
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 30(4): 1374–1413.
DOI: 10.3934/era.2022072
Received: 30 December 2021
Revised: 30 January 2022
Accepted: 15 February 2022
Published: 18 March 2022

Research article

Terminal value problem for nonlinear parabolic equation with Gaussian
white noise

Vinh Quang Mai1, Erkan Nane2, Donal O’Regan3 and Nguyen Huy Tuan4,5,*

1 Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam
2 Department of Mathematics and Statistics, Auburn University, Auburn, USA
3 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland,

Galway, Ireland
4 Division of Applied Mathematics, Science and Technology Advanced Institute, Van Lang

University, Ho Chi Minh City, Vietnam
5 Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam

* Correspondence: Email: nguyenhuytuan@vlu.edu.vn.

Abstract: In this paper, We are interested in studying the backward in time problem for nonlinear
parabolic equation with time and space independent coefficients. The main purpose of this paper is
to study the problem of determining the initial condition of nonlinear parabolic equations from noisy
observations of the final condition. The final data are noisy by the process involving Gaussian white
noise. We introduce a regularized method to establish an approximate solution. We establish an upper
bound on the rate of convergence of the mean integrated squared error. This article is inspired by the
article by Tuan and Nane [1].
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1. Introduction

The forward problem for parabolic equations is finding the distribution at a later time when we know
the initial distribution. In geophysical exploration, one is often faced with the problem of determining
the temperature distribution in the object or any part of the Earth at a time t0 > 0 from temperature
measurements at a time t1 > t0. This is the backward in time parabolic problem. Backward parabolic
problems arises in several practical areas such as image processing, mathematical finance, and physics
(see [2,3]). Let T be a positive number and Ω be an open, bounded and connected domain in Rd, d ≥ 1
with a smooth boundary ∂Ω. In this paper, we consider the question of finding the function u(x, t),
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(x, t) ∈ Ω × [0,T ], satisfying the nonlinear problem
ut − ∇

(
a(x, t)∇u

)
= F(x, t,u(x, t)), (x, t) ∈ Ω × (0,T ),

u|∂Ω = 0, t ∈ (0,T ),
u(x,T ) = g(x), (x, t) ∈ Ω × (0,T ),

(1.1)

where the functions a(x, t), g(x) are given and the source function F will be given later. Here the
coefficient a(x, t) is a C1 smooth function and 0 < m ≤ a(x, t) < M for all (x, t) ∈ Ω × (0,T ) for some
finite constants m, M. The problem is well-known to be ill-posed in the sense of Hadamard. Hence,
a solution corresponding to the data does not always exist, and in the case of existence, it does not
depend continuously on the given data. In fact, from small noise contaminated physical measurements,
the corresponding solutions will have large errors. Hence, one has to resort to a regularization. In
the simple case of deterministic noise, Problem (1.1) with a = 1 and F = 0 was studied by many
authors [4–6]. However, in the case of random noise, the analysis of regularization methods is still
limited. The problem is to determine the initial temperature function f given a noisy version of the
temperature distribution g at time T

gobs
δ (x) = g(x) + δξ(x) (1.2)

where δ > 0 is the amplitude of the noise and ξ is a Gaussian white noise. In practice, we only observe
some finite errors as follows〈

gobs
δ , ϕ j

〉
=

〈
g, ϕ j

〉
+ δ

〈
ξ, ϕ j

〉
, j = 1,N = 1, 2, 3, · · · ,N, (1.3)

where the natural number N is the number of steps of discrete observations and ϕ j is defined in sec-
tion 2. The main goal is to find an approximate solution ûN(0) for u(0) and then investigate the rate of
convergence E∥̂uN(0)−u(0)∥, which is called the mean integrated square error (MISE). Here E denotes
the expectation w.r.t. the distribution of the data in the model (1.2).

There are two main approaches to considering inverse problem for noise modeling. The first ap-
proach is based on a formal technique if one is assuming that the noise is definite and small. The
second approach is based on a statistical point of view and in this approach one does not need to as-
sume smalll levels of noise. We consider in this paper a statistical point of view for the backward
parabolic equation. Our aim is to reconstruct the initial function from the disturbance measurements of
the final values in a statistical inverse problem framework. There are many different types of random
noise, but we are interested in Gaussian noise here. The model (1.2) and (1.3) were considered in
some recent papers; see [7–11]. In signal processing, Gaussian white noise is a random signal of equal
intensity at different frequencies, giving it a constant power spectral density and this term is used in
physics, acoustic engineering, telecommunications and statistical forecasting.

The inverse problem with random noise has a long history. The simple case of (1.1) is the homoge-
neous linear parabolic equation of finding the initial data u0 := u(x, 0) that satisfies

ut − ∆u = 0, (x, t) ∈ Ω × (0,T ),
u|∂Ω = 0, t ∈ (0,T ),
u(x,T ) = g(x), (x, t) ∈ Ω × (0,T ).

(1.4)

This equation is a special form of statistical inverse problems and it can be transformed by a linear
operator with random noise

g = Ku0 + ”noise”, (1.5)
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where K is a bounded linear operator that does not have a continuous inverse. Fomula (1.5) is inter-
preted as Ku0 deviated from function g by a random error.

Problem (1.4) was studied by well-known methods including spectral cut-off (or called truncation
method) [7, 9, 12, 13], the Tiknonov method [14], iterative regularization methods [15], the Bayes
estimation method [16, 17], and the Lavrentiev regularization method [18]. In some parts of these
works, the authors show that the error E∥̂uN(0)−u(0)∥ tend to zero when N is suitably chosen according
to the value of δ and δ→ 0. For more details, we refer the reader to [19].
To the best of our knowledge, there are no results for the backward problem for nonlinear parabolic
equations with Gaussian white noise. There are two types of difficulty in solving our problem. The
first difficulty occurs because the problem is nonlinear and nonlinear problems with random noise is
more difficult since one cannot apply well known methods. The second is the random noise data, which
makes the problem computationally complex. The problem of computation with random data requires
some knowledge of the stochastic process,so one has to consider the expectation.

Very recently, in [20], the authors studied the discrete random model for backward nonlinear
parabolic problems. However, the problem considered in [20] is in a rectangular domain which is
limited in practice. The present paper uses another random model and also gives approximation of the
solution in the case of more general bounded and smooth domains Ω. Our task in this paper is to show
that the expectation between the solution and the approximate solution converges to zero when N tends
to infinity.

This paper is organized as follows. In section 2, we give a couple of preliminary results. In section 3,
we give an explanation for ill-posedness of the problem. To help the reader, we divide the problem into
three cases under various assumptions on the coefficient a, and the source function F.
Case 1: a := a(x, t) is a constant and F is a globally Lipschitz function. In section 4, we will study this
case and give convergence rates in L2 and Hp norms for p > 0. The method here is the well-known
spectral method. The main idea is to approximate the final data g by the approximate data and use this
function to establish a regularized problem by the truncation method.
Case 2: a := a(x, t) depends on x and t and F is a locally Lipschitz function. This problem is more
difficult. In most practical problems, the function F is often a locally Lipschitz function. The difficulty
here is in the fact that the solution cannot be transformed into a Fourier series and therefore, we cannot
apply well-known methods to find an approximate solution. In Section 5, we will study a new form
of the quasi-reversibility method to construct a regularized solution and obtain the convergence rate.
Our method is new and very different than the method of Lattes and Lions [21]. We approximate the
locally Lipschitz function by a sequence of globally Lipschitz functions and use some new techniques
to obtain the convergence rate.
Case 3 Various assumptions on F. In practice there are many functions that are not locally Lipschitz.
Hence our analysis in section 4 cannot applied in section 6. Our method in section 6 is also the quasi-
reversibility method and is very similar to the method in section 4. However in section 6, we do not
approximate F as we do in section 4. This leads to a convergence rate that is better than the one in
section 4. One difficulty that occurs in this section is showing the existence and uniqueness of the
regularized solution. To prove the existence of the regularized solution, we do not follow previously
mentioned methods. Instead, we use the Faedo – Galerkin method, and the compactness method
introduced by Lions [22]. To the best of our knowledge, this is the first result where F is not necessarily
a locally Lipschitz function. Finally, in section 7, we give some specific equations which can be applied
by our method.
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2. Preliminaries

To give some details on this random model (1.2), we give the following definitions (See [12, 19]):

Definition 2.1. Let H be a Hilbert space. Let g, gδ ∈ H satisfy (1.2). We understand the equal
relationship in fomula

gobs
δ (x) = g(x) + δξ(x)

as follows:
⟨gδ, χ⟩ = ⟨g, χ⟩ + δ ⟨ξ, χ⟩ , ∀χ ∈ H , (2.1)

here δ is the amplitude of the noise. We also assume that ξ is a zero-mean Gaussian random process
indexed byH on a probability space. ⟨ξ, χ⟩ ∼ N(0, ∥χ∥2

H
). Moreover, given χ1, χ2 ∈ H then

E
(
⟨ξ, χ1⟩ ⟨ξ, χ2⟩

)
= E ⟨χ1, χ2⟩ . (2.2)

Definition 2.2. The stochastic error is a Hilbert-space process, i.e., a bounded linear operator ξ :
H → L2(Ω,A, P) where (Ω,A, P) is the underlying probability space and L2(., .) is the space of all
square integrable measurable functions.

Let us recall that the eigenvalue problem−∆ϕ j(x) = λ jϕ j(x), x ∈ Ω,

ϕ j(x) = 0, x ∈ ∂Ω,
(2.3)

admits a family of eigenvalues 0 < λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λ j ≤ ... and eigenfunctions {ϕ j} and λ j → ∞

as j→ ∞; see page 335 in [23].
Next, we introduce the abstract Gevrey class of functions of index σ > 0, see, e.g., [24], defined by

Wσ =

{
v ∈ L2 (Ω) :

∞∑
j=1

e2σλ j
∣∣∣〈v, ϕ j(x)

〉
L2(Ω)

∣∣∣2 < ∞}
,

which is a Hilbert space equipped with the inner product

⟨v1, v2⟩Wσ
:=

〈
eσ
√
−∆v1, eσ

√
−∆v2

〉
L2(Ω)

, for all v1, v2 ∈ Wσ;

its corresponding norm is ∥v∥Wσ
=

√∑∞
j=1 e2σλ j

∣∣∣〈v, ϕ j
〉

L2(Ω)

∣∣∣2 < ∞.
3. The ill-posedness of the nonlinear parabolic equation with random noise

The ill-posedness of the backward heat equation is well known and has appeared in many previous
articles. However, in the random case, we need to give an example to illustrate the ill-posedness. From
the appearance of the expected component, the evaluation of the nonconformity of the random model
is much more complicated than the deterministic model. Therefore, we have to choose a simple case
to find a suitable example. In this section, for a special case of Eq (1.1), we show that the nonlinear
parabolic equation with random noise is ill-posed in the sense of Hadamard.

Theorem 3.1. Problem (1.1) is ill-posed in the special case when a = 1,Ω = (0, π).
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Proof. Let Ω = (0, π) and a(x, t) = 1, Then λN = N2. Let us consider the following parabolic equation
∂Vδ,N(δ)

∂t
− ∆Vδ,N(δ)(t) = F0(Vδ,N(δ)(x, t)), 0 < t < T, x ∈ (0, π)

Vδ,N(δ)(0, t) = Vδ,N(δ)(π, t) = 0,
Vδ,N(δ)(x,T ) = Gδ,N(δ)(x),

(3.1)

where F0 is

F0(v(x)) =
∞∑
j=1

e−T j2

2T

〈
v, ϕ j(x)

〉
ϕ j(x) (3.2)

for any v ∈ L2(Ω), and ϕ j(x) =
√

2
π

sin( jx). Let us choose Gδ,N(δ) ∈ L
2(Ω) such that

Gδ,N(δ)(x) =
N(δ)∑
j=1

〈
gδ(x), ϕ j(x)

〉
ϕ j(x) (3.3)

where gδ is defined by 〈
gδ, ϕ j

〉
= δ

〈
ξ, ϕ j

〉
, j = 1,N = { j ∈ N, 1 ≤ j ≤ N}. (3.4)

By the usual MISE decomposition which involves a variance term and a bias term, we get

E∥Gδ,N(δ)∥
2
L2(Ω) = E

( N(δ)∑
j=1

〈
Gδ,N(δ), ϕ j

〉2 )
= δ2E

( N(δ)∑
j=1

ξ2
j

)
= δ2N(δ). (3.5)

The solution of Problem (3.1) is given by the Fourier series (see [29])

Vδ,N(δ)(x, t) =
∞∑
j=1

[
e(T−t)λ j

〈
Gδ,N(δ), ϕ j

〉
−

∫ T

t
e(s−t)λ j⟨F0(Vδ,N(δ)(s)), ϕ j⟩ds

]
ϕ j. (3.6)

We show that Problem (3.6) has unique solution Vδ,N(δ) ∈ C([0,T ]; L2(Ω)). Let us consider

Φv :=
∞∑
j=1

e(T−t)λ j
〈
Gδ,N(δ), ϕ j

〉
−

∞∑
j=1

[∫ T

t
e(s−t)λ j⟨F0(v(s)), ϕ j⟩ds

]
ϕ j. (3.7)

For any v1, v2 ∈ C([0,T ]; L2(Ω)), using Hölder inequality, we have for all t ∈ [0,T ]

∥Φv1(t) − Φv2(t)∥2L2(Ω) =

∞∑
j=1

[∫ T

t
e(s−t)λ j⟨F0(v1(s)) − F0(v2(s)), ϕ j⟩ds

]2

≤ T
∞∑
j=1

∫ T

t
e2(s−t)λ j⟨F0(v1(s)) − F0(v2(s)), ϕ j⟩

2ds

=
T

4T 2

∞∑
j=1

∫ T

t
e2(s−t−T )λ j⟨v1(s) − v2(s), ϕ j⟩

2ds

≤
1

4T

∞∑
j=1

∫ T

t
⟨v1(s) − v2(s), ϕ j⟩

2ds ≤
1
4
∥v1 − v2∥

2
C([0,T ];L2(Ω)). (3.8)
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Hence, we obtain that

∥Φv1 − Φv2∥|C([0,T ];L2(Ω)) ≤
1
2
∥v1 − v2∥C([0,T ];L2(Ω)). (3.9)

Thus Φ is a contraction. Using the contraction principle and we conclude that the equation Φ(w) = w
has a unique solution Vδ,N(δ) ∈ C([0,T ]; L2(Ω)). Using the inequality a2 + b2 ≥ 1

2 (a− b)2, a, b ∈ R, we
have the following estimate∥∥∥∥Vδ,N(δ)

