[n]

|altt||xl||yt| +
∑

l,k∈[n],k,t

|alkt||xl||ys|

= |yt|
∑
l∈[n]

|altt||xl| + |ys|
∑
l∈[n]

(
|xl|

∑
k∈[n],k,t

|alkt|
)

≤ |yt|

√∑
l∈[n]

a2
ltt

√∑
l∈[n]

x2
l + |ys|

√∑
l∈[n]

x2
l

√∑
l∈[n]

( ∑
k∈[n],k,t

|alkt|
)2

= |yt|

√∑
l∈[n]

a2
ltt + |ys|

√∑
l∈[n]

( ∑
k∈[n],k,t

|alkt|
)2

= rt
t(A)|yt| + r̃t

t(A)|ys|,

i.e.,

(|λ| − rt
t(A))|yt| ≤ r̃t

t(A)|ys|. (2.1)

If |ys| = 0 in (2.1), we have |λ| ≤ rt
t(A), which implies that λ ∈ Ω̂t(A) ⊆ Ω(A).

If |ys| > 0 in (2.1), then |λ| ≤ rt
t(A) + r̃t

t(A) ≤ rt(A), which implies that λ ∈ Kt(A). Now, suppose
that λ < Ω̂t(A), i.e., |λ| > rt

t(A). The s-th equation of (1.2) is

λys =
∑

l,k∈[n]

alksxlyk =
∑
l∈[n]

altsxlyt +
∑

l,k∈[n],k,t

alksxlyk,

which implies that

|λ||ys| ≤
∑
l∈[n]

|alts||xl||yt| +
∑

l,k∈[n],k,t

|alks||xl||yk|

≤
∑
l∈[n]

|alts||xl||yt| +
∑

l,k∈[n],k,t

|alks||xl||ys|
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= |yt|
∑
l∈[n]

|alts||xl| + |ys|
∑
l∈[n]

(
|xl|

∑
k∈[n],k,t

|alks|
)

≤ |yt|

√∑
l∈[n]

a2
lts

√∑
l∈[n]

x2
l + |ys|

√∑
l∈[n]

x2
l

√∑
l∈[n]

( ∑
k∈[n],k,t

|alks|
)2

= |yt|

√∑
l∈[n]

a2
lts + |ys|

√∑
l∈[n]

( ∑
k∈[n],k,t

|alks|
)2

= rt
s(A)|yt| + r̃t

s(A)|ys|,

i.e.,

(|λ| − r̃t
s(A))|ys| ≤ rt

s(A)|yt|. (2.2)

By multiplying (2.1) and (2.2) and eliminating |ys||yt| > 0, we have

(|λ| − rt
t(A))(|λ| − r̃t

s(A)) ≤ r̃t
t(A)rt

s(A),

which implies that λ ∈
(
Ω̃t,s(A)∩Kt(A)

)
⊆ Ω(A), and consequently, σ(A) ⊆ Ω(A) by the arbitrariness

of λ.

Next, we discuss the relationship between the set Ω(A) in Theorem 2.1 and the set Γ(A) in Theorem
1.1.

Theorem 2.2. LetA = (ai jk) ∈ Rn×n×n be a piezoelectric-type tensor. Then

Ω(A) ⊆ Γ(A).

Proof. Let z ∈ Ω(A). By Theorem 2.1, there exists i, j ∈ [n] such that z ∈ Ω̂i(A) or z ∈
(
Ω̃i, j(A) ∩

Ki(A)
)
.

Case I. If z ∈ Ω̂i(A), then

|z| ≤ ri
i(A) ≤ Ri(A),

which implies that z ∈ Γ(A).
Case II. If z ∈

(
Ω̃i, j(A) ∩ Ki(A)

)
, then z ∈ Ω̃i, j(A) and z ∈ Ki(A). If z ∈ Ω̃i, j(A), then

(|z| − ri
i(A))(|z| − r̃i

j(A)) ≤ r̃i
i(A)ri

j(A).

If r̃i
i(A)ri

j(A) = 0, then

|z| ≤ ri
i(A) ≤ Ri(A) or |z| ≤ r̃i

j(A) ≤ R j(A),

which implies that z ∈ Γ(A).
If r̃i

i(A)ri
j(A) > 0, then

|z| − ri
i(A)

r̃i
i(A)

|z| − r̃i
j(A)

ri
j(A)

≤ 1.
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Therefore,

|z| − ri
i(A)

r̃i
i(A)

≤ 1 or
|z| − r̃i

j(A)

ri
j(A)

≤ 1,

i.e.,

|z| ≤ ri
i(A) + r̃i

i(A) ≤ Ri(A) or |z| ≤ r̃i
j(A) + ri

j(A) ≤ R j(A),

and consequently z ∈ Γ(A).
When z ∈ Ki(A), we have

|z| ≤ ri(A) ≤ Ri(A),

then z ∈ Γ(A). Hence, Ω(A) ⊆ Γ(A).

Similarly, we can write the set Ω(A) as [−ρΩ, ρΩ], where

ρΩ := max
{

max
i∈[n]
{ri

i(A)}, max
i, j∈[n],i, j

min
{1
2
νi, j(A), ri(A)

}}
, (2.3)

and

νi, j(A) := r̃i
j(A) + ri

i(A) +

√
(̃ri

j(A) − ri
i(A))2 + 4̃ri

i(A)ri
j(A).

Theorem 2.2 indicates that ρΩ ≤ ρΓ and [−ρΩ, ρΩ] ⊆ [−ρΓ, ρΓ].

3. A direct method to calculate all C-eigentriples when n = 3

By the idea to find all M-eigenpairs of a fourth-order tensor in Theorem 7 of [27], we in this section
present a direct method to find all C-eigenpair when n = 3.

Theorem 3.1. LetA = (ai jk) ∈ Rn×n×n be a piezoelectric-type tensor. Then all C-eigentriples are given
as follows:

(a) If a211 = a311 = a112 = a113 = 0, then (a111, (1, 0, 0)>, (±1, 0, 0)>) and (−a111, (−1, 0, 0)>, (±1, 0,
0)>) are four C-eigentriples ofA.

(b) (λ, x, y) is a C-eigentriple ofA, where

λ = a111x1 + a211x2 + a311x3,

and

x = (x1, x2, x3)>, y = (±1, 0, 0)>,

x1, x2 and x3 are the real roots of the following equations:

a211x1 − a111x2 = 0, (3.1)
a311x1 − a111x3 = 0, (3.2)
a112x1 + a212x2 + a312x3 = 0,
a113x1 + a213x2 + a313x3 = 0,
x2

1 + x2
2 + x2

3 = 1.
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(c) (λ, x, y) and (−λ,−x, y) are two C-eigentriples ofA, where

λ = a111y2
1 + a122y2

2 + a133y2
3 + 2a112y1y2 + 2a113y1y3 + 2a123y2y3,

and

x = (1, 0, 0)>, y = (y1, y2, y3)>,

y1, y2 and y3 are the real roots of the following equations:

a222y2
2 + a211y2

1 + a233y2
3 + 2a221y2y1 + 2a232y3y2 + 2a231y3y1 = 0,

a333y2
3 + a311y2

1 + a322y2
2 + 2a331y3y1 + 2a323y2y3 + 2a321y2y1 = 0,

a112y2
1 + (a122 − a111)y1y2 + a132y1y3 − a121y2

2 − a131y2y3 = 0, (3.3)
a113y2

1 + (a133 − a111)y1y3 + a123y1y2 − a121y2y3 − a131y2
3 = 0, (3.4)

y2
1 + y2

2 + y2
3 = 1.

