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Abstract: The largest C-eigenvalue of a piezoelectric tensor determines the highest piezoelectric
coupling constant. In this paper, we first provide a new C-eigenvalue localization set for a piezoelectric-
type tensor and prove that it is tighter than some existing sets. And then, we present a direct method to
find all C-eigentriples of a piezoelectric-type tensor of dimension 3. Finally, we show the effectiveness
of the direct method by numerical examples.
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1. Introduction

A piezoelectric-type tensor is a third-order tensor, which plays an important role in physics [1-6]
and engineering [7-11]. In particular, the largest C-eigenvalue of a piezoelectric tensor and its
associated left and right C-eigenvectors play an important role in the piezoelectric effect and the
converse piezoelectric effect in the solid crystal [12, 13]. Moreover, in the process of manufacturing
and developing micro/nano-electromechanical devices, the development of new multifunctional
intelligent structures needs consideration piezoelectric effect [14, 15]. In order to explore more
information about piezoelectric-type tensors, Chen et al. [12] introduced piezoelectric-type tensors
and their C-eigentriples.

Definition 1.1. [12, Definition 2.1] Let A = (a;) € R be a third-order n-dimensional tensor. If
the latter two indices of A are symmetric, i.e., a;j = ayj, where i, j,k € [n] :={1,2,...,n}, then A is
called a piezoelectric-type tensor. When n = 3, A is called a piezoelectric tensor.

Definition 1.2. [12, Definition 2.2] Let A = (a;x) € R be a piezoelectric-type tensor. If there is a
real number A € R, two vectors x := (X1, X2,...,%,) € R"\{0}and y := (y1,¥2,...,y.)" € R"\{0} such
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that
Ayy = Ax, (1.1)
XAy = Ay, (1.2)
x'x=1, (1.3)
yy=1, (1.4)
where

(Ayy); = Z iy e, (XA = Z Q;jkXiy js

Jkeln] i,jeln]

then A is called a C-eigenvalue of A, and x and y are its associated left and right C-eigenvectors,
respectively. Then, (4, x,V) is called a C-eigentriple of A and o(A) is used to denote the spectrum of
A, which is a set of all C-eigenvalues of A.

Chen et al. provided the following results for the C-eigenvalues and C-eigenvectors of a piezoele-
ctric-type tensor.

Property 1.1. [12, Theorem 2.3] Let A = (a;x) € R™"™" be a piezoelectric-type tensor.
(a) The C-eigenvalues of A and their associated left and right C-eigenvectors always exist.
(b) Let A be a C-eigenvalue and (x,y) be its associated left and right C-eigenvectors. Then

A= xAyy = Z Q;jkXiy jYk-
i, jkeln]

Furthermore, (A, x,—y), (=4, —x,y) and (-1, —x, —y) are also C-eigentriples of A.
(c) Let " be the largest C-eigenvalue of A. Then

A" =max{xAyy: x'x=1,y"y =1}.

As we all know, the largest C-eigenvalue of a piezoelectric-type tensor and its associated
C-eigenvectors constitute the best rank-one piezoelectric-type approximation. In view of this, Liang
and Yang [16, 17] designed two methods to calculate the largest C-eigenvalue of a piezoelectric-type
tensor.  Later, Zhao and Luo [18] provided a method to calculate all C-eigentriples of a
piezoelectric-type tensor by converting the C-eigenvalue problem to the Z-eigenvalue problem of
tensors. Moreover, many researchers considered the C-eigenvalue localization problem and provided
many C-eigenvalue localization sets [19-24]. For instance, Che et al. [25] presented the following
Gersgorin-type C-eigenvalue localization set.

Theorem 1.1. [25, Theorem 2.1] Let A = (a;jx) € R™"™" be a piezoelectric-type tensor. Then

o(A) CT(A) = | | Ty(A),

Jeln]

where

[)(A) =z R : |1 SR(A) and Ry(A):= ) lay]

Lke[n]
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Definition 1.2 and Property 1.1 indicate that a C-eigenvalue A is real and both A and —A are
C-eigenvalues, which implies that a C-eigenvalue localization set is always symmetric with respect to
the origin. Therefore, the result of Theorem 1.1 is equivalent to o(A) < [—pr,pr], where
pr = rjr;%c{Rj(ﬂ)}-

The remainder of the paper is organized as follows. In Section 2, we construct a new C-eigenvalue
localization set and prove that it is sharper than some existing sets. In Section 3, we provide a direct
method to find all C-eigentriples when n = 3. In Section 4, we reviewed the practical application of C-
eigentriples of a piezoelectric-type tensor to the piezoelectric effect and converse piezoelectric effect.
In Section 5, we verify the effectiveness of obtained results by numerical examples. In Section 6, we
give a summary of this paper.

2. A new C-eigenvalue localization set

In this section, we provide a new C-eigenvalue localization set and prove that it is sharper than the
set in Theorem 1.1. Before that, the following lemma is needed.

Lemma 2.1. [26, pp. 10, Cauchy-Schwarz inequality] Let x = (x,xp,...,%,)" € R" and

y=01Y2...,y2)" €R" Then
(in)’i)z < foZy?

i€[n] i€[n] i€[n]

Theorem 2.1. Let A = (a;jx) € R™"™" be a piezoelectric-type tensor. Then

7(A) C QAA) := (U @(ﬂ)) U ( ) (@uen %(ﬂ))),

ic[n] i,je[n)ij
where
Qi(A) = {z € R : |2 < FI(A)},
Q; (A) = {z € R : (|2l - (A2l = T(A) < TUAF (A},
Ki(A) ={zeR:|z| < ri(A)},
and

73‘(?() = /Zalzij’ F’:;(ﬂ) = Z( Z |a1kj|)2,
le[n] le[n] ke[n]k+i
r@ = S (S ). ijelnl

le[n]  ke[n]

Proof. Let (4, x,y) be a C-eigentriple of A. Let |y, > [y,] = max {|yl}. Then O < |y,] < 1. From

ke[n].k#t,k+s
(1.2), we have

Ay, = Z A XYk = Z Xy + Z At X[V -

Lke[n] le[n] Lke[n].k+t
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Taking the modulus in above equation and using the triangle inequality and Lemma 2.1, we have

Ayl < " lanalbxilyd = 1y Y- (bl > lau)

Lke[n] le[n] ke[n]
) 2 2
<yl Dl DD ) =1yl DD lawd)
le[n] le[n] ke[n] le[n] ke[n]

1.e.,

< I3 lawd) = rm.

le[n] keln]

which implies that A € K, (A), and
Ayl < D lawdlelyd + > ladbellyd

le[n] Lke[n],k#t

< D landbalyd + > ladbxllys|
le[n] Lke[n].k#t

= il D lawalled + byl Y (bl Dl

le[n] le[n] ke[n]k#t

2
<l [Doa, D g+l Do DD lawl)
le[n] le[n] le[n] le[n]  ke[n],k#t

=il >4l DU lawd)

le[n] le[n] ke[n]k+#t

= T( Ayl + T (A,

1.e.,

(1A = 7AWy < THAyl- 2.1)