∥∥∥∥2

L2(Ω)
≥

1
2

∥∥∥∥ ∞∑
j=1

e(T−t)λ j
〈
Gδ,N(δ), ϕ j

〉
ϕ j

∥∥∥∥2

L2(Ω)︸                                      ︷︷                                      ︸
I1

−

∥∥∥∥ ∞∑
j=1

(∫ T

t
e(s−t)λ j⟨F0(Vδ,N(δ)(s)), ϕ j⟩ds

)
ϕ j

∥∥∥∥2

L2(Ω)︸                                                       ︷︷                                                       ︸
I2

. (3.10)

First, using Hölder’s inequality, we get

I2 ≤

∞∑
j=1

(∫ T

t
e(s−t)λ j⟨F0(Vδ,N(δ)(s)), ϕ j⟩ds

)2

≤ T
∞∑
j=1

∫ T

t
e2(s−t)λ j⟨F0(Vδ,N(δ)(s)), ϕ j⟩

2ds

≤
T

4T 2

∫ T

t

∞∑
j=1

e2(s−t−T )λ j
〈
Vδ,N(δ)(t), ϕ j

〉2
ds ≤

1
4

∥∥∥Vδ,N(δ)

∥∥∥2

C([0,T ];L2(Ω))
. (3.11)

We have the lower bound for I1:

EI1 =
1
2

∞∑
j=1

e2(T−t)λ jE
〈
Gδ,N(δ), ϕ j

〉2
=

1
2

N∑
j=1

δ2e2(T−t)λ j ≥
1
2
δ2e2(T−t)λN(δ) . (3.12)

Combining (3.10), (3.11), (3.12), and we obtain

E
∥∥∥∥Vδ,N(δ)

∥∥∥∥2

L2(Ω)
+

1
4

E
∥∥∥Vδ,N(δ)

∥∥∥2

C([0,T ];L2(Ω))
≥

1
2
δ2e2(T−t)λN(δ) . (3.13)

By taking supremum of both sides on [0,T ], we get

E
∥∥∥Vδ,N(δ)

∥∥∥2

C([0,T ];L2(Ω))
≥

2
5

sup
0≤t≤T

δ2e2(T−t)λN(δ) =
2
5
δ2e2TλN(δ) =

2
5
δ2e2TN2(δ). (3.14)

Choosing N := N(δ) =
√

1
2T ln( 1

δ
), we obtain

E∥Gδ,N(δ)∥
2
L2(Ω) = δ

2N(δ) = δ2

√
1

2T
ln(

1
δ

)→ 0, when δ→ 0, (3.15)

and

E
∥∥∥Vδ,N(δ)

∥∥∥2

C([0,T ];L2(Ω))
≥

2
5
δ2e2TN2(δ) =

2
5δ
→ +∞, when δ→ 0. (3.16)

From (3.15) and (3.16), we can conclude that Problem (1.1) is ill-posed. □
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4. Regularization result with constant coefficient and globally Lipschitz source function

In this section, we consider the question of finding the function u(x, t), (x, t) ∈ Ω × [0,T ], that
satisfies the problem 

ut − ∆u = F(x, t,u(x, t)), (x, t) ∈ Ω × (0,T ),
u|∂Ω = 0, t ∈ (0,T ),
u(x,T ) = g(x), x ∈ Ω.

(4.1)

In this section, we assume there exists a constant K > 0 with

|F(x, t; u) − F(x, t; v)| ≤ K |u − v|,

where (x, t) ∈ Ω × [0,T ] and u, v ∈ R.

Lemma 4.1. Let Gδ,N(δ) ∈ L2(Ω) be such that

Gδ,N(δ) =

N(δ)∑
j=1

〈
gobs
δ , ϕ j

〉
ϕ j. (4.2)

Assume that g ∈ H2γ(Ω). Then we have the following estimate

E∥Gδ,N(δ) − g∥2L2(Ω) ≤ δ
2N(δ) +

1

λ
2γ
N(δ)

∥g∥2H2γ(Ω) (4.3)

for any γ ≥ 0. Here N depends on δ and satisfies limδ→0 N(δ) = +∞ and limδ→0 δ
2N(δ) = 0 .

Remark 4.1. Consider the right hand side of (4.3). In order for the right-hand side of (4.3) to converge
to zero we require limδ→0 δ

2N(δ) = 0 and the condition

1

λ
2γ
N(δ)

→ 0, δ→ 0. (4.4)

Since the fact that λk ∼ k2/d, we see that

λ
2γ
N(δ) ∼ (N(δ))

4γ
d ,

and to verify the condition (4.4) we need the condition limδ→0 N(δ) = +∞ .

Proof. For the following proof, we consider the genuine model (1.3). By the usual MISE decomposi-
tion which involves a variance term and a bias term, we get

E∥Gδ,N(δ) − g∥2L2(Ω) = E
( N(δ)∑

j=1

〈
gobs
δ − g, ϕ j

〉2 )
+

∑
j≥N(δ)+1

〈
g, ϕ j

〉2

= δ2E
( N(δ)∑

j=1

ξ2
j

)
+

∑
j≥N(δ)+1

λ
−2γ
j λ

2γ
j

〈
g, ϕ j

〉2
. (4.5)

Since ξ j = ⟨ξ, ϕ j⟩
iid
∼ N(0, 1), it follows that Eξ2

j = 1, so

E∥Gδ,N(δ) − g∥2L2(Ω) ≤ δ
2N(δ) +

1

λ
2γ
N(δ)

∥g∥H2γ . (4.6)

□
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Using the truncation method, we give a regularized problem for Problem (1.1) as follows
∂

∂t
uδN(δ) − ∆uδN(δ) = JαN(δ) F(x, t,uδN(δ)(x, t)), (x, t) ∈ Ω × (0,T ),

uδN(δ)|∂Ω = 0, t ∈ (0,T ),

uδN(δ)(x,T ) = JαN(δ)Gδ,N(δ)(x), (x, t) ∈ Ω × (0,T ),

(4.7)

where αN(δ) is regularization parameter and JαN(δ) is the following operator

JαN(δ)v :=
∑

λ j≤αN(δ)

〈
v, ϕ j

〉
ϕ j, for all v ∈ L2(Ω). (4.8)

Our main result in this section is as follows

Theorem 4.1. Problem (4.7) has a unique solution uδN(δ) ∈ C([0,T ]; L2(Ω)) which satisfies

uδN(δ)(x, t) =
∑

λ j≤αN(δ)

[
e(T−t)λ j

〈
Gδ,N(δ), ϕ j

〉
−

∫ T

t
e(s−t)λ j⟨F(uδN(δ)(s)), ϕ j⟩ds

]
ϕ j. (4.9)

Assume that problem (1.1) has unique solution u such that
∞∑
j=1

λ
2β
j e2tλ j

〈
u(., t), ϕ j

〉2
< A′, t ∈ [0,T ]. (4.10)

Choose αN(δ) such that

lim
δ→0

αN(δ) = +∞, lim
δ→0

ekTαN(δ)

λ
γ
N(δ)

= 0, lim
δ→0

eKTαN(δ)
√

N(δ)δ = 0. (4.11)

Then the following estimate holds

E∥u(., t) − uδN(δ)(., t)∥
2
L2(Ω) ≤ 2e2K2(T−t)e−2tαN(δ)

δ2N(δ)e2TαN(δ) +
e2TαN(δ)

λ
2γ
N(δ)

∥g∥H2γ + α
−2β
N(δ)

 . (4.12)

Remark 4.2. 1. From the theorem above, it is easy to see that E
∥∥∥uδN(δ)(x, t) − u(x, t)

∥∥∥2

L2(Ω)
is of the

order

e−2tαN(δ)max
(
δ2N(δ)e2TαN(δ) ,

e2TαN(δ)

λ
2γ
N(δ)

, α
−2β
N(δ)

)
. (4.13)

2. Now, we give one example for the choice of N(δ) which satisfies condition (4.11). Since λN ∼ N 2
d ,

see [25], we choose αN such that ekTαN(δ) = |N(δ)|a for any 0 < a < 2γ
d . Then we have αN(δ) =

a
kT log(N(δ)). The number N(δ) is chosen as

N(δ) =
(
1
δ

)ba+ b
2

for 0 < b < 1. With N(δ) chosen as above, E
∥∥∥uδN(δ)(x, t) − u(x, t)

∥∥∥2

L2(Ω)
is of the order

(
1
δ

) −(ba+ b
2 )at

KT

3. The existence and uniqueness of the solution of Eq (1.1) is an open problem, and we do not
investigate this problem here. The case considered in Theorem 3.1 gives the existence of the solution
of Problem (1.1) in a special case. The uniqueness of the backward parabolic problem has attracted
the attention of many authors (see, for example, [26–28]) and this is also a challenging open problem.
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Proof of Theorem 4.1. We divide the proof into a number of parts.
Part 1. Problem (4.7) has a unique solution uδN(δ) ∈ C([0,T ]; L2(Ω)). The proof is similar to [29] (see
Theorem 3.1, page 2975 [29]). Hence, we omit it here.
Part 2. Estimate the expectation of the error between the exact solution u and the regularized solution
uδN(δ).
Let us consider the following integral equation

vδN(δ)(x, t) =
∑

λ j≤αN(δ)

[
e(T−t)λ j

〈
g, ϕ j

〉
−

∫ T

t
e(s−t)λ j⟨F(vδN(δ)(s)), ϕ j⟩ds

]
ϕ j. (4.14)

We have

∥uδN(δ)(., t) − vδN(δ)(., t)∥
2
L2(Ω) ≤ 2

∑
λ j≤αN

e2(T−t)λ j
〈
Gδ,N(δ) − g, ϕ j

〉2

+ 2
∑

λ j≤αN(δ)

[∫ T

t
e(s−t)λ j

(
F j(uδN(δ))(s) − F j(vδN(δ))(s)

)
ds

]2

≤ 2e2(T−t)αN
∑

λ j≤αN(δ)

〈
Gδ,N(δ) − g, ϕ j

〉2

+ 2(T − t)
∫ T

t
e2(s−t)αN(δ)

∑
λ j≤αN(δ)

(
F j(uδN(δ))(s) − F j(vδN(δ))(s)

)2
ds

≤ 2e2(T−t)αN∥Gδ,N(δ) − g∥2L2(Ω)

+ 2K2T
∫ T

t
e2(s−t)αN∥uδN(δ)(., s) − vδN(δ)(., s)∥2L2(Ω)ds. (4.15)

Taking the expectation of both sides of the last inequality, we get

E∥uδN(δ)(., t) − vδN(δ)(., t)∥
2
L2(Ω) ≤ 2e2(T−t)αN(δ)E∥Gδ,N(δ) − g∥2L2(Ω)

+ 2K2T
∫ T

t
e2(s−t)αNE∥uδN(δ)(., s) − vδN(δ)(., s)∥2L2(Ω)ds. (4.16)

Multiplying both sides with e2tαN , we obtain

e2tαN(δ)E∥uδN(δ)(., t) − vδN(δ)(., t)∥
2
L2(Ω) ≤ 2e2TαN(δ)E∥Gδ,N(δ) − g∥2L2(Ω)

+ 2K2T
∫ T

t
e2sαN(δ)E∥uδN(δ)(., s) − vδN(., s)∥2L2(Ω)ds. (4.17)

Applying Gronwall’s inequality, we get

e2tαN(δ)E∥uδN(δ)(., t) − vδN(δ)(., t)∥
2
L2(Ω) ≤ 2e2TαN(δ)e2K2T (T−t)E∥Gδ,N(δ) − g∥2L2(Ω). (4.18)

Hence, using Lemma 4.1, we deduce that

E∥uδN(δ)(., t) − vδN(δ)(., t)∥
2
L2(Ω) ≤ 2e2K2T (T−t)e2(T−t)αN(δ)E∥Gδ,N(δ) − g∥2L2(Ω)

≤ 2e2K2T (T−t)e2(T−t)αN(δ)
(
δ2N(δ) +

1

λ
2γ
N(δ)

∥g∥H2γ

)
. (4.19)
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Now, we continue to estimate ∥u(., t) − vδN(δ)(., t)∥L2(Ω). Indeed, using Hölder’s inequality and globally
Lipschitz property of F, we get

∥u(., t) − vδN(δ)(., t)∥
2
L2(Ω)

≤ 2
∑

λ j≤αN(δ)

[∫ T

t
e(s−t)λ j

(
F j(u)(s) − F j(vδN(δ))(s)

)
ds

]2

+ 2
∑
λ j>αN

〈
u(t), ϕ j

〉2

≤ 2
∑
λ j>αN

λ
−2β
j e−2tλ jλ

2β
j e2tλ j

〈
u(t), ϕ j

〉2
+ 2K2

∫ T

t
e2(s−t)λN∥u(., s) − vδN(δ)(., s)∥2L2(Ω)ds

≤ α
−2β
N e−2tαN

∞∑
j=1

λ
2β
j e2tλ j

〈
u(t), ϕ j

〉2
+ 2K2

∫ T

t
e2(s−t)αN(δ)∥u(., s) − vδN(δ)(., s)∥2L2(Ω)ds;

above, we have used the mild solution of u as follows

u(x, t) =
∞∑
j=1

[
e(T−t)λ j

〈
g, ϕ j

〉
−

∫ T

t
e(s−t)λ j⟨F(u(s)), ϕ j⟩ds

]
ϕ j.