(d) (λ, x, y) is a C-eigentriple ofA, where

λ = a112x1t + a122x1 + a222x2 + a212x2t + a322x3 + a312x3t,

and

x = (x1, x2, x3)>, y = ±
(t, 1, 0)>
√

t2 + 1
,

x1, x2 and x3 and t are the real roots of the following equations:

a222x1 + a211x1t2 + 2a221x1t − a111x2t2 − a122x2 − 2a112tx2 = 0, (3.5)
a311t2x1 + a322x1 + 2a321x1t − a111x3t2 − a122x3 − 2a112x3t = 0, (3.6)
a112x1t2 + (a122 − a111)x1t + (a222 − a211)x2t + (a322 − a311)x3t

+a212x2t2 + a312x3t2 − a321x3 − a221x2 − a121x1 = 0, (3.7)
a113x1t + a123x1 + a223x2 + a213x2t + a313x3t + a323x3 = 0,
x2

1 + x2
2 + x2

3 = 1.
(e) (λ, x, y) and (−λ,−x, y) are two C-eigentriples ofA, where

λ =
√

t2 + 1(a222y2
2 + a211y2

2 + a233y2
3 + 2a221y1y2 + 2a232y2y3 + 2a231y1y3), (3.8)

and

x =
(t, 1, 0)>
√

t2 + 1
, y = (y1, y2, y3)>,

y1, y2, y3 and t are the real roots of the following equations:

a222y2
2t + a211y2

1t + a233y2
3t + 2a221y2y1t + 2a232y3y2t + 2a231y3y1t

−a111y2
1 − a122y2

2 − a133y2
3 − 2a112y1y2 − 2a113y1y3 − 2a123y2y3 = 0, (3.9)

a333y2
3 + a311y2

1 + a322y2
2 + 2a331y3y1 + 2a323y2y3 + 2a321y2y1 = 0,

a112ty2
1 + (a122 − a111)ty1y2 + a132ty1y3 + (a222 − a211)y2y1

+a212y2
1 + a232y1y3 − a121ty2

2 − a131y2ty3 − a221y2
2 − a231y2y3 = 0, (3.10)

a113ty2
1 + (a133 − a111)ty1y3 + a123ty1y2 + a223y1y2 + a213y2

1

+(a233 − a211)y1y3 − a121ty2y3 − a131ty2
3 − a221y2y3 − a231y2

3 = 0, (3.11)
y2

1 + y2
2 + y2

3 = 1.
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(f) (λ, x, y) is a C-eigentriple ofA, where

λ = ±(a113u1v1 + a123u1v2 + a133u1 + a213u2v1 + a223u2v2 + a233u2

+ a313v1 + a323v2 + a333)/
√

u2
1 + u2

2 + 1, (3.12)

and

x = ±
(u1, u2, 1)>√
u2

1 + u2
2 + 1

, y = ±
(v1, v2, 1)>√
v2

1 + v2
2 + 1

, (3.13)

u1, u2, v1 and v2 are the real roots of the following equations:

a222u1v2
2 + a211v2

1u1 + a233u1 + 2a221v1u1v2 + 2a232u1v2

+2a231v1u1 − a111u2v2
1 − a122u2v2

2 − a133u2 − 2a112u2v1v2

−2a113u2v1 − 2a123u2v2 = 0, (3.14)
a333u1 + a311u1v2

1 + a322u1v2
2 + 2a331u1v1 + 2a323u1v2 + 2a321u1v1v2

−a111v2
1 − a122v2

2 − a133 − 2a112v1v2 − 2a113v1 − 2a123v2 = 0, (3.15)
a112u1v2

1 + (a122 − a111)u1v1v2 + a132v1u1 + (a222 − a211)u2v1v2

+a212u2v2
1 + a232v1u2 + a332v1 + (a322 − a311)v1v2 + a312v2

1

−a121u1v2
2 − a131u1v2 − a221u2v2

2 − a231v2u2 − a331v2 − a321v2
2 = 0, (3.16)

a113u1v2
1 + (a133 − a111)u1v1 + a123v1u1v2 + a223v1u2v2 + a323v1v2

+(a233 − a211)u2v1 + a213u2v2
1 + (a333 − a311)v1 + a313v2

1

−a121u1v2 − a131u1 − a221u2v2 − a231u2 − a331 − a321v2 = 0. (3.17)

Proof. When n = 3, the specific form of (1.1)–(1.4) is

a111y2
1 + a122y2

2 + a133y2
3 + 2a112y1y2 + 2a113y1y3 + 2a123y2y3 = λx1, (3.18)

a222y2
2 + a211y2

1 + a233y2
3 + 2a221y2y1 + 2a232y3y2 + 2a231y3y1 = λx2, (3.19)

a333y2
3 + a311y2

1 + a322y2
2 + 2a331y3y1 + 2a323y2y3 + 2a321y2y1 = λx3, (3.20)

a111x1y1 + a121x1y2 + a131x1y3 + a221x2y2 + a211x2y1 + a231x2y3

+a331x3y3 + a311x3y1 + a321x3y2 = λy1, (3.21)
a112x1y1 + a122x1y2 + a132x1y3 + a222x2y2 + a212x2y1 + a232x2y3

+a332x3y3 + a322x3y2 + a312x3y1 = λy2, (3.22)
a113x1y1 + a133x1y3 + a123x1y2 + a223x2y2 + a233x2y3 + a213x2y1

+a333x3y3 + a313x3y1 + a323x3y2 = λy3, (3.23)
x2

1 + x2
2 + x2

3 = 1, (3.24)
y2

1 + y2
2 + y2

3 = 1. (3.25)

To proceed, we break the arguments into six Cases.
(a) Assume that x = (1, 0, 0)> and y = (±1, 0, 0)>. Then (3.18)–(3.25) becomes λ = a111 and

a211 = a311 = a112 = a113 = 0.
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Assume that x = (−1, 0, 0)> and y = (±1, 0, 0)>. Then (3.18)–(3.25) becomes λ = −a111 and
a211 = a311 = a112 = a113 = 0.

Hence, if a211 = a311 = a112 = a113 = 0, then (a111, (1, 0, 0)>, (±1, 0, 0)>) and (−a111, (−1, 0, 0)>, (±1,
0, 0)>) are four C-eigentriples ofA.

