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Abstract: In this paper, We are interested in studying the backward in time problem for nonlinear
parabolic equation with time and space independent coefficients. The main purpose of this paper is
to study the problem of determining the initial condition of nonlinear parabolic equations from noisy
observations of the final condition. The final data are noisy by the process involving Gaussian white
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1. Introduction

The forward problem for parabolic equations is finding the distribution at a later time when we know
the initial distribution. In geophysical exploration, one is often faced with the problem of determining
the temperature distribution in the object or any part of the Earth at a time 7, > 0 from temperature
measurements at a time #; > #,. This is the backward in time parabolic problem. Backward parabolic
problems arises in several practical areas such as image processing, mathematical finance, and physics
(see [2,3]). Let T be a positive number and Q be an open, bounded and connected domain in R¢,d > 1
with a smooth boundary dQ. In this paper, we consider the question of finding the function u(x, ?),
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(x,1) € Q% [0, T], satisfying the nonlinear problem

u, — V(a(x, t)Vu) = F(x,t,u(x, 1), (x,1)eQx(0,T),
Ulgo =0, 1te€(0,7), (L.1)
u(x,T)=gx), x1eQx(O,T),

where the functions a(x, ), g(x) are given and the source function F' will be given later. Here the
coefficient a(x, ) is a C' smooth function and 0 < 7 < a(x,t) < M for all (x,1) € Q x (0, T) for some
finite constants m, M. The problem is well-known to be ill-posed in the sense of Hadamard. Hence,
a solution corresponding to the data does not always exist, and in the case of existence, it does not
depend continuously on the given data. In fact, from small noise contaminated physical measurements,
the corresponding solutions will have large errors. Hence, one has to resort to a regularization. In
the simple case of deterministic noise, Problem (1.1) with @ = 1 and F = 0 was studied by many
authors [4-6]. However, in the case of random noise, the analysis of regularization methods is still
limited. The problem is to determine the initial temperature function f given a noisy version of the
temperature distribution g at time T

g (x) = g(x) + 6€(x) (1.2)

where ¢ > 0 is the amplitude of the noise and ¢ is a Gaussian white noise. In practice, we only observe
some finite errors as follows

(6.0 = o) +5(60). =TR =123 1

where the natural number N is the number of steps of discrete observations and ¢; is defined in sec-
tion 2. The main goal is to find an approximate solution uy(0) for u(0) and then investigate the rate of
convergence E|[uy(0)—u(0)||, which is called the mean integrated square error (MISE). Here E denotes
the expectation w.r.t. the distribution of the data in the model (1.2).

There are two main approaches to considering inverse problem for noise modeling. The first ap-
proach is based on a formal technique if one is assuming that the noise is definite and small. The
second approach is based on a statistical point of view and in this approach one does not need to as-
sume smalll levels of noise. We consider in this paper a statistical point of view for the backward
parabolic equation. Our aim is to reconstruct the initial function from the disturbance measurements of
the final values in a statistical inverse problem framework. There are many different types of random
noise, but we are interested in Gaussian noise here. The model (1.2) and (1.3) were considered in
some recent papers; see [7—11]. In signal processing, Gaussian white noise is a random signal of equal
intensity at different frequencies, giving it a constant power spectral density and this term is used in
physics, acoustic engineering, telecommunications and statistical forecasting.

The inverse problem with random noise has a long history. The simple case of (1.1) is the homoge-
neous linear parabolic equation of finding the initial data u, := u(x, 0) that satisfies

u—Au=0, (x,neQx(0,7),
ulgo =0, r€(0,7), (1.4)
ux, T)=gx), (x1)eQx(,T).

This equation is a special form of statistical inverse problems and it can be transformed by a linear

operator with random noise
g = Kug + ’noise”, (1.5)
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where K is a bounded linear operator that does not have a continuous inverse. Fomula (1.5) is inter-
preted as Ku, deviated from function g by a random error.

Problem (1.4) was studied by well-known methods including spectral cut-off (or called truncation

method) [7,9, 12, 13], the Tiknonov method [14], iterative regularization methods [15], the Bayes
estimation method [16, 17], and the Lavrentiev regularization method [18]. In some parts of these
works, the authors show that the error E|fuy(0)—u(0)|| tend to zero when N is suitably chosen according
to the value of 6 and 6 — 0. For more details, we refer the reader to [19].
To the best of our knowledge, there are no results for the backward problem for nonlinear parabolic
equations with Gaussian white noise. There are two types of difficulty in solving our problem. The
first difficulty occurs because the problem is nonlinear and nonlinear problems with random noise is
more difficult since one cannot apply well known methods. The second is the random noise data, which
makes the problem computationally complex. The problem of computation with random data requires
some knowledge of the stochastic process,so one has to consider the expectation.

Very recently, in [20], the authors studied the discrete random model for backward nonlinear
parabolic problems. However, the problem considered in [20] is in a rectangular domain which is
limited in practice. The present paper uses another random model and also gives approximation of the
solution in the case of more general bounded and smooth domains Q. Our task in this paper is to show
that the expectation between the solution and the approximate solution converges to zero when N tends
to infinity.

This paper is organized as follows. In section 2, we give a couple of preliminary results. In section 3,
we give an explanation for ill-posedness of the problem. To help the reader, we divide the problem into
three cases under various assumptions on the coefficient a, and the source function F.

Case 1: a := a(x, t) is a constant and F is a globally Lipschitz function. In section 4, we will study this
case and give convergence rates in L? and H” norms for p > 0. The method here is the well-known
spectral method. The main idea is to approximate the final data g by the approximate data and use this
function to establish a regularized problem by the truncation method.

Case 2: a := a(x,t) depends on x and ¢ and F is a locally Lipschitz function. This problem is more
difficult. In most practical problems, the function F is often a locally Lipschitz function. The difficulty
here is in the fact that the solution cannot be transformed into a Fourier series and therefore, we cannot
apply well-known methods to find an approximate solution. In Section 5, we will study a new form
of the quasi-reversibility method to construct a regularized solution and obtain the convergence rate.
Our method is new and very different than the method of Lattes and Lions [21]. We approximate the
locally Lipschitz function by a sequence of globally Lipschitz functions and use some new techniques
to obtain the convergence rate.

Case 3 Various assumptions on F. In practice there are many functions that are not locally Lipschitz.
Hence our analysis in section 4 cannot applied in section 6. Our method in section 6 is also the quasi-
reversibility method and is very similar to the method in section 4. However in section 6, we do not
approximate F' as we do in section 4. This leads to a convergence rate that is better than the one in
section 4. One difficulty that occurs in this section is showing the existence and uniqueness of the
regularized solution. To prove the existence of the regularized solution, we do not follow previously
mentioned methods. Instead, we use the Faedo — Galerkin method, and the compactness method
introduced by Lions [22]. To the best of our knowledge, this is the first result where F' is not necessarily
a locally Lipschitz function. Finally, in section 7, we give some specific equations which can be applied
by our method.
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2. Preliminaries

To give some details on this random model (1.2), we give the following definitions (See [12, 19]):

Definition 2.1. Let H be a Hilbert space. Let g,gs € H satisfy (1.2). We understand the equal
relationship in fomula

g5 (x) = g(x) + 0&(x)

as follows:
85Xy =&Xx)+0(&Ex), YxeH, (2.1)

here & is the amplitude of the noise. We also assume that ¢ is a zero-mean Gaussian random process
indexed by H on a probability space. (¢, x) ~ N(0, ||)(||§{). Moreover, given x, x> € H then

E((€.x1) (€ x2) ) = B (x1, xa) - (2.2)

Definition 2.2. The stochastic error is a Hilbert-space process, i.e., a bounded linear operator ¢ :
H — L*(Q, A, P) where (Q, A, P) is the underlying probability space and L*(.,.) is the space of all
square integrable measurable functions.

Let us recall that the eigenvalue problem

{—Aqﬁ J(X) = ;9,(x), x€Q, (2.3)

$i(x) =0, x€0Q,

admits a family of eigenvalues 0 < A4; < 1, < A3 < ... < 4; < ... and eigenfunctions {¢;} and 1; — oo
as j — oo; see page 335 in [23].
Next, we introduce the abstract Gevrey class of functions of index o > 0, see, e.g., [24], defined by

W, = {v eL>(Q): Z &2 |<v, cbj()c)>Lz(Q)|2 < oo},

j=1
which is a Hilbert space equipped with the inner product

Vi, V2)qy, = <e"ﬂv1,e‘rmv >L2(Q), for all v{,v, € W,;

. . . (o] . 2
its corresponding norm is ||v|l4y, = \/ijl ez‘”.f|<v, ¢J>L2(Q)| < 0.
3. The ill-posedness of the nonlinear parabolic equation with random noise

The ill-posedness of the backward heat equation is well known and has appeared in many previous
articles. However, in the random case, we need to give an example to illustrate the ill-posedness. From
the appearance of the expected component, the evaluation of the nonconformity of the random model
is much more complicated than the deterministic model. Therefore, we have to choose a simple case
to find a suitable example. In this section, for a special case of Eq (1.1), we show that the nonlinear
parabolic equation with random noise is ill-posed in the sense of Hadamard.

Theorem 3.1. Problem (1.1) is ill-posed in the special case when a = 1,Q = (0, m).
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Proof. Let Q = (0,7) and a(x, f) = 1, Then Ax = N2. Let us consider the following parabolic equation

OVsNe)
ot
Vsnw)(0,1) = Vsne(m, 1) =0

V&,N(&)(X, T)= G5,N(5)(x)’

— AVsne) () = Fo(Vsne)(x, 1), 0<t<T,x e (0,m)

where Fj is

Fo(v(x)) = i

Jj=1

V (]5]()6) ¢j(x)

for any v € L*(Q), and ¢;(x) = \/g sin(jx). Let us choose Gsns) € L2(Q) such that

N(9)

Gane(®) = D (25(x), ,(0) ¢(x)

J=1

where g; is defined by

(85.0;)=0(€.0;), j=TN={jeN,1<j<N}

By the usual MISE decomposition which involves a variance term and a bias term, we get

N(5) N(©)
ElGano I = E( D (Gonan ) ) = FE( D €) = *N&).
J=1 j=1

The solution of Problem (3.1) is given by the Fourier series (see [29])

[e9)

T
Vone)(x, 1) = Z [e(T_Mj <G6,N(6)’ ¢j> - f eSUF(Vsne)(5)), ¢ j>ds] b;.