Multiplying both sides with e2tαN(δ) , we obtain

e2tαN(δ)∥u(., t) − vδN(δ)(., t)∥
2
L2(Ω) ≤ α

−2β
N(δ)

∞∑
j=1

λ
2β
j e2tλ j

〈
u(., t), ϕ j

〉2

+ 2K2
∫ T

t
e2sαN∥u(., s) − vδN(δ)(., s)∥2L2(Ω)ds. (4.20)

Gronwall’s inequality implies that

e2tαN∥u(., t) − vδN(δ)(., t)∥
2
L2(Ω) ≤ e2K2(T−t)α

−2β
N(δ)A

′. (4.21)

This together with the estimate (4.19) leads to

E∥u(., t) − uδN(δ)(., t)∥
2
L2(Ω) ≤ 2E∥uδN(., t) − vδN(δ)(., t)∥

2
L2(Ω) + 2∥u(., t) − vδN(δ)(., t)∥

2
L2(Ω)

≤ 2e2K2(T−t)αN
(
δ2N(δ) +

1

λ
2γ
N(δ)

∥g∥H2γ

)
+ 2α−2β

N(δ)e
−2tαNe2K2(T−t)A′

(4.22)

where A′ is given in Eq (4.10). This completes our proof. □

The next theorem provides an error estimate in the Sobolev space Hp(Ω) which is equipped with a
norm defined by

∥g∥2Hp(Ω) =

∞∑
j=1

λ
p
j

〈
g, ϕ j(x)

〉2
. (4.23)

To estimate the error in Hp norm, we need a stronger assumption of the solution u.
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Theorem 4.2. Assume that problem (1.1) has unique solution u such that
∞∑
j=1

e2(t+r)λ j
〈
u(., t), ϕ j

〉2
< A”, t ∈ [0,T ]. (4.24)

for any r > 0. Choose αN(δ) such that

lim
δ→0

αN(δ) = +∞, lim
δ→0

ekTαN(δ)

λ
γ
N(δ)

= 0, lim
δ→0

ekTαN(δ)
√

N(δ)δ = 0 (4.25)

Then the following estimate holds

E∥uδN(δ)(., t) − u(., t)∥2Hp(Ω) (4.26)

≤ 2e2k2T (T−t)e−2tαN |αN(δ)|
p

2δ2N(δ)e2TαN(δ) + 2
e2TαN(δ)

λ
2γ
N(δ)

∥g∥H2γ + A”e−2rαNδ


+ A”|αN(δ)|

p exp
(
− 2(t + r)αN(δ)

)
. (4.27)

Proof. First, we have

E∥uδN(δ)(., t) − JαN(δ)u(., t)∥2Hp(Ω) = E

 ∑
λ j≤αN(δ)

λ
p
j

〈
uδN(δ)(x, t) − u(x, t), ϕ j(x)

〉2


≤ |αN(δ)|

pE

 ∑
λ j≤αN(δ)

〈
uδN(δ)(x, t) − u(x, t), ϕ j(x)

〉2


≤ |αN(δ)|

pE∥uδN(δ)(., t) − u(., t)∥2L2(Ω). (4.28)

Next, we continue to estimate E∥uδN(δ)(., t)−u(., t)∥2L2(Ω) with assumption (4.24). Recall vδN(δ) from (4.14).
The expectation of the error between uδN(δ) and vδN(δ) is given in the estimate (4.19) as

E∥uδN(δ)(., t) − vδN(δ)(., t)∥
2
L2(Ω) ≤ 2e2K2T (T−t)e2(T−t)αN(δ)

(
δ2N(δ) +

1

λ
2γ
N(δ)

∥g∥H2γ

)
. (4.29)

We only need to estimate ∥u(., t) − vδN(δ)(., t)∥L2(Ω). Indeed, using Hölder’s inequality and the globally
Lipschitz property of F, we get

∥u(., t) − vδN(δ)(., t)∥
2
L2(Ω)

≤ 2
∑
λ j>αN

〈
u(t), ϕ j

〉2
+ 2

∑
λ j≤αN(δ)

[∫ T

t
e(s−t)λ j

(
F j(u)(s) − F j(vδN(δ))(s)

)
ds

]2

≤ 2
∑
λ j>αN

e−2(t+r)λ je2(t+r)λ j
〈
u(t), ϕ j

〉2
+ 2K2T

∫ T

t
e−2(s−t)αNδ ∥u(., s) − vδN(δ)(., s)∥2L2(Ω)ds

≤ e−2(t+r)αNδ

∞∑
j=1

e2(t+r)λ j
〈
u(t), ϕ j

〉2
+ 2K2T

∫ T

t
e2(s−t)αN(δ)∥u(., s) − vδN(δ)(., s)∥2L2(Ω)ds.

Multiplying both sides with e2tαN(δ) , we obtain

e2tαN(δ)∥u(., t) − vδN(δ)(., t)∥
2
L2(Ω) ≤ A”e−2rαNδ
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+ 2K2T
∫ T

t
e2sαN(δ)∥u(., s) − vδN(δ)(., s)∥2L2(Ω)ds. (4.30)

Gronwall’s inequality implies that

e2tαN∥u(., t) − vδN(δ)(., t)∥
2
L2(Ω) ≤ e2K2T (T−t)A”e−2rαNδ . (4.31)

This last estimate together with the estimate (4.29) leads to

E∥u(., t) − uδN(δ)(., t)∥
2
L2(Ω)

≤ 2E∥uδN(., t) − vδN(δ)(., t)∥
2
L2(Ω) + 2∥u(., t) − vδN(δ)(., t)∥

2
L2(Ω)

≤ 4e2K2T (T−t)e2(T−t)αN(δ)
(
δ2N(δ) +

1

λ
2γ
N(δ)

∥g∥H2γ

)
+ 2e2K2T (T−t)A”e−2tαNe−2rαNδ

= 2e2K2T (T−t)e−2tαN

2δ2N(δ)e2TαN(δ) + 2
e2TαN(δ)

λ
2γ
N(δ)

∥g∥H2γ + A”e−2rαNδ

 . (4.32)

On the other hand, consider the function

G(ξ) = ξpe−Dξ, D > 0. (4.33)

The derivative of G is G′(ξ) = ξp−1e−Dξ(p − Dξ). Hence we know that G is strictly decreasing when
Dξ ≥ p. Since limδ→0 αN(δ) = +∞, we see that if δ is small enough then 2rαN(δ) ≥ p. Put D =
2(t + r), ξ = αN(δ) into (4.33), and we obtain for λ j > αN(δ)

G(λ j) = λ
p
j exp

(
− 2(t + r)λ j

)
≤ G(αN(δ)) = |αN(δ)|

p exp
(
− 2(t + r)αN(δ)

)
.

The latter equality leads to

∥u(., t) − JαN(δ)u(., t)∥2Hp(Ω) =
∑

λ j>αN(δ)

λ
p
j

〈
u(x, t), ϕ j(x)

〉2

=
∑

λ j>αN(δ)

λ
p
j exp

(
− 2(t + r)λ j

)
exp

(
2(t + r)λ j

) 〈
u(x, t), ϕ j(x)

〉2

≤ |αN(δ)|
p exp

(
− 2(t + r)αN(δ)

) ∑
λ j>αN(δ)

exp
(
2(t + r)λ j

) 〈
u(x, t), ϕ j(x)

〉2

≤ A”|αN(δ)|
p exp

(
− 2(t + r)αN(δ)

)
(4.34)

where we use assumption (4.24) for the last inequality. Combining (4.28), (4.32) and (4.34), and we
deduce that

E∥uδN(δ)(., t) − u(., t)∥2Hp(Ω)

≤ E∥uδN(δ)(., t) − JαN(δ)u(., t)∥2Hp(Ω) + ∥u(., t) − JαN(δ)u(., t)∥2Hp(Ω)

≤ 2e2K2T (T−t)e−2tαN |αN(δ)|
p

2δ2N(δ)e2TαN(δ) + 2
e2TαN(δ)

λ
2γ
N(δ)

∥g∥H2γ + A”e−2rαNδ


+ A”|αN(δ)|

p exp
(
− 2(t + r)αN(δ)

)
(4.35)

which completes the proof. □

Electronic Research Archive Volume 30, Issue 4, 1374–1413.



1386

Remark 4.3. In the above Theorem, to obtain the error estimate, we require strong assumptions on
u. This is a limitation of Theorem 4.1, because there are only certain types of functions u satisfying
these conditions. To remove this limitation, we need to find a new estimator. The convergence rate
in the case of weak assumptions of u is a difficult problem. Indeed, in the next Theorem, we give a
regularization result in the case of a weaker assumption for u, i.e., u ∈ C([0,T ]; L2(Ω)). This is one of
the first results in this case.

4.1. The second regularized solution and the error estimate

To help the reader, we describe our analysis and methods in this subsection. To obtain the approx-
imate solution when the solution u is in C([0,T ]; L2(Ω)), we don’t use a regularized solution as in
Theorem 4.1. Since Gδ,N(δ) is an approximation of G, we know that it is an observed data. It can also be
called the ”input data”. Recall that K is the Lipschitz constant of F. We divide our results in Theorem
4.3 into two cases:
Case 1: KT < 1. By the way the input data Gδ,N(δ) is defined, we construct a new regularized solution.
Then we obtain the error between the new regularized solution and the sought solution u.
Case 2: KT > 1. In this case, the construction of the regularized solution is more difficult. To apply
the known result in Case 1, we need to divide [0,T ] into a collection of sub intervals [Th,Th′] where
K(Th′−Th) < 1. From the given input data θ and appropriate parameter regularization ζ, we set the out-
put function Yζ

Th,Th′
( f )(x, t) satisfies the nonlinear integral equation (4.37). The existence of Yζ

Th,Th′
( f )

in C([Th,Th′]; L2(Ω)) holds if K(Th′−Th) < 1. From (4.56), we have an important result: If ζ is suitably
chosen and θ is an approximate function of u(x,Th′) then the function Yζ

Th,Th′
( f )(x, t) is an approximate

solution of the sought solution u in all intervals [Th,Th′] . Let s be a positive integer such that s > KT .
Define a sequence of points {Tl}, l = 0, 1, ...2s such that

T0 = 0 < T1 = hT < T2 = 2hT < ... < T2s = 2shT = T. (4.36)

where h = 1
2s . In all the intervals [Ti,Ti+1], i = 0, 2s − 1, we construct different regularized solutions

and combine them into a final regularized solution. More details are as follows:

• In the first step, to construct an approximate solution on [T2s−1,T ], we use the input data Gδ,N(δ)

and parameter regularization ζ2s to establish a function Yζ2s
T2s−2,T2s

(
Gδ,N(δ)

)
(x, t). Then we define a

regularized solutionUδ(x, t) = Yζ2s
T2s−2,T2s

(
Gδ,N(δ)

)
(x, t) for all t ∈ [T2s−1,T ].

• In the second step, to construct an approximate solution on [T2s−2,T2s−1], we use the input data
Un(x,T2s−1) (which is computed in the first step) and parameter regularization ζ2s−1 to establish a
function Yζ2s

T2s−2,T2s

(
Gδ,N(δ)

)
(x, t). Then we define a regularized solution

Uδ(x, t) = Yζ2s−1
T2s−3,T2s−1

(Uδ(x,T2s−1)) (x, t)

for all t ∈ [T2s−2,T2s−1].
• We continue similarly for the remaining steps. Finally, we obtain the regularized solution in (4.61)

and (4.62).

Now, we consider the following lemma.

Lemma 4.2. Let 0 ≤ Th < Th′ ≤ T. For f ∈ C([Th,Th′]; L2(Ω)), we consider the following nonlinear
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integral equation

Yζ
Th,Th′

( f )(x, t)

=
∑
λ j≤ζ

[
e(Th′−t)λ j

〈
f , ϕ j

〉
−

∫ Th′

t
e(τ−t)λ j⟨F(Yζ

Th,Th′
( f )(τ), ϕ j⟩dτ

]
ϕ j

+
∑
λ j>ζ

[ ∫ t

Th

e(τ−t)λ j F j⟨F(Yζ
Th,Th′

( f )(τ), ϕ j⟩dτ
]
ϕ j(x).

(4.37)

for ζ > 0. Assume that K(Th′ − Th) < 1. Then Problem (4.37) has a unique solution Yζ
Th,Th′

( f ) ∈
C([Th,Th′]; L2(Ω)). Moreover, we have the following estimate

E∥Yζ
Th,Th′

( f )(., t) − u(., t)∥2L2(Ω)

≤
2
(
1 + 1

q0

)
e2(Th−t)

1 − (1 + q0)K2(Th′ − Th)2

(
e2(Th′−Th)ζE

∥∥∥∥ f − u(.,Th′)
∥∥∥∥2

L2(Ω)
+ ∥u(.,Th′)∥2L2(Ω)

)
.

(4.38)

for all t ∈ [Th,Th′] and q0 satisfies 0 < q0 <
1

K2(Th′−Th)2 − 1.

Proof. Part A. We will begin by showing that Eq (4.37) has a unique solution in C([Th,Th′]; L2(Ω)).
Our analysis here is similar to the one in [29]. Define on C([Th,Th′]; L2(Ω)) the following Bielecki
norm

∥v∥1 = sup
Th≤t≤Th′

e(t−Th)ζ(δ)∥v(t)∥, (4.39)

for all v ∈ C([Th,Th′]; L2(Ω)). It is easy to check that ∥.∥1 is a norm of C([Th,Th′]; L2(Ω)). Now, let f
be in L2(Ω). We want to show that the map given by

I
(
w( f )

)
(x, t) =

∑
λ j≤ζ

[
e(Th′−t)λ j

〈
f , ϕ j

〉
−

∫ Th′

t
e(τ−t)λ j⟨F(w( f )(τ), ϕ j⟩dτ

]
ϕ j

+
∑
λ j>ζ

[ ∫ t

Th

e(τ−t)λ j⟨F(w( f )(τ), ϕ j⟩dτ
]
ϕ j(x),

(4.40)

for w( f ) ∈ C([Th,Th′]; L2(Ω)), is a contraction on C([Th,Th′]; L2(Ω)) with the condition K(Th′−Th) < 1.
Indeed, we shall prove that, for every w1,w2 ∈ C([Th,Th′]; L2(Ω)),

∥∥∥I(w1( f )
)
− I

(
w2( f )

)∥∥∥
1
≤ K(Th′ − Th) ∥w1( f ) − w2( f )∥1 . (4.41)

First, by using the Hölder inequality and the global Lipschitz property of F, we have the following
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estimates for all t ∈ [Th1 ,Th2], namely∑
λ j≤ζ

( ∫ Th′

t
e(τ−t)λ j

[
F j(w1( f ))(τ) − F j(w2( f ))(τ)

]
dτ

)2

≤ (Th′ − t)
∑
λ j≤ζ

∫ Th′

t

∣∣∣∣e(τ−t)λ j
[
F j(w1( f ))(τ) − F j(w2)( f )(τ)

]∣∣∣∣2dτ

≤ (Th′ − t)
∑
λ j≤ζ

∫ Th′

t
e2(τ−t)ζ

[
F j(w1( f ))(τ) − F j(w2)( f )(τ)

]2
dτ

≤ K2(Th′ − t)
∫ Th′

t
e2(τ−t)ζ∥w1( f )(τ) − w2( f )(τ)∥2dτ

≤ e−2(t−Th)ζK2(Th′ − t)2 sup
Th≤τ≤Th′

e2(τ−Th)ζ∥w1( f )(τ) − w2( f )(τ)∥2

= e−2(t−Th)ζK2(Th′ − t)2∥w1( f ) − w2( f )∥21.

Noting that if λ j > ζ then e(τ−t)λ j ≤ e(τ−t)ζ for Th ≤ τ ≤ t, it follows that∑
λ j>ζ

( ∫ t

Th

e(τ−t)λ j j
[
F j(w1( f ))(τ) − F j(w2( f ))(τ)

]
dτ

)2

≤ (t − Th)
∑
λ j>ζ

∫ t

Th

∣∣∣∣e(τ−t)ζ
[
F j(w1( f ))(τ) − Fp(w2( f ))(τ)

]∣∣∣∣2dτ

≤ (t − Th)
∑
λ j>ζ

∫ t

Th

e2(τ−t)ζ
∣∣∣F j(w1( f ))(τ) − F j(w2( f ))(τ)

∣∣∣2dτ

≤ K2(t − Th)
∫ t

Th

e2(τ−t)ζ∥w1( f )(τ) − w2( f )(τ)∥2dτ

≤ e−2(t−Th)ζK2(t − Th)2 sup
0≤τ≤T

e2(τ−Th)ζ∥w1( f )(τ) − w2( f )(τ)∥2

= e−2(t−Th)ζK2(t − Th)2∥w1( f ) − w2( f )∥21.