(b) Assume that y = (±1, 0, 0)>. Then (3.18)–(3.25) becomes



a111 = λx1, (3.26)
a211 = λx2, (3.27)
a311 = λx3, (3.28)
a111x1 + a211x2 + a311x3 = λ, (3.29)
a112x1 + a212x2 + a312x3 = 0, (3.30)
a113x1 + a213x2 + a313x3 = 0, (3.31)
x2

1 + x2
2 + x2

3 = 1.

By (3.26) and (3.27), we have (3.1). By (3.26) and (3.28), we have (3.2). Next, solving (3.1),
(3.2), (3.30), (3.31) and (3.24), we can obtain x1, x2 and x3, which implies that x = (x1, x2, x3)> and
y = (±1, 0, 0)> are a pair of C-eigenvectors. Furthermore, by (3.29), we can get a C-eigenvalue λ ofA.

(c) Assume that x = (1, 0, 0)>. Then (3.18)–(3.25) becomes



a111y2
1 + a122y2

2 + a133y2
3 + 2a112y1y2 + 2a113y1y3 + 2a123y2y3 = λ, (3.32)

a222y2
2 + a211y2

1 + a233y2
3 + 2a221y2y1 + 2a232y3y2 + 2a231y3y1 = 0, (3.33)

a333y2
3 + a311y2

1 + a322y2
2 + 2a331y3y1 + 2a323y2y3 + 2a321y2y1 = 0, (3.34)

a111y1 + a121y2 + a131y3 = λy1, (3.35)
a112y1 + a122y2 + a132y3 = λy2, (3.36)
a113y1 + a133y3 + a123y2 = λy3, (3.37)
y2

1 + y2
2 + y2

3 = 1.

By (3.35) and (3.36), we have (3.3). By (3.35) and (3.37), we have (3.4). Next, solving (3.3),
(3.4), (3.25), (3.33) and (3.34), we can obtain y1, y2 and y3, which implies that x = (1, 0, 0)> and
y = (y1, y2, y3)> are a pair of C-eigenvectors. Furthermore, by (3.32), we can get a C-eigenvalue λ of
A.

Assume that x = (−1, 0, 0)>. Similarly, we have

λ = −(a111y2
1 + a122y2

2 + a133y2
3 + 2a112y1y2 + 2a113y1y3 + 2a123y2y3),

with its a pair of C-eigenvectors are x = (−1, 0, 0)> and y = (y1, y2, y3)>, which also satisfies (3.3),
(3.4), (3.25), (3.33) and (3.34).
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(d) Assume that y = (y1, y2, 0)>, where y2 , 0. Then (3.18)–(3.25) becomes



a111y2
1 + a122y2

2 + 2a112y1y2 = λx1,

a222y2
2 + a211y2

1 + 2a221y2y1 = λx2,

a311y2
1 + a322y2

2 + 2a321y2y1 = λx3,

a111x1y1 + a121x1y2 + a221x2y2 + a211x2y1 + a311x3y1 + a321x3y2 = λy1,

a112x1y1 + a122x1y2 + a222x2y2 + a212x2y1 + a322x3y2 + a312x3y1 = λy2,

a113x1y1 + a123x1y2 + a223x2y2 + a213x2y1 + a313x3y1 + a323x3y2 = 0,
x2

1 + x2
2 + x2

3 = 1,
y2

1 + y2
2 = 1.

Let t =
y1
y2

. Then the above equations become



(a111t2 + a122 + 2a112t)y2
2 = λx1, (3.38)

(a222 + a211t2 + 2a221t)y2
2 = λx2, (3.39)

(a311t2 + a322 + 2a321t)y2
2 = λx3, (3.40)

a111x1t + a121x1 + a221x2 + a211x2t + a311x3t + a321x3 = λt, (3.41)
a112x1t + a122x1 + a222x2 + a212x2t + a322x3 + a312x3t = λ, (3.42)
a113x1t + a123x1 + a223x2 + a213x2t + a313x3t + a323x3 = 0, (3.43)
x2

1 + x2
2 + x2

3 = 1.

By (3.38) and (3.39), we have (3.5). By (3.38) and (3.40), we have (3.6). By (3.41) and (3.42), we
have (3.7). Next, solving (3.5)–(3.7), (3.24) and (3.43), we can obtain x1, x2, x3 and t, which leads to
its a pair of C-eigenvectors x = (x1, x2, x3)> and y = ±

(t,1,0)>
√

t2+1
. Furthermore, by (3.42), we can get a

C-eigenvalue λ ofA.

(e) Assume that x = (x1, x2, 0)>, where x2 , 0. Then (3.18)–(3.25) becomes



a111y2
1 + a122y2

2 + a133y2
3 + 2a112y1y2 + 2a113y1y3 + 2a123y2y3 = λx1,

a222y2
2 + a211y2

1 + a233y2
3 + 2a221y2y1 + 2a232y3y2 + 2a231y3y1 = λx2,

a333y2
3 + a311y2

1 + a322y2
2 + 2a331y3y1 + 2a323y2y3 + 2a321y2y1 = 0,

a111x1y1 + a121x1y2 + a131x1y3 + a221x2y2 + a211x2y1 + a231x2y3 = λy1,

a112x1y1 + a122x1y2 + a132x1y3 + a222x2y2 + a212x2y1 + a232x2y3 = λy2,

a113x1y1 + a133x1y3 + a123x1y2 + a223x2y2 + a233x2y3 + a213x2y1 = λy3,

x2
1 + x2

2 = 1,
y2

1 + y2
2 + y2

3 = 1.
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Let t = x1
x2

. Then the above equations become

a111y2
1 + a122y2

2 + a133y2
3 + 2a112y1y2 + 2a113y1y3 + 2a123y2y3 = λtx2, (3.44)

a222y2
2 + a211y2

1 + a233y2
3 + 2a221y2y1 + 2a232y3y2 + 2a231y3y1 = λx2, (3.45)

a333y2
3 + a311y2

1 + a322y2
2 + 2a331y3y1 + 2a323y2y3 + 2a321y2y1 = 0, (3.46)

a111tx2y1 + a121tx2y2 + a131tx2y3 + a221x2y2 + a211x2y1 + a231x2y3 = λy1, (3.47)
a112tx2y1 + a122tx2y2 + a132tx2y3 + a222x2y2 + a212x2y1 + a232x2y3 = λy2, (3.48)
a113tx2y1 + a133tx2y3 + a123tx2y2 + a223x2y2 + a233x2y3 + a213x2y1 = λy3, (3.49)
y2

1 + y2
2 + y2

3 = 1.

By (3.44) and (3.45), we have (3.9). By (3.47) and (3.48), we have (3.10). By (3.47) and (3.49), we
have (3.11). Next, solving (3.9)–(3.11), (3.25) and (3.46), we can obtain y1, y2, y3 and t. And then, by
x2

1 + x2
2 = 1, we have x2 = ± 1

√
t2+1

. Furthermore, by (3.45), we can get a C-eigenvalue λ of A in (3.8)

and its a pair of C-eigenvectors x = ±
(t,1,0)>
√

t2+1
and y = (y1, y2, y3)>.