=1

We show that Problem (3.6) has unique solution V) € C([0, T']; L*(Q)). Let us consider

(9] (9]

T
Z (T-0)4; GdN((s), ¢j> - Z [f e(s_t)/lj<Fo(V(S)),¢j>dS] ¢

=1 j=1

For any v, v, € C([0, T1]; L*(Q)), using Holder inequality, we have for all ¢t € [0, T']

(9

T 2
1DV, (1) = Qa2 = Z [f eUU(Fo(vi(s)) —Fo(Vz(S))’¢j>dS]

j=1

© AT
<7y f PO (Fo(v1(5)) = Fo(va(s)), 6 )ds
=1t

T <« T .
= _4T2 Z f eZ(S—l‘—T)/l/<vl (S) _ Vz(S), ¢J>2ds
Jj t

1
_T Z f (V](S) - VZ(S) ¢j>2ds < _”Vl v2||é([O,T];L2(Q))'

3.1

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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Hence, we obtain that

1
1PV — Doz < §||V1 = Wlleqo.r: 2@y

(3.9)

Thus @ is a contraction. Using the contraction principle and we conclude that the equation ®(w) = w
has a unique solution V) € C([0, T1; L*(Q)). Using the inequality a® + b* > 3(a —b)*, a,b € R, we

have the following estimate

2

@) %HZ - )] G6N<6> ¢1>¢1
j=1

I

- H (f SOUCE(Vane)(5))s ¢j>ds)¢j
j=1 W

\Y
H N(©) LX(Q)

Q)

143

First, using Holder’s inequality, we get

o 2
L < Z (f e(s_[)ﬂj<FO(V6,N(6)(S))a¢j>ds)
j=1 Wi

00 T
<T Z f e U(F(Vsne)(9), ¢;) dss

T

We have the lower bound for /;:

(o)

El, = % Z K <G6,N(6)’ ¢j>2 =

=1
Combining (3.10), (3.11), (3.12), and we obtain

1 —
1=

~.
I
—_

2 1
_ _ 2 Z(T—t)/lN((j)

By taking supremum of both sides on [0, T'], we get

52X T-DANe) — 2 52T NG — % 52 eerZ((s)_

2
E||V5N(5)||C(0T] L2(Q)) = gOS:LpT 3
Choosing N := N(9) = ,/% ln(%), we obtain
E|G FN(G) = 8% 1|~ In(+) = 0, when & — 0
Il 5N(5)||L2(Q) = 0°N(9) = T n(g) — 0, when 6 — 0,

2 2
E||V5N(5)||C([0 @y 2 552 A2TNG) =<

and
— 400, when 6 — 0.

From (3.15) and (3.16), we can conclude that Problem (1.1) is ill-posed.

T [ee)
2 1 2
2(s—t-T)A;
< 472 Z e / <V6,N((5)(t)’ ¢J> ds < Z||V6’N(6)||C([0,T];L2(Q))'
t j:1

52X T-04 > l 522 T=DNw)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

O
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4. Regularization result with constant coefficient and globally Lipschitz source function

In this section, we consider the question of finding the function u(x,?), (x,7) € Q x [0,T], that
satisfies the problem
u; — Au = F(x’ f, u(-x’ t))’ (x’ t) € QX (O’ T)’

Ugo =0, re€(0,7), “4.1)
ulx,T)=gx), xeQ.

In this section, we assume there exists a constant K > 0 with
|F(x,t;u) — F(x,t;v)| < K |u — v,

where (x,1) € Qx [0,T] and u, v € R.

Lemma 4.1. Let Gsnes) € LX(Q) be such that

N(©)

Gsne) = Z <g§bs, o) j> b 4.2)

j=1

Assume that g € H?(Q). Then we have the following estimate

_ 1
El[Goi = 8lfq < PNG) + ——lglf o (4.3)
N(5)

for any y > 0. Here N depends on & and satisfies lims_,y N(6) = +oo and lims_y 6*°N(6) =0 .

Remark 4.1. Consider the right hand side of (4.3). In order for the right-hand side of (4.3) to converge

to zero we require limg_y 6°N(6) = 0 and the condition
1
50, 650, (4.4)
pi 4
N(@)

Since the fact that A, ~ k*/¢, we see that
2 4y
/lN)E(S) ~ (N(é)) 4,
and to verify the condition (4.4) we need the condition lims_,oN(0) = +o0 .

Proof. For the following proof, we consider the genuine model (1.3). By the usual MISE decomposi-
tion which involves a variance term and a bias term, we get

N(©0)

— . 2 2
EliGsne - 8l =B( D (e =2.0) )+ > (s.4))
j=1 7=N(6)+1
N(S) 5
=8EB( > &)+ > AT (g.0)) . (4.5)
Jj=1 J=N(0)+1
Since &; = (£,¢;) % N(0, 1), it follows that E&2 = 1, so
_ 1
EllGsne = &ll72q, < 6°N(6) + —,llgllrer- (4.6)
/lN((i)

O
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Using the truncation method, we give a regularized problem for Problem (1.1) as follows

0
EU(SN(& - Au(sN((s) = JaN(b-)F(X, f u(sN((s)(x, t))’ (-x’ t) € QX (Oa T),
Welin =0, 1€(0,7), (4.7)

W) (5 T) = Jony Gano (0, (x,1) € Q% (0,T),

where ans) is regularization parameter and J,,, is the following operator

Joovi= ) (v@)), forall ve L2(Q). (4.8)
/ljS(lN(5)

Our main result in this section is as follows

Theorem 4.1. Problem (4.7) has a unique solution u‘SN( 5 € C([0, T1; L*(Q)) which satisfies

T
TNCHERDY [e”"”f (oo 5) - f STY(F (g (5), 8,05 | 8. (4.9)
/ljS(lN((s) !
Assume that problem (1.1) has unique solution ua such that
- 2
DA (u(,0,4;) <A, 1e[0,T]. (4.10)
=1
Choose ax) such that
. . ekT(IN(,y) . KTa
limang) = +oo, lim — =0, lime"" "™ 4/N(6)o = 0. “4.11)
6—0 NS 6—0

Then the following estimate holds

2T(ZN(5)
5 2 2KX(T-1) ;-2 2 2T 28
Ellu(., 1) = (-, D72 < 267K 707200 | 52N(8)e* ™) + I8l + oy |- (4.12)
N(5)
.. 2 .
Remark 4.2. 1. From the theorem above, it is easy to see that E ||u§(5)(x, 1) —u(x, t)||L2 @ 8 of the
order
2tar 2 axg €N 28
- NS NS -
e N max(6PN(8)e™ ™M, ——, axh ) (4.13)
N(6)

2. Now, we give one example for the choice of N(6) which satisfies condition (4.11). Since Ax ~ N7,
see [25], we choose ay such that éTo = IN(@)|* for any 0 < a < %7. Then we have ang) =
7 10g(N(6)). The number N(9) is chosen as

1 ba+%
o)

—(ba+]7’)at

for 0 < b < 1. With N(6) chosen as above, E ||u5N(5)(x, 1 —u(x, t)”iz(g) is of the order (%)T
3. The existence and uniqueness of the solution of Eq (1.1) is an open problem, and we do not
investigate this problem here. The case considered in Theorem 3.1 gives the existence of the solution
of Problem (1.1) in a special case. The uniqueness of the backward parabolic problem has attracted
the attention of many authors (see, for example, [26-28]) and this is also a challenging open problem.
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Proof of Theorem 4.1. We divide the proof into a number of parts.

Part 1. Problem (4.7) has a unique solution u‘sN(é) € C([0,T]; L*(Q)). The proof is similar to [29] (see
Theorem 3.1, page 2975 [29]). Hence, we omit it here.

Part 2. Estimate the expectation of the error between the exact solution u and the regularized solution

u -
Let us consider the following integral equation

T
Vi () = Z [e“-’“f <g, ) j) -~ f eCTU(F (Vi 5)(9), & j>ds] ;. (4.14)
/1.,5(1/1\1(5) !
We have
= 2
085 1) = Vi o DIy <2 " 2T (G — 8,65
Aj<ay
2
+2 Z [f (s=1)4; F (uN(é))(s) F; (VN((S))(S)) ]
A; <‘1N(6)
< 220NN Z <G6,N(6) -8 ¢j>
AjSane)
T 2
+ 2T - f)f eI Z (Fj(“(SN((s))(S) - Fj(V(SN((S))(S)) ds
4 Aj<ane)
< 26T |Gsnes) — 8||iz(9)
T
+2K°T f TIN5 (> ) = Vo) (s DNz d5- (4.15)
t

Taking the expectation of both sides of the last inequality, we get
ElluX (-, 1) = Vo) (> D720y < 2627 "™ EGans) = &ll7aq)
+2K°T ftT 2ETNE Ui (- 8) = Vi) (- S)||L2(Q) (4.16)
Multiplying both sides with e?N, we obtain

2 5 6 ) 2 2T anes Val 2
€ taN(b)E”uN S (-, t) - VN S5 ('a t)HLz Q < 2e QN(‘))E”G&N((S) - gHLz Q
(%) (6) Q) ()

T
+2K°T f e MNOEUR 5 (-5 8) = VG 7205 (4.17)
t

Applying Gronwall’s inequality, we get

2taNes 5 5 2 2Tang) ,2K*T(T— Val 2

e mN(D)E”uN((s)(w 1) — VN((S)(-, t)”Lz(Q) < 2e7 MNOe ( I)E”G(S,N(é) - g”LZ(Q)' (4.18)
Hence, using Lemma 4.1, we deduce that
2K2T(T—t) 2(T—
E”uN((S)( t) VN((S)( t)”LZ(Q) 2e ( t) ( t)aN(D)E”G(S N(©) — g”LZ(Q)
) 1
< 262K T(T—l‘)eZ(T—l‘)(l/N((S)(62N(6) + T”g”HZV) (419)
/lN((S)
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Now, we continue to estimate |u(., 7) — V6N( 5)(" Dll2)- Indeed, using Holder’s inequality and globally
Lipschitz property of F, we get

||u(a t) VN((S)( t)”LZ(Q)

<2 ) [ f COU(Fj(u)(s) = Fj(¥3p))(8))ds

AjLane)

T
=28 -2tA; 328 210, 2 2 2(s-1) 5 2
<2 T PP (u), ¢;) +2K j: M, 5) = Vs (o s

A j>aN

2

+2 > (u(), ¢;)

A j>aN

T
2
2ﬂ —2t0t1v Z/lzﬂ 24 u(t), ¢J> +2K2f 2(s— I)LVN(J)”u( S) VN(5)( S)”LZ(Q)
t

above, we have used the mild solution of u as follows

[e9)

T
u(x, 1) = Z [e(T_’“f <g, ¢j> - f e“UF(u(s)), (/)j)a’s] b;.

J=1

Multiplying both sides with e?*®_ we obtain

) s ) 28 214, 2
N lu (., 1) = Vo Dllzq) < gy Z e u(., t)’¢f>

T
+2K* f, ™ [u(., 8) = Vi) (> 725 (4.20)
Gronwall’s inequality implies that
XN, 1) = Vs (5 Dl < < KT ;Iff:)A’ 4.21)

This together with the estimate (4.19) leads to

§ 2 S ) 2 8 2
E”u('a t) - uN((S)(" t)||L2(Q) < 2E||uN( t) - VN((S)( t)”LZ(Q) + 2”“( t) - VN((S)(" t)“LZ(Q)

< 20N (2N(6) + —||g||sz) S
N(9)
(4.22)

where A’ is given in Eq (4.10). This completes our proof. O

The next theorem provides an error estimate in the Sobolev space H”(€2) which is equipped with a
norm defined by

g = > A7(5.0,00) 423)
=1

To estimate the error in H” norm, we need a stronger assumption of the solution u.
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Theorem 4.2. Assume that problem (1.1) has unique solution u such that

SN (u(,0,¢,) <A”, 1€[0,T]. (4.24)

.Mg

Il
—

J
for any r > 0. Choose ax) such that

ekTaN(zS)

. _ . — . kT ane) —
}gl& ane) = 00, 151_{% 7 . 0, };_r}l(}e N(@©) =0 (4.25)
Then the following estimate holds
El[u} (.. ) = u(, Dll3nq (4.26)
) e2Ta/N(5)
< 22 TT=0 =208 gy 5[ [26°N(S)e? N0 + 2 55— lgllr + A”e 2N
N()
+ A”lane)|” exp (= 2(t + Paxe)). (4.27)

Proof. First, we have

El[ug 5,(» 1) = Jan UG Do) = E[ Z A7 (ug@(x, 1) —u(x, 1), ¢j(x)>2]

/ljS(l’N((j)

< |aN@|"E( > (e - utx, t),¢j<x>)2J

Aj<ane)

Next, we continue to estimate Ellug( 5)(" H—u(., t)lli2 @ with assumption (4.24). Recall V5N( 5 from (4.14).