From the definition of I in (4.40), we have

I(w1( f ))(x, t) − I(w2( f ))(x, t)

=
∑
λ j≤ζ

( ∫ Th′

t
e(τ−t)λ j

[
F j(w1( f ))(τ) − F j(w2( f ))(τ)

]
dτ

)
ϕ j(x)

+
∑
λ j>ζ

( ∫ t

Th

e(τ−t)λ j
[
F j(w1( f ))(τ) − F j(w2( f ))(τ)

]
dτ

)
ϕ j(x).

Combining (4.42), (4.42), (4.42) and using the inequality (a+ b)2 ≤ (1+ θ0)a2 +
(
1 + 1

θ0

)
b2 for any real

numbers a, b and θ0 > 0, we get the following estimate for all t ∈ (Th,Th′)

∥I(w1( f ))(., t) − I(w2( f ))(., t)∥2

≤ e−2(t−Th)ζK2(t − Th)2(1 + θ0)∥w1( f ) − w2( f )∥21

+ e−2(t−Th)ζ
(
1 +

1
θ0

)
K2(Th′ − t)2∥w1( f ) − w2( f )∥21.
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By choosing θ0 =
Th′−t

t , we obtain for all t ∈ (Th,Th′)

e2(t−Th)ζ∥I(w1( f ))(., t) − I(w2( f ))(., t)∥2 ≤ K2(Th′ − Th)2∥w1( f ) − w2( f )∥21. (4.42)

On the other hand, letting t = Th′ in (4.42), we get

e2(Th′−Th)ζ∥I(w1( f ))(.,Th) − I(w2( f ))(.,Th′)∥2 ≤ K2(Th′ − Th)2∥w1( f ) − w2( f )∥21. (4.43)

By letting t = Th in (4.42), we obtain

∥I(w1( f ))(.,Th) − I(w2( f ))(.,Th)∥2 ≤ K2(Th′ − Th)2∥w1( f ) − w2( f )∥21. (4.44)

Combining (4.42), (4.43) and (4.44), we deduce that for all Th ≤ t ≤ Th′

e2(t−Th)ζ∥I(w1( f ))(t) − I(w2( f ))(t)∥ ≤ K(Th′ − Th)∥w1( f ) − w2( f )∥1, (4.45)

which leads to (4.41). Since K(Th′ − Th) < 1, it follows that I is a well-defined contraction on
C([Th,Th′]; L2(Ω)). By the Banach fixed point theorem, it therefore has a unique fixed point, i.e., the
equation I(w) = w has a unique solution which we denote by Yζ

Th,Th′
( f ) ∈ C([Th,Th′]; L2(Ω)).

Part B. The error estimate E∥Yζ
Th,Th′

( f )(., t) − u(., t)∥2L2(Ω).
By a similar technique as in the proof of Theorem 4.1, we obtain

u j(Th) = e(Th′−Th)λ ju j(Th′) −
∫ Th′

Th

e(τ−t)λ j F j(u)(τ)dτ. (4.46)

This leads to

e−(t−Th)λ ju j(Th) = e(Th′−t)λ j

[
u j(Th′) −

∫ Th′

Th

e(s−Th′ )λ j F j(u)(τ)dτ
]
. (4.47)

The last equality implies that after some simple transformation∑
λ j>ζ

e(Th′−t)λ j

[
u j(Th′) −

∫ Th′

t
e(s−Th′ )λ j F j(u)(τ)dτ

]
ϕ j(x)

=
∑
λ j>ζ

[ ∫ t

Th

e(τ−t)λ j F j(u)(τ)dτ
]
ϕ j(x) +

∑
λ j>ζ

e−(t−Th)λ ju j(Th)ϕ j(x). (4.48)

Using the last equality and (4.47), we get

u(x, t) =
∑
λ j≤ζ

[
e(Th′−t)λ ju j(Th′) −

∫ Th′

t
e(τ−t)λ j F j(u)(τ)dτ

]
ϕ j(x)

+
∑
λ j≤ζ

[ ∫ t

Th

e(τ−t)λ j F j(u)(τ)dτ
]
ϕ j(x) +

∑
λ j>ζ

e−(t−Th)λ ju j(Th)ϕ j(x). (4.49)

We have

Yζ
Th,Th′

( f )(x, t) − u(x, t) =
∑
λ j≤ζ

[
e(Th′−t)ζ

(
f j − u j(Th′)

) ]
ϕ j(x)
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−
∑
λ j≤ζ

[ ∫ Th′

t
e(τ−t)λ j

(
F j

(
Yζ

Th,Th′
( f )

)
(τ) − F j(u)(τ)

)
dτ

]
ϕ j(x)

+
∑
λ j>ζ

[ ∫ t

Th

e(τ−t)λ j
(
F j

(
Yζ

Th,Th′
( f )

)
(τ) − F j(u)(τ)

)
dτ

]
ϕ j(x)

−
∑
λ j>ζ

e−(t−Th)λ ju j(Th)ϕ j(x). (4.50)

This implies that∣∣∣∣〈Yζ
Th,Th′

( f )(., t) − u(., t), ϕ j(.)
〉∣∣∣∣

≤ e(Th′−t)ζ
∣∣∣∣( f j − u j(Th′)

)∣∣∣∣ + ∫ Th′

Th

e(τ−t)ζ
∣∣∣∣F j

(
Yζ

Th,Th′
( f )

)
(τ) − F j(u)(τ)

∣∣∣∣dτ
+ e−(t−Th)ζ

∣∣∣u j(Th)
∣∣∣ . (4.51)

Hence, using Parseval’s identity and the inequality

(c1 + c2 + c3)2 ≤ 2
(
1 +

1
q0

)
c2

1 + 2
(
1 +

1
q0

)
c2

2 + (1 + q0)c2
3

for any real numbers c1, c2, c3 and q0 > 0 we have

E∥Yζ
Th,Th′

( f )(., t) − u(., t)∥2L2(Ω) = E

 ∞∑
j=1

∣∣∣∣〈Yζ
Th,Th′

( f )(., t) − u(., t), ϕ j(x)
〉∣∣∣∣2

≤ 2
(
1 +

1
q0

)
E

 ∞∑
j=1

e(Th′−t)ζ
∣∣∣∣( f j − u j(Th′)

)∣∣∣∣2
+ (1 + q0)E

(Th′ − Th)
∞∑
j=1

∫ Th′

Th

e2(τ−t)ζ
∣∣∣∣F j

(
Yζ

Th,Th′
( f )

)
(τ) − F j(u)(τ)

∣∣∣∣dτ
+ 2

(
1 +

1
q0

) ∞∑
j=1

e−2(t−Th)ζ
∥∥∥u j(Th)

∥∥∥2

≤ 2
(
1 +

1
q0

)
e2(Th′−t)ζE

∥∥∥∥ f − u(.,Th′)
∥∥∥∥2

L2(Ω)

+ 2
(
1 +

1
q0

)
e−2(t−Th)ζ∥u(.,Th)∥2L2(Ω)

+ (1 + q0)(Th′ − Th)
∫ Th′

Th

e2(τ−t)ζE
(∥∥∥∥F

(
Yζ

Th,Th′
( f )

)
(τ) − F(u)(τ)

∥∥∥∥2

L2(Ω)

)
dτ.

Multiplying both sides of the last inequality by e2(t−Th)ζ , and using the global Lipschitz property of F,
we obtain

e2(t−Th)ζE∥Yζ
Th,Th′

( f )(., t) − u(., t)∥2L2(Ω)

≤ 2
(
1 +

1
q0

)
e2(Th′−Th)ζE

∥∥∥∥ f − u(.,Th′)
∥∥∥∥2

L2(Ω)
+ 2

(
1 +

1
q0

)
∥u(.,Th)∥2L2(Ω)
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+ (1 + q0)K2(Th′ − Th)
∫ Th′

Th

e2(τ−Th)ζE∥Yζ
Th,Th′

( f )(., s) − u(., s)∥2L2(Ω)ds. (4.52)

Since Yζ
Th,Th′

( f ), u ∈ C([Th,Th′]; L2(Ω)) we obtain that the function

e2(t−Th)ζE∥Yζ
Th,Th′

( f )(., t) − u(., t)∥2L2(Ω)

is continuous on [Th,Th′]. Therefore, the following is a finite positive constant

Ã = sup
Th≤t≤Th′

e2(t−Th)ζE∥Yζ
Th,Th′

( f )(., t) − u(., t)∥2L2(Ω).

This implies that

Ã ≤ 2
(
1 +

1
q0

)
e2(Th′−Th)ζE

∥∥∥∥ f − u(.,Th′)
∥∥∥∥2

L2(Ω)
+ 2

(
1 +

1
q0

)
∥u(.,Th)∥2L2(Ω)

+ (1 + q0)K2(Th′ − Th)2Ã (4.53)

Hence (
1 − (1 + q0)K2(Th′ − Th)2

)
Ã ≤ 2

(
1 +

1
q0

)
e2(Th′−Th)M(ζ)E

∥∥∥∥ f − u(.,Th′)
∥∥∥∥2

L2(Ω)

+ 2
(
1 +

1
q0

)
∥u(.,Th)∥2L2(Ω). (4.54)

Since by assumption 0 < q0 <
1

K2(Th′−Th)2 − 1, it follows that the term on the left hand-side that is in
parenthesis is positive. This implies that for all t ∈ [Th,Th′]

e2(t−Th)ζE∥Yζ
Th,Th′

( f )(., t) − u(., t)∥2L2(Ω)

≤

2
(
1 + 1

q0

)
e2(Th′−Th)ζE

∥∥∥∥ f − u(.,Th′)
∥∥∥∥2

L2(Ω)
+ 2

(
1 + 1

q0

)
∥u(.,Th)∥2L2(Ω)

1 − (1 + q0)K2(Th′ − Th)2 . (4.55)

Hence for all t ∈ [Th,Th′] we conclude that

E∥Yζ
Th,Th′

( f )(., t) − u(., t)∥2L2(Ω)

≤
2
(
1 + 1

q0

)
1 − (1 + q0)K2(Th′ − Th)2

(
e2(Th′−Th)ζE

∥∥∥∥ f − u(.,Th′)
∥∥∥∥2

L2(Ω)
+ ∥u(.,Th)∥2L2(Ω)

)
e2(Th−t)ζ . (4.56)

□

Our main result in this subsection is as follows.

Theorem 4.3. Let g be as in Theorem 4.1. Assume that u is the unique solution of Problem (1.1).

(a) Assume that KT < 1, where K is the Lipschitz constant of F. A new regularized solution is given
as follows

Ûδ(x, t) =
∑
λ j≤ζ(δ)

[
e(T−t)λ jGδ,N(δ) −

∫ T

t
e(τ−t)λ j F j(Ûδ)(τ)dτ

]
ϕ j(x)

+
∑
λ j>ζ(δ)

[ ∫ t

0
e(τ−t)λ j F j(Ûδ)(τ)dτ

]
ϕ j(x).

(4.57)
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Let us choose ζ(δ) such that

lim
δ→0

ζ(δ) = +∞, lim
δ→0

ekTζ(δ)

λ
γ
N(δ)

= 0, lim
δ→0

ekTζ(δ)
√

N(δ)δ = 0. (4.58)

If u ∈ C([0,T ]; L2(Ω)) then as |δ| → 0

E∥Ûδ(., t) − u(., t)∥2L2(Ω) is of order e−2tζ(δ). (4.59)

(b) Suppose that KT > 1 and let us assume that u ∈ C([0,T ]; L2(Ω)). Let

ζ1(δ) : =
s

T22s−1 log
(

1
ξ(δ)

)
ζk(δ) : =

s
T22s−k log

(
1
ξ(δ)

)
, k = 2, 2s. (4.60)

We construct a regularized solution Ûδ as follows

Ûδ(x, t) = Yζ2s−i(δ)
T2s−i−2,T2s−i

(
Ûδ(x,T2s−i)

)
(x, t), if T2s−i−1 ≤ t ≤ T2s−i, i = 0, 2s − 2 (4.61)

and
Ûδ(x, t) = Yζ1(δ)

T0,T1

(
Ûδ(x,T1)

)
(x, t), if 0 ≤ t ≤ T1. (4.62)

where Yζ(δ)
Th1 ,Th2

(θ)(x, t) is defined in (4.37). Then we have

• If t ∈ [Tk,Tk+1] and k = 1, 2s − 1 then

E∥Ûδ(., t) − u(., t)∥2L2(Ω) is of order
(
ξ(δ)

) 1
22s−k

. (4.63)

• If t ∈ [0,T1] then

E∥Ûδ(., t) − u(., t)∥2L2(Ω) is of order
(
ξ(δ)

) st
22s−1

. (4.64)

Remark 4.4. In [29], we only need the regularization result for 0 < KT < 1. Our Theorem 4.3 extends
this result for any K > 0.

Proof of part (a) of Theorem 4.3. By setting Th = 0 and Th′ = T f = Gδ,N(δ) then Yζ
Th,Th′

( f ) given by
(4.37) in Lemma 4.2 is equal to Ûδ given by (4.57). Then apply the result from (4.38). Since KT < 1,
applying Lemma 4.2 , we obtain

E∥Ûδ(., t) − u(., t)∥2L2(Ω)

≤
2
(
1 + 1

q0

)
1 − (1 + q0)K2T 2

(
e2Tζ(δ)E

∥∥∥∥Gδ,N(δ) − g
∥∥∥∥2

L2(Ω)
+ ∥g∥2L2(Ω)

)
e−2tζ(δ)

≤
2
(
1 + 1

q0

)
1 − (1 + q0)K2T 2 e2(T−t)ζ(δ)δ2N(δ) + 4

2
(
1 + 1

q0

)
1 − (1 + q0)K2T 2 e2(T−t)ζ(δ) 1

λ
2γ
N(δ)

∥g∥H2γ

+
2
(
1 + 1

q0

)
1 − (1 + q0)K2T 2 ∥g∥

2
L2(Ω)e

−2tζ(δ).
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This completes the proof of part (a).
Proof of part (b) of Theorem 4.3
By Theorem 3.1, we have E∥Gδ,N(δ)−g∥2L2(Ω) ≤ C̃ξ2(δ). where C̃ = 1+ ∥g∥2H2γ . We will estimate the error

for time variable in interval [Tl,Tl+1] for l = 0, 2s.
Case 1. Let t ∈ [T2s−1,T ]. Since ζ2s(δ) = s

T log
(

1
ξ(δ)

)
, by Lemma 4.2 we get

E∥Ûδ(., t) − u(., t)∥2L2(Ω) = E
∥∥∥∥Yζ2s(δ)

T2s−2,T2s
(Gδ,N(δ))(., t) − u(., t)

∥∥∥∥2

L2(Ω)

≤
2s2

(
1 + 1

q0

)
s2 − T 2K2(1 + q0)

[
e2(T2s−T2s−2)ζ2s(δ)E∥Gδ,N(δ) − g∥2L2(Ω)

]
e2(T2s−2−t)ζ2s(δ)

+
2s2

(
1 + 1

q0

)
s2 − T 2K2(1 + q0)

[
∥u(.,T2s−2)∥2L2(Ω)

]
e2(T2s−2−t)ζ2s(δ)

≤
2s2

(
1 + 1

q0

)
s2 − T 2K2(1 + q0)

(
C̃ + ∥u∥2L∞(0,T ;L2(Ω))

)
ξ(δ)

= χ(s,K, q0)
(
C̃ + ∥u∥2L∞(0,T ;L2(Ω))

)
ξ(δ),

(4.65)

which we note that e2(T2s−2−t)ζ2s(δ) ≤ e2(T2s−2−T2s−1)ζ2s(δ) = ξ(δ) and

χ(s,K, q0) = max

1,
2s2

(
1 + 1

q0

)
s2 − T 2K2(1 + q0)

 , then χ(s,K, q0) ≥ 1.