(f) Assume that x = (x1, x2, x3)> and y = (y1, y2, y3)>, where x3 , 0 and y3 , 0. Let

u1 =
x1

x3
, u2 =

x2

x3
, v1 =

y1

y3
, v2 =

y2

y3
.

Then (3.18)–(3.25) becomes

a111v2
1y2

3 + a122v2
2y2

3 + a133y2
3 + 2a112v1v2y2

3 + 2a113v1y2
3 + 2a123v2y2

3 = λu1x3, (3.50)
a222v2

2y2
3 + a211v2

1y2
3 + a233y2

3 + 2a221v1v2y2
3 + 2a232v2y2

3 + 2a231v1y2
3 = λu2x3, (3.51)

a333y2
3 + a311v2

1y2
3 + a322v2

2y2
3 + 2a331v1y2

3 + 2a323v2y2
3 + 2a321v1v2y2

3 = λx3, (3.52)
a111u1v1x3 + a121u1v2x3 + a131u1x3 + a221u2v2x3 + a211u2v1x3 + a231u2x3

+a331x3 + a311v1x3 + a321v2x3 = λv1, (3.53)
a112u1v1x3 + a122u1v2x3 + a132u1x3 + a222u2v2x3 + a212u2v1x3 + a232u2x3

+a332x3 + a322v2x3 + a312v1x3 = λv2, (3.54)
a113u1v1x3 + a133u1x3 + a123u1v2x3 + a223u2v2x3 + a233u2x3 + a213u2v1x3

+a333x3 + a313v1x3 + a323v2x3 = λ. (3.55)

By (3.50) and (3.51), we have (3.14). By (3.50) and (3.52), we have (3.15). By (3.53) and (3.54),
we have (3.16). By (3.53) and (3.55), we have (3.17). Next, solving (3.14)–(3.17), we can obtain u1,
u2, v1 and v2. Furthermore, by x2

1 + x2
2 + x2

3 = 1 and y2
1 + y2

2 + y2
3 = 1, we can get x and y in (3.13); by

(3.55), we can get a C-eigenvalue λ ofA in (3.12).

Remark 3.1. i) Solving the system of nonlinear equations in (b) of Theorem 3.1, we can choose any
three of the first four equations to form a system of linear equations. If the determinant of the
coefficient matrix of the system of linear equations is not equal to 0, then the system of linear
equations has only zero solution and obviously it is not the solution of the last equation in the system
of nonlinear equations, which implies that the system of nonlinear equations in (b) has no solution. If
the determinant is equal to 0, then we need to verify that whether this solution satisfies the other two
equations.
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ii) Solving these system of nonlinear equations in (c)–(f) of Theorem 3.1, we can use the resultant
method in algebraic geometry [28] to find their solutions, which has been verified and is feasible in
finding all M-eigenpairs of an order 4 dimension 2 tensor in Theorem 7 of [27].

Given two polynomials f (x) and g(x), where

f (x) = a0xn + a1xn−1 + · · · + an, a0 , 0, n > 0.
g(x) = b0xm + b1xm−1 + · · · + bm, b0 , 0, m > 0.

Then the resultant of f (x) and g(x) is represented by Resx( f , g), that is, the determinant of (n + m)×
(n + m) is as follows:

Resx( f , g) = det



a0

a1 a0

a2 a1
. . .

... a2
. . . a0

am
...

. . . a1

am a2
. . .

...

am︸                   ︷︷                   ︸
n columns

d0

d1 d0

d2 d1
. . .

... d2
. . . b0

dn
...

. . . b1

dn b2
. . .

...

bn

︸                  ︷︷                  ︸
m columns

,

where the blank spaces are filled with zeros. It is showed in [28, pp. 78] that over the complex field
f (x) and g(x) have a common root if and only if their resultant is zero.

Solving the systems (3.14)–(3.17) with four variables u1, u2, v1 and v2, we can obtain its solutions
by successive elimination of variables as follows:

Step 1: Mark the four equations in the systems (3.14)–(3.17) as f1(u1, u2, v1, v2), f2(u1, u2, v1, v2),
f3(u1, u2, v1, v2) and f4(u1, u2, v1, v2) in turn, and regard f1, f2, f3 and f4 as functions with u1 as a variable
and u2, v1 and v2 as their coefficients. If Resu1( f1, f2) = 0, which is a function with u2, v1 and v2 as
three variables, then f1 and f2 have a common root. Similarly, Resu1( f1, f3) = 0 and Resu1( f1, f4) = 0
can be obtained and they are functions with u2, v1 and v2 as three variables.

Step 2: Let

g1(u2, v1, v2) := Resu1( f1, f2) = 0, g2(u2, v1, v2) := Resu1( f1, f3) = 0,

and

g3(u2, v1, v2) := Resu1( f1, f4) = 0,

and g1, g2 and g3 be regarded as functions with u2 as a variable and v1 and v2 as their coefficients. If
Resu2(g1, g2) = 0, which is a function with v1 and v2 as two variables, then g1 and g2 have a common
root. Similarly, Resu2(g1, g3) = 0 can be obtained and it is a function with v1 and v2 as two variables.

Step 3: Let

h1(v1, v2) := Resu2(g1, g2) = 0 and h2(v1, v2) := Resu2(g1, g3) = 0.
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and h1 and h2 be regarded as functions with v1 as a variable and v2 as a coefficient. If Resv1(h1, h2) = 0,
which is a function with v2 as a variable, then h1 and h2 have a common root.

Step 4: Solving the function Resv1(h1, h2) = 0 with v2 as a variable by Matlab command ‘solve’,
its all real solutions v2 can be obtained.

Step 5: Substituting v2 to h1(v1, v2) = 0 and h2(v1, v2) = 0 to find all their real solutions v1. And
then, substituting v2 and v1 to g1(u2, v1, v2) = 0, g2(u2, v1, v2) = 0 and g3(u2, v1, v2) = 0 to find all their
real solutions u2. Furthermore, substituting v2, v1 and u2 to fi(u1, u2, v1, v2) = 0 for i ∈ [4] to find all
their real solutions u1. Then, all real roots u1, u2, v1 and v2 of (3.14)–(3.17) are obtained. Finally, by
(3.12) and (3.13), we can find all C-eigentriples ofA in the Case (f) in Theorem 3.1.

4. Applications

It is shown in [12, 29] that the largest C-eigenvalue λ∗ of a piezoelectric tensor determines the
highest piezoelectric coupling constant, and its corresponding C-eigenvector y∗ is the corresponding
direction of the stress where this appears. In this section, let’s review its physical background, which
is shown in [29].

In physics, for non-centrosymmetric materials, we can write the linear piezoelectric equation as

pi =
∑

j,k∈[3]

ai jkT jk,

whereA = (ai jk) ∈ R3×3×3 is a piezoelectric tensor, T = (T jk) ∈ R3×3 is the stress tensor, and p = (pi) ∈
R3 is the electric change density displacement.