The expectation of the error between ug( 5 and Vg( 5 is given in the estimate (4.19) as

Tt T e 1
EJu 5, (1) = Vo) (s Dz q) < 267707080 (FN(S) + ——lgll )- (4.29)
N(©S)

We only need to estimate |ju(.,?) — v‘sN(é)(., Dll;2)- Indeed, using Holder’s inequality and the globally
Lipschitz property of F, we get

) 2
”u(’ t) - VN((S)(-’ t)”LZ(Q)

T 2
<2 Z <u(t),¢j>2 +2 Z [ f e<s—t>xj(Fj(u)(s) -F j(VdN((;))(S))dS]

Aj>ay Aj<ane)
T
2 -
<2 ) e (u(r), ¢) + 2K°T f e 2070 lu(., ) = Vi) (o S22 s
/lj>(lN !
x© T
2
< e Z e <“(f)’ ¢j> +2K°T f IO, 5) = Vi) (> 9720, ds.
j=1 !

Multiplying both sides with e?*®_ we obtain

2 0 2 0 =2 5
e la(., 1) - VN((s)(-,t)”Lz(Q) < A%e”
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T
+2K°T ft XN u(., 8) = Vo) (> Iz (4.30)

Gronwall’s inequality implies that
S NC 1) = Vo Dy < X TT0A7, “31)
This last estimate together with the estimate (4.29) leads to

§ 2
E||u(~9 t) - uN((S)(-’ t)”LZ(Q)
é 8 2 ) 2
< 2E||“N('9 t) - VN(&)(’? t)HLZ(Q) + 2”“(’ t) - VN((S)('a t)”LZ(Q)

2 1 2
<4 eZK T(T-1) eZ(T—t)(xN(5) ( 62N( 5) + - I g”sz) +2 eZK T(T—-1) A” e—sz e—zraNLy
A

N(©)
5 e2T(IN(§)
— 2€2K T(T—f)e—ZWN 262N(5)62T<1N(5) +2 > ”g”sz + A”e—ZraNﬁ ) (432)
N(©S)
On the other hand, consider the function
GE&) =¢re™ D>0. (4.33)

The derivative of G is G'(£) = &P~ 'e™P%(p — D€). Hence we know that G is strictly decreasing when
D¢ > p. Since lims_,p angy = +o0o, we see that if ¢ is small enough then 2rane > p. Put D =
2(t + 1), & = ang) into (4.33), and we obtain for A; > an)

G(/lj) = /l? exp( - 2(l + 7‘)/1]') < G(QN(5)) = |QN(5)|p exp( - Z(I + F)CZN(5)).

The latter equality leads to

10D = T U My = Y A (01,6,

Aj>ane)
= > Wexp( - 20+ 0 exp (20 + DA, (ux. 0, ¢,0))
Aj>ane)
<lanol exp (=20 + Nanw) . exp (2 +Na,) {ute. 1.6,
Aj>ane)
< Alane” exp (= 20t + Paxe) (4.34)

where we use assumption (4.24) for the last inequality. Combining (4.28), (4.32) and (4.34), and we
deduce that

Py 2
E”uN((s)(-’ Z‘) - ll(., t)”HI’(Q)
6 2 2
< Elluds) (- 1) = Jane UG DMy + 100, ) = Jayo 0 Dl

2T(IN(5)
2
< 22T e Ny [26°N(6)e* ™ + 2——— gl + A”e™ N
N(©9)
+ A”lan)|” exp (= 2t + M) (4.35)
which completes the proof. O
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Remark 4.3. In the above Theorem, to obtain the error estimate, we require strong assumptions on
u. This is a limitation of Theorem 4.1, because there are only certain types of functions u satisfying
these conditions. To remove this limitation, we need to find a new estimator. The convergence rate
in the case of weak assumptions of u is a difficult problem. Indeed, in the next Theorem, we give a
regularization result in the case of a weaker assumption for u, i.e., u € C([0, T]; L*(Q)). This is one of
the first results in this case.

4.1. The second regularized solution and the error estimate

To help the reader, we describe our analysis and methods in this subsection. To obtain the approx-
imate solution when the solution u is in C([0, T']; L*(2)), we don’t use a regularized solution as in
Theorem 4.1. Since 55,N(5) is an approximation of G, we know that it is an observed data. It can also be
called the "input data”. Recall that K is the Lipschitz constant of . We divide our results in Theorem
4.3 into two cases:

Case 1: KT < 1. By the way the input data Eé,N(é) is defined, we construct a new regularized solution.
Then we obtain the error between the new regularized solution and the sought solution u.

Case 2: KT > 1. In this case, the construction of the regularized solution is more difficult. To apply
the known result in Case 1, we need to divide [0, 7'] into a collection of sub intervals [T}, T}-] where
K(T);,—T,) < 1. From the given input data 6 and appropriate parameter regularization £, we set the out-
put function Yéh’Th/ (f)(x, 1) satisfies the nonlinear integral equation (4.37). The existence of Y‘;h,Th, N
in C([T), Ty 1; L*(Q)) holds if K(T), —T},) < 1. From (4.56), we have an important result: If £ is suitably
chosen and 6 is an approximate function of u(x, 7)) then the function Yéh’Th, (f)(x, 1) is an approximate
solution of the sought solution « in all intervals [T}, T)/] . Let s be a positive integer such that s > KT.
Define a sequence of points {7}}, [ =0, 1,...2s such that

To=0<T,=hT <Ty=2hT < ..<Tr,=2shT =T. (4.36)

where h = % In all the intervals [T}, T;1], i = 0,2s — 1, we construct different regularized solutions
and combine them into a final regularized solution. More details are as follows:

e In the first step, to construct an approximate solution on [7,,_;, T], we use the input data 65’N(5)

and parameter regularization >, to establish a function Y{TZZLZ T, (G(s’N((s)) (x,1). Then we define a
regularized solution Us(x, 1) = Y& (55,1\1(5)) (x,n)forall t € [T5,_1, T].

Tr5-2,T2s
e In the second step, to construct an approximate solution on [75, ,, T»,_1], we use the input data
U, (x, Tr5_1) (which is computed in the first step) and parameter regularization {,,_; to establish a

function Y‘;Z; T (G&N(é)) (x, 1). Then we define a regularized solution

Us(x, 1) = Y2 o (Us(x, Tay1)) (x,0)

T25-3,T25-1

forall # € [T, T25-1]-
e We continue similarly for the remaining steps. Finally, we obtain the regularized solution in (4.61)
and (4.62).

Now, we consider the following lemma.

Lemma 4.2. Let0 < T, < Ty < T. For f € C([Ty, Tw1; L*(Q)), we consider the following nonlinear
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integral equation

Y5, 7, (), 1)

Ty
- Z [e(n/—tm;( f, ¢j> - f eTOUR(YS, 1, (N, ¢j>d7-]¢j

AL

3

/lj>f

(4.37)

f e TVFKF(YS, 1 (@), ¢j>dT]¢f(x)'
T,

h

for £ > 0. Assume that K(T), — T,) < 1. Then Problem (4.37) has a unique solution Y§ 7, (f) €
C([Ty, Ty 1; L*(Q)). Moreover, we have the following estimate

EHY?]I,T/I/ (f)(’ t) - u(" t)”iZ(Q)

2(1+L)e2® S
< ISR —a(., Ty
= T-(1+ qKXTy —T,) (e |7 =uc.m

(4.38)
)

2
2
2©) + ”u(a Th')”L2(Q)

forallt € [Ty, Ty and qq satisfies 0 < g < m - 1.

Proof. Part A. We will begin by showing that Eq (4.37) has a unique solution in C([T}, T ; L*(2)).

Our analysis here is similar to the one in [29]. Define on C([T}, Ty 1; L*(Q)) the following Bielecki
norm

Vil = sup "X ()], (4.39)
Ty <t<Ty

for all v € C([Ty, Ty ]; L*(Q)). It is easy to check that ||.]|; is a norm of C([T}, Ty ]; L*(Q)). Now, let f
be in L*(€2). We want to show that the map given by

;<L !

2

/lj>§

T,
Tw(H))(x, 1) = Z [e(m —z)/lj< 1, ¢,j> - f ETOUFW(F)(T), ¢j)df]¢j

(4.40)

f e“f“f<F(w<f>(r),¢j>df]¢,~<x>,

Ty

forw(f) € C([Ty, Ty 1; L*()), is a contraction on C([T}, T}, |; L*(Q)) with the condition K(T;, —T;) < 1.
Indeed, we shall prove that, for every wi, w, € C([T), Ti ]; L*(Q)),

[Zw1(H) = T2 ()|, < KT = Ti) w1 (f) = wa( Pl - (4.41)

First, by using the Holder inequality and the global Lipschitz property of F, we have the following
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estimates for all # € [T},, Tj, ], namely

2

Ty
Z( f e“‘””‘-"[Fj(Wl(f))(T)—Fj(Wz(f))(T)]dT)
=g Nt

Th/
< (Ty — 1) Z f
;<L !

Ty
<(Tw-0) f S F (i (@) = Fiw) ()] dr

;<L

Ty
< KX Ty - 1) f TN wi(N)(T) = wa(H(@)IPdT

< e 2TERATy =1 sup Ty ()(T) = wa (NI

ThSTSTh/

eI Fm () — Fw (N[ dr

= ¢ 2-TER2(T, — t)2||w1(f) - Wz(f)”%-

Noting that if 4; > ¢ then e < ™ for T) < 7 < 1, it follows that

" 2
Z (f e(-r—t)/ljj[Fj(wl(f))(T) - Fj(wz(f))(T)]dT)
T

/lj>{
A
S(t—Th)Zf
A;>L Ty

<@=Tp) ) f 28| F o (F)(@) = Fiwa()()] dr

A;>¢
<KXt —T)) f T w1 (f)(T) = wa(NDIPdT
Th

< e TRt = T)” sup 7wy ()(1) — wa(H@IP

0<7<T

= 2T T, 2w () = wa I

From the definition of 7 in (4.40), we have

T (M) 0 = Twa()(x, 1)
Ty
= Z( f TN Fim (F)(T) F(Wz(f))(f)]dT)rﬁj(X)

AL

[ Fywi (M) - Fp<Wz<f>><T>H2dT

+ Z ( f DU F w1 ())(@) = Fjwa(f ))(T)]dT)‘pf(x)'

A;>L

Combining (4.42), (4.42), (4.42) and using the inequality (a + b)* < (1 +6y)a® + (1 + 9—10) b? for any real
numbers a, b and 6y > 0, we get the following estimate for all r € (T}, T})

IZwi () ) — Zwa(H)C DI
< ePETERE(E = T2 (1 + 0o)lwi (f) = wa (O

4 o 2T (1 + Hl) KX(Tyw = t)*lwi(f) = wa(HII}-
0
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Ty

By choosing 6y = ~.=, we obtain for all 7 € (T}, Tyy)

TINL W (G D) = TG OIP < KX T = Ti)*Iwi (f) = wa(HIIF-

On the other hand, letting t = T}, in (4.42), we get

T TIENT Wi () Tw) = T2 (NG Tl < K2(Tw = T lwa (f) = wa (I

By letting t = T}, in (4.42), we obtain
IZwi (N Tw) = TN TP < K2 (T = T lwi () = wa(HIIT-
Combining (4.42), (4.43) and (4.44), we deduce that for all 7, <t < T},

STIENT(wi ()@ = Zwo (NI < K (T = Ti)llwi () = wa(Hll,

(4.42)

(4.43)

(4.44)

(4.45)

which leads to (4.41). Since K(T,, — T;,) < 1, it follows that 7 is a well-defined contraction on
C([Tn, Ti1; L* (). By the Banach fixed point theorem, it therefore has a unique fixed point, i.e., the

equation 7 (w) = w has a unique solution which we denote by Y: (f) € C([Ty, Ty 1; LH()).