Case 2. Let t ∈ [T2s−2,T2s−1] . Since ζ2s−1(δ) = s
2T log

(
1
ξ(δ)

)
, by Lemma 4.2 we get

E∥Ûδ(., t) − u(., t)∥2L2(Ω)

= E
∥∥∥∥Yζ2s−1(δ)

T2s−3,T2s−1

(
Ûδ(.,T2s−1)

)
(., t) − u(., t)

∥∥∥∥2

L2(Ω)

≤ χ(s,K, q0) exp
(
2(T2s−3 − t)ζ2s−1(δ)

)
exp

(
2(T2s−1 − T2s−3)ζ2s−1(δ)

)
E∥Ûδ(.,T2s−1) − u(.,T2s−1∥

2
L2(Ω)

+ χ(s,K, q0) exp
(
2(T2s−3 − t)ζ2s−1(δ)

)
∥u(.,T2s−3)∥2L2(Ω)

≤ χ(s,K, q0)
(
χ(s,K, q0)

(
C̃ + ∥u∥L∞(0,T ;L2(Ω))

)
+ ∥u∥L∞(0,T ;L2(Ω))

)(
ξ(δ)

) 1
2

≤ 2χ2(s,K, q0)
(
C̃ + ∥u∥L∞(0,T ;L2(Ω))

)(
ξ(δ)

) 1
2
,

where we used the following result from (4.65):

E
∥∥∥∥Ûδ(.,T2s−1) − u(.,T2s−1

∥∥∥∥2

L2(Ω)
≤ χ(s,K, q0)

(
C̃ + ∥u∥2L∞(0,T ;L2(Ω))

)
ξ(δ).

Therefore, repeating the argument as in the above cases and using the induction method, we can prove
the following estimate

E∥Ûδ(., t) − u(., t)∥2L2(Ω)

≤ (2s − k)|χ2(s,K, q0)|2s−k
(
C̃ + ∥u∥2L∞(0,T ;L2(Ω))

)(
ξ(δ)

) 1
22s−k−1

,
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for all t ∈ [Tk,Tk+1] and k = 1, 2s − 1.
If t ∈ [0,T1], then by a similar technique as above, we obtain the error estimate

E∥Ûδ(., t) − u(., t)∥2L2(Ω)

≤ s|χ2(s,K, q0)|2s
(
C̃ + ∥u∥2L∞(0,T ;L2(Ω))

)(
ξ(δ)

) st
22s−2

.

□

5. Regularization result with locally Lipschitz source

Section 4 addressed a problem in which F is a global Lipschitz function. In this section we extend
the analysis to a locally Lipschitz function F. Results for the locally Lipschitz case are difficult. Here,
we have to find another regularization method to study the problem with a locally Lipschitz source.
Assume that a is noisy by the observation data aobs

δ : Ω × [0,T ]→ R as follows

aobs
δ (x, t) = a(x, t) + δψ(t) (5.1)

where δ > 0 and ψ ∈ L∞(0,T ) such that

∥ψ∥L∞(0,T ) = sup
0≤t≤T
|ψ(t)| ≤ M, (5.2)

where M > 0. In the case when a is not disturbed, we can use the method in the previous sections (the
case when a is not disturbed is simpler than the case a is noisy). If a is disturbed by random data, it is
difficult to use the old method and we need a new approach, as outlined below.

Assume that for each R > 0, there exists KR > 0 such that

|F(x, t; u) − F(x, t; v)| ≤ KR|u − v|, if max{|u|, |v|} ≤ R, (5.3)

where (x, t) ∈ Ω × [0,T ] and

KR := sup
{∣∣∣∣∣F(x, t; u) − F(x, t; v)

u − v

∣∣∣∣∣ : max{|u|, |v|} ≤ R, u , v, (x, t) ∈ Ω × [0,T ]
}
< +∞.

We note that KR is increasing and limR→+∞ KR = +∞. Now, we outline our idea to construct a regular-
ization for problem (1.1). For all R > 0, we approximate F by FR defined by

FR(x, t; w) :=


F(x, t;−R), w ∈ (−∞,−R)
F(x, t; u), w ∈ [−R,R]
F(x, t;R), w ∈ (R,+∞).

(5.4)

For each δ > 0, we consider a parameter R(δ) → +∞ as δ → 0+. Let us denote the operator P = M∆,
where M is a positive number such that M > aobs

δ (x, t) for all (x, t) ∈ Ω × (0,T ). Define the following
operator

Pδ
βN(δ)
= P +Qδ

βN(δ)
,

where

Qδ
βN(δ)

v(x) =
1
T

∞∑
j=1

ln
(
1 + βN(δ)eMTλ j

) 〈
v(x), ϕ j(x)

〉
L2(Ω)ϕ j(x), (5.5)
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for any function v ∈ L2(Ω). Here N(δ) is defined in Lemma (4.1).
We introduce the main idea to solve problem (1.1) with a generalized case of source term defined

by (5.4), and we consider the problem:

∂uδN(δ)

∂t
− ∇

(
aobs
δ (x, t)∇uδN(δ)

)
−Qδ

βN(δ)
(uδN(δ))(x, t)

= FRδ

(
x, t,uδN(δ)(x, t)

)
, (x, t) ∈ Ω × (0,T ),

uδN(δ)|∂Ω = 0, t ∈ (0,T ),

uδN(x,T ) = Gδ,N(δ)(x), (x, t) ∈ Ω × (0,T ),

(5.6)

Here Gδ,N(δ)(x) is defined in Eq (4.2). Now, we introduce some Lemmas which will be useful for our
main results. First, we recall the abstract Gevrey class of functions of index σ > 0, see, e.g., [24],
defined by

Wσ =

{
v ∈ L2 (Ω) :

∞∑
n=1

e2σλn
∣∣∣〈v, ϕn(x)

〉
L2(Ω)

∣∣∣2 < ∞}
,

which is a Hilbert space equipped with the inner product

⟨v1, v2⟩Wσ
:=

〈
eσ
√
−∆v1, eσ

√
−∆v2

〉
L2(Ω)

, for all v1, v2 ∈ Wσ;

and the corresponding norm is ∥v∥Wσ
=

√∑∞
n=1 e2σλn

∣∣∣〈v, ϕn
〉

L2(Ω)

∣∣∣2 < ∞.
Lemma 5.1. For FR ∈ L∞(Ω × [0,T ] × R), we have

|FR(x, t; u) − FR(x, t; v)| ≤ KR|u − v|, ∀(x, t) ∈ Ω × [0,T ], u, v ∈ R.

Proof. See the proof of Lemma 2.4 in [35]. □

Lemma 5.2. 1. Let M,T > 0. For any v ∈ WMT (Ω), we have

∥Qδ
βN(δ)

(v)∥L2(Ω) ≤
βN(δ)

T
∥v∥WMT (Ω) . (5.7)

2. Let βN(δ) < 1 − e−MTλ1 . For any v ∈ L2(Ω), we have∥∥∥∥Pδ
βN(δ)

v
∥∥∥∥

L2(Ω)
≤

1
T

ln
(

1
βN(δ)

)
∥v∥L2(Ω). (5.8)

Proof. Using the inequality ln(1 + a) ≤ a, ∀a > 0, we have∥∥∥∥Qδ
βN(δ)

(v)
∥∥∥∥2

L2(Ω)
=

1
T 2

∞∑
j=1

ln2
(
1 + βN(δ)eMTλ j

) ∣∣∣〈v, ϕ j
〉

L2(Ω)

∣∣∣2
≤
β2

N(δ)

T 2

∞∑
j=1

e2MTλ j
∣∣∣〈v, ϕ j

〉
L2(Ω)

∣∣∣2 ≤ β2
N(δ)

T 2 ∥v∥
2
WMT

. (5.9)

Since βN(δ) < 1 − e−MTλ1 , we know that βN(δ) + e−MTλ j < 1 . Using Parseval’s equality, we easily get∥∥∥∥Pδ
βN(δ)

(v)
∥∥∥∥2

L2(Ω)
=

1
T 2

∞∑
j=1

ln2
(

1
βN(δ) + e−MTλ j

) ∣∣∣〈v, ϕ j
〉

L2(Ω)

∣∣∣2
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≤
1

T 2 ln2
(

1
βN(δ)

) ∞∑
j=1

∣∣∣〈v, ϕ j
〉

L2(Ω)

∣∣∣2 ≤ 1
T 2 ln2

(
1

βN(δ)

)
∥v∥2L2(Ω) .

□

Theorem 5.1. Problem (5.6) has a unique solution uδN(δ) ∈ C
(
[0,T ] ; L2 (Ω)

)
. Assume that the problem

(1.1) has a unique solution u satisfying u(·, t) ∈ WMT . Choose βN(δ) such that

lim
δ→0

δ
√

N(δ)β−1
N(δ) = lim

δ→0
β−1

N(δ)λ
−γ
N(δ) = lim

δ→0
βN(δ) = 0. (5.10)

Choose Rδ such that
lim
δ→0

β
2t
T
N(δ)e

2KRδT = 0, t > 0. (5.11)

Then we have the following estimate

E
∥∥∥uδN(δ)(x, t) − u(x, t)

∥∥∥2

L2(Ω)
≤ β

2t
T
N(δ)e

(2K(Rδ))+1)TC̃(δ). (5.12)

Here C̃(δ) is

C̃(δ) = δ2N(δ)β−2
Nδ
+

1

λ
2γ
N(δ)β

2
Nδ

∥g∥H2γ(Ω) + ∥u∥2C([0,T ];WMT (Ω)) +
δ2T 3

b0β
2
Nδ

∥u∥2L∞(0,T ;H1
0 (Ω)) .

and assume that Ω is one dimensional domain.

Remark 5.1. 1. Under asumption (5.11), the right hand side of Eq (5.12) converges to zero when
t > 0.
2. Choose βN(δ) = N(δ)−c for any 0 < c < min( 1

2 ,
2γ
d ), and N(δ) is chosen as

N(δ) =
(
1
δ

)m( 1
2−c)

, 0 < m < 1. (5.13)

Choose Rδ such that

K (Rδ) ≤
1

kT
ln

(
ln (N(δ))

)
=

1
kT

ln
(
m(

1
2
− c) ln

(
1
δ

) )
.

Then E
∥∥∥uδN(δ)(x, t) − u(x, t)

∥∥∥2

L2(Ω)
is of the order δmc( 1

2−c) t
T ln( 1

δ
).

Proof of Theorem 5.1. The proof is divided into two Steps.
Step 1. The existence and uniqueness of the solution to the regularized problem (5.6).
Let b(x, t) be defined by b(x, t) = M − a(x, t). It is clear that 0 < b(x, t) < M. Then from (5.6), we
obtain

∂uδN(δ)

∂t
+ ∇

(
b(x, t)∇uδN(δ)

)
= F

(
x, t,uδN(δ)(x, t)

)
−

1
T

∞∑
j=1

ln
(

1
βN(δ) + e−MTλ j

) 〈
uδN(δ)(·, t), ϕ j

〉
ϕ j(x), (5.14)
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for (x, t) ∈ Ω × (0,T ).
Let vδN(δ) be the function defined by vδN(δ)(x, t) = uδN(δ)(x,T − t). Then we have

∂vδN(δ)

∂t
(x, t) = −

∂uδN(δ)

∂t
(x,T − t), ∇

(
b(x, t)∇vδN(δ)

)
(x, t) = ∇

(
b(x, t)∇uδN(δ)

)
(x,T − t)

and

1
T

∞∑
j=1

ln
(
βN(δ) + e−MTλ j

) 〈
vδN(δ)(x, t), ϕ j(x)

〉
ϕ j(x)

=
1
T

∞∑
j=1

ln
(
βN(δ) + e−MTλ j

) 〈
uδN(δ)(x,T − t), ϕ j(x)

〉
ϕ j(x).

This implies that vδN(δ) satisfies the problem
∂vδN(δ)

∂t
− ∇

(
b(x, t)∇vδN(δ)

)
= G(x, t, vδN(x, t)), (x, t) ∈ Ω × (0,T ),

vδN(δ)|∂Ω = 0, t ∈ (0,T ),

vδN(δ)(x, 0) = Gδ,N(δ)(x), (x, t) ∈ Ω × (0,T ),

(5.15)

where G is defined by

G(x, t, v(x, t)) = −F(x, t, v(x, t))

+
1
T

∞∑
j=1

ln
(

1
βN(δ) + e−MTλ j

) 〈
v(·, t), ϕ j

〉
L2(Ω)ϕ j(x), (5.16)

for any v ∈ C
(
[0,T ]; L2(Ω)

)
.