Now, it is worth considering, under what conditions can the maximal piezoelectricity be triggered
under a unit uniaxial stress? In this case, the stress tensor T can be rewritten as T = yy> with y>y = 1.
Then, this maximal piezoelectricity problem can be formulated into an optimization model

max ‖p‖2
s.t. p = Ayy,

y>y = 1.

By a dual norm, ‖p‖2 = max
x>x=1

x>p = max
x>x=1

xAyy is derived and hence the above optimization model

is converted to the following optimization problem

max xAyy s.t. x>x = 1, y>y = 1.

If (x∗, y∗) is an optimal solution of the above optimization problem, then λ∗ = x∗Ay∗y∗ is the largest
C-eigenvalue ofA and y∗ is the unit uniaxial direction that the maximal piezoelectric effect take place
along.

Theorem 4.1. [29, Theorem 7.12] Let λ∗ be the largest C-eigenvalue, x∗ and y∗ be the associated C-
eigenvectors of a piezoelectric tensor A. Then, λ∗ is the maximum value of the 2-norm of the electric
polarization under a unit uniaxial stress along the optimal axial direction y∗.

Moreover, the linear equation of the inverse piezoelectric effect is

S jk =
∑

i

ai jkei,
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where S = (S jk) ∈ R3×3 is the strain tensor and e = (ei) ∈ R3 is the electric field strength. Next, the
following maximization problem is considered:

max ‖S ‖2 := max
y>y=1

y>S y

s.t. S jk =
∑
i∈[3]

eiai jk, ∀ j, k ∈ [3],

e>e = 1.

By ‖S ‖2 = max
y>y=1

y>S y = max
y>y=1

eAyy, the above maximization problem is rewritten as

max{eAyy : e>e = 1, y>y = 1}.

If (e∗, y∗) is an optimal solution of the above optimization problem, then λ∗ = e∗Ay∗y∗ is the largest
C-eigenvalue ofA, e∗ and y∗ are its associated C-eigenvectors.

Theorem 4.2. [29, Theorem 7.13] Let λ∗ be the largest C-eigenvalue and x∗ and y∗ be its associated
C-eigenvectors of a piezoelectric tensor A. Then, λ∗ is the largest spectral norm of a strain tensor
generated by the converse piezoelectric effect under unit electric field strength ‖x∗‖ = 1.

5. Numerical examples

In this section, numerical examples are given to verify the obtained theoretical results.

Example 1. Consider the eight piezoelectric tensors in [12, Examples 1–8].
(a) The first piezoelectric tensor isAVFeSb with its nonzero entries

a123 = a213 = a312 = −3.68180667.

(b) The second piezoelectric tensorASiO2 with its nonzero entries

a111 = −a122 = −a212 = −0.13685, a123 = −a213 = −0.009715.

(c) The third piezoelectric tensorACr2AgBiO8 with its nonzero entries

a123 = a213 = −0.22163, a113 = −a223 = 2.608665,
a311 = −a322 = 0.152485, a312 = −0.37153.

(d) The fourth piezoelectric tensorARbTaO3 with its nonzero entries

a113 = a223 = −8.40955, a311 = a322 = −4.3031,
a222 = −a212 = −a211 = −5.412525, a333 = −5.14766.

(e) The fifth piezoelectric tensorANaBiS2 with its nonzero entries

a113 = −8.90808, a223 = −0.00842, a311 = −7.11526,
a322 = −0.6222, a333 = −7.93831.
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(f) The sixth piezoelectric tensorALiBiB2O5 with its nonzero entries

a112 = 0.34929, a211 = 0.16101, a222 = 0.12562, a312 = 2.57812,
a123 = 2.35682, a213 = −0.05587, a233 = 0.1361, a323 = 6.91074.

(g) The seventh piezoelectric tensorAKBi2F7 with its nonzero entries

a111 = 12.64393, a211 = 2.59187, a311 = 1.51254, a123 = 1.59052,
a122 = 1.08802, a212 = 0.10570, a312 = 0.08381, a233 = 0.81041,
a113 = 1.96801, a213 = 0.71432, a313 = 0.39030, a333 = −0.23019,
a112 = 0.22465, a222 = 0.08263, a322 = 0.68235, a323 = 0.19013,
a133 = 4.14350, a223 = 0.51165.

(h) The eigth piezoelectric tensorABaNiO3 with its nonzero entries

a113 = 0.038385, a223 = 0.038385, a311 = a322 = 6.89822, a333 = 27.4628.

I. Localization for all C-eigenvalues of the above eight piezoelectric tensors.
Now, we use these C-eigenvalues intervals in Theorems 2.1 and 1.1, Theorems 1 and 2 of [20],

Theorem 2.1 of [13], Theorems 2.2 and 2.4 of [25], Theorem 2.1 of [24], Theorem 2.1 of [23], Theorem
5 of [19], Theorem 7 of [21], Theorems 2.3–2.5 of [18] and Theorem 2.1 of [22] to locate all C-
eigenvalues of the above eight piezoelectric tensors. Numerical results are shown in Table 1. Since
these intervals are symmetric about the origin, only their right boundaries are listed in Table 1.

In Table 1, λ∗ is the largest C-eigenvalue of a piezoelectric tensor; % and %min are respectively the
right boundaries of the interval [−%, %] and [−%min, %min] obtained by Theorems 1 and 2 in [20]; %̃min are
respectively the right boundary of the interval [−%̃min, %̃min] obtained by Theorem 2.1 of [13]; ρL and
ρM are respectively the right boundaries of the intervals [−ρL, ρL] and [−ρM, ρM] obtained by 2.2 and
2.4 in [25]; ρΥ is the right boundary of the interval [−ρΥ, ρΥ] obtained by Theorem 2.1 of [24]; ργ is
the right boundary of the interval [−ργ, ργ] obtained by Theorem 2.1 of [23]; ρΩS is the right boundary
of the interval [−ρΩS , ρΩS ] obtained by Theorem 5 of [19]; ρC is the right boundary of the interval
[−ρC, ρC] obtained by Theorem 7 of [21]; ρG, ρB and ρmin are respectively the right boundaries of the
intervals [−ρG, ρG], [−ρB, ρB] and [−ρmin, ρmin] obtained by Theorems 2.3–2.5 in [18]; ρΨ is the right
boundary of the interval [−ρΨ, ρΨ] obtained by Theorem 2.1 of [22]; ρΓ is the right boundary of the
interval [−ρΓ, ρΓ] obtained by Theorem 1.1; ρΩ is the right boundary of the interval [−ρΩ, ρΩ] obtained
by Theorem 2.1.

From Table 1, it can be seen that:
i) ρΩ is smaller than %, %min, %̃min, ρΓ, ρL, ρM, ρΥ, ργ for the eight piezoelectric tensors.
ii) ρΩ ≤ ρΩS , ρΩ ≤ ρB for the eight piezoelectric tensors.
iii) For some tensors, ρΩ is smaller than ρC, ρG, ρmin and ρΨ. For the other tensors, ρΩ is bigger than

or equal to ρC, ρG, ρmin and ρΨ. For examples, for AVFeSb, ρΩ < ρC, ρΩ < ρG, ρΩ < ρmin and ρΩ < ρΨ;
ForASiO2 , ρΩ > ρC, ρΩ > ρmin and ρΩ > ρΨ; ForABaNiO3 , ρΩ > ρG.