Ty, Ty

Part B. The error estimate E||Y§h’Th, (NG, ) —ua(., t)||%2( x

By a similar technique as in the proof of Theorem 4.1, we obtain

T,

hl
u;(Ty) = T (T),) — f TN (a)(7)d.

Ty
This leads to
Ty
e—(t—Th)/ljuj(Th) — e(Th/ N4 [uj(Th') — f e(S—Th')ﬂij(u)(T)dT].
Ty

The last equality implies that after some simple transformation

Ty
Z e(T,,/—t)/lj |:uj(Th’) _ f e(s—Th')ﬂij(u)(T)dT]qﬁj(X)

/1j>{

:Z[

/lj>§

f e(T—thFj(u)(T)dT]‘ﬁj(x) + ¢TI (T)8 ().

T /1j>§
Using the last equality and (4.47), we get

Ty
ue, 1) = > [T Vuy(Ty) - f OVF j(u)(r)d |;(x)

;<L

3

<L

f e(T—fMjFj(u)(T)dT]‘/’j(x) + Z eI (T) ().

Th A;>¢

We have

Yo, (D0 —uCen) = D [ (f; = uiTi) Jo0

AL

(4.46)

(4.47)

(4.48)

(4.49)
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T,
_ Z [ f eu—zw( F; (Yéﬂhr ( f)) (t) — Fj(u)(r))dr]qu(x)

;<L
+
;>4

_ Z e—(t—Th)ﬂjuj(Th)(pj( x). (4.50)

/1j>§

f ST j( F, (Yi " f)) (1)—F j(u)(T))dT] ¢;(x)

T

This implies that
(Y57, (D0 = 0.0,0)
Ty
< (- uy(T)| + fT ¢NFS(YE, (D) (@) - Fiw)@)dr

+e e uy(T,)|. (4.51)

Hence, using Parseval’s identity and the inequality

1 1
(ci+c+c3)° < 2(1 + —)c%+2(1 + —)C§+(1 +q0)¢3
qo0 q0

for any real numbers cy, ¢3, c3 and gy > 0 we have

EIIYT} 1, (N D —ul, t)”LZ(Q)

1 (9
<2(1+—|E| ) T
1+ 3)e(3:

j=1

+(1+qo)E ((Th, T)) Z f 2|
+2 (1 + i) Z e_z(f_Th)év ||uj(Th)||2

40/ =

1) 2Ty t)gEHf u., h)
q0

E[ (¥, (1.0 - a0 ¢j<x>>12]
=1

(s~ wi)|

o0, (D)@~ F (u)(r)jdr]

$2(1+

L2(Q)

1
+2(1+ ) 2T, Tl g
90

2
) dr
2(Q)

Multiplying both sides of the last inequality by e**~7"¢ and using the global Lipschitz property of F,
we obtain

Ty
F @ -1 [ ([P (¥,0)
Ty

o200 Th)ZE”YTI 7, (N, —u(, l)||iz(g)

|
<2 (1 + —) e2<Th’-Th>4EH f—u(,Ty)
q0

2
2©) 2(1 + _) ||u( Th)”Lz(Q)
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Ty

l;
+(L+ 0K Ty ~T) | ETTXENYS (A0 s) = ul, )l ds. (4.52)

Ty

Since YihaTh’ (f), w e C([Ty, T ]; L*(Q)) we obtain that the function

2(t—T, 2
el h)(E“Y%’Th/ (NC D =a(, Dl

is continuous on [T}, T),]. Therefore, the following is a finite positive constant

A= sup STVENYG . (NGD =D,

Tp<t<Ty

This implies that

T U\ oaay-mc 2 1 2
A< 2(1 + —)e E|f - u. 7|, +2(1+ e LSS

q90
+ (1 + qo)K*(Tyy — TH)*A (4.53)
Hence
— 1 2
(1= (1 + qo)KX(Ty - T)*)A < 2 (1 + —) e2<Th'—Th>M<4“>EH f—u(,Ty)
q0 L2(Q)
1
+2 (1 + %) I, Tl - (4.54)

Since by assumption 0 < gy < m — 1, it follows that the term on the left hand-side that is in
parenthesis is positive. This implies that for all € [T}, T}]

ez(t_T"){EHY%,,Th/ (N0 = ul, DI

L2(Q)
2
21+ L) e T £~ u. Th/)HLz(Q) +2(1+ L) G TR,
< : 4.55
1= (1 + qo)K*(Tyy — Ty)? (3:9)
Hence for all ¢ € [T}, T)y] we conclude that
EIYS, - ()0 0) = uC, Dl

< 2(1+3) (e2<Th'-Th>4EH FouC, Tl +InG TR Jexmre. (456

- 1 — (1 + qO)KZ(Th' _ Th)z > Lh LZ(Q.) s dp L2(Q) . .
O

Our main result in this subsection is as follows.
Theorem 4.3. Let g be as in Theorem 4.1. Assume that u is the unique solution of Problem (1.1).

(a) Assume that KT < 1, where K is the Lipschitz constant of F. A new regularized solution is given
as follows

T
Us(x, 1) = Z [e(T_M"as,N((S)— f €<T_t)ﬂij(U&)(T)d7]¢j(x)

Aj<L(6) !

(4.57)
+

[ f T DA Fj(’U\(;)(T)dT](Pj(X)-
4>58) L0
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Let us choose {(6) such that

kT4
lim () = +co, lim—— =0, lime"“® {/N(5)6 = 0.
0—0 — NS 0—0
Ifue C(0,T]; L*(Q)) then as |6| — 0
E|Us(., ) — u(., t)lliz(g) is of order e ¢,

(b) Suppose that KT > 1 and let us assume that u € C([0, T1; L*(Q)). Let

s 1
G400 = et los (6(6))

s 1 —
Gi0) : = iy log (5(5)), k=2,2s.

We construct a regularized solution Us as follows

Us(x, ) = Y30 (Us(e, Tog-d)) (6 0), i Tayiog St<Toesy i=0,25-2

T5-i—2,T25-i

and
Us(e D) = Yo O (Usx, TO)x 1), if 0< 1< T,

where Y%d)jhz (0)(x, 1) is defined in (4.37). Then we have
o lfte [Ty, Tis1)andk =1,2s — 1 then
i
E|Us(.0) = u(. DIy,  is of order  (£(6))™.

o Ift€[0,T] then

E|lUs(., 1) — u(., )| is of order (5(5))223%1.

L2(Q)

(4.58)

(4.59)

(4.60)

4.61)

(4.62)

(4.63)

(4.64)

Remark 4.4. In [29], we only need the regularization result for 0 < KT < 1. Our Theorem 4.3 extends

this result for any K > 0.

Proof of part (a) of Theorem 4.3. By setting 7, =0and 7Ty =T f = E(W((g) then Yéﬂh, (f) given by
(4.37) in Lemma 4.2 is equal to Us given by (4.57). Then apply the result from (4.38). Since KT < 1,

applying Lemma 4.2 , we obtain

EUs(, 1) = u(, Dl
2(1 + l)

< q0
1= (1 + qo)K?T?

_ 2
(€2T§(6)EHG6,N(5) -8

2 —2tL(6
+lglf ) €24

L2(Q)
1 1
< 2(1 + %) 2TDO2N(S) + 4 2(1 + %) A2T-0E0) 1 gl
S T=( + qKT? 1= (1 +q)K°T? P

2(1+q—10)

+ ~204(6)
1— (1 + go)K2T?

2
||g||L2(Q)e
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This completes the proof of part (a).
Proof of part (b) of Theorem 4.3

By Theorem 3.1, we have E||Gsns) — gl @ < C&X(S). where C = 1 +|| gll2,,. We will estimate the error

for time variable in interval [T}, T.1] for [ = 0, 25s.
Case 1. Let s € [Ty, T]. Since {>,(6) = 7 log (é%), by Lemma 4.2 we get

— — 2
BN 1) = 0 D, = E[YES, Gano) (o0 —uCo)
2s2(1 + qlo) 2T25—Ta25-2) 25 (T~ 2 T D&25(0)
251 25-2)62s 25-271)62s
< TR+ ) [6 EllGsne) — g||Lz(Q)]€
2 1
N 2S (1 + q()) [||u( ]’v2 _2)”22 ]eZ(sz,z—t)QS((s) (465)
s2 - T2K*(1 + go)b 7 7P @
25 (1+ 1)

~ 2
2 T2K(1 + qo)(C + I 0 720 JECO)
= X(5. K. q0)(C + 12w 7120 JEO):
which we note that e2T2s270¢250) < p2(T25-2-T25-1)425(6) — £(0) and

2s? (1 + L)

q0

' 2 — T2K(1 + qo)

x(s, K, qo) = max 1 , then x(s, K, qo) > 1.

Case 2. Lett € [To;_5, Tos_1] . Since &r5_1(0) = 57 log (é%) , by Lemma 4.2 we get

E|Us(.,1) —u(., 1)l

L2(Q)
2

To5-3,T25-1

= E|[Y2 9 (Us To ) (0~ u(, )

LX(Q)
< X(5, K, q0) exp (2T 253 = D25-1(6)) exp (2T 251 = Tav-3)a1(8) JEINT5(., Tas1) = 0., Tasi g,

+ x(5, K. g0) exp (2Ts3 = 04251 (8))I0C., Toss) 2y,
_ 1
<x(s, K, QO)( x(s, K, QO)(C + ||ll||Lm(o,T;L2(Q))) + ||u||L°°(o,T;L2(Q)))(§(5)) ’
_ 1
<2¢°(s, K, QO)(C + ||11||L°°(0,T;L2(Q)))(§(5))2 ,
where we used the following result from (4.65):

_ 2
E”U(s(-, Tys-) =0, Tog ||

~ 2
o S K q0)(C 0l g 12 JECO).

Therefore, repeating the argument as in the above cases and using the induction method, we can prove
the following estimate

EUs(.. 1) = u(, )72 g

~ T
< (25 = B(5, K, g ™(C + Il o 712 )(€@) T

Electronic Research Archive Volume 30, Issue 4, 1374-1413.



1394

forallt € [Ty, Ti . ]Jand k = 1,25 — 1.
If r € [0, T], then by a similar technique as above, we obtain the error estimate

E|Us(., 1) = u(, )2

< s (s, Ko o) (C + 1l cy.7.1200) ) (€))

st
s=2

5. Regularization result with locally Lipschitz source

Section 4 addressed a problem in which F' is a global Lipschitz function. In this section we extend
the analysis to a locally Lipschitz function F. Results for the locally Lipschitz case are difficult. Here,
we have to find another regularization method to study the problem with a locally Lipschitz source.

Assume that a is noisy by the observation data a3™ : Q x [0, 7] — R as follows

ag™(x, 1) = a(x, 1) + Sy (t) (5.1)
where ¢ > 0 and ¢ € L*(0, T) such that

1¥llLo0.r) = sup ()] < M, (5.2)

0<t<T

where M > 0. In the case when « is not disturbed, we can use the method in the previous sections (the
case when a is not disturbed is simpler than the case a is noisy). If a is disturbed by random data, it is
difficult to use the old method and we need a new approach, as outlined below.

Assume that for each R > 0, there exists Kz > 0 such that

|F(x, t;u) — F(x, t;v)| < Kglu —v|, if max{|u|, |v|} < R, (5.3)
where (x,1) € Q x [0,T] and

{‘F(x, tu) — F(x,1;v)
Kg :=sup

smax{lul, V|} <R, u #v,(x,1) € Qx]O0, T]} < 400.
u-—v

We note that Ky is increasing and limg_,,., Kg = +00. Now, we outline our idea to construct a regular-
ization for problem (1.1). For all R > 0, we approximate F by F defined by

F(x,t;—R), w e (—o0,—R)
Fr(x, t;w) ;.= F(x, t;u), w e [-R, R] (5.4)
F(x, 1, R), w € (R, +00).