Since

βN(δ) ∈
(
0, 1 − e−MTλ1

)
, 0 < ln

(
1

βN(δ) + e−MTλn

)
< ln

(
1

βN(δ)

)
and using Parseval’s identity, we obtain for any v1, v2 ∈ L2(Ω),

∥G(·, t, v1(·, t)) − G(·, t, v2(·, t))∥L2(Ω)

≤ ∥F(·, t, v1(·, t)) − F(·, t, v2(·, t))∥L2(Ω)

+
∥∥∥∥ 1

T

∞∑
j=1

ln
(

1
βN(δ) + e−MTλ j

) 〈
v1(x, t) − v2(x, t), ϕ j(x)

〉
L2(Ω)ϕ j(x)

∥∥∥∥
L2(Ω)

≤ K∥v1(·, t) − v2(·, t)∥L2(Ω)

+
1
T

√√
∞∑
j=1

ln2
(

1
βN(δ) + e−MTλ j

) ∣∣∣〈v1(·, t) − v2(·, t), ϕn
〉

L2(Ω)

∣∣∣2
≤

[
K +

1
T

ln
(

1
βN(δ)

)]
∥v1(·, t) − v2(·, t)∥L2(Ω). (5.17)

Thus G is a Lipschitz function. Using the results of Theorem 12.2 in [32], we complete the proof
of Step 1.
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Step 2. Error estimate
We consider the error estimate between the regularized solution of problem (5.6) and the exact solution
of problem (1.1).
For (x, t) ∈ Ω × (0,T ), we begin by establishing that the functions b(x, t),bobs

δ (x, t) satisfy

0 < b(x, t) ≤ M, 0 < b0 ≤ bobs
δ (x, t) ≤ M

and (
a(x, t)

aobs
δ (x, t)

)
=

(
M
M

)
−

(
b(x, t)

bobs
δ (x, t)

)
, ∀(x, t) ∈ Ω × (0,T ). (5.18)

The functions uδN(δ)(x, t) and u(x, t) solve the following equations

∂u
∂t
+ ∇

(
bobs
δ (x, t)∇u

)
= F(x, t; u(x, t))

+ ∇
((

bobs
δ (x, t) − b(x, t)

)
∇u

)
+ Pu (5.19)

and

∂uδN(δ)

∂t
+ ∇

(
bobs
δ (x, t)∇uδN(δ)

)
= FRδ

(
x, t,uδN(δ)(x, t)

)
+ Pδ

βN(δ)
uδN(δ). (5.20)

For ρδ > 0, we put Vδ
N(δ)(x, t) = eρδ(t−T )

[
uδN(δ)(x, t) − u(x, t)

]
. Then for (x, t) ∈ Ω × (0,T )

∂Vδ
N(δ)

∂t
+ ∇

(
bobs
δ (x, t)∇Vδ

N(δ)

)
− ρδVδ

N(δ)

= Pδ
βN(δ)

Vδ
N(δ) + eρδ(t−T )Qδ

βN(δ)
u − eρδ(t−T )∇

((
bobs
δ (x, t) − b(x, t)

)
∇u

)
+ eρδ(t−T )

[
FRδ

(
x, t,uδN(δ)(x, t)

)
− F

(
x, t; u(x, t)

)]
, (5.21)

and
Vδ

N(δ)|∂Ω = 0, Vδ
N(δ)(x,T ) = Gδ,N(δ)(x) − g(x).

By taking the inner product on both sides of Eq (5.21) with Vδ
N(δ) and noting the equality∫

Ω

∇
(
bobs
δ (x, t)∇Vδ

N(δ)

)
Vδ

N(δ)dx = −
∫
Ω

bobs
δ (x, t)|∇Vδ

N(δ)|
2dx,

we obtain

∥Vδ
N(δ)(·,T )∥2L2(Ω) − ∥V

δ
N(δ)(·, t)∥

2
L2(Ω)

− 2
∫ T

t

∫
Ω

bobs
δ (x, s)|∇Vδ

N(δ)|
2dxds − 2ρδ

∫ T

t
∥Vδ

N(δ)(·, s)∥2L2(Ω)ds

= 2
∫ T

t

〈
Pδ
βN(δ)

Vδ
N(δ),V

δ
N(δ)

〉
L2(Ω)

ds︸                                   ︷︷                                   ︸
=:Ã4

+ 2
∫ T

t

〈
eρδ(t−T )Qδ

βN(δ)
u,Vδ

N(δ)

〉
L2(Ω)

ds︸                                       ︷︷                                       ︸
=:Ã5

+ 2
∫ T

t

〈
−eρδ(t−T )∇

(
(bobs

δ (x, t) − b(x, t))∇u
)
,Vδ

N(δ)

〉
L2(Ω)

ds︸                                                                   ︷︷                                                                   ︸
=:Ã6
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+ 2
∫ T

t

〈
eρδ(t−T )

[
FRδ

(
x, t,uδN(δ)(x, t)

)
− F

(
x, t; u(x, t)

)]
,Vδ

N(δ)

〉
L2(Ω)

ds︸                                                                                  ︷︷                                                                                  ︸
=:Ã7

. (5.22)

First, thanks to inequality (5.8), the expectation of Ã4 is estimated as follows:

E
∣∣∣Ã4

∣∣∣ ≤ 2
T

ln
(

1
βNδ

) ∫ T

t
E∥Vδ

N(δ)(·, s)∥2L2(Ω)ds, (5.23)

Next, using the inequality (5.7) and the Hölder inequality, we have

E
∣∣∣Ã5

∣∣∣ ≤ ∫ T

t
e2ρβ(s−T )βNδ

T
∥u∥2C([0,T ];WMT )ds +

∫ T

t
E∥Vδ

N(δ)(·, s)∥2L2(Ω)ds

≤
βNδ

T
∥u∥2C([0,T ];WMT ) +

∫ T

t
E∥Vδ

N(δ)(·, s)∥2L2(Ω)ds. (5.24)

For estimating the expectation of
∣∣∣Ã6

∣∣∣, we use the Green’s formula to get the equality〈
∇
(
(bobs

δ (x, t) − b(x, t))∇u
)
,Vδ

N(δ)

〉
L2(Ω)
=

〈(
(bobs

δ (x, t) − b(x, t)
)
∇u,∇Vδ

N(δ)

〉
L2(Ω)

then using Hölder’s inequality and noting the fact that∫
Ω

|∇u(., s)|2dx ≤ ∥u∥2L∞(0,T ;H1
0 (Ω)) = sup

0≤s≤T

∫
Ω

|∇u(., s)|2dx,

we obtain

E
∣∣∣Ã6

∣∣∣ = 2E
∣∣∣∣∣∣
∫ T

t

〈
eρδ(s−T )

(
(bobs

δ (x, t) − b(x, t)
)
∇u,∇Vδ

N(δ)

〉
L2(Ω)

ds

∣∣∣∣∣∣
≤ E

∫ T

t

e2ρδ(s−T )

b0

∫
Ω

(
(bobs

δ (x, t) − b(x, t)
)2
|∇u(x, t)|2 dxds + E

∫ T

t

∫
Ω

b0

∣∣∣∇Vδ
N(δ)

∣∣∣2 dxds

=
δ2

∫ T

t
|ψ(s)|2ds

∫
Ω
|∇u(., s)|2dx

b0
+ E

∫ T

t

∫
Ω

b0

∣∣∣∇Vδ
N(δ)

∣∣∣2 dxds

≤
M

2
δ2T 2

2b0
∥u∥2L∞(0,T ;H1

0 (Ω)) + E
∫ T

t

∫
Ω

b0

∣∣∣∇Vδ
N(δ)

∣∣∣2 dxds; (5.25)

here in the last inequality, we have used the fact that E|ψ(s)|2 = s since ψ is Brownian motion. Finally,
since limδ→0+ Rδ = +∞, for a sufficiently small δ > 0, there is an Rδ > 0 such that Rδ ≥ ∥u∥L∞([0,T ];L2(Ω)).

For this value of Rδ we have
FRδ (x, t; u(x, t)) = F (x, t; u(x, t)) .

Using the global Lipschitz property of FR (see Lemma 5.1), one obtains similarly the estimate

E
∣∣∣Ã7

∣∣∣ = 2E
∣∣∣∣ ∫ T

t

〈
eρδ(t−T )

[
FRδ

(
x, t,uδN(δ)(x, t)

)
− F

(
x, t; u(x, t)

)]
,Vδ

N(δ)

〉
L2(Ω)

ds
∣∣∣∣

≤ 2E
∫ T

t

∥∥∥∥eρδ(t−T )
[
FRδ

(
x, s,uδN(δ)(x, s)

)
− F

(
x, s; u(x, s)

)]∥∥∥∥
L2(Ω)

∥Vδ
N(δ)(·, s)∥L2(Ω)ds
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≤ 2K(Rδ)
∫ T

t
E∥Vδ

N(δ)(·, s)∥2L2(Ω)ds. (5.26)

Combining (5.22), (5.23), (5.24),(5.25) and (5.26), and we obtain

E∥Vδ
N(δ)(·,T )∥2L2(Ω) − E∥Vδ

N(δ)(·, t)∥
2
L2(Ω)

+

∫ T

t

(
βNδ

T
∥u∥2C([0,T ];WMT ) +

δ2T 2

2b0
∥u∥2L∞(0,T ;H1

0 (Ω))

)
ds

≥ 2E
∫ T

t

∫
Ω

(
bobs
δ (x, s) − b0

)
|∇Vδ

N(δ)|
2dxds

+ E
∫ T

t

(
2ρδ −

2
T

ln
(

1
βNδ

)
− 2K(Rδ) − 1

)
∥Vδ

N(δ)(·, s)∥2L2(Ω)ds

≥ E
∫ T

t

(
2ρδ −

2
T

ln
(

1
βNδ

)
− 2K(Rδ) − 1

)
∥Vδ

N(δ)(·, s)∥2L2(Ω)ds. (5.27)

Thus,

E∥Vδ
N(δ)(·, t)∥

2
L2(Ω) ≤ E∥Gδ,N(δ) − g∥2L2(Ω) + βNδ

∥u∥2C([0,T ];WMT (Ω)) +
δ2T 3

b0
∥u∥2L∞(0,T ;H1

0 (Ω))

+ E
∫ T

t

(
−2ρδ +

2
T

ln
(

1
βNδ

)
+ 2K(Rδ) + 1

)
∥Vδ

N(δ)(·, s)∥2L2(Ω)ds. (5.28)

Since Vδ
N(δ)(x, t) = eρδ(t−T )

(
uδN(δ)(x, t) − u(x, t)

)
and applying Lemma 4.1, we observe that

e2ρδ(t−T )E
∥∥∥uδN(δ)(·, t) − u(·, t)

∥∥∥2

L2(Ω)
≤ δ2N(δ) +

1

λ
2γ
N(δ)

∥g∥H2γ(Ω)

+ βNδ
∥u∥2C([0,T ];WMT (Ω)) +

M
2
δ2T 3

b0
∥u∥2L∞(0,T ;H1

0 (Ω))

+ (2K(Rδ) + 1)
∫ T

t
e2ρδ(s−T )E

∥∥∥uδN(δ)(·, s) − u(·, s)
∥∥∥2

L2(Ω)
ds. (5.29)

Gronwall’s lemma allows us to obtain

e2ρδ(t−T )E
∥∥∥uδN(δ)(x, t) − u(x, t)

∥∥∥2

L2(Ω)

≤

δ2N(δ) +
1

λ
2γ
N(δ)

∥g∥H2γ(Ω) + βNδ
∥u∥2C([0,T ];WMT (Ω)) +

M
2
δ2T 3

b0
∥u∥2L∞(0,T ;H1

0 (Ω))

 e(2K(Rδ))+1)(T−t). (5.30)

By choosing ρδ = 1
T ln

(
1
βNδ

)
> 0 we have

E
∥∥∥uδN(δ)(·, t) − u(·, t)

∥∥∥2

L2(Ω)
≤ β

2t
T
N(δ)e

(2K(Rδ))+1)TC̃(δ). (5.31)

The proof of Theorem 5.1 is complete. □
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6. Regularization result with more general source term

In most previous works on backward nonlinear problems the assumption, that the source is global
or locally Lipschitz, is required. To the best of our knowledge, this section is the first result when the
source term F is not necessarily a locally Lipschitz source. We will solve the problem (1.1) with a
special generalized case of source term defined by (5.4). Our regularized problem is different to the
one in section 4 because we do not approximate the source function F. Indeed, we have the following
regularized problem

∂uδN(δ)

∂t
− ∇

(
aobs
δ (x, t)∇uδN(δ)

)
−Qδ

βN(δ)
(uδN(δ))(x, t)

= F
(
x, t,uδN(δ)(x, t)

)
, (x, t) ∈ Ω × (0,T ),

uδN(δ)|∂Ω = 0, t ∈ (0,T ),

uδN(x,T ) = Gδ,N(δ)(x), (x, t) ∈ Ω × (0,T ),

(6.1)

We make the following assumptions on F ∈ C0(R) in the following: There exists C1 and C′1,C2 and
p > 1 and γ such that

zF(x, t, z) ≥ C1|z|p −C′1 (6.2)
|F(x, t, z)| ≤ C2(1 + |z|p−1) (6.3)
(z1 − z2) (F(x, t, z1) − F(x, t, z2)) ≥ −γ|z1 − z2|

2. (6.4)

It is easy to check that the function F(x, t, z) = z
1
3 satisfies conditions (6.2), (6.3) and (6.4). Note here

that this function is not locally Lipschitz.
Now we have the following result

Theorem 6.1. Let us assume that F satisfies (6.2), (6.3) and (6.4). Then, there exists a unique weak
solution uδN(δ) of problem (6.1) such that

uδN(δ) ∈ L2(0,T ; H1) ∩ L∞(0,T ; L2).

Assume that the problem (1.1) has a unique solution u satisfying u(·, t) ∈ WMT . Choose βNδ
as in

Theorem 5.1. Then we have the following estimate

E
∥∥∥uδN(δ)(x, t) − u(x, t)

∥∥∥2

L2(Ω)
≤ β

2t
T
N(δ)e

(2γ+1)TC̃(δ). (6.5)

where C̃(δ) is defined in (6.51).

Remark 6.1. Our method in this theorem give the convergence rate (6.5) which is better than the error
rate in (5.12). Indeed, since limδ→0 K(Rδ) = +∞, we have

The right hand side of (5.12)
The right hand side of (6.5)

=
β

2t
T
N(δ)e

(2K(Rδ))+1)TC̃(δ)

β
2t
T
N(δ)e

(2γ+1)TC̃(δ)
→ +∞ (6.6)

when δ→ 0.
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6.1. Proof of Theorem 6.1

6.1.1. Proof of the existence of solution of Problem (6.1)

First, by changing variable vδN(δ)(x, t) = uδN(δ)(x,T − t), we transform Problem (6.1) into the initial
value problem

∂vδN(δ)

∂t
− ∇

(
bobs
δ (x, t)∇vδN(δ)

)
= −F(x, t, vδN(x, t)) + Pδ

βN(δ)
(vδN(δ)(x, t)), (x, t) ∈ Ω × (0,T ),

vδN(δ)|∂Ω = 0, t ∈ (0,T ),

vδN(δ)(x, 0) = Gδ,N(δ)(x), (x, t) ∈ Ω × (0,T ).

(6.7)

where bobs
δ (x, t) = M − aobs

δ (x, t).
The weak formulation of the initial boundary value problem (6.7) can then be given in the following
manner: Find vδN(δ)(t) defined in the open set (0,T ) such that vδN(δ) satisfies the following variational
problem ∫

Ω

d
dt

vδN(δ),mφdx +
∫
Ω

bobs
δ (x, t)∇vδN(δ),m∇φdx +

∫
Ω

F(vδN(δ),m(t))φdx

=

∫
Ω

Pδ
βN(δ)

(vδN(δ),m(t))φdx (6.8)

for all φ ∈ H1, and the initial condition

vδN(δ)(0) = Gδ,N(δ). (6.9)

Proof of the existence of solution of Problem (6.1) . The main technique of this proof is learned
from the article [34]. The proof consists of several steps.