II. Calculation for all C-eigentriples of the seventh piezoelectric tensorAKBi2F7 by Theorem 3.1.
All C-eigentriples of AKBi2F7 are obtained by Theorem 3.1 and are showen in Table 2. And the

calculation process is shown in Appendix.
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Table 1. Comparison among %, %min, %̃min, ρΓ, ρL, ρM, ρΥ, ργ, ρΩS , ρC, ρG, ρB, ρmin, ρΨ, ρΩ

and λ∗.

AVFeSb ASiO2 ACr2AgBiO8 ARbTaO3 ANaBiS2 ALiBiB2O5 AKBi2F7 ABaNiO3

% 7.3636 0.2882 5.6606 30.0911 17.3288 15.2911 22.6896 33.7085
%min 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
%̃min 7.3636 0.2393 4.6717 22.7163 14.5723 12.1694 18.7025 27.5396
ρΓ 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
ρL 7.3636 0.2744 4.8058 23.5377 16.5640 11.0127 18.8793 27.5109
ρM 7.3636 0.2834 4.7861 23.5377 16.8464 11.0038 19.8830 27.5013
ρΥ 7.3636 0.2834 4.7335 23.5377 16.8464 10.9998 19.8319 27.5013
ργ 7.3636 0.2744 4.7860 23.0353 16.4488 10.2581 18.4090 27.5013
ρΩS 7.3636 0.2744 4.2732 23.0353 16.4486 10.2581 17.7874 27.4629
ρC 6.3771 0.1943 3.7242 16.0259 11.9319 7.7540 13.5113 27.4629
ρG 6.3771 0.2506 4.0455 21.5313 13.9063 9.8718 14.2574 29.1441
ρB 5.2069 0.2345 4.0026 19.4558 13.4158 10.0289 15.3869 27.5396
ρmin 6.5906 0.1942 3.5097 18.0991 11.9324 8.1373 14.3299 27.4725
ρΨ 6.5906 0.1942 4.2909 18.9140 11.9319 8.1501 14.0690 27.4629
ρΩ 5.2069 0.2005 3.5097 19.2688 11.9319 8.6469 13.6514 27.4629
λ∗ 4.2514 0.1375 2.6258 12.4234 11.6674 7.7376 13.5021 27.4628

Table 2. All C-eigentriples ofAKBi2F7 .

λ x1 x2 x3 y1 y2 y3

13.50214 0.97050 0.20974 0.11890 0.97226 0.05065 0.22836
13.50214 0.97050 0.20974 0.11890 −0.97226 −0.05065 −0.22836
4.46957 0.98196 0.18905 −0.00362 0.22771 −0.41491 −0.88091
4.46957 0.98196 0.18905 −0.00362 −0.22771 0.41491 0.88091
0.54486 0.75981 −0.36879 0.53544 0.06168 0.87047 −0.48833
0.54486 0.75981 −0.36879 0.53544 −0.06168 −0.87047 0.48833
−0.54486 −0.75981 0.36879 −0.53544 0.06168 0.87047 −0.48833
−0.54486 −0.75981 0.36879 −0.53544 −0.06168 −0.87047 0.48833
−4.46957 −0.98196 −0.18905 0.00362 0.22771 −0.41491 −0.88091
−4.46957 −0.98196 −0.18905 0.00362 −0.22771 0.41491 0.88091
−13.50214 −0.97050 −0.20974 −0.11890 0.97226 0.05065 0.22836
−13.50214 −0.97050 −0.20974 −0.11890 −0.97226 −0.05065 −0.22836
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6. Conclusions

Let A ∈ Rn×n×n be a piezoelectric-type tensor. In this paper, we in Theorem 2.1 constructed a C-
eigenvalue interval Ω(A) to locate all C-eigenvalues ofA and proved that it is tighter than that in [25,
Theorem 2.1]. Subsequently, we in Theorem 3.1 provided a direct method to find all C-eigentriples
of A when n = 3. Although the method in Theorem 3.1 is divided into six Cases, it is indeed a little
complicated, but it can be seen from Example 1 that this method is feasible.
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Appendix

The following is the calculation process for all C-eigentriples ofAKBi2F7 by Theorem 3.1.
(a) Because a211 , 0, Case (a) in Theorem 3.1 does not holds.
(b) The system in Case (b) of Theorem 3.1 is

2.59187x1 − 12.64393x2 = 0, (A.1)
1.51254x1 − 12.64393x3 = 0, (A.2)
1.08802x1 + 0.10570x2 + 0.08381x3 = 0, (A.3)
1.96801x1 + 0.71432x2 + 0.39030x3 = 0,
x2

1 + x2
2 + x2

3 = 1.

The three Eqs (A.1)–(A.3) yield a linear system of equation Ax = 0, where x = (x1, x2, x3)> and

A =


2.59187 −12.64393 0
1.51254 0 −12.64393
1.08802 0.10570 0.08381

 .
From det(A) = 179.0074 , 0, the solution of Ax = 0 is x = (x1, x2, x3)> = (0, 0, 0)>, which

contradicts with x2
1 + x2

2 + x2
3 = 1. Hence, the system in Case (b) of Theorem 3.1 has no solution.

(c) The system in Case (c) of Theorem 3.1 is

f1(y1, y2, y3) = 0.08263y2
2 + 2.59187y2

1 + 0.81041y2
3 + 0.2114y1y2

+1.0233y2y3 + 1.42864y1y3 = 0,
f2(y1, y2, y3) = −0.23019y2

3 + 1.51254y2
1 + 0.68235y2

2 + 0.7806y1y3

+0.38026y2y3 + 0.16762y1y2 = 0,
f3(y1, y2, y3) = 0.22465y2

1 − 0.22465y2
2 − 11.55591y1y2 + 1.59052y1y3

−1.96801y2y3 = 0,
f4(y1, y2, y3) = 1.96801y2

1 − 1.96801y2
3 − 8.50043y1y3 + a123y1y2

−0.22465y2y3 = 0,
f5(y1, y2, y3) = y2

1 + y2
2 + y2

3 = 1.

We now regard fi(y1, y2, y3), i ∈ [5] as a function with y1 as a variable and y2 and y3 as two
coefficients and obtain their resultants as follows:
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Resy1( f1, f2) =2.68640y4
2 − 1.92404y3y3

2 − 5.51122y2
2y2

3 + 2.09880y3
3y2 + 3.18879y4

3,

Resy1( f1, f3) =27.58122y4
2 + 331.64703y3y3

2 + 134.75405y2
3y2

2 − 55.45236y3
3y2 + 4.93315y4

3.

Let g1(y2, y3) := Resy1( f1, f2), g2(y2, y3) := Resy1( f1, f3), and its resultant

Resy2(g1, g2) = 95376348203.97653y16
3 = 0.