For each 6 > 0, we consider a parameter R(6) — +o0 as & — 0*. Let us denote the operator P = MA,
where M is a positive number such that M > agbs(x, t) for all (x,7) € Q x (0, T). Define the following
operator

0 _ 0
P,BN(é) =P+ QﬁN(a)’
where

1 (o)
QZN(D‘)V(X) -T Z In (1 +:3N(5)€M”j) (W), B (%)) 120 (%), (5.5)

J=1
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for any function v € L?>(Q). Here N(6) is defined in Lemma (4.1).

We introduce the main idea to solve problem (1.1) with a generalized case of source term defined

by (5.4), and we consider the problem:

0
du N(6)

ot

(3§bS(X, t)VlléN(é)) - QZN@ (uéN((s))(X, 1)

u(sN(é)lﬁQ = O’ re (0’ T)’
uw(x,T) = Gsno(®),  (x,1) € Qx(0,T),

= T, (5. 6,05 (5. D),  (6,1) € QX (0, T),

(5.6)

Here Eg,N((;)(x) is defined in Eq (4.2). Now, we introduce some Lemmas which will be useful for our

main results. First, we recall the abstract Gevrey class of functions of index o > 0, see, e.g.,

defined by

W, = {v €L*(Q): Z i (CEXCE Oo}’
n=1

which is a Hilbert space equipped with the inner product

Vi, Va)qy, = <e‘7 VA1, 7 VA for all vi,v, € W,;

2)

2
>L2(9)| < 0o,

and the corresponding norm is |[v|lqy,_ = \/ Do €2

Lemma 5.1. For Fg € L*(Q x [0, T] X R), we have

|FRr(x, t;u) — Fr(x, t;v)| < Kglu —v|, Y(x,1) € Qx[0,T], u,v eR.
Proof. See the proof of Lemma 2.4 in [35].
Lemma 5.2. 1. Let M, T > 0. For any v € ‘W yr(Q), we have

5 Brw)
Qs M) < —— T IVl ) -

2. Let Bne) < 1 = e MTY | For any v € L*(Q), we have

1
—=1In
L2(Q) T ( Bnes)

Proof. Using the inequality In(1 + a) < a, Ya > 0, we have

5, v )nvnu(m.

Z In? 1 +ﬁN(5)€ ) |<V’ ¢j>L2(Q)|2

HQM )

L2 (Q)

'8N<6> MT /3N
A Pxe
Z ’|<V ¢1>L2(Q)| = T2 H ”WMT'

Since By < 1 — e M we know that By + e M7

2 1 1 2
5 — 2 .
“PﬁN(ﬁ) (V) L2(Q) - T2 = ln (ﬁN((S) + e—MT/lj) |<V, ¢1>L2(Q)|

[24],

(5.7)

(5.8)

(5.9)

i < 1. Using Parseval’s equality, we easily get
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1 2
< ﬁln (,BN 5))2 |<V ¢j>L2(Q)| = (%)”V”LZ(Q) .

O

Theorem 5.1. Problem (5.6) has a unique solution uN( 5 € C ([O, T]:L? (Q)) . Assume that the problem
(1.1) has a unique solution u satisfying u(-,t) € Wyr. Choose Bn) such that

1im & VN(S)Bx(s) = lim Bty Aty = lim ) = 0. (5.10)
Choose R such that
2
lim Bl ;e* " =0, 1> 0. (5.11)

Then we have the following estimate
2 z ~
E ||uXs (. 1) = u(x, || L ) < B> * T CO). (5.12)

Here C(6) is

273

~ 2 -2 2
C((S) = 5 N(é)ﬁNé + o ||g”H27(Q) + ||u||C([07T];fWMT(Q)) + — boﬂz ||u||Loo(0T HI(Q))
Ns

NN,
and assume that Q is one dimensional domain.

Remark 5.1. 1. Under asumption (5.11), the right hand side of Eq (5.12) converges to zero when
t>0.
2. Choose Bns) = N(0) ™ forany 0 < ¢ < mln(l 27) and N(0) is chosen as

m(3-c)
N(5):(5) , O<m< 1. (5.13)
Choose R such that
1 1 1 1
K (Rs) < k—Tln(ln(N(é))) = k—Tln(m(E -~ o)ln| )-

Then E |[ug; (x. 1) — u(x, ||

. (Ll_L 1
2 S of the order 6T In(5).

Proof of Theorem 5.1. The proof is divided into two Steps.
Step 1. The existence and uniqueness of the solution to the regularized problem (5.6).

Let b(x,t) be defined by b(x,t) = M — a(x,t). It is clear that O < b(x,t) < M. Then from (5.6), we
obtain

5
UNs)

+ V(b(x, OV 5)) = F (x,1, 085 (x. 1))

1 1
T 2 (W) (U (5 0, 8,08, (5.14)
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for (x,1) e Q x (0,T).

Let V5N( 5, be the function defined by vg( NEME u‘SN( 5% T = 1). Then we have
Vs (9u‘5N 5
8; L(x, 1) = ——% )( T - 1), V(b(x, V¥ (6. 1) = V(bCx, VU5 ), T = 1)

and

1 o
T Z In (ﬁN(é) + e_MT/Ij) <V6N(5)(x’ t)’ ¢j(X)>¢](.X)
j=1

1 (o)
= T E In (ﬁN(d) + e_MT/lj) (U(SN((;)(X, T -1, ¢j(X)>¢j(X)
J=1

This implies that Vg( 5 satisfies the problem

5
VNG)

ot
Vg((s)lag =0, te(0,1),

VR 0) = Gan(0),  (x,1) € @x (0, T),

= V(b(x, VW) = G5, 1, VR(x. 1), (x,) € QX (0, T),
(5.15)

where G is defined by

G(x,t,v(x,1) = =F(x,t,v(x, 1))

(o9

1 1
* T Z In (W) (v, 0, ¢j>L2(Q)¢j(x)’ (5.16)

=1

for any v € C ([0, T1; LA(Q)).
Since

1 1
e (0,1 — e M), 0<lIn (—) <In (—)
IBN(cS) ( ) ﬂN(é) + e-MTA, ,BN((S)

and using Parseval’s identity, we obtain for any v, v, € L*(Q),

IGC, v C0) = G 1 va (D)l
<FC v 0) = FC6v20 D))

i 2l ) 0 - st

< K|viG, 1) = va(, Dl

T J Z I’ (ﬁw) T+ e M, ) (1G5 =21, )|

1 1
<|K+ . In (,BN_@)] [viC, 1) = va (e, Dl 2 () (5.17)

L2(Q)

Thus G is a Lipschitz function. Using the results of Theorem 12.2 in [32], we complete the proof
of Step 1.
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Step 2. Error estimate

We consider the error estimate between the regularized solution of problem (5.6) and the exact solution

of problem (1.1).
For (x,1) € Q x (0, T), we begin by establishing that the functions b(x, ?), bgbs(x, 1) satisfy

0 < b(x,t) <M, 0<by <bP(x,t) < M

a(x, 1) (M b(x, 1)
(agbs(x, t)) = (M) - (bgbs(x, t))’ Y(x,1) e Qx (0, 7).

and

The functions u‘;( 6)(x, t) and u(x, 1) solve the following equations

du obs .
=V (b5 (x. HVu) = F(x, f:u(x, 1)

+ V(b3 (x, 1) = b(x,1))Vu) + Pu

and

s
auN( 5
ot

bs 6 _ 3 9 6
+ V(™ (x, OV ) = Fr, (4.0 5 (5. 1)) + P 0k

For ps > 0, we put V; (x, 1) = e [ug ; (x,1) = u(x, )| . Then for (x, ) € @x (0,T)

0
N©) obs
o V(b3 (x, OV Vi) = Ps Vi)
= PZN(J)V(IiI(é) + epﬁ(t_T)QgN((;)u - eﬂa(l—T)V ((bgbs(xv t) - b(x’ t))VU)

4 Polt=T) [ﬂé ( X, 1, 05 (X, t)) - F(x,t;u(x, t))] ,

and B
VdN(é)'f99 =0, V6N<a>(x’ T) = Gsne(x) — g(x).

By taking the inner product on both sides of Eq (5.21) with Vg( 5 and noting the equality

fg V(b5 (x, NV Vi) | Vi dx = = fg b3 (x, DIV Vi Pdx,
we obtain
IV G D2y = VR G Dl 2

T T
-2 f f b5 (x, )V Vi) *dxds — 205 f VR G N2 s
t Q t

T T
— 9 0 0 s(t=T) (30 0
-2 f, (PﬁN@VN@,VN(é))LZ(m ds+2 f, (7 DQh, u, VN(§)>L2(Q) ds

=:A, =:As

T
#2 [ (e D00 = b)) Vi )

LX)

=:Aq

(5.18)

(5.19)

(5.20)

(5.21)
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+2 f ' (07D [ Fr, (x. 1.0 (2. D) = F(x, 150, 0)|. Vis)) ) ds. (5.22)

L2(Q)

=

First, thanks to inequality (5.8), the expectation of A, is estimated as follows:

—~ 2 1
E|A4| < Tln(ﬁ—m) f ElIVZ 5> 972,y ds: (5.23)
Next, using the inequality (5.7) and the Holder inequality, we have
A ! 2 T ﬁN(s !
E|A;| < f D=2z g0 ryew @S + f ElIVR 5> )l ds
<Py "BV d 5.24
|| ”c([or]wm) t [ (5)( S)”Lz(g) S. (5.24)

Ag|, we use the Green’s formula to get the equality

<V((bgbs(x’ 1) — b(x, t))Vu), VéN(5)> <((b0bg(x 1) — b(x, l‘))Vll, VV6N(6)>

L2(Q) L2(Q)

then using Holder’s inequality and noting the fact that

f IVuC )Pdx < I gy = SUP fg Vu(., 5)Pdx,

0<s<T

we obtain

T
E|Z;| —9E |f <eP5(S—T)((bng(x, 1) — b(x, t))Vll, VV&N(6)> ds
t

L2(Q)

T 2ps(s=T)
SEf e . f((bobs(x f) — b(x, t)) [Vu(x, 7)| dxds+Ef fbo |VVN(6)| dxds
: 0o Ja

& [" Ww(s)Pds [, IVu(., s)Pdx ,
= bOQ +E f f bo |VVi| dxds

M 52T2
S5l ||L°°(OTH1(Q))+Ef fbo |VVN(6)| dxds; (5.25)

here in the last inequality, we have used the fact that E|y/(s)[> = s since y is Brownian motion. Finally,
since lims_,g+ Ry = +o0, for a sufficiently small 6 > 0, there is an Rs > 0 such that Rs > [[ul|.0.7):12(02))-
For this value of Rs; we have

Fr, (x, ;0(x, 1) = F (x,t;0(x,1)).