If lys] = 0in (2.1), we have |1| < 7;(_71) which implies that A € Q (A) C Q(A).
If b’slf 01in (2.1), then |2 < 7 (A) + 7 (A) < r(A), which implies that 1 € K,(A). Now, suppose
that A ¢ Q;(A), i.e., |4 > 7;(31). The s-th equation of (1.2) is

Ay = Z Aiks X1 Yk = Zaltsxlyt + Z AlkesX1Yks

Lke[n] le[n] Lke[n].k+t

which implies that

Ayl < D lassllallyd + > lanslxllyid

le[n] Lke[n],k+t
< D lanlliyd + ) lawdixdly,d
le[n] Lke[n].k+t
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= il D bl + Iyl D (1l D lawl)

le[n] le[n] ke[n],k#t
2
< |yt Z aye Z x[ + |y | x[ |alks|)
le[n] l€[n] le[n] l€[n] ke[n] k#t

=il [> a2, +1yd 3 )’
[e[n] le[n] ke[n] k#t

= P (ANl + T (A,
1.e.,
(A =T (Al < F(Ayl. (2.2)
By multiplying (2.1) and (2.2) and eliminating [y,|[y;| > O, we have
(1] = F A = T(A) < TFAT(A),

which implies that 1 € (ﬁt,s(ﬂ)ﬁ’Kt(ﬂ)) C Q(A), and consequently, o(A) C Q(A) by the arbitrariness
of A.

Next, we discuss the relationship between the set Q(A) in Theorem 2.1 and the set ['(A) in Theorem
1.1.

Theorem 2.2. Let A = (a;jx) € R™"™" be a piezoelectric-type tensor. Then
Q(A) C T'(A).

Proof. Let z € Q(A). By Theorem 2.1, there exists i, j € [n] such that z € ﬁ,-(.?() or z € (ﬁ, (AN
K(A)).
Case L. If z € Q;(A), then

2|l < FU(A) < Ri(A),

which implies that z € I'(A).
Casell. If z € ( i (AN 7((&7()) then z € Q,j(&z() and z € KG(A). If z € Q,](ﬂ) then

(2 = Fi(A)) (|| = FiA)) < FUAF(A).
If (A7 (A) = 0, then
2l < FAA) SR(A) or |z <TFAA) < Ry(A),

which impli_es that z € I'(A).
f7 (AT (A) > 0, then

|z| — 7:(A) Izl—r(ﬂ)
A TR

Electronic Research Archive Volume 30, Issue 4, 1419-1441.
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Therefore,
A 2| = 7L(A)
M <1 or _—] < 1,
ri(ﬂ) I’lj(ﬂ)
1.e.,

2l < Fi(A) + FUA) S R(A) o [2] <TA) +F(A) < Ri(A),

and consequently z € I['(A).
When z € K;(A), we have

|zl < ri(A) < Ri(A),
then z € I'(A). Hence, Q(A) C I'(A).

Similarly, we can write the set Q(A) as [—pq, pal, Where

Pq 1= max { r}éa)]({?f(ﬂ)}, max min {%Vi’j(ﬂ), ri(ﬂ)}}, (2.3)

i.jeln].i#j

and

VAT =T + TR + ) ~ T2 + 4P ATA).
Theorem 2.2 indicates that po < pr and [—pq, pal € [—or, prl-

3. A direct method to calculate all C-eigentriples whenn =3

By the idea to find all M-eigenpairs of a fourth-order tensor in Theorem 7 of [27], we in this section
present a direct method to find all C-eigenpair when n = 3.

Theorem 3.1. Let A = (a;j) € R™"™" be a piezoelectric-type tensor. Then all C-eigentriples are given
as follows:

(a) If ax1 = azi1 = ayp = anz =0, then (ai1,(1,0,0)7,(x1,0,0)7) and (=ay1,(=1,0,0)7, (£1,0,
0)") are four C-eigentriples of ‘A.

(b) (A, x,y) is a C-eigentriple of A, where

A =apx; + axix + azx,
and
x=(x,x,x%)", y=(x1,0,0)",
X1, X, and x3 are the real roots of the following equations:
a1 x —ajnxy =0, 3.1
az x; —apxz =0, 3.2)

aynXy + azipxy + azjpxz =0,

ay;3x; + axzxy + azzxz =0,

2, 2 .2
xXj+x;+x5=1
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(c) (4, x,y) and (—A, —x,y) are two C-eigentriples of A, where

2 2 2
A =any) + ainy; + aizys + 2a112y1y2 + 2a113y1y3 + 24123253,

and

x=(1,0,007, y=(y,y),
Y1, Y2 and y3 are the real roots of the following equations:

2 2 2

aynys; + axnyy + axsy; + 2ax1y2y1 + 2a03y3y2 + 2a31y3y1 = 0,
2 2 P

azzys + aznyy + asny; + 2a331y3y1 + 2a33y2y3 + 2a31y2y1 = 0,
2 2

apy; + (@122 — an)yiy2 + aiy1ys — a1y, — aziy2ys = 0,
2 2

ayzy] + (@133 — aj)yiys + aisyiy2 — aniy2ys — aiziy; = 0,

yi+y;+y =1

(d) (A, x,y) is a C-eigentriple of ‘A, where
A =aipxit+ainXx) + anyxy + axpxat + aznx; + azpxst,

and
L0107
Ve

X1, Xo and x5 and t are the real roots of the following equations:

x = (x1, X2, X3)T,

Ao Xy + an X1t + 2a01 X1t — ayXat® — ainXs — 2ai10tx, = 0,

astX) + asnXy + 2az1 X1t — @yt — apmxs — 2axt = 0,

apnxit® + (a1 — an)xit + (axn — @)Xt + (asn — asi)xst
tarpXal® + aznxstt — Az X3 — i Xa — din Xy =0,

ay3xit + a1p3x) + ax3xy + ax3xat + az3xst + azsxz = 0,

a4+ =1
(e) (4, x,y) and (—A, —x,y) are two C-eigentriples of A, where
A= VP + Namys + axny; + arssys + 2a01y1y2 + 26232y + 2a03151)3),

and
(1,007
X=—,
V2 + 1

Y1, Y2, ¥3 and t are the real roots of the following equations:

y= @1,)’2,)’3)T,

ayst + @yt + assysit + 2ayayit + 2ax3ysyat + 2ax1y31t

—amy% - 0122)’5 - 61133)% = 2ayy1y2 — 2a113y1y3 — 2a123y2y3 = 0,
azy; + @zt + @sys + 2as1y3y1 + 2a303)2y3 + 2az1y2y1 = 0,
aml)’% + (a122 — anpiyryz + atyrys + (a2 — ax)yay

+61212)’% + axoy1ys — amty§ —apiy2lys — a221y§ —ax1y2ys = 0,
aisty] + (arzs — an)yys + amstyiys + axsyiys + daisy