Then y3 = 0. Substituting y3 = 0 into g1 and g2, we have

g1(y2, y3) = 2.68640y4
2, g2(y2, y3) = 27.58122y4

2.

Let g1(y2, y3) = 0 and g2(y2, y3) = 0. We have y2 = 0. Substituting y2 = 0 and y3 = 0 into f1, we
have f1(y1, y2, y3) = 2.59187y2

1. Solving f1(y1, y2, y3) = 0, we have y1 = 0. However, y1 = y2 = y3 = 0
is not solution of y2

1 + y2
2 + y2

3 = 1. Hence, the system in Case (c) of Theorem 3.1 has no solution.
(d) Similar to solution for Case (c), the system in Case (d) of Theorem 3.1 has no solution.
(e) Similar to solution for Case (c), the system in Case (e) of Theorem 3.1 has no solution.
(f) The system in Case (f) of Theorem 3.1 is

f1(u1, u2, v1, v2) := 0.08263u1v2
2 + 2.59187v2

1u1 + 0.81041u1 + 0.21140v1u1v2

+1.02330u1v2 + 1.42864v1u1 − 12.64393u2v2
1 − 1.08802u2v2

2

−4.14350u2 − 0.44930u2v1v2 − 3.93602u2v1 − 3.18104u2v2 = 0,
f2(u1, u2, v1, v2) := −0.23019u1 + 1.51254u1v2

1 + 0.68235u1v2
2 + 0.78060u1v1

+0.38026u1v2 + 0.16762u1v1v2 − 12.64393v2
1 − 1.08802v2

2

−0.44930v1v2 − 3.93602v1 − 3.18104v2 − 4.14350 = 0,
f3(u1, u2, v1, v2) := 0.22465u1v2

1 − 11.55591u1v1v2 + 1.59052v1u1

−2.50924u2v1v2 + 0.10570u2v2
1 + 0.51165v1u2 + 0.19013v1

−0.83019v1v2 + 0.08381v2
1 − 0.22465u1v2

2 − 1.96801u1v2

−0.10570u2v2
2 − 0.71432v2u2 − 0.39030v2 − 0.08381v2

2 = 0,
f4(u1, u2, v1, v2) := 1.96801u1v2

1 − 8.50043u1v1 + 1.59052v1u1v2 + 0.51165v1u2v2

+0.19013v1v2 − 1.78146u2v1 + 0.71432u2v2
1 − 1.742730v1

+0.39030v2
1 − 0.22465u1v2 − 1.96801u1 − 0.10570u2v2

−0.71432u2 − 0.08381v2 − 0.39030 = 0.
We now regard fi(u1, u2, v1, v2), i ∈ [4] as a function with u1 as a variable and u2, v1 and v2 as three

coefficients and obtain their resultants as follows:

Resu1( f1, f2) =(0.84336v2 − 0.95379 + 2.32838v1 + 3.78649v2
2 + 2.58431v3

2

+ 0.74241v4
2 + 6.42916v2

1 + 15.82324v3
1 + 19.12445v4

1 + 10.62991v2v2
1

+ 4.23911v2
2v1 + 2.79896v2v3

1 + 0.48895v3
2v1 + 10.34857v2

2v2
1

+ 4.57094v2v1)u2 − 9.10936v1 − 3.95976v2
2v2

1 − 6.81799v2

− 9.81234v2v1 − 22.65734v2v2
1 − 3.01186v2

2v1 − 3.83745v2v3
1

− 0.26713v3
2v1 − 4.47928v2

2 − 1.37622v3
2 − 0.08990v4

2 − 26.60934v2
1

− 28.26528v3
1 − 32.771423v4

1 − 3.35793 = 0,
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Resu1( f1, f3) =(−8.73334v2 + 7.00497v1 − 8.00778v2
2 − 3.02304v3

2 − 0.25316v4
2

+ 8.00778v2
1 + 22.47179v3

1 + 3.11442v4
1 − 74.15833v2v2

1 − 39.62519v2
2v1

− 152.49246v2v3
1 − 12.90368v3

2v1 − 8.58379v2
2v2

1 − 53.09898v2v1)u2

+ 0.15408v1 − 0.31630v2 − 0.38580v2
2v2

1 − 1.03583v2v1 − 2.07169v2v2
1

− 1.03607v2
2v1 − 2.13403v2v3

1 − 0.08632v3
2v1 − 0.46731v2

2 − 0.11801v3
2

− 0.00693v4
2 + 0.33955v2

1 + 0.61253v3
1 + 0.21722v4

1 = 0,

and

Resu1( f1, f4) =(−8.73334 − 8.00778v2 − 45.43188v1 − 3.02304v2
2 − 0.25316v3

2

− 54.00439v2
1 − 103.32952v3

1 + 26.73481v4
1 + 6.67230v2v2

1

− 3.93604v2
2v1 + 22.47179v2v3

1 + 1.77280v3
2v1 + 3.02304v2

2v2
1

− 23.92868v2v1)u2 + 0.07244v2
2v2

1 − 1.96992v1 − 0.46731v2

− 1.83150v2v1 + 0.08538v2v2
1 + 0.03284v2

2v1 + 0.57530v2v3
1

+ 0.01571v3
2v1 − 0.11801v2

2 − 0.00693v3
2 − 3.18504v2

1 − 3.95933v3
1

+ 1.01161v4
1 − 0.31630 = 0.

Let

g1(u2, v1, v2) := Resu1( f1, f2), g2(u2, v1, v2) := Resu1( f1, f3),
g3(u2, v1, v2) := Resu1( f1, f4).

Then their resultants are

Resu2(g1, g2) =106.21826v8
1 + (−5025.64756v2 + 839.61383)v7

1 + (−865.25666v2
2

− 6653.08038v2 + 998.05266)v6
1 + (−1083.52137v3

2 − 5229.62871v2
2

− 7381.37411v2 + 1094.99786)v5
1 + (−137.50780v4 − 1593.23550v3

2

− 4933.36887v2
2 − 4733.12663v2 + 632.08073)v4

1 + (−70.75506v5
2

− 741.31965v4
2 − 2567.50800v3

2 − 4243.14169v2
2 − 2467.61827v2

+ 335.99902)v3
1 + (−5.62145v6

2 − 90.33840v5
2 − 524.86290v4

2

− 1366.09759v3
2 − 1783.36316v2

2 − 843.25156v2 + 90.73526)v2
1

+ (−1.29518v7
2 − 23.97008v6

2 − 135.36791v5
2 − 405.58564v4

2

− 682.18237v3
2 − 624.18604v2

2 − 209.71678v2 + 23.37525)v1

+ (−0.02790v8
2 − 0.72569v7

2 − 6.69240v6
2 − 28.96790v5

2

− 72.02906v4
2 − 105.34644v3

2 − 86.25447v2
2 − 29.02430v2) = 0

and

Resu2(g1, g3) =895.48403v8
1 + (852.85983v2 − 2690.30193)v7

1 + (304.63154v2
2
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+ 1073.45667v2 − 4096.10056)v6
1 + (172.77376v3