Using the global Lipschitz property of Fx (see Lemma 5.1), one obtains similarly the estimate

T
E|Z;| = 2E‘f <epm_T) [Tka (x, £ U5 (X, f)) = F(x t;u(x, t))] ’V(SN(5)>
t

T
SZEf'
t
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< 2K(R;) f EIIVZ (- )12 5. (5.26)

Combining (5.22), (5.23), (5.24),(5.25) and (5.26), and we obtain

El[V (s DIz, = EIVRG G DI

L2(Q) L2(Q)

ﬁN 62T2
e Y
> 2E f f bg™(x, 5) = bo) [V V35 dxds

2 1
+ Ef (2p5 - 7 In (ﬁ ) ZK(R(S) )”V (5)( S)”LZ(Q)dS

Ns
’ 2 1
> E . 2p6 - Tln ﬁT‘) - 2K(R6) ”V (5)( S)”LZ(Q) (527)
Thus,
. ) ) 2713
E”V (5)( t)”LZ(Q) < E||G§,N(6) - g”LZ(Q) +ﬁN¢)‘||u”C([O,T];(WMT(Q)) bo ”u”LN(OTWI(Q))
E ' 2 2 | ! 2K(R 1 d 5.28
+ —2ps + = In B +2K(Rs) + 1]V NG (s S)||Lz(Q) s. (5.28)
t N5
Since V5N( NEME e""("T)(u‘sN( 5061 —u(x, t)) and applying Lemma 4.1, we observe that

1
2ot T>E||uN(5)( ) —u(, t)” < 6°N(0) + /ITHgHHZV(Q)

N(5)
—2
) M 5T
+ Bnslulleqo, iy + by [N HL ()

L2(Q)

T
+(2K(Rs) + 1) f #CDE [l ) =0, ) ds. (5.29)
t
Gronwall’s lemma allows us to obtain

e2rolt= T)EHUN@(X 1 —u(x, t)”

(9]
1 M 5°T3
2 2 2 QKRN+I(T-1)
<|o N((S) + T”g“Hz’/(Q) +ﬁN6”u”C([O,T];’WMT(Q)) + b—o ||u||Loo(0’T;.7_{ol(Q)) e o)+ 2 (530)
N()
By choosing ps = 5 In (ﬁ%) > 0 we have
o
2 x ~
E |ju} (5 0) = uC, D) 2 ) < Blip e ITCE). (5.31)
The proof of Theorem 5.1 is complete. O
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6. Regularization result with more general source term

In most previous works on backward nonlinear problems the assumption, that the source is global
or locally Lipschitz, is required. To the best of our knowledge, this section is the first result when the
source term F is not necessarily a locally Lipschitz source. We will solve the problem (1.1) with a
special generalized case of source term defined by (5.4). Our regularized problem is different to the
one in section 4 because we do not approximate the source function F'. Indeed, we have the following
regularized problem
ous,
% - V(a5 OV ) = Qi (W) )

= F(x w0 (x0), (61 eQx(0,7), ©6.1)
Wl =0, 1€(0,7),
udN(x’ T) = G(S,N((S)(-x)a (X, t) € Qx (05 T)a

We make the following assumptions on F' € C°(R) in the following: There exists C; and C/, C; and
p > 1 and y such that

ZF(x,t,2) > Cilz|” - C] (6.2)
IF(x,t,2)] < Co(1 +|zlP™") (6.3)
(21 — 22) (F(x,t,21) = F(x,1,22)) = —Ylz1 — 22/ (6.4)

It is easy to check that the function F(x,1t,z) = 23 satisfies conditions (6.2), (6.3) and (6.4). Note here
that this function is not locally Lipschitz.
Now we have the following result

Theorem 6.1. Let us assume that F satisfies (6.2), (6.3) and (6.4). Then, there exists a unique weak

solution u‘SN( 5 Of problem (6.1) such that

W) € L(0,T; H') N L™(0,T; L?).

Assume that the problem (1.1) has a unique solution u satisfying u(-,t) € Wyr. Choose P, as in
Theorem 5.1. Then we have the following estimate

2 2 5 ~
E [|uX (. 0) = u(x, || 1 ) < Brpe™ T C(O). (6.5)

where C(6) is defined in (6.51).

Remark 6.1. Our method in this theorem give the convergence rate (6.5) which is better than the error
rate in (5.12). Indeed, since lims_,g K(Rs) = +00, we have

u —
The right hand side of (5.12) B, eI C(6)
The right hand side of (6.5) ,313(6)6(27“”5(6)

— 400 (6.6)

when 6 — 0.
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6.1. Proof of Theorem 6.1
6.1.1. Proof of the existence of solution of Problem (6.1)

First, by changing variable V5N(6)(x, 1) = u‘SN(é)(x, T — 1), we transform Problem (6.1) into the initial
value problem
V6N(5)
ot
V6N(5)|89 =0, te(0,1),

Vi % 0) = Gsny (), (x,1) € QX (0, 7).

- V(bgbs(x’ I)VV(SN((S)) = —F(.X, ta V(SN(xa t)) + PgN(é)(V(SN((S)(x9 t))’ (-x’ t) € Q X (Oa T)a
(6.7)

where b™(x, 1) = M — a™(x, 7).

The weak formulation of the initial boundary value problem (6.7) can then be given in the following
manner: Find vg( 5(®) defined in the open set (0, T') such that VéN(é) satisfies the following variational
problem

d ‘
f — Ve mdx + f b (x, DYV V0dX + f F(Vl‘z(&)’m(t))godx
o dt 0 0

= fg P (o m(D)pdx (6.8)
for all ¢ € H', and the initial condition

V(SN((S) 0) = Ed,N(é)‘ (6.9)

Proof of the existence of solution of Problem (6.1) . The main technique of this proof is learned
from the article [34]. The proof consists of several steps.

Step 1: The Faedo — Galerkin approximation (introduced by Lions [22]).
In the space H'(Q), we take a basis {e i1, and define the finite dimensional subspace

j=1
Vin = spaniey, e, ...e,,}.
Let 6{)"N(6)’m be an element of V,, such that

Ed,N(é),m = Z’,nzl dffljej g 6@1\1(5) strongly iIl L2 (610)

as m — +oo. We can express the approximate solution of the problem (6.7) in the form

m

V6N(6),m(t) = Z Cfnj(t)eja (6.11)

=1

where the coefficients ¢, ; satisfy the system of linear differential equations

d
f —V‘;(é)’meidx+ f b (x, t)VV5N(5),mVeidx+ f F(VﬁN(é)’m(t))e,»dx
th Q Q

- L PZN(&)(VéN(é),m(t))eidx (6.12)
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with i = 1, m and the initial conditions

¢y 0) =dy;, j=1,m. (6.13)

i
The existence of a local solution of system (6.12)—(6.13) is guaranteed by Peano’s theorem on the
existence of solutions. For each m there exists a solution V‘sN( 6),m(t) in the form (6.11) which satisfies
(6.12) and (6.13) almost everywhere on 0 < ¢t < T, for some T,,, 0 < T,, < T. The following estimates
allow one to take T,,, = T for all m.

Step 2. A priori estimates.

a) The first estimate. Multiplying the i equation of (6.12) by ¢’ (¢) and summing up with respect
to i, afterwards, integrating by parts with respect to the time variable from O to ¢, we get after some
rearrangements

5 ! obs !
MmOl 2 +2 fo j; b (x, )TV 5y, (5)Pdxdls + 2 j; fg F(V 5, ()i ($)dxds

— 2 !
= |[Gonorm|| +2 f f Py (R VR gym($)dxds (6.14)
0 JQ

From (6.10), we have
— 2
|Gsnwm||” < Bo(6), forall m, (3.8)

where B((0) depends on Eé,N((;) and is independent of m.
Using the lower bound of bgbs(x, 1), we have the following estimate

! t
) f f b5 (x, V¥ 5, ()P dxds > 2y f 1V6)m (N1 @yds. (6.15)
0 Q 0

Using the assumption on F, we have

¢ !
2 fo fg F (Vs () Vs (8)dxds > 2C, fo V6 45 = 2TC (6.16)

and

! 2 1 ! 5
2 P’ (V8 g dxds < =1 —f d ds. 6.17
foj;z ﬁN(d)(VN(6),m(s))VN(5),m(S) xXas = T n(ﬁN(a)) . ||VN(§),m(s)||L2(Q) S ( )
Hence, it follows from (6.15)—(6.17) that
2 ! !
||V5N(6),m(t)||L2(Q)+2bo fo Vs (a1 s +2C fo ||V6N(6)’m(s)||p,(g)ds
1 1 d
< By(6) + 2TC} + —ln(—) f [ s (6.18)
T \Bnw/Jo ’ ©
Let
2 ! !
Si(t):||V5N(5)’m(t)||L2(Q)+2bo fo IV m )l eyds + 2C fo ||V§(6)’m(s)||ip(mds. (6.19)

Using the fact that fot ”VéN(a),m(S)”iz( o ds < fot S° (s)ds, we know from (6.18) that

t
S (f) < By(6) + 2TC, f i f S? (s)ds (6.20)
T N6/ Jo
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Applying Gronwall’s lemma, and we obtain

t
S (1) < [Bo(6) + 2T C}] exp (? In (ﬁN_@

forallme N, forallt,0<¢t<T, <T, ie., T, =T, where Cy always indicates a bound depending on
T.

b) The second estimate. Multiplying the i"* equation of (6.12) by > j ¢ (1) and summing up with
respect to i, we have

)) < [Bo(5) + 2Tc;]exp(1n(L)) =B, T), (621)
Bn)

2

d
fg b (x, z)VvN@m(t)V( VVN((S)m(t))
d
f £F (vN@m(t)) VN@ (Ddx

d
f ZP,ZN(()) (VN(6) m(t)) VN((S) m([)dx (622)

It is easy to check that for any ue H(Q)

d
dr

The equality (6.22) is equlvalent to

'l i VN(é)m(t)

LX(Q)

[ f b3 (x, t)|Vu(t)|2dx 2 f b (x, )Vu(t) Vi (H)dx + f %bg‘”(x, DIVu®Pdx.  (6.23)
Q Q

d 2
t_
dt

d

2 b 5 2
+— |1 f b3 (x, DIV ) m (DI dx
LZ(Q) dt | Q

0
=2t f b (x, DIVVR ) (D dx + 12 f abng(x, DIVVR s m($)dx
Q

d
+2 f t F(VN@m(t)) —Vm(Ddx

)
VN (D)

d
f ZP,gN(o) (VN(ﬁ) m(t)) VN((S) a(t )dx. (6.24)

By integrating the last equality from O to 7, we get
t 2
2 f s ds +1* f S (x, D)VR 5y (DI dx
0 Q
I

f
d

F(W Voo m(9)dxd

+2f(; LS (VN(é),m(s)) dSVN(5>’m(S) xds

143

! !
0
2 f f SE(x, IV () Pdxdls + f f LB, TR ()Pl
' 0 Ja S ’

Iy

d
f f SP vN@m(s)) WV (s)dxds. (6.25)

Is

5
%VN(é),m(s )

LX(Q)

Estimate /. Since the assumption bgbs(x, ) > by, we know that

0oDSs 2
L=7 f b3 (x, DIV 5y O dx 2 b ||tV 57, D] - (6.26)
Q

Estimate /,. To estimate /;, we need the following Lemma
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i1/ —
Lemma 6.1. Letjig = (g) i = [ IF@ENE, F(2) = [; FO)dy, z€R. Then we get

~ 1
-m<Fi)<C (Izl + I—)IZI”), zeR. (6.27)

The proof of Lemma 6.1 is easy and we omit it here. Now we return to estimate /,. By a simple
computation and then using Lemma 6.1, we have

' 2, d ) ! ,, d VR)m (59
12=2f s“ds— fdxf F(y)dy :Zfsds— fdxf F(y)dy
0 ds|Jo 0 0 ds | Ja 0
! d ~ ~
:2f [— (ssz A (X, 8) dx)—2sfF W m(X:8) dx]
o las\* g (Yo ) 5 (Yo )

!
=27 f F (V‘sN(é)’m(x, t)) dx — 4f sds f F (V§N(§),m(x’ s)) dx
Q 0 Q
P
L ]ds

11
2 é 0
> —2T°m|Q| — 4T C, [T VN mll o a2 * 3C; Sm(t)]