+(a233 — a21)Y1y3 — an1tyr2y; — 611316’% —an1y2ys — 61231)% =0,

yi+y+y; =1

(3.3)
(3.4)

(3.5)
(3.6)

(3.7

(3.8)

(3.9)

(3.10)

(3.11)

Electronic Research Archive Volume 30, Issue 4, 1419-1441.
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(f) (A, x,y) is a C-eigentriple of ‘A, where

and

A = (a3 vy + arzi vy + apsziy + axziavy + a3 vy + a3y

[ 2, 2
+ az3vy + azzva + assz)/ fuy +u;y + 1,

S (ul’u291)T S (V],Vz, 1)T

xX== , )
[ 2 2 [ 2 2
u1+u2+1 v1+v2+1

uy, Uy, vi and v, are the real roots of the following equations:

Aty vy + ap Vi + Aoty + 2a201 ViU vy + 2a0301 v
+2ap31viuy — Clmuz\’% - alZZMZV% — 33ty — 2a1 12UV V)
—2ay13uzvy — 2a,23u2v, = 0,

a3ty + Az U vy + asnty vy + 2az3uyvy + 2az3uva + 2az vy v
—61111\/% - 61122\% — a3z — 2a112viva — 2a113vy — 2a123v2 = 0,

allzul"% + (a122 — an)uviva + arpviug + (@ — az)uaviva
+0212M2V% + aynviug + azzpvy + (azn — az)vivy + a312v%
—a121u1V§ —apzuvy — azzluzvg — A3Vl — A331Vy — 61321"% =0,

0113M1V% + (a133 — anDuvy + avii vy + ansviava + azsviva
+(@233 — @211 )UaV1 + A3tV + (@333 — A311)V1 + A313V7

—Q121U1Vy — Q131U — A laVy — dx3illy — a3z — Az vy = 0.

Proof. When n = 3, the specific form of (1.1)—(1.4) is

amy% + 0122)’5 + 61133)% + 2a10y1y2 + 2a113y1y3 + 2a123y2y3 = Axy,

a5 + Aoyt + @x33Ys + 2a012)1 + 2a032Y3y2 + 2423131 = Axa,

azay; + a3y + @snys + 2a331y3y1 + 2430323 + 2az1y0y1 = Axs,

ainXiyr + apiXx1yz + aixX1ys + dxnixzyz + axiXeyr + asixzys
+a331X3y3 + a311%3)1 + Az X3y2 = Ay,

areX1y1 + aipX1y2 + ai3x1y3 + Ao XYz + dzpx2y1 + az2Xx2y3
+az3x3y3 + d3nX3ys + dzpXsyr = Ay,

apzX1yr + aizsx1ys + azX1y2 + dxnsxoyz + axszxey3 + dz13x2)1
+a333X3y3 + A313X3)1 + A33X3Y2 = Ay3,

X+ x+ =1,

i+ +y;=1

To proceed, we break the arguments into six Cases.
(a) Assume that x = (1,0,0)" and y = (£1,0,0)". Then (3.18)—(3.25) becomes A = a;;; and
a1 =az = aip =ans = 0.

Electronic Research Archive

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
(3.19)
(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
(3.25)
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Assume that x = (-=1,0,0)" and y = (£1,0,0)". Then (3.18)—(3.25) becomes 1 = —a;;; and
a1 = a3 = ayp = ans = 0.

Hence, if ar11 = a3 = a11o = ayz = 0, then (aq11,(1,0,0)7,(x1,0,0)") and (—ay11, (=1,0,0) 7, (%1,
0,0)") are four C-eigentriples of A.

(b) Assume that y = (x1,0,0)". Then (3.18)—(3.25) becomes

aiyg = Axy, (3.26)
asiy = Ax, (3.27)
asy; = Axs, (3.28)
ajXxy + axxy + azx; = 4, (3.29)
ajpX) + axpxy + azppxz =0, (3.30)
aj;zX) + axzx; +az;zxz =0, (3.31)
O+ X+ =1

By (3.26) and (3.27), we have (3.1). By (3.26) and (3.28), we have (3.2). Next, solving (3.1),
(3.2), (3.30), (3.31) and (3.24), we can obtain x;, x, and x3, which implies that x = (x, x2, x3)" and
y=(x1,0,0)" are a pair of C-eigenvectors. Furthermore, by (3.29), we can get a C-eigenvalue A of A.

(c) Assume that x = (1,0,0)". Then (3.18)—(3.25) becomes

ainy; + amy; + aizsy; + 2a1201y2 + 2411313 + 2a1323 = A, (3.32)
0222)’% + 61211)’% + 61233)’% + 2a012y1 + 2a232y3y2 + 2a231y3y1 = 0, (3.33)
azsy3 + as11yy + asmy; + 2a331y3y1 + 2a303y2y3 + 2azyay = 0, (3.34)
ainyr +amiyz + aizys = Ay, (3.35)
ainy + a1ny2 + ainy; = Ay, (3.36)
anzyr + ays + aisyz = Ays, (3.37)
ity +yi=1.

By (3.35) and (3.36), we have (3.3). By (3.35) and (3.37), we have (3.4). Next, solving (3.3),
(3.4), (3.25), (3.33) and (3.34), we can obtain y;, y, and y3, which implies that x = (1,0,0)" and
y = (y1,y2,y3)" are a pair of C-eigenvectors. Furthermore, by (3.32), we can get a C-eigenvalue A of
A.

Assume that x = (—1,0,0)". Similarly, we have

A= =(ajny] + aimy; + a13y; + 21212 + 2a13y1y3 + 2a1232)3),

with its a pair of C-eigenvectors are x = (—1,0,0)" and y = (y1,y2,y3)", which also satisfies (3.3),
(3.4), (3.25), (3.33) and (3.34).

Electronic Research Archive Volume 30, Issue 4, 1419-1441.
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(d) Assume that y = (y1, y,,0)", where y, # 0. Then (3.18)—(3.25) becomes

ainy; + amys + 2aiyiy: = Axi,

azzz)’% + 61211)’% + 2ax1y2y1 = Axa,

a1y + @y + 2az1yay = Axs,

anXxiyr + a1 x1y2 + anix2ys + axi X2y + az X3y + azxzys = Ay,
ajpX1yr + apX1yz + dopXoys + dr12X2)1 + Az Xzy2 + azpXzyr = Ay,
ay3X1y1 + a13X1y2 + a3X2y2 + Az13X2)1 + az3X3y; + aznzxzy; = 0,

2. .2, .2 _
x|+ x;+x3=1,

2.2
ity =1
Lett = i—; Then the above equations become

(it +am + 2611121))’% = Axy,
(axn + axnt® + 2amit)y; = Axz,
(asnf® + asn + 2azit)y; = Axz,
aj X1t + apixy + ani Xy + a1 Xat + az X3t + azxz = A,
aipX1t + ainnXi + dapXy + Az Xot + Az Xz + azpXxzt = 4,

an3xit +apsX) + axpsXs + ax3xXat + azzxst + azszxz = 0,

2, 2 .2 _
xXj+x;+x5=1

(3.38)
(3.39)
(3.40)
(3.41)
(3.42)
(3.43)