2 + 134.01848v2
2

− 2360.05799v2 − 5632.48044)v5
1 + (29.00602v4

2 + 203.47367v3
2

− 304.10992v2
2 − 2878.73753v2 − 3926.74222)v4

1 + (10.47279v5
2

+ 55.51707v4
2 − 189.59056v3

2 − 1392.51379v2
2 − 3083.36023v2

− 2315.99105)v3
1 + (0.80682v6

2 + 8.30736v5
2 − 4.53864v4

2

− 259.96426v3
2 − 927.90427v2

2 − 1442.92349v2 − 831.16935)v2
1

+ (0.17104v7
2 + 2.07986v6

2 − 2.49973v5
2 − 63.10600v4

2

− 263.71529v3
2 − 525.06788v2

2 − 551.19369v2 − 230.96997)v1

+ (−0.02790v7
2 − 0.72569v6

2 − 6.69240v5
2 − 28.96790v4

2

− 72.02906v3
2 − 105.34644v2

2 − 86.25447v2 − 29.02430) = 0.

Let

h1(v1, v2) := Resu2(g1, g2) and h2(v1, v2) := Resu2(g1, g3).

Their results are

Resv1(h1, h2) = − 1.62711 × 10−46v64
2 − 1.18415 × 10−44v63

2 − 4.48673 × 10−43v62
2

− 1.18681 × 10−41v61
2 − 2.43052 × 10−40v60

2 − 4.06317 × 10−39v59
2

− 5.7302 × 10−38v58
2 − 6.93518 × 10−37v57

2 − 7.24748 × 10−36v56
2

− 6.49253 × 10−35v55
2 − 4.87257 × 10−34v54

2 − 2.98951 × 10−33v53
2

− 1.49477 × 10−32v52
2 − 6.3372 × 10−32v51

2 − 2.51516 × 10−31v50
2

− 1.06401 × 10−30v49
2 − 5.02246 × 10−30v48

2 − 2.43069 × 10−29v47
2

− 1.09655 × 10−28v46
2 − 4.44371 × 10−28v45

2 − 1.60392 × 10−27v44
2

− 5.08938 × 10−27v43
2 − 1.39566 × 10−26v42

2 − 3.2426 × 10−26v41
2

− 6.05752 × 10−26v40
2 − 7.48945 × 10−26v39

2 + 1.29902 × 10−26v38
2

+ 4.01056 × 10−25v37
2 + 1.382 × 10−24v36

2 + 3.13265 × 10−24v35
2

+ 5.06222 × 10−24v34
2 + 4.80914 × 10−24v33

2 − 1.80398 × 10−24v32
2

− 1.82876 × 10−23v31
2 − 4.38298 × 10−23v30

2 − 7.14302 × 10−23v29
2

− 8.82265 × 10−23v28
2 − 7.81232 × 10−23v27

2 − 3.29361 × 10−23v26
2

+ 1.21659 × 10−23v25
2 − 5.53171 × 10−23v24

2 − 2.91829 × 10−22v23
2

− 3.73689 × 10−22v22
2 + 1.93914 × 10−22v21

2 + 1.01905 × 10−21v20
2

+ 8.28494 × 10−22v19
2 − 4.6185 × 10−22v18

2 − 1.27125 × 10−21v17
2

− 9.35242 × 10−22v16
2 − 3.19849 × 10−22v15

2 + 7.28108 × 10−24v14
2

+ 6.11682 × 10−23v13
2 + 6.78336 × 10−24v12

2 + 1.47291 × 10−24v11
2

+ 8.0039 × 10−24v10
2 − 2.71136 × 10−24v9

2 − 1.27876 × 10−24v8
2

+ 1.35623 × 10−24v7
2 + 3.48519 × 10−25v6

2 + 2.48651 × 10−26v5
2

− 2.61144 × 10−26v4
2 − 1.87784 × 10−27v3

2 − 6.6019 × 10−29v2
2

+ 2.43536 × 10−29v2 − 6.98911 × 10−31.
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Next, we obtain the solution of the system (f) by the following steps:
Step 1. Solving Resv1(h1, h2) = 0, we have

v2 = − 0.85035, 0.22179, −7.79725, −1.78254, −11.53378,
− 0.75907, −0.70532, 0.47100.

Step 2. Substituting v2 = −0.85035 into h1(v1, v2), and letting h1(v1, v2) = 0, it all real roots are
v1 = −0.43450 or v1 = 4.25751. Substituting v2 = −0.85035 into h2(v1, v2), and letting h2(v1, v2) = 0,
it all real roots are v1 = −0.48184, −0.17296, 0.0000000000038876, or 5.04918. It is easy to see that
h1(v1, v2) = 0 and h2(v1, v2) = 0 have no common solution, which implies that v2 = −0.85035 is not a
solution of the system (f).

Step 3. Substituting v2 = 0.22179 into h1(v1, v2), and letting h1(v1, v2) = 0, it all real roots are
v1 = −0.43450 or 4.25751. substituting v2 = 0.22179 into h2(v1, v2), and letting h2(v1, v2) = 0, it all
real roots are v1 = −0.24034 or 4.25751. It is easy to see that v1 = 4.25751 is a common solution of
h1(v1, v2) = 0 and h2(v1, v2) = 0.

Step 4. Substituting v2 = 0.22179 and v1 = 4.25751 into g1(u2, v1, v2), g2(u2, v1, v2) and g3(u2, v1, v2),
and letting g1(u2, v1, v2) = 0, its all real roots are u2 = 1.76393; letting g2(u2, v1, v2) = 0, its all real
roots are u2 = 1.76393; letting g3(u2, v1, v2) = 0, its all real roots are u2 = 1.76393. Hence, the common
solution of g1(u2, v1, v2) = 0, g2(u2, v1, v2) = 0 and g3(u2, v1, v2) = 0 is u2 = 1.76393.

Step 5. Substituting v2 = 0.22179, v1 = 4.25751 and u2 = 1.76393 into f1, and letting
f1(u1, u2, v1, v2) = 0, we can get its all real roots u1 = 8.16186.

Step 6. By v2 = 0.22179, v1 = 4.25751, u2 = 1.76393, u1 = 8.16186, (3.12) and (3.13), we can get
the corresponding C-eigentriples as follows:
• λ = 13.50214 and its C-eigenvectors are

x = (0.97050, 0.20974, 0.11890)>, y = ±(0.97226, 0.05065, 0.22836)>.

• λ = −13.50214 and its C-eigenvectors are

x = (−0.97050,−0.20974,−0.11890)>, y = ±(0.97226, 0.05065, 0.22836)>.

Step 7. For other values of v2, such as, −7.79725, −1.78254, −11.53378, −0.75907, −0.70532,
0.47100, we can also obtain their corresponding C-eigentriples by using the method similar to Steps
3–6.

Finally, we find all C-eigentriples, which is listed in Table 2.
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