!
1
> -2T*m|Q| - 4C2j; s [”VJN(é),m(S)”Ll + » ||V6N(6>,m(s)

> -8B, T). (6.28)
Estimate /5. Using (6.19), we have the following estimate

2Tbh,

t
I3 < 2Th, f IV mIlFds < S;, (D). (6.29)
0 2bo
Estimate /,. Let us set
— 0 obs
ar = sup —bgbb(x, 1),
(x0)el0.11x[0,71 OF
and then I, is bounded by
- (" 2 — (" 2 T°a
I <ar fo 5V @m (|| ds < T?ar fo [Vsm (|| ds < aoTs;(t). (6.30)

Estimate /5. Using Lemma 5.2, we obtain the following estimate for /s:
! d
15 < 2](; ”SPZN((S)(VdN((y)’m(S))l”lS%V(SN(@)’m(S)”ds
1 1 d
= vfov ||SPZN(m(VdN((S),m(S))”zdS + L ||S$V6N(5)’m(s)||2ds

1 d Ly
Slnz (ﬁ—N(&)jo‘ ||V6N(6),m(5)||2ds+\j; ”S%V(sN((S),m(S)”zds

1 \S2@) " od
st(ﬁ—)a—Jr f ||s%v§(5),m(s)||2ds (6.31)
N(6) 0 0

Combining (6.26), (6.28), (6.29), (6.30),we obtain

!
f
0
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2Th T2
< B8, T) + = 218° (1) + —L8° (1)
2b0 ap
1 \S%() rd
+ln2(—) ot f 15—V 5)m(SIPds. (6.32
N©)/ Qo o ds N@. )

Let
2

d
S_SV(SN((S),m(S) ds + ||tv§(6),m(t)”21(g) ’

d

R(1) = f
0

t t
d
f R (s)ds > f ||sd—v5N(5),m(s)||2ds
0 0 S
together with (6.32), we deduce that

L2(Q)
and then since

5 B(@3,6) 1 ff 5
RL(0) < o o * ) R4 (6.33)

2Tl’)1 TZClT
B(2,6) +
2b0 ( ) ap

Applying Gronwall’s inequlality, we obtain that

r

where B(4, ) depends only on , T and does not depend on m.
Step 3. The limiting process.

where

B@3,0) = B,(6,T) +

B(2,6) + In? (L) B2,9)
ao

N(©6)

2

d 5
S%VN(é),m(s)

R 1%l ) < BalE T, (6.34)

Combining (6.19), (6.21) and (6.34), we deduce that, there exists a subsequence of {vy .} still
denoted by {Vy;,,} such that (see [22]), say,
VN = Vo) in L¥(0,T; L% weak*,
VR = YR in L*(0,T;H") weak,
tV&N(é),m - tV&N(ts) in L¥(0,T;H") weak*, (6.35)
(tv(sN(é),m) - (tV(SN((s)) in L*Qr) weak,
VN ~ YN in  L7(Qr) weak;

here Q7 = Q X (0,T). Using a compactness lemma ( [22], Lions, p. 57) applied to (6.35), we can
extract from the sequence {V5N( 5)’m} a subsequence still denoted by {v‘lil( 6)m} such that

(tv‘;N(é)’m) - (tv‘g](é)) strongly in L*(Q7). (6.36)
By the Riesz-Fischer theorem, we can extract from {vg( st @ subsequence still denoted by {v‘sN(é),m}
such that
Vom6 D = W (61D ae. (x,1) in Or = Qx(0,T). (6.37)
Because F is continuous, then
F (2,1, Vgymx: 1) = F (%, (x.0) ae. (x,1) in Qp = Qx (0, 7). (6.38)
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On the other hand, using (6.3), (6.19), (6.21) , we obtain

|F (Vo mr t))”LI"(QT) < Bs(5,T), (6.39)

where Bs(0, T') 1s a constant independent of m. We shall now require the following lemma, the proof of
which can be found in [22] (see Lemma 1.3).

Lemma 6.2. Let Q be a bounded open subset of RN and G,,, G € L1(Q), 1 < g < oo, such that
G ullLao) < C, where C is a constant independent of m (6.40)

and
G,— G ae (x1) in Q.

Then
G,— Gin Li(Q)weakly.

Applying Lemma 6.2 withg = p’ = 1%, G,=F (V5N( 5ym (5 t)) ,G=F (VéN(é)(x, t)) , we deduce from
(6.38) and (6.39) that
F(Vagm) = F (W) in - L7(Q)  weakly. (6.41)
Passing to the limit in (6.12) and (6.10) by (6.35) and (6.41), we have established a solution of Problem
©6.1) .
6.1.2. Proof of the uniqueness of solution of Problem (6.1)
Assume that the Problem (6.1) has two solution V6N( 5 and W6N( 5. We have to show that V5N( 5 = w‘;( 5

We recall that s

YN©) obs
5 + V(béb (x, t)va((s)) =F (x, t, V‘SN((;)(x, t)) + PZN(&)VéN((S)’
Ws) ‘ (6.42)
a;( + V(bgbs(x, I)VW6N( 5)) =F (x, t, wi](&)(x, t)) + PZN(a)W(SN -
u(SN(é)(x’ T)= W6N(6) = Gsnes (%),
For E(g > 0, we put )
WRip (1) = e [Vg((s)(X, 1) — W) (%, t)] .
Then for (x,1) € Q% (0,T), we get
OW?
N(@© obs —
—&( L+ V(bSP(x, HVWR ) — Rs Wik
=P W + € |F (1. V5 (0. 0) = F (x.1,Whi5 (. ) . (6.43)

and
Wil = 0, Wi (x, T) = 0.

By taking the inner product of both sides of (6.43) with Wg( 5 then taking the integral from 7 to 7" and
noting the equality

fQ v(bng(x, t)VW‘SN(é))V‘SN(é)dx: — fg b (x, ) VWY 5 *dx,
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we deduce
”W (6)( T)||L2(Q) ”W (6)( t)”Lz(Q)
T
_zf f ine 6N(5)(x s)dxds+2f fbobS(x $)|[VWS (6)|2dxds+2R5f ||WN(6)( s)lle(Q)

+ Zf f Rs(t— T) x s, VN(&)(X s)) (x, S, W6N(5)(x, S))] WéN(é)(x, s)dxds
> f f ﬂN(6)W5N(6)(x s)dxds+2R6f WS N (s S)||L2(Q)ds

) ft fg Ro0=T) [F (x, s, VdN((s)(x, s)) -F (x, S, wéN(é)(x, s))] Wﬁ(é)(x, s)dxds. (6.44)

By the assumption we have

fT f Ro(s=T) [F (x, s, V‘;(é)(x, s)) - F (x, s, W‘SN(é)(x, s))] WéN(ﬁ)(x, s)dxds

t Q

= f ' f Ro(s=T) [F (x, s, V‘SN(&)(x, s)) -F (x, s, W‘SN( 5 (% s))] R~ [V‘SN( 5(%: 8) — w‘sN(é)(x, s)] dxds
¢ Jo

T
— R (s 2
> _yf f62Ro(; T) [V5N(6)(x, s) — W5N(5)(x, s)] dxds
= _yf ||WN(5)( S)lle(Q)ds (6.45)

Using the inequality (5.8), we get the following estimate

f f Pl Wi (x, s)dxds>——1n( ) f Wiy -+ Iz 0. (6.46)

Combine equations (6.44), (6.48), (6.46) and choose

E—lln !
° T ﬁNb R

to obtain
”W (5)( T)”Lz(g) ||W (5)( t)”L2(Q) >0

This implies that for all + € [0,T] then |[W? (5)( HI? r@ = = 0 since WN(é)(x, T) = 0. The proof is
completed.

6.1.3. Convergence estimate

Our analysis and proof is short and similar to the proof of Theorem 5.1. Indeed, let us also set
Vg(é)(x, f) = e [u6N(6)(X, N —u(x, t)] )
By using some of the above steps we obtain
”V (6)( T)”LZ(Q) ”V (5)( t)”LZ(Q)
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T
= A4+ As + Ag + 2f <e‘0"(s_T) [F (x, s, uéN(é)(x, s)) - F(x, s;u(x, s))] , V‘SN((;)>L2(Q) ds (6.47)
t

=:Ag

The terms Z4,X5,Xﬁ are similar to (5.22). Now, we consider Xg. By assumption (6.4), we have
T _
f f eRots=D) [F (x, S, u‘;( 6)(x, s)) - F(x,s,u(x, s))] VéN( 5)(x, s)dxds
t Q
T _ _
= f f eRots=D [F (x, s, u‘SN((s)(x, s)) - F (x, s,u(x, s))] Rt~ [u‘SN((S)(x, s) —u(x, s)] dxds
t Jo
T = 2
> -y f f e*Ros=D) [uéN(é)(x, s) —u(x, s)] dxds
Q
[ T
=-y f VR Cs 72045 (6.48)
t

After using the results of the proof of Theorem 5.1, we get

) 2 -~ 2
El[Vre C Dll2q) < EllGang (1) = 8O0lI72
T2 273
M 6T+
+ B, llull? + ——— |l
Ns C(0,T1;Wur(Q)) bo L=(0.T;HL(Q)

! 2 (1 _
+E f (—2p5 +21n (ﬁ—) +27 + 1) VR G5 7205 (6.49)
t N5

Since
VﬁN(é)(x’ 1 = epé(t_T)(udN(a)(xa ) —u(x, f))

and applying Lemma 4.1, we observe that

205(t-T 5 2 2 !
e DE s, (6 1) = 0, 0|5 g, < N + ——llgllieren
N(5)
—2
M &°T3

2 2
+Bnilullcgoriwir @) + bo Il 0 701
T
+(Qy+1) f e DE [[u 5, (x5, ) = ulx, 8|2 0, 45 (6.50)
t

Gronwall’s lemma allows us to obtain

2p5(t=T) 5 _ 2
PDE [[udi sy (x, 1) = u(x, |

2 2 M262T3 2 Qy+1)(T-1)

+1)(T—t
<|0°N@©) + 2y g1l + Arsllalleqo rwyray + by ”“”Lw(o,r;ﬂg(g)) e : (6.51)

N(5)
C©)
By choosing ps = 5 In ([#) > 0 we have
9
5 2 7T,

E [[u}) (x. 0) — ux, 0, @ < B C©). (6.52)
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7. Application to some specific equations

7.1. Ginzburg-Landau equation

Here we consider a special source function F(u) = u — u® for Problem (1.1). This is called the
Ginzburg-Landau equation. This function satisfies the condition of section 5 and does not satisfy the
condition in section 4. For all R > 0, we approximate F' by ¥ defined by

R —R, we (—oco,—R)
Frx,t;w) :=3u—u’, wel[-R R], (7.1)
R-—R3, we(R,+).
We consider the problem

s
(9uN( 9
ot

V(3" (n VB ) — Qg (U3 1)

= Fr, (W (5. D), (x.1) € QX (0, T), (7.2)
udN(5)|5Q = O’ re (07 T)a
ud(x,T) = Gsnpy(®),  (x,1) € Qx (0, 7).