By (3.38) and (3.39), we have (3.5). By (3.38) and (3.40), we have (3.6). By (3.41) and (3.42), we
have (3.7). Next, solving (3.5)—(3.7), (3.24) and (3.43), we can obtain x;, x,, x3 and ¢, which leads to

1,07

its a pair of C-eigenvectors x = (x,x,x3)" and y = + o Furthermore, by (3.42), we can get a

C-eigenvalue A of A.
(e) Assume that x = (x1, x»,0)", where x, # 0. Then (3.18)—(3.25) becomes

am)’% + 61122)’5 + 61133)% + 2a110y1y2 + 2a113y1y3 + 2a123y2y3 = Axy,
61222)% + 0211y% + 0233)% + 2am1y2y1 + 2a230y3y2 + 2a231y3y1 = AXa,
azy; + @zt + @snys + 2as1y3y1 + 2030323 + 2az1y2y1 = 0,
aiXiy1 + a1 X1y2 + a1x1ys + ani Xy + daxoyr + a3y = Ayq,
aiX1y1 + a1pX1y2 + d132X1y3 + danXoys + dr12X2)1 + A232X2y3 = AYa,
aj;3X1y1 + a133X1ys + d123X1y2 + a3 X2Y2 + A233X2)3 + Az13X%2)1 = Ays,
O+x =1,

yi+y;+y; =1

Electronic Research Archive Volume 30, Issue 4, 1419-1441.
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Lett = ;C_; Then the above equations become

ainyy + amys + ay; + 2a10y1y: + 2a113y1y;3 + 210323 = Atxs,
ay; + a1y + ax3y; + 2ax1y2y1 + 2a230y3y2 + 2403131 = Axa,
asay; + a3yt + asnys + 2a331y3y1 + 2430323 + 2az12y1 = 0,
aintxoyr + apitxays + a1ty + aniXoyr + a1 Xoy1 + axzxoys = Ay,
a1txoyr + a1ptxays + ar3txays + anXoyz + ax2X2y1 + dozaXoysz = Ay,
ai3txoyr + a133txays + a3txays + ansXoyr + AxzXoys + aaizxoyr = Ay,

yi+y+yi=1

(3.44)
(3.45)
(3.46)
(3.47)
(3.48)
(3.49)

By (3.44) and (3.45), we have (3.9). By (3.47) and (3.48), we have (3.10). By (3.47) and (3.49), we
have (3.11). Next, solving (3.9)—(3.11), (3.25) and (3.46), we can obtain yy, y,, y3 and . And then, by

1

x1 + x5 = 1, we have x, = +——. Furthermore, by (3.45), we can get a C-eigenvalue A of A in (3.8)

N '
and its a pair of C-eigenvectors x = i(i’/;% and y = (y1,y2,y3) "

(f) Assume that x = (x1, x5, x3)" and y = (y1,y2,y3)", where x3 # 0 and y; # 0. Let

_ X1 _ X _n _n
u =—, U = —, vy = —, Vo) = —.
X3 X3 3 Y3

Then (3.18)—(3.25) becomes

VY3 + aimvyy; + aizzys + 2aivivay; + 2a113v1y;3 + 2a13v0y3 = Aupxs,

Clzzzvgy_% + alev%yg + 0233)% + 261221"1"2)’% + 261232"2)’% + 261231"1}’% = Aur x3,

a333y5 + A311V1Y3 + AsnVay; + 2as31viy; + 2a33vay; + 23 vivay; = Axs,

A1UIV1X3 + Q121U VaX3 + Q131U X3 + Ao UpVaX3 + Ao UV X3 + A3 Uz X3
+a331X3 + A311V1X3 + Az vaxz = Avy,

AU V1X3 + AU VaX3 + Q132U X3 + AaooU VX3 + Ao12UaVI X3 + Ao3pUn X3
taznx; + azpvaxs + azppvixz = Avy,

a113U1V1X3 + A133U1 X3 + A123U1VaX3 + Apo3Up Vo X3 + Ap33Un X3 + Ao 13UV X3

+as3zx; + az;zvixz + azsvaxs = A.

(3.50)
(3.51)
(3.52)
(3.53)

(3.54)

(3.55)

By (3.50) and (3.51), we have (3.14). By (3.50) and (3.52), we have (3.15). By (3.53) and (3.54),
we have (3.16). By (3.53) and (3.55), we have (3.17). Next, solving (3.14)—(3.17), we can obtain u,
up, vi and v,. Furthermore, by x7 + x5 + x3 = 1 and y] + y5 + y; = 1, we can get x and y in (3.13); by

(3.55), we can get a C-eigenvalue A of A in (3.12).

Remark 3.1. i) Solving the system of nonlinear equations in (b) of Theorem 3.1, we can choose any
three of the first four equations to form a system of linear equations. If the determinant of the
coefficient matrix of the system of linear equations is not equal to O, then the system of linear
equations has only zero solution and obviously it is not the solution of the last equation in the system
of nonlinear equations, which implies that the system of nonlinear equations in (b) has no solution. If
the determinant is equal to O, then we need to verify that whether this solution satisfies the other two

equations.
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i1) Solving these system of nonlinear equations in (c)—(f) of Theorem 3.1, we can use the resultant
method in algebraic geometry [28] to find their solutions, which has been verified and is feasible in
finding all M-eigenpairs of an order 4 dimension 2 tensor in Theorem 7 of [27].

Given two polynomials f(x) and g(x), where

1

fx)=ax"+a; X" +---+a,, ap#0, n>0.

g(x) =box" + by X"+ +b,, by£0, m>0.

Then the resultant of f(x) and g(x) is represented by Res,(f, g), that is, the determinant of (n + m) X
(n + m) is as follows:

ap do

ap Qo dy dy

a a; - d, d,
a) ao dz b()

Resu(fog)=det | o v - a d, 1 by |
A a dn b2
am bn

n columns m columns

where the blank spaces are filled with zeros. It is showed in [28, pp. 78] that over the complex field
f(x) and g(x) have a common root if and only if their resultant is zero.

Solving the systems (3.14)—(3.17) with four variables u,, u,, v; and v,, we can obtain its solutions
by successive elimination of variables as follows:

Step 1: Mark the four equations in the systems (3.14)—(3.17) as fi(uy, uz, vi,v2), fo(uy, uz, vy, v2),
Sf3(uy, up, vy, vy) and fy(uy, us, vy, v2) in turn, and regard fi, f>, f5 and f; as functions with u; as a variable
and u,, v; and v, as their coefficients. If Res,, (f, f2) = 0, which is a function with u,, v; and v, as
three variables, then f; and f, have a common root. Similarly, Res,, (fi, f3) = 0 and Res,, (f1, f4) =0
can be obtained and they are functions with u,, v; and v, as three variables.