Step 1: The Faedo – Galerkin approximation (introduced by Lions [22]).
In the space H1(Ω), we take a basis {e j}

∞
j=1 and define the finite dimensional subspace

Vm = span{e1, e2, ...em}.

Let Gδ,N(δ),m be an element of Vm such that

Gδ,N(δ),m =
∑m

j=1 dδm je j → Gδ,N(δ) strongly in L2 (6.10)

as m→ +∞. We can express the approximate solution of the problem (6.7) in the form

vδN(δ),m(t) =
m∑

j=1

cδm j(t)e j, (6.11)

where the coefficients cδm j satisfy the system of linear differential equations∫
Ω

d
dt

vδN(δ),meidx +
∫
Ω

bobs
δ (x, t)∇vδN(δ),m∇eidx +

∫
Ω

F(vδN(δ),m(t))eidx

=

∫
Ω

Pδ
βN(δ)

(vδN(δ),m(t))eidx (6.12)
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with i = 1,m and the initial conditions

cδm j(0) = dδm j, j = 1,m. (6.13)

The existence of a local solution of system (6.12)–(6.13) is guaranteed by Peano’s theorem on the
existence of solutions. For each m there exists a solution vδN(δ),m(t) in the form (6.11) which satisfies
(6.12) and (6.13) almost everywhere on 0 ≤ t ≤ Tm for some Tm, 0 < Tm ≤ T. The following estimates
allow one to take Tm = T for all m.

Step 2. A priori estimates.
a) The first estimate. Multiplying the ith equation of (6.12) by cδmi(t) and summing up with respect

to i, afterwards, integrating by parts with respect to the time variable from 0 to t, we get after some
rearrangements∥∥∥vδN(δ),m(t)

∥∥∥2

L2(Ω)
+ 2

∫ t

0

∫
Ω

bobs
δ (x, t)|∇vδN(δ),m(s)|2dxds + 2

∫ t

0

∫
Ω

F(vδN(δ),m(s))vδN(δ),m(s)dxds

=
∥∥∥Gδ,N(δ),m

∥∥∥2
+ 2

∫ t

0

∫
Ω

Pδ
βN(δ)

(vδN(δ),m(s))vδN(δ),m(s)dxds (6.14)

From (6.10), we have ∥∥∥Gδ,N(δ),m

∥∥∥2
≤ B0(δ), for all m, (3.8)

where B0(δ) depends on Gδ,N(δ) and is independent of m.
Using the lower bound of bobs

δ (x, t), we have the following estimate

2
∫ t

0

∫
Ω

bobs
δ (x, t)|∇vδN(δ),m(s)|2dxds ≥ 2b0

∫ t

0
∥vδN(δ),m(s)∥H1(Ω)ds. (6.15)

Using the assumption on F, we have

2
∫ t

0

∫
Ω

F(vδN(δ),m(s))vδN(δ),m(s)dxds ≥ 2C1

∫ t

0

∥∥∥vδN(δ),m(s)
∥∥∥p

Lp(Ω)
ds − 2TC′1 (6.16)

and

2
∫ t

0

∫
Ω

Pδ
βN(δ)

(vδN(δ),m(s))vδN(δ),m(s)dxds ≤
2
T

ln
(

1
βN(δ)

) ∫ t

0

∥∥∥vδN(δ),m(s)
∥∥∥2

L2(Ω)
ds. (6.17)

Hence, it follows from (6.15)–(6.17) that∥∥∥vδN(δ),m(t)
∥∥∥2

L2(Ω)
+ 2b0

∫ t

0
∥vδN(δ),m(s)∥H1(Ω)ds + 2C1

∫ t

0

∥∥∥vδN(δ),m(s)
∥∥∥p

Lp(Ω)
ds

≤ B0(δ) + 2TC′1 +
1
T

ln
(

1
βN(δ)

) ∫ t

0

∥∥∥vδN(δ),m(s)
∥∥∥2

L2(Ω)
ds. (6.18)

Let

Sδm(t) =
∥∥∥vδN(δ),m(t)

∥∥∥2

L2(Ω)
+ 2b0

∫ t

0
∥vδN(δ),m(s)∥H1(Ω)ds + 2C1

∫ t

0

∥∥∥vδN(δ),m(s)
∥∥∥p

Lp(Ω)
ds. (6.19)

Using the fact that
∫ t

0

∥∥∥vδN(δ),m(s)
∥∥∥2

L2(Ω)
ds ≤

∫ t

0
Sδm(s)ds, we know from (6.18) that

Sδm(t) ≤ B0(δ) + 2TC′1 +
1
T

ln
(

1
βN(δ)

) ∫ t

0
Sδm(s)ds (6.20)
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Applying Gronwall’s lemma, and we obtain

Sδm(t) ≤
[
B0(δ) + 2TC′1

]
exp

( t
T

ln
(

1
βN(δ)

) )
≤

[
B0(δ) + 2TC′1

]
exp

(
ln

(
1

βN(δ)

) )
= B1(δ,T ), (6.21)

for all m ∈ N, for all t, 0 ≤ t ≤ Tm ≤ T, i.e., Tm = T, where CT always indicates a bound depending on
T.

b) The second estimate. Multiplying the ith equation of (6.12) by t2 d
dt c

δ
mi(t) and summing up with

respect to i, we have

∥∥∥∥∥t
d
dt

vδN(δ),m(t)
∥∥∥∥∥2

L2(Ω)
+ t2

∫
Ω

bobs
δ (x, t)∇vδN(δ),m(t)∇

(
d
dt
∇vδN(δ),m(t)

)
dx

+

∫
Ω

t2F
(
vδN(δ),m(t)

) d
dt

vδN(δ),m(t)dx

=

∫
Ω

t2Pδ
βN(δ)

(
vδN(δ),m(t)

) d
dt

vδN(δ),m(t)dx. (6.22)

It is easy to check that for any u ∈ H1(Ω)

d
dt

[∫
Ω

bobs
δ (x, t)|∇u(t)|2dx

]
= 2

∫
Ω

bobs
δ (x, t)∇u(t)∇u′(t)dx +

∫
Ω

∂

∂t
bobs
δ (x, t)|∇u(t)|2dx. (6.23)

The equality (6.22) is equivalent to

2
∥∥∥∥∥t

d
dt

vδN(δ),m(t)
∥∥∥∥∥2

L2(Ω)
+

d
dt

[
t2

∫
Ω

bobs
δ (x, t)|vδN(δ),m(t)|2dx

]
+ 2

∫
Ω

t2F
(
vδN(δ),m(t)

) d
dt

vδN(δ),m(t)dx

= 2t
∫
Ω

bobs
δ (x, t)|∇vδN(δ),m(t)|2dx + t2

∫
Ω

∂

∂t
bobs
δ (x, t)|∇vδN(δ),m(s)|2dx

+

∫
Ω

t2Pδ
βN(δ)

(
vδN(δ),m(t)

) d
dt

vδN(δ),m(t)dx. (6.24)

By integrating the last equality from 0 to t, we get

2
∫ t

0

∥∥∥∥∥s
d
ds

vδN(δ),m(s)
∥∥∥∥∥2

L2(Ω)
ds + t2

∫
Ω

bobs
δ (x, t)|vδN(δ),m(t)|2dx︸                             ︷︷                             ︸

I1

+ 2

∫ t

0

∫
Ω

s2F
(
vδN(δ),m(s)

) d
ds

vδN(δ),m(s)dxds︸                                                ︷︷                                                ︸
I2

= 2
∫ t

0

∫
Ω

sbobs
δ (x, s)|∇vδN(δ),m(s)|2dxds︸                                          ︷︷                                          ︸

I3

+

∫ t

0

∫
Ω

s2 ∂

∂s
bobs
δ (x, s)|∇vδN(δ),m(s)|2dxds︸                                             ︷︷                                             ︸

I4

+

∫ t

0

∫
Ω

s2Pδ
βN(δ)

(
vδN(δ),m(s)

) d
ds

vδN(δ),m(s)dxds︸                                                  ︷︷                                                  ︸
I5

. (6.25)

Estimate I1. Since the assumption bobs
δ (x, t) ≥ b0, we know that

I1 = t2
∫
Ω

bobs
δ (x, t)|vδN(δ),m(t)|2dx ≥ b0

∥∥∥tvδN(δ),m(t)
∥∥∥2

H1 . (6.26)

Estimate I2. To estimate I2, we need the following Lemma
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Lemma 6.1. Let µ0 =
(C′1

C1

)1/p
, m =

∫ +µ0

−µ0
|F(ξ)|dξ, F̃(z) =

∫ z

0
F(y)dy, z ∈ R. Then we get

− m ≤ F̃(z) ≤ C2

(
|z| +

1
p
|z|p

)
, z ∈ R. (6.27)

The proof of Lemma 6.1 is easy and we omit it here. Now we return to estimate I2. By a simple
computation and then using Lemma 6.1, we have

I2 = 2
∫ t

0
s2ds

d
ds

∫
Ω

dx
∫ vδN(δ),m(x,s)

0
F(y)dy

 = 2
∫ t

0
s2ds

d
ds

∫
Ω

dx
∫ vδN(δ),m(x,s)

0
F(y)dy


= 2

∫ t

0

[
d
ds

(
s2

∫
Ω

F̃
(
vδN(δ),m(x, s)

)
dx

)
− 2s

∫
Ω

F̃
(
vδN(δ),m(x, s)

)
dx

]
= 2t2

∫
Ω

F̃
(
vδN(δ),m(x, t)

)
dx − 4

∫ t

0
sds

∫
Ω

F̃
(
vδN(δ),m(x, s)

)
dx

≥ −2T 2m|Ω| − 4C2

∫ t

0
s
[∥∥∥vδN(δ),m(s)

∥∥∥
L1 +

1
p

∥∥∥vδN(δ),m(s)
∥∥∥p

Lp

]
ds

≥ −2T 2m|Ω| − 4TC2

[
T

∥∥∥vδN(δ),m

∥∥∥
L∞(0,T ;L2)

+
1
p

1
2C1

Sδm(t)
]

≥ −B2(δ,T ). (6.28)

Estimate I3. Using (6.19), we have the following estimate

I3 ≤ 2Tb1

∫ t

0
∥vδN(δ),m(s)∥2H1ds ≤

2Tb1

2b0
Sδm(t). (6.29)

Estimate I4. Let us set

ãT = sup
(x,t)∈[0,1]×[0,T ]

∂

∂t
bobs
δ (x, t),

and then I4 is bounded by

I4 ≤ ãT

∫ t

0

∥∥∥svδN(δ),m(s)
∥∥∥2

H1 ds ≤ T 2ãT

∫ t

0

∥∥∥vδN(δ),m(s)
∥∥∥2

H1 ds ≤
T 2ãT

a0
Sδm(t). (6.30)

Estimate I5. Using Lemma 5.2, we obtain the following estimate for I5:

I5 ≤ 2
∫ t

0
∥sPδ

βN(δ)
(vδN(δ),m(s))∥∥s

d
ds

vδN(δ),m(s)∥ds

≤

∫ t

0
∥sPδ

βN(δ)
(vδN(δ),m(s))∥2ds +

∫ t

0
∥s

d
ds

vδN(δ),m(s)∥2ds

≤ ln2
(

1
βN(δ)

) ∫ t

0
∥vδN(δ),m(s)∥2ds +

∫ t

0
∥s

d
ds

vδN(δ),m(s)∥2ds

≤ ln2
(

1
βN(δ)

)
Sδm(t)

a0
+

∫ t

0
∥s

d
ds

vδN(δ),m(s)∥2ds (6.31)

Combining (6.26), (6.28), (6.29), (6.30),we obtain

2
∫ t

0

∥∥∥∥∥s
d
ds

vδN(δ),m(s)
∥∥∥∥∥2

L2(Ω)
ds + b0

∥∥∥tvδN(δ),m(t)
∥∥∥2

H1
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≤ B2(δ,T ) +
2Tb1

2b0
Sδm(t) +

T 2ãT

a0
Sδm(t)

+ ln2
(

1
βN(δ)

)
Sδm(t)

a0
+

∫ t

0
∥s

d
ds

vδN(δ),m(s)∥2ds. (6.32)

Let

Rδ
m(t) =

∫ t

0

∥∥∥∥∥s
d
ds

vδN(δ),m(s)
∥∥∥∥∥2

L2(Ω)
ds +

∥∥∥tvδN(δ),m(t)
∥∥∥2

H1(Ω)
,

and then since ∫ t

0
Rδ

m(s)ds ≥
∫ t

0
∥s

d
ds

vδN(δ),m(s)∥2ds

together with (6.32), we deduce that

Rδ
m(t) ≤

B(3, δ)
min(2, b0)

+
1

min(2, b0)

∫ t

0
Rδ

m(s)ds (6.33)

where

B(3, δ) = B2(δ,T ) +
2Tb1

2b0
B(2, δ) +

T 2ãT

a0
B(2, δ) + ln2

(
1

βN(δ)

)
B(2, δ)

a0
.

Applying Gronwall’s inequlality, we obtain that∫ t

0

∥∥∥∥∥s
d
ds

vδN(δ),m(s)
∥∥∥∥∥2

L2(Ω)
ds +

∥∥∥tvδN(δ),m(t)
∥∥∥2

H1(Ω)
≤ B4(δ,T ), (6.34)

where B(4, δ) depends only on δ,T and does not depend on m.
Step 3. The limiting process.

Combining (6.19), (6.21) and (6.34), we deduce that, there exists a subsequence of {vδN(δ),m} still
denoted by {vδN(δ),m} such that (see [22]), say,

vδN(δ),m → vδN(δ) in L∞(0,T ; L2) weak*,

vδN(δ),m → vδN(δ) in L2(0,T ; H1) weak,

tvδN(δ),m → tvδN(δ) in L∞(0,T ; H1) weak*,(
tvδN(δ),m

)′
→

(
tvδN(δ)

)′
in L2(QT ) weak,

vδN(δ),m → vδN(δ) in Lp(QT ) weak;

(6.35)

here QT = Ω × (0,T ). Using a compactness lemma ( [22], Lions, p. 57) applied to (6.35), we can
extract from the sequence {vδN(δ),m} a subsequence still denoted by {vδN(δ),m} such that(

tvδN(δ),m

)′
→

(
tvδN(δ)

)′
strongly in L2(QT ). (6.36)

By the Riesz-Fischer theorem, we can extract from {vδN(δ),m} a subsequence still denoted by {vδN(δ),m}

such that
vδN(δ),m(x, t)→ vδN(δ)(x, t) a.e. (x, t) in QT = Ω × (0,T ). (6.37)

Because F is continuous, then

F
(
x, t, vδN(δ),m(x, t)

)
→ F

(
x, t, vδN(δ)(x, t)

)
a.e. (x, t) in QT = Ω × (0,T ). (6.38)
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On the other hand, using (6.3), (6.19), (6.21) , we obtain∥∥∥∥F
(
vδN(δ),m(x, t)

)∥∥∥∥
Lp′ (QT )

≤ B5(δ,T ), (6.39)

where B5(δ,T ) is a constant independent of m. We shall now require the following lemma, the proof of
which can be found in [22] (see Lemma 1.3).