Step 2: Let

gi1(uz,vi, ) := ReSm (f1, /2) =0,  ga(us,vi,v2) = ReSu.(fl,f3) =0,
and
g3(u2’ Vl,Vz) = Resul(fla f4) = 09

and g, g» and g3 be regarded as functions with u, as a variable and v, and v, as their coefficients. If

Res,, (g1, 82) = 0, which is a function with v, and v, as two variables, then g, and g, have a common

root. Similarly, Res,, (g1, g3) = 0 can be obtained and it is a function with v; and v, as two variables.
Step 3: Let

hi(vi,v2) := Res,,(g1,82) =0 and  hy(vi,v2) := Res,,(g1,83) = 0.
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and &, and h, be regarded as functions with v; as a variable and v, as a coefficient. If Res,, (h;, h;) = 0,
which is a function with v, as a variable, then /; and A, have a common root.

Step 4: Solving the function Res,, (A}, h;) = 0 with v, as a variable by Matlab command ‘solve’,
its all real solutions v, can be obtained.

Step 5: Substituting v, to hy(vy,v2) = 0 and hy(vq,v,) = 0 to find all their real solutions v;. And
then, substituting v, and v; to g(uz, vi,v2) = 0, g2(u2,v1,v2) = 0 and g3(uy, vy, v;) = 0 to find all their
real solutions u,. Furthermore, substituting v,, v; and u, to f;(u;, us,vy,v2) = 0 for i € [4] to find all
their real solutions u;. Then, all real roots u;, u,, v; and v, of (3.14)—(3.17) are obtained. Finally, by
(3.12) and (3.13), we can find all C-eigentriples of A in the Case (f) in Theorem 3.1.

4. Applications

It is shown in [12, 29] that the largest C-eigenvalue A* of a piezoelectric tensor determines the
highest piezoelectric coupling constant, and its corresponding C-eigenvector y* is the corresponding
direction of the stress where this appears. In this section, let’s review its physical background, which
is shown in [29].

In physics, for non-centrosymmetric materials, we can write the linear piezoelectric equation as

pi = Z aiixT jx,

Joke[3]

where A = (a;) € R is a piezoelectric tensor, T = (T3) € R¥ is the stress tensor, and p = (p;) €
R? is the electric change density displacement.

Now, it is worth considering, under what conditions can the maximal piezoelectricity be triggered
under a unit uniaxial stress? In this case, the stress tensor 7' can be rewritten as 7 = yy' with y'y = 1.
Then, this maximal piezoelectricity problem can be formulated into an optimization model

max |pll
s.t.  p=Ayy,
yy=1

By a dual norm, ||p||; = rga)% x'p= nTla)i xAyy is derived and hence the above optimization model
X X= X X=

is converted to the following optimization problem
max  xAyy st. x'x=1, y'y=1.

If (x*, y*) is an optimal solution of the above optimization problem, then 1* = x* Ay*y* is the largest
C-eigenvalue of A and y* is the unit uniaxial direction that the maximal piezoelectric effect take place
along.

Theorem 4.1. [29, Theorem 7.12] Let A* be the largest C-eigenvalue, x* and y* be the associated C-
eigenvectors of a piezoelectric tensor A. Then, A* is the maximum value of the 2-norm of the electric
polarization under a unit uniaxial stress along the optimal axial direction y*.

Moreover, the linear equation of the inverse piezoelectric effect is

Sik= Z ajjk€i,

i
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where S = (S ) € R¥? is the strain tensor and e = (e;) € R? is the electric field strength. Next, the
following maximization problem is considered:

max ||S| := maxy'Sy
yTy=1

st Sp= ) eay, Vike3l,

i3]
e'e=1.

By ||S] = max y'Sy= max eAyy, the above maximization problem is rewritten as
Yy y= Yy y=

max{eAyy: e'e=1, y'y=1}.

If (e*, y") is an optimal solution of the above optimization problem, then 1* = e* Ay*y" is the largest
C-eigenvalue of A, e and y* are its associated C-eigenvectors.

Theorem 4.2. [29, Theorem 7.13] Let A* be the largest C-eigenvalue and x* and y* be its associated
C-eigenvectors of a piezoelectric tensor A. Then, A" is the largest spectral norm of a strain tensor
generated by the converse piezoelectric effect under unit electric field strength [|x*|| = 1.

5. Numerical examples

In this section, numerical examples are given to verify the obtained theoretical results.

Example 1. Consider the eight piezoelectric tensors in [12, Examples 1-8].
(a) The first piezoelectric tensor is Aygesp With its nonzero entries

a123 = dyjz = Az = —3.68180667.
(b) The second piezoelectric tensor Agip, With its nonzero entries
ajyp = —apn = —dzp = —0.13685, a3 = —az;3 = —0.009715.
(c) The third piezoelectric tensor Acy,agni0, With its nonzero entries

apnz = a1z = —022163, ajgy = —daxpz = 2608665,
as|y = —daszpyy = 0152485, as|;p = —0.37153.

(d) The fourth piezoelectric tensor Arprao, With its nonzero entries

ajgz = dxyz = —840955, as|y = daszpp = —43031,
ajyn = —dr1p = —A11 = —5412525, as3z = —5.14766.

(e) The fifth piezoelectric tensor Anapis, With its nonzero entries

ajns = —890808, ar3 = —000842, as| = —711526,
aszpy = —06222, aszzz = —7.93831.
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(f) The sixth piezoelectric tensor Ay igis,0, With its nonzero entries

ary = 0.34929, a; =0.16101, axyn =0.12562, azp = 2.57812,
apny = 235682, ar1zy = —005587, an3zy = 01361, aspz = 6.91074.

(g) The seventh piezoelectric tensor Akg;,r, With its nonzero entries

ap = 12.64393,  ap =2.59187, az; = 1.51254, ajs = 1.59052,
arxn = 1.08802, a2 =0.10570, as;p =0.08381, axs =0.81041,
apz = 1.96801, a3 =0.71432, asz;3 = 0.39030, ass; = —0.23019,
aip = 0.22465, axp = 0.08263, asxp = 0.68235, as; = 0.19013,
aiz3 = 4.14350,  axps = 0.51165.

(h) The eigth piezoelectric tensor Ag,nio, With its nonzero entries
apns = 0038385, an3 = 0038385, as|y = aszpy = 689822, asz3 = 27.4628.

I. Localization for all C-eigenvalues of the above eight piezoelectric tensors.

Now, we use these C-eigenvalues intervals in Theorems 2.1 and 1.1, Theorems 1 and 2 of [20],
Theorem 2.1 of [13], Theorems 2.2 and 2.4 of [25], Theorem 2.1 of [24], Theorem 2.1 of [23], Theorem
5 of [19], Theorem 7 of [21], Theorems 2.3-2.5 of [18] and Theorem 2.1 of [22] to locate all C-
eigenvalues of the above eight piezoelectric tensors. Numerical results are shown in Table 1. Since
these intervals are symmetric about the origin, only their right boundaries are listed in Table 1.

In Table 1, A* is the largest C-eigenvalue of a piezoelectric tensor; o and o, are respectively the
right boundaries of the interval [—p, 0] and [—0uin, Omin] Obtained by Theorems 1 and 2 in [20]; o, are
respectively the right boundary of the interval [—omin, Omin] Obtained by Theorem 2.1 of [13]; o, and
pm are respectively the right boundaries of the intervals [—p,, o] and [—pa, o] Obtained by 2.2 and
2.4 in [25]; py is the right boundary of the interval [—py, py] obtained by Theorem 2.1 of [24]; p, is
the right boundary of the interval [-p,, p, | obtained by Theorem 2.1 of [23]; pgs is the right boundary
of the interval [—pqs, pos] obtained by Theorem 5 of [19]; pc¢ is the right boundary of the interval
[—pc, pc] obtained by Theorem 7 of [21]; pg, pp and pmin are respectively the right boundaries of the
intervals [—pg, pcl, [—pB, P8l and [—Pmin, Pmin] Obtained by Theorems 2.3-2.5 in [18]; py is the right
boundary of the interval [—py, py] obtained by Theorem 2.1 of [22]; pr is the right boundary of the
interval [—pr, pr] obtained by Theorem 1.1; pg is the right boundary of the interval [—pgq, po] obtained
by Theorem 2.1.

From Table 1, it can be seen that:

i) po is smaller than 0, Omin, Omins Or> P£s PMs Pr» Py TOT the eight piezoelectric tensors.

i1) po < pas, pa < pp for the eight piezoelectric tensors.

iii) For some tensors, pg is smaller than p¢, pg, Pmin and py. For the other tensors, pq is bigger than
or equal to pc, PG, Pmin and py. For examples, for Aygesy, Lo < Pc» Po < PG> Po < Pmin a0d po < Py;
For Asio,, pa > pc, pa > Pmin and po > pw; For Aganios, pa > pa-

II. Calculation for all C-eigentriples of the seventh piezoelectric tensor Axggi,r, by Theorem 3.1.

All C-eigentriples of Aggi,r, are obtained by Theorem 3.1 and are showen in Table 2. And the
calculation process is shown in Appendix.
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Table 1. Comparison among 0, Omins Omins P> LLs PMs PTs Pys PS> PCs PG> PBs Prins P¥> PO

and A*.
Avresv  Asio, Acnaggios  Arvtao;  Anais,  ALiBiB,os  AkBiE,  Aanio;
0 7.3636  0.2882  5.6606 30.0911  17.3288  15.2911 22.6896  33.7085
Omn 7.3636  0.2834  5.6606 23.5377 16.8548  12.3206 20.2351  27.5396
Omin  7.3636  0.2393  4.6717 227163  14.5723  12.1694 18.7025  27.5396
or 7.3636  0.2834  5.6606 23.5377 16.8548  12.3206 20.2351  27.5396
Or 7.3636  0.2744  4.8058 23.5377 16.5640 11.0127 18.8793  27.5109
om 13636 0.2834  4.7861 23.5377 16.8464  11.0038 19.8830 27.5013
o7 7.3636  0.2834  4.7335 23.5377 16.8464  10.9998 19.8319 27.5013
Py 7.3636  0.2744  4.7860 23.0353 16.4488 10.2581 18.4090 27.5013
pos  1.3636  0.2744 42732 23.0353 16.4486  10.2581 17.7874  27.4629
oc 6.3771  0.1943  3.7242 16.0259 11.9319 7.7540 13.5113  27.4629
06 6.3771  0.2506  4.0455 21.5313  13.9063 9.8718 14.2574  29.1441
OB 52069  0.2345  4.0026 19.4558 13.4158 10.0289 15.3869  27.5396
Pmin 6.5906  0.1942  3.5097 18.0991 11.9324  8.1373 14.3299  27.4725
Ow 6.5906 0.1942  4.2909 189140 119319 8.1501 14.0690 27.4629
o) 5.2069  0.2005 3.5097 19.2688 11.9319  8.6469 13.6514  27.4629
A 42514  0.1375 2.6258 12.4234  11.6674 7.7376 13.5021 27.4628
Table 2. All C-eigentriples of Axgi,F, -
A Xi X X3 Vi 2 V3
13.50214 0.97050 0.20974 0.11890 0.97226 0.05065 0.22836
13.50214 0.97050 0.20974 0.11890 —-0.97226 —-0.05065 —-0.22836
4.46957 0.98196 0.18905 —-0.00362 0.22771 —-0.41491 —-0.88091
4.46957 0.98196 0.18905 —-0.00362 -0.22771 0.41491 0.88091
0.54486 0.75981 —-0.36879 0.53544 0.06168 0.87047 —-0.48833
0.54486 0.75981 —-0.36879 0.53544 -0.06168 —-0.87047 0.48833
—-0.54486 —-0.75981 0.36879 —-0.53544 0.06168 0.87047 —-0.48833
—-0.54486 —-0.75981 0.36879 —-0.53544 -0.06168 —0.87047 0.48833
—4.46957 —-0.98196 —-0.18905 0.00362 0.22771 —-0.41491 -0.88091
—4.46957 —-0.98196 —0.18905 0.00362 -0.22771 0.41491 0.88091
-13.50214 -0.97050 -0.20974 —-0.11890 0.97226 0.05065 0.22836
—-13.50214 -0.97050 —-0.20974 —-0.11890 —-0.97226 —-0.05065 —-0.22836
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6. Conclusions

Let A € R™™" be a piezoelectric-type tensor. In this paper, we in Theorem 2.1 constructed a C-
eigenvalue interval Q(A) to locate all C-eigenvalues of A and proved that it is tighter than that in [25,
Theorem 2.1]. Subsequently, we in Theorem 3.1 provided a direct method to find all C-eigentriples
of A when n = 3. Although the method in Theorem 3.1 is divided into six Cases, it is indeed a little
complicated, but it can be seen from Example 1 that this method is feasible.
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Appendix
The following is the calculation process for all C-eigentriples of Akgi,r, by Theorem 3.1.