Lemma 6.2. Let Q be a bounded open subset of RN and Gm, G ∈ Lq(Q), 1 < q < ∞, such that

∥Gm∥Lq(Q) ≤ C, where C is a constant independent of m (6.40)

and
Gm → G a.e. (x, t) in Q.

Then
Gm → G in Lq(Q)weakly.

Applying Lemma 6.2 with q = p′ = p
p−1 , Gm = F

(
vδN(δ),m(x, t)

)
,G = F

(
vδN(δ)(x, t)

)
, we deduce from

(6.38) and (6.39) that

F
(
vδN(δ),m

)
→ F

(
vδN(δ)

)
in Lp′(Q) weakly. (6.41)

Passing to the limit in (6.12) and (6.10) by (6.35) and (6.41), we have established a solution of Problem
(6.1) .

6.1.2. Proof of the uniqueness of solution of Problem (6.1)

Assume that the Problem (6.1) has two solution vδN(δ) and wδ
N(δ). We have to show that vδN(δ) = wδ

N(δ).
We recall that 

∂vδN(δ)

∂t
+ ∇

(
bobs
δ (x, t)∇vδN(δ)

)
= F

(
x, t, vδN(δ)(x, t)

)
+ Pδ

βN(δ)
vδN(δ),

∂wδ
N(δ)

∂t
+ ∇

(
bobs
δ (x, t)∇wδ

N(δ)

)
= F

(
x, t,wδ

N(δ)(x, t)
)
+ Pδ

βN(δ)
wδ

N(δ)

uδN(δ)(x,T ) = wδ
N(δ) = Gδ,N(δ)(x),

(6.42)

For Rδ > 0, we put
Wδ

N(δ)(x, t) = eRδ(t−T )
[
vδN(δ)(x, t) − wδ

N(δ)(x, t)
]
.

Then for (x, t) ∈ Ω × (0,T ), we get

∂Wδ
N(δ)

∂t
+ ∇

(
bobs
δ (x, t)∇Wδ

N(δ)

)
− RδWδ

N(δ)

= Pδ
βN(δ)

Wδ
N(δ) + eRδ(t−T )

[
F

(
x, t, vδN(δ)(x, t)

)
− F

(
x, t,wδ

N(δ)(x, t)
)]
, (6.43)

and
Wδ

N(δ)|∂Ω = 0, Wδ
N(δ)(x,T ) = 0.

By taking the inner product of both sides of (6.43) with Wδ
N(δ) then taking the integral from t to T and

noting the equality ∫
Ω

∇
(
bobs
δ (x, t)∇Wδ

N(δ)

)
Vδ

N(δ)dx = −
∫
Ω

bobs
δ (x, t)|∇Wδ

N(δ)|
2dx,
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we deduce

∥Wδ
N(δ)(.,T )∥2L2(Ω) − ∥W

δ
N(δ)(., t)∥

2
L2(Ω)

= 2
∫ T

t

∫
Ω

Pδ
βN(δ)

Wδ
N(δ)(x, s)dxds + 2

∫ T

t

∫
Ω

bobs
δ (x, s)|∇Wδ

N(δ)|
2dxds + 2Rδ

∫ T

t
∥Wδ

N(δ)(., s)∥2L2(Ω)ds

+ 2
∫ T

t

∫
Ω

eRδ(t−T )
[
F

(
x, s, vδN(δ)(x, s)

)
− F

(
x, s,wδ

N(δ)(x, s)
)]

Wδ
N(δ)(x, s)dxds

≥ 2
∫ T

t

∫
Ω

Pδ
βN(δ)

Wδ
N(δ)(x, s)dxds + 2Rδ

∫ T

t
∥Wδ

N(δ)(., s)∥2L2(Ω)ds

+ 2
∫ T

t

∫
Ω

eRδ(t−T )
[
F

(
x, s, vδN(δ)(x, s)

)
− F

(
x, s,wδ

N(δ)(x, s)
)]

Wδ
N(δ)(x, s)dxds. (6.44)

By the assumption we have∫ T

t

∫
Ω

eRδ(s−T )
[
F

(
x, s, vδN(δ)(x, s)

)
− F

(
x, s,wδ

N(δ)(x, s)
)]

Wδ
N(δ)(x, s)dxds

=

∫ T

t

∫
Ω

eRδ(s−T )
[
F

(
x, s, vδN(δ)(x, s)

)
− F

(
x, s,wδ

N(δ)(x, s)
)]

eRδ(s−T )
[
vδN(δ)(x, s) − wδ

N(δ)(x, s)
]

dxds

≥ −γ

∫ T

t

∫
Ω

e2Rδ(s−T )
[
vδN(δ)(x, s) − wδ

N(δ)(x, s)
]2

dxds

= −γ

∫ T

t
∥Wδ

N(δ)(., s)∥2L2(Ω)ds. (6.45)

Using the inequality (5.8), we get the following estimate∫ T

t

∫
Ω

Pδ
βN(δ)

Wδ
N(δ)(x, s)dxds ≥ −

2
T

ln
(

1
βNδ

) ∫ T

t
∥Wδ

N(δ)(., s)∥2L2(Ω)ds. (6.46)

Combine equations (6.44), (6.48), (6.46) and choose

Rδ =
1
T

ln
(

1
βNδ

)
+ γ

to obtain
∥Wδ

N(δ)(.,T )∥2L2(Ω) − ∥W
δ
N(δ)(., t)∥

2
L2(Ω) ≥ 0

This implies that for all t ∈ [0,T ] then ∥Wδ
N(δ)(., t)∥

2
L2(Ω) = 0 since Wδ

N(δ)(x,T ) = 0. The proof is
completed.

6.1.3. Convergence estimate

Our analysis and proof is short and similar to the proof of Theorem 5.1. Indeed, let us also set

Vδ
N(δ)(x, t) = eρδ(t−T )

[
uδN(δ)(x, t) − u(x, t)

]
.

By using some of the above steps we obtain

∥Vδ
N(δ)(·,T )∥2L2(Ω) − ∥V

δ
N(δ)(·, t)∥

2
L2(Ω)
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= Ã4 + Ã5 + Ã6 + 2
∫ T

t

〈
eρδ(s−T )

[
F

(
x, s,uδN(δ)(x, s)

)
− F

(
x, s; u(x, s)

)]
,Vδ

N(δ)

〉
L2(Ω)

ds︸                                                                                  ︷︷                                                                                  ︸
=:Ã8

(6.47)

The terms Ã4, Ã5, Ã6 are similar to (5.22). Now, we consider Ã8. By assumption (6.4), we have∫ T

t

∫
Ω

eRδ(s−T )
[
F

(
x, s,uδN(δ)(x, s)

)
− F (x, s,u(x, s))

]
Vδ

N(δ)(x, s)dxds

=

∫ T

t

∫
Ω

eRδ(s−T )
[
F

(
x, s,uδN(δ)(x, s)

)
− F (x, s,u(x, s))

]
eRδ(s−T )

[
uδN(δ)(x, s) − u(x, s)

]
dxds

≥ −γ

∫ T

t

∫
Ω

e2Rδ(s−T )
[
uδN(δ)(x, s) − u(x, s)

]2
dxds

= −γ

∫ T

t
∥Vδ

N(δ)(., s)∥2L2(Ω)ds. (6.48)

After using the results of the proof of Theorem 5.1, we get

E∥Vδ
N(δ)(·, t)∥

2
L2(Ω) ≤ E∥Gδ,N(δ)(x) − g(x)∥2L2(Ω)

+ βNδ
∥u∥2C([0,T ];WMT (Ω)) +

M
2
δ2T 3

b0
∥u∥2L∞(0,T ;H1

0 (Ω))

+ E
∫ T

t

(
−2ρδ +

2
T

ln
(

1
βNδ

)
+ 2γ + 1

)
∥Vδ

N(δ)(·, s)∥2L2(Ω)ds. (6.49)

Since
Vδ

N(δ)(x, t) = eρδ(t−T )
(
uδN(δ)(x, t) − u(x, t)

)
and applying Lemma 4.1, we observe that

e2ρδ(t−T )E
∥∥∥uδN(δ)(x, t) − u(x, t)

∥∥∥2

L2(Ω)
≤ δ2N(δ) +

1

λ
2γ
N(δ)

∥g∥H2γ(Ω)

+ βNδ
∥u∥2C([0,T ];WMT (Ω)) +

M
2
δ2T 3

b0
∥u∥2L∞(0,T ;H1

0 (Ω))

+ (2γ + 1)
∫ T

t
e2ρδ(s−T )E

∥∥∥uδN(δ)(x, s) − u(x, s)
∥∥∥2

L2(Ω)
ds. (6.50)

Gronwall’s lemma allows us to obtain

e2ρδ(t−T )E
∥∥∥uδN(δ)(x, t) − u(x, t)

∥∥∥2

L2(Ω)

≤

δ2N(δ) +
1

λ
2γ
N(δ)

∥g∥H2γ(Ω) + βNδ
∥u∥2C([0,T ];WMT (Ω)) +

M
2
δ2T 3

b0
∥u∥2L∞(0,T ;H1

0 (Ω))

︸                                                                                            ︷︷                                                                                            ︸
C̃(δ)

e(2γ+1)(T−t). (6.51)

By choosing ρδ = 1
T ln

(
1
βNδ

)
> 0 we have

E
∥∥∥uδN(δ)(x, t) − u(x, t)

∥∥∥2

L2(Ω)
≤ β

2t
T
N(δ)e

(2γ+1)TC̃(δ). (6.52)
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7. Application to some specific equations

7.1. Ginzburg-Landau equation

Here we consider a special source function F(u) = u − u3 for Problem (1.1). This is called the
Ginzburg-Landau equation. This function satisfies the condition of section 5 and does not satisfy the
condition in section 4. For all R > 0, we approximate F by FR defined by

FR(x, t; w) :=


R3 − R, w ∈ (−∞,−R)
u − u3, w ∈ [−R,R],
R − R3, w ∈ (R,+∞).

(7.1)

We consider the problem

∂uδN(δ)

∂t
− ∇

(
aobs
δ (x, t)∇uδN(δ)

)
−Qδ

βN(δ)
(uδN(δ))(x, t)

= FRδ

(
uδN(δ)(x, t)

)
, (x, t) ∈ Ω × (0,T ),

uδN(δ)|∂Ω = 0, t ∈ (0,T ),

uδN(x,T ) = Gδ,N(δ)(x), (x, t) ∈ Ω × (0,T ).

(7.2)

It is easy to see that K(Rδ) = 1 + 3R2
δ. Choose βN(δ) = N(δ)−c for any 0 < c < min( 1

2 ,
2γ
d ), and N(δ) is

chosen as

N(δ) =
(
1
δ

)m( 1
2−c)

, βN(δ) =

(
1
δ

)−mc( 1
2−c)

0 < m < 1. (7.3)

Choose Rδ such that

Rδ =

√
K (Rδ) − 1

3
=

√
1

kT ln
(
m( 1

2 − c) ln
(

1
δ

) )
− 1

3
.

Then applying Theorem 5.1, the error E
∥∥∥uδN(δ)(x, t) − u(x, t)

∥∥∥2

L2(Ω)
is of the order ln2

(
1
δ

) (
δ
)2mc( 1

2−c) t
T
.

7.2. The nonlinear Fisher–KPP equation

In this subsection, we are concerned with the backward problem for a nonlinear parabolic equation
of Fisher–Kolmogorov–Petrovsky–Piskunov type

ut − ∇
(
a(x, t)∇u

)
= γ(x)u2 − µ(x)u, (x, t) ∈ Ω × (0,T ), (7.4)

with the following condition u(x,T ) = g(x), (x, t) ∈ Ω × (0,T ),
u|∂Ω = 0, t ∈ (0,T ).

(7.5)

By Skellam [33], Eq (7.4) has many applications in population dynamics and periodic environments.
In these references, the quantity u(x, t) generally stands for a population density, and the coefficients
a(x, t), γ(x), µ(x) respectively, correspond to the diffusion coefficient, the intrinsic growth rate coeffi-
cient and a coefficient measuring the effects of competition on the birth and death rates. Our method
that can be applied to this model is similar to example 7.1. However, since the ideas of Example 7.1
and 7.2 are the same, we only state the model without giving the errors.
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7.3. The second equation

Taking the function F(u) = u
1
3 it is easy to see that F satisfy (6.2), (6.3) and (6.4). Moreover, we

can show that F is not locally Lipschitz function. So, we cannot regularize the problem in this case
with Problem (5.6). We consider the problem

∂uδN(δ)

∂t
− ∇

(
aobs
δ (x, t)∇uδN(δ)

)
−Qδ

βN(δ)
(uδN(δ))(x, t)

=
(
uδN(δ)(x, t)

) 1
3
, (x, t) ∈ Ω × (0,T ),

uδN(δ)|∂Ω = 0, t ∈ (0,T ),

uδN(x,T ) = Gδ,N(δ)(x), (x, t) ∈ Ω × (0,T ).

(7.6)

Choose βNδ
and Nδ as in subsection 6.1. Applying Theorem 5.1, the error between the solution of

Problem (7.6) and u, E
∥∥∥uδN(δ)(x, t) − u(x, t)

∥∥∥2

L2(Ω)
, is of the order δ2mc( 1

2−c) t
T .

Remark 7.1. In the following, we give a comparison of the method and results in this paper with the
results in [30, 31]. All methods are truncation methods, but our problem is complicated due to the
data being noised by random data. We need Lemma 4.1 to determine the correct set up according to
the measured data. The coefficients N(δ) should be chosen appropriately so that the error between the
sought solution and the correct solution converges. There are two advantages to this article that were
not explored in [30, 31]

• In Theorem 4.3, we give a regularization result in the case of a weaker assumption for u, i.e.,
u ∈ C([0,T ]; L2(Ω)). This is one of the first results obtained in this case and was not considered in
[30,31]. In those papers, to investigate the error, the exact solution is assumed in a Gevrey space,
which limits the number of functions than if one considered the function space C([0,T ]; L2(Ω)).
• In [30,31], the source functions must satisfy a global lipschitz condition. However, in our article,

we deal with a fairly broad function class, consisting of the local Lipschitz function class and
some local non-Lipschitz function class (see Section 6).
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