(a) Because a,; # 0, Case (a) in Theorem 3.1 does not holds.
(b) The system in Case (b) of Theorem 3.1 is

2.59187x; — 12.64393x, = 0, (A.1)
1.51254x; — 12.64393x; = 0, (A.2)
1.08802x; + 0.10570x;, + 0.08381x3 = 0, (A.3)

1.96801x; + 0.71432x, + 0.39030x3 = 0,

2, 2 .2 _
xi+x+x5=1

The three Eqs (A.1)—(A.3) yield a linear system of equation Ax = 0, where x = (x1, x, x3)" and

2.59187 -12.64393 0
A=| 151254 0 -12.64393 |.
1.08802  0.10570 0.08381

From det(A) = 179.0074 # 0, the solution of Ax = 0is x = (x;,x,x3)" = (0,0,0)", which
contradicts with x7 + x3 + x3 = 1. Hence, the system in Case (b) of Theorem 3.1 has no solution.
(c) The system in Case (c) of Theorem 3.1 is

£i01,¥2,y3) = 0.08263y5 + 2.59187y7 + 0.81041y; + 0.2114y,y,
+1.0233y,y; + 1.42864y,y; = 0,

01, y2,y3) = —0.23019y5 + 1.51254y7 + 0.68235y;3 + 0.7806y,y3
+0.38026y,y3 + 0.16762y,y, = 0,

£:01, 2, y3) = 0.22465y% — 0.22465y% — 11.55591y,y, + 1.59052y,y3
—1.96801y,y; =0,

L1, 2, y3) = 1.96801y7 — 1.96801y5 — 8.50043y,y3 + a123y1y2
—0.22465y,y3 = 0,

fsOn,y0,3) =y +y5 +y5 = 1.

We now regard f;(yi,y2,v3), i € [5] as a function with y; as a variable and y, and y; as two
coefficients and obtain their resultants as follows:
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Res,, (f1, f) =2.68640y5 — 1.92404y;y; — 5.51122y5y; + 2.09880y3y, + 3.18879y3,
Res,, (fi, f3) =27.58122y5 + 331.64703y3y3 + 134.75405y3y5 — 55.45236y3y, + 4.93315y5.

Let g1(y2,y3) := Res,, (f1, 2), 82002, ¥3) := Res,, (f1, f3), and its resultant
Res,, (g1, g2) = 95376348203.97653y;° = 0.
Then y; = 0. Substituting y; = 0 into g, and g,, we have

21032, y3) = 2.68640y‘2‘, 22032, y3) = 27.58122y3.

Let g1(y2,y3) = 0 and g2(y2,y3) = 0. We have y, = 0. Substituting y, = 0 and y; = 0 into f;, we
have fi(y1,y2,y3) = 2.59187y7. Solving fi(y1,y2,y3) = 0, we have y; = 0. However, y; =y, = y3 =0
is not solution of y% + y% + y% = 1. Hence, the system in Case (c) of Theorem 3.1 has no solution.

(d) Similar to solution for Case (c), the system in Case (d) of Theorem 3.1 has no solution.

(e) Similar to solution for Case (c), the system in Case (e) of Theorem 3.1 has no solution.

(f) The system in Case (f) of Theorem 3.1 is

fiuy, up, vy, va) = 0.08263u1v§ + 2.59187v?u1 +0.81041u; + 0.21140v1u;v,
+1.02330u;v, + 1.42864v,u; — 12.64393u,v% — 1.08802u,15
—4.14350u; — 0.44930u,v,v> — 3.93602u,v; — 3.18104u,v, = 0,

Ho(uy, up, vy, vy) := —0.23019u, + 1.51254u1v% + O.68235u1v§ + 0.78060u;, v,
+0.38026u,v, + 0.16762u;v,v, — 12.64393v7 — 1.0880213
—0.44930v,v; — 3.93602v, — 3.18104v, — 4.14350 = 0,

f3(uy, up, vy, vp) = 0.22465u1v% —11.55591u;vivy + 1.59052v 1,
~2.509241,v1v; + 0.10570u3v% + 0.51165v 1, + 0.19013v,
~0.83019v;v, + 0.08381v2 — 0.22465u;v5 — 1.96801u;v,
~0.10570uyv3 — 0.71432v,u, — 0.39030v, — 0.08381v; = 0,

fa(uy, up, vy, va) = 1.96801u1v% —8.50043u;v; + 1.59052v u1v, + 0.51165vuyv,
+0.19013v; v, — 1.78146u,v; + 0.71432u,v7 — 1.742730v,
+0.39030v% — 0.22465u;v, — 1.96801u; — 0.10570u,v,
~0.71432u, — 0.08381v, — 0.39030 = 0.

We now regard f;(uy,u,,vi,v2), i € [4] as a function with u; as a variable and u,, v; and v, as three

coefficients and obtain their resultants as follows:

Res,, (fi, f») =(0.84336v, — 0.95379 + 2.32838v, + 3.7864913 + 2.58431v;
+0.74241v5 + 6.42916V7 + 15.82324v3 + 19.12445v] + 10.62991v,v7
+4.23911v3v; + 2.79896v,v7 + 0.48895v3v, + 10.34857v3v?
+4.57094v,v))u; — 9.10936v; — 3.95976v3v7 — 6.81799v,
—9.81234v,v; — 22.65734v,v] — 3.01186v5v, — 3.83745v,v;
—0.26713v3v; — 4.47928v3 — 1.37622v3 — 0.08990v; — 26.60934v7
— 28.26528v; — 32.771423v] — 3.35793 = 0,
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Res,, (fi, f) =(=8.73334v, + 7.00497v, — 8.00778v; — 3.02304v; — 0.25316v;
+8.00778v1 + 22.47179v3 + 3.11442v} — 74.15833v,v7 — 39.62519v3v,
— 152.49246v,v3 — 12.90368v3v; — 8.58379v3v7 — 53.09898v, v/ )us
+0.15408v; — 0.31630v, — 0.38580v3v] — 1.03583v,v; — 2.07169v,v7
— 1.03607v5v; — 2.13403v,v7 — 0.08632v3v; — 0.46731v; — 0.11801v;
—0.00693v5 + 0.33955v7 + 0.61253v; + 0.21722v] = 0,

and

Res,, (fi, f1) =(~8.73334 — 8.00778v, — 45.43188v; — 3.02304v; — 0.25316v;
— 54.00439v7 — 103.32952v; + 26.73481v] + 6.67230v,v7
—3.93604v3v; + 22.47179v,v7 + 1.77280v3v; + 3.02304v3v7
—23.92868v,v) )uy + 0.07244v507 — 1.96992v, — 0.46731v,
— 1.83150v,v; + 0.08538v,v7 + 0.03284v3v; + 0.57530v,}
+0.01571v;3v; — 0.11801v3 — 0.00693v; — 3.18504v] — 3.95933v3
+1.01161v} — 0.31630 = 0.

Let

gl(”Z, V1, VZ) = Resul (fl’ fZ)’ g2(”29 V1, VZ) = Resul (fl’ ‘f3)a
g3(uz,v1,v2) := Res,, (f1, f4).

Then their resultants are

Res,,(g1,82) =106.21826v% + (=5025.64756v, + 839.61383)v] + (—865.25666v3
— 6653.08038v, + 998.05266)v¢ + (—1083.52137v3 — 5229.62871v3
—7381.37411v, + 1094.99786)v> + (-=137.50780v* — 1593.23550v3
—4933.36887v3 — 4733.12663v, + 632.08073)v} + (=70.75506v;
— 741.31965v5 — 2567.50800v; — 4243.14169v5 — 2467.61827v,
+335.99902)7 + (=5.62145v5 — 90.33840v; — 524.86290v3
— 1366.09759v3 — 1783.36316v; — 843.25156v, + 90.73526)v;
+ (=1.29518v] — 23.9700815 — 135.36791v; — 405.58564v,
— 682.18237v; — 624.18604v5 — 209.71678v, + 23.37525)v,
+(=0.02790v5 — 0.72569v] — 6.69240v5 — 28.96790v;
— 72.02906v; — 105.34644v; — 86.25447v; — 29.02430v,) = 0

and

Res,, (g1, 93) =895.48403v% + (852.85983v, — 2690.30193)v7 + (304.631541?

Electronic Research Archive Volume 30, Issue 4, 1419-1441.



1440

+1073.45667v, — 4096.10056)v° + (172.77376v3 + 134.01848v;
—2360.05799v, — 5632.48044)7 + (29.00602v; + 203.47367v;
—304.10992v5 — 2878.73753v, — 3926.74222)v; + (10.47279v;
+55.51707v; — 189.59056v3 — 1392.51379v5 — 3083.36023v,
—2315.99105)v} + (0.80682v5 + 8.30736v; — 4.53864v3
—259.96426v3 — 927.90427v3 — 1442.92349v, — 831.16935)v7
+(0.17104v] +2.07986V5 — 2.49973v; — 63.10600v;
—263.71529v; — 525.06788v3 — 551.19369v, — 230.96997)v,
+(=0.02790v] — 0.72569v5 — 6.69240v; — 28.96790v,
—72.02906v3 — 105.34644v3 — 86.25447v, — 29.02430) =

Let

h(vi,vy) = ReSuz(ghgz) and  hy(vy,vy) = Resuz(glag?a)-

Their results are

Res,, (1, hy) = — 1.62711 x 10705* — 1.18415 x 107*§* — 4.48673 x 107§
—1.18681 x 107 6‘ — 243052 x 107% 60 —4.06317 x 107% 59
—~5.7302 x 107 58 - 6.93518 x 1077 57 —7.24748 x 1073° 56
—6.49253 x 10~ 5, vy’ —4.87257 x 10” , vyt —2.98951 x 10-33 >
—1.49477 x 107 52 - 6.3372x 107 51 —2.51516 x 1073y 50
—1.06401 x 107 49 —5.02246 x 10~ 0, v3® —2.43069 x 10—29 a7
~1.09655 x 1072 46 — 444371 x 1072 45 - 1.60392 x 1077 44
—5.08938 x 10777 4* —1.39566 x 1072¢ 42 —3.2426 x 1072¢ 41
—6.05752 x 107%¢ 40 —7.48945 x 107%¢ 39 +1.29902 x 10~ 2, v
+4.01056 x 1075 37 +1.382 x 10743° +3 13265 x 107243
+5.06222 x 107% 34+480914>< 10” 2 V3’ — 1.80398 x 10~ 2 V32
—1.82876 x 107%v3! — 4.38298 x 107> 30 —7.14302 x 1073 29
— 8.82265 x 107 28 —-7.81232x 1075 27 —3.29361 x 1073y 26
+1.21659 x 1073 25 —-5.53171 x 1075 24 —2.91829 x 107** 23
—3.73689 x 107 22 +1.93914 x 1072 21 +1.01905 x 1072 20
+8.28494 x 107y 19 —4.6185x 107y 18 - 1.27125 x 1072 ”
—9.35242 x 107% 16 —3.19849 x 10~ 2, vy’ +7.28108 x 10—24 o
+6.11682 x 1073 13+678336>< 107 12+ 1.47291 x 107y “
+8.0039 x 1072*v)? = 2.71136 x 107**) — 1.27876 x 107*%5
+1.35623 x 10~ 2, v] +3.48519 x 107 6+248651><10 26 5
—2.61144 x 10725 — 1.87784 x 107213 — 6.6019 x 107 2
+2.43536 x 10—2%2 - 6.98911 x 10—31.
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Next, we obtain the solution of the system (f) by the following steps:
Step 1. Solving Res,, (h;, h;) = 0, we have

v, =—0.85035, 0.22179, -7.79725, -1.78254, —11.53378,
-0.75907, -0.70532, 0.47100.

Step 2. Substituting v, = —0.85035 into A;(vy,Vv,), and letting h;(vy,v,) = 0, it all real roots are
vi = —0.43450 or v; = 4.25751. Substituting v, = —0.85035 into h,(vy,v,), and letting h,(vy,v;) = 0,
it all real roots are v; = —0.48184, —0.17296, 0.0000000000038876, or 5.04918. It is easy to see that
hi(vi,v2) = 0 and hy(vy,v,) = 0 have no common solution, which implies that v, = —0.85035 is not a
solution of the system (f).

Step 3. Substituting v, = 0.22179 into h;(vy, v2), and letting hy(vy,v,) = 0, it all real roots are
vy = —0.43450 or 4.25751. substituting v, = 0.22179 into hy(vy, v2), and letting hy(vy, v,) = 0, it all
real roots are v; = —0.24034 or 4.25751. It is easy to see that v; = 4.25751 is a common solution of
hl(Vl, Vz) =0and hz(Vl, Vz) =0.

Step 4. Substituting v, = 0.22179 and v; = 4.25751 into g(u,, v, v2), g2(u2, vi, v2) and g3(uz, vy, v2),
and letting g;(uy,vy,v2) = 0, its all real roots are u, = 1.76393; letting g>(u2, vy, v2) = 0, its all real
roots are u, = 1.76393; letting g3(u», vi,v,) = 0, its all real roots are u, = 1.76393. Hence, the common
solution of g;(uy, vi,vy) = 0, g2(up, vi,v2) = 0 and gz(up, vi,v2) = 01is u, = 1.76393.

Step 5. Substituting v, = 0.22179, v; = 4.25751 and u, = 1.76393 into f;, and letting
Sfi(uy, uz, vy, v7) = 0, we can get its all real roots u; = 8.16186.

Step 6. By v, = 0.22179, v; = 4.25751, u, = 1.76393, u; = 8.16186, (3.12) and (3.13), we can get
the corresponding C-eigentriples as follows:

e 1 =13.50214 and its C-eigenvectors are

x = (0.97050,0.20974,0.11890)", y = +(0.97226,0.05065,0.22836) .
e 1 =—13.50214 and its C-eigenvectors are
x = (=0.97050,-0.20974, -0.11890)", y = £(0.97226, 0.05065,0.22836)".

Step 7. For other values of v,, such as, —7.79725, —1.78254, —11.53378, —0.75907, —0.70532,
0.47100, we can also obtain their corresponding C-eigentriples by using the method similar to Steps
3-6.

Finally, we find all C-eigentriples, which is listed in Table 2.

, ©2022 Author(s), licensee AIMS Press. This
is an open access article distributed under the
% AIMS Press terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 30, Issue 4, 1419-1441.


http://creativecommons.org/licenses/by/4.0

	Introduction
	A new C-eigenvalue localization set
	A direct method to calculate all C-eigentriples when n = 3
	Applications
	Numerical examples
	Conclusions