It is easy to see that K(Rs) = 1 + 3R§. Choose Bne) = N(0) ™ forany 0 < ¢ < min(%, 277), and N(9) is
chosen as

m(%—c) 1 —mc(%—c)
N(@©) = (5) BN = (5) O0<m<1. (7.3)

\/m \/%ln(m(%—c)ln(%))—l
Ro=—35 = . .

is of the order In? (}S) (6

Choose R; such that

. 2me(L—c)L
Then applying Theorem 5.1, the error E ||u5N( 5% 1) —u(x, t)||iz(g) ) 170F

7.2. The nonlinear Fisher—KPP equation

In this subsection, we are concerned with the backward problem for a nonlinear parabolic equation
of Fisher—Kolmogorov—Petrovsky—Piskunov type

u, - V(a(x, HVu) = y(u® - p(xu,  (x,1) € Qx (0, T), (7.4)

with the following condition

(7.5)

ulx,T)=gx), x,nHeQx(O,T),
Upo =0, re€(0,T).

By Skellam [33], Eq (7.4) has many applications in population dynamics and periodic environments.
In these references, the quantity u(x, ) generally stands for a population density, and the coeflicients
a(x, 1), y(x), u(x) respectively, correspond to the diffusion coefficient, the intrinsic growth rate coeffi-
cient and a coefficient measuring the effects of competition on the birth and death rates. Our method
that can be applied to this model is similar to example 7.1. However, since the ideas of Example 7.1
and 7.2 are the same, we only state the model without giving the errors.
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7.3. The second equation

Taking the function F(u) = us it is easy to see that F satisfy (6.2), (6.3) and (6.4). Moreover, we
can show that F is not locally Lipschitz function. So, we cannot regularize the problem in this case
with Problem (5.6). We consider the problem

)
BuN( 5
ot

V(agbs(x’ t)vuéN(é)) B QgN(b') (u6N(6))(x’ f

= (WD), (1) eQx(0.7), (7.6)
uéN(g)lﬁQ = 09 re (Oa T)’
uwd(x,T) = Gsny(x),  (x,1) € Qx(0,T).

Choose fn, and Ny as in subsection 6.1. Applying Theorem 5.1, the error between the solution of
Problem (7.6) and u, E ||u5N( 5 (% 1) = u(x, t)”iz(g)’ is of the order §2"c(3-0%

Remark 7.1. In the following, we give a comparison of the method and results in this paper with the
results in [30, 31]. All methods are truncation methods, but our problem is complicated due to the
data being noised by random data. We need Lemma 4.1 to determine the correct set up according to
the measured data. The coefficients N(0) should be chosen appropriately so that the error between the
sought solution and the correct solution converges. There are two advantages to this article that were
not explored in [30, 31]

o In Theorem 4.3, we give a regularization result in the case of a weaker assumption for u, i.e.,
u € C([0, TT; L*(Q)). This is one of the first results obtained in this case and was not considered in
[30,31]. In those papers, to investigate the error, the exact solution is assumed in a Gevrey space,
which limits the number of functions than if one considered the function space C([0, T]; L>(Q)).

e In [30,31], the source functions must satisfy a global lipschitz condition. However, in our article,
we deal with a fairly broad function class, consisting of the local Lipschitz function class and
some local non-Lipschitz function class (see Section 6).

Acknowledgments

Nguyen Huy Tuan is thankful to the Van Lang University. This research is funded by Thu Dau Mot
University, Binh Duong Province, Vietnam under grant number DT.21.1-011.

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. N. H. Tuan, E. Nane, Approximate solutions of inverse problems for nonlinear space fractional
diffusion equations with randomly perturbed data, SIAM/ASA J. Uncertain., 6 (2018), 302-338.
https://doi.org/10.1137/17M1111139

2. H. Amann, Time-delayed Perona—Malik type problems, Acta Math. Univ. Comenian., 76 (2007),
15-38.

Electronic Research Archive Volume 30, Issue 4, 1374-1413.


http://dx.doi.org/https://doi.org/10.1137/17M1111139

1412

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. J. Hadamard, Lectures on the Cauchy Problems in Linear Partial Differential Equations, Yale
University Press, New Haven, CT, 1923.

M. Denche, K. Bessila, A modified quasi-boundary value method for ill-posed problems, J. Math.
Anal. Appl., 301 (2005), 419—-426. https://doi.org/10.1016/j.jmaa.2004.08.001

. N. V. Duc, An a posteriori mollification method for the heat equation backward in time, J. Inverse
1ll-Posed Probl., 25 (2017), 403-422. https://doi.org/10.1515/jiip-2016-0026

B. T. Johansson, D. Lesnic, T. Reeve, A method of fundamental solutions for radially symmetric
and axisymmetric backward heat conduction problems, Int. J. Comput. Math., 89 (2012), 1555-
1568. https://doi.org/10.1080/00207160.2012.680448

. A. B. Mair, H. F. Ruymgaart, Statistical inverse estimation in Hilbert scales, SIAM J. Appl. Math.,
56 (1996), 1424—-1444. https://doi.org/10.1137/S0036139994264476

. H. Kekkonen, M. Lassas, S. Siltanen, Analysis of regularized inversion of data corrupted
by white Gaussian noise, Inverse Probl., 30 (2014), 045009. https://doi.org/10.1088/0266-
5611/30/4/045009

. C. Konig, F. Werner, T. Hohage, Convergence rates for exponentially ill-posed in-
verse problems with impulsive noise, SIAM J. Numer. Anal., 54 (2016), 341-360.
https://doi.org/10.1137/15M 1022252

T. Hohage, F. Weidling, Characterizations of variational source conditions, converse results,
and maxisets of spectral regularization methods, SIAM J. Numer. Anal., 55 (2017), 598-620.
https://doi.org/10.1137/16M 1067445

A. P.N. T. Mai, A statistical minimax approach to the Hausdorff moment problem, Inverse Probl.,
24 (2008), 045018. https://doi.org/10.1088/0266-5611/24/4/045018

L. Cavalier, Nonparametric statistical inverse problems, Inverse Probl., 24 (2008), 034004.
https://doi.org/10.1088/0266-5611/24/3/034004

N. Bissantz, H. Holzmann, Asymptotics for spectral regularization estimators in statistical inverse
problems, Comput. Statist., 28 (2013), 435-453. https://doi.org/10.1007/s00180-012-0309-1

D. D. Cox, Approximation of method of regularization estimators, Ann. Stat., 16 (1988), 694-712.
https://doi.org/10.1214/a0s/1176350829

H. W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer Academic,
Dordrecht, Boston, London, 1996. https://doi.org/10.1007/978-94-009-1740-8

B. T. Knapik, A. W. van der Vaart, J. H. van Zanten, Bayesian recovery of the initial condition for
the heat equation, Comm. Statist. Theory Methods, 42 (2013), 1294-1313.

N. Bochkina, Consistency of the posterior distribution in generalized linear inverse problems,
Inverse Probl., 29 (2013), 095010. https://doi.org/10.1088/0266-5611/29/9/095010

R. Plato, Converse results, saturation and quasi-optimality for Lavrentiev regularization of accre-
tive problems, SIAM J. Numer. Anal., 55 (2017), 1315-1329. https://doi.org/10.1137/16M 1089125

L. Cavalier, Inverse problems in statistics. Inverse problems and high-dimensional estimation, In:
Alquier P., Gautier E., Stoltz G. (eds) Inverse Problems and High-Dimensional Estimation. Lecture
Notes in Statistics, vol 203. Springer, Berlin, Heidelberg, 3-96. https://doi.org/10.1007/978-3-642-
19989-9

Electronic Research Archive Volume 30, Issue 4, 1374-1413.


http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2004.08.001
http://dx.doi.org/https://doi.org/10.1515/jiip-2016-0026
http://dx.doi.org/https://doi.org/10.1080/00207160.2012.680448
http://dx.doi.org/https://doi.org/10.1137/S0036139994264476
http://dx.doi.org/https://doi.org/10.1088/0266-5611/30/4/045009
http://dx.doi.org/https://doi.org/10.1088/0266-5611/30/4/045009
http://dx.doi.org/https://doi.org/10.1137/15M1022252
http://dx.doi.org/https://doi.org/10.1137/16M1067445
http://dx.doi.org/ https://doi.org/10.1088/0266-5611/24/4/045018
http://dx.doi.org/https://doi.org/10.1088/0266-5611/24/3/034004
http://dx.doi.org/https://doi.org/10.1007/s00180-012-0309-1
http://dx.doi.org/https://doi.org/10.1214/aos/1176350829
http://dx.doi.org/https://doi.org/10.1007/978-94-009-1740-8
http://dx.doi.org/https://doi.org/10.1088/0266-5611/29/9/095010
http://dx.doi.org/https://doi.org/10.1137/16M1089125
http://dx.doi.org/https://doi.org/10.1007/978-3-642-19989-9
http://dx.doi.org/https://doi.org/10.1007/978-3-642-19989-9

1413

20

21.
22.

23.
24.
25.
26.
27.
28.

29.
30.

31.

32.

33.

34.

35.

Agél\éyg AIMS Press

. M. Kirane, E. Nane, N. H. Tuan, On a backward problem for multidimensional Ginzburg-Landau
equation with random data, Inverse Probl., 34 (2018), 015008. https://doi.org/10.1088/1361-
6420/aa9c2a

R. Lattes, J. L. Lions, Methode de Quasi-reversibility et Applications, Dunod, Paris, 1967

J. L. Lions, Quelques méthodes de résolution des problemes aux limites nonlinéaires, Dunod;
Gauthier — Villars, Paris, 1969.

L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, Rhode
Island, Volume 19, 1997.

C. Cao, M. A. Rammaha, E. S. Titi, The Navier-Stokes equations on the rotating 2-D sphere:
Gevrey regularity and asymptotic degrees of freedom, Z. Angew. Math. Phys., 50 (1999), 341-
360. https://doi.org/10.1007/PL0O0001493

R. Courant, D. Hilbert, Methods of mathematical physics, New York (NY): Interscience; 1953.

J. Wu, W. Wang, On backward uniqueness for the heat operator in cones, J. Differ. Equ., 258
(2015), 224-241. https://doi.org/10.1016/j.jde.2014.09.011

A. Ruland, On the backward uniqueness property for the heat equation in two-dimensional conical
domains, Manuscr. Math., 147 (2015), 415-436. https://doi.org/10.1007/s00229-015-0764-4

L. Li, V. Sverak, Backward uniqueness for the heat equation in cones, Commmun. Partial Differ.
Equ., 37 (2012), 1414—-1429. https://doi.org/10.1080/03605302.2011.635323

N. H. Tuan, P. H. Quan, Some extended results on a nonlinear ill-posed heat equation and remarks
on a general case of nonlinear terms, Nonlinear Anal. Real World Appl., 12 (2011), 2973-2984.
https://doi.org/10.1016/j.nonrwa.2011.04.018

D. D. Trong, N. H. Tuan, Regularization and error estimate for the nonlinear backward
heat problem using a method of integral equation, Nonlinear Anal., 71 (2009), 4167-4176.
https://doi.org/10.1016/j.na.2009.02.092

P. T. Nam, An approximate solution for nonlinear backward parabolic equations, J. Math. Anal.
Appl., 367 (2010), 337-349. https://doi.org/10.1016/j.jmaa.2010.01.020

M. Chipot, Elements of nonlinear analysis, Birkhduser Advanced Texts: Basler Lehrbiicher.
[Birkhduser Advanced Texts: Basel Textbooks] Birkhduser Verlag, Basel, 2000. viii+256 pp.
ISBN: 3-7643-6406-8. https://doi.org/10.1007/978-3-0348-8428-0

J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.
https://doi.org/10.1016/S0092-8240(05)80044-8

L. T. P. Ngoc, A. P. N. Dinh, N. T. Long, On a nonlinear heat equation associ-
ated with Dirichlet-Robin conditions, Numer. Funct. Anal. Optim., 33 (2012), 166-189.
https://doi.org/10.1080/01630563.2011.594198

N. H. Tuan, L. D. Thang, V. A. Khoa, T. Tran, On an inverse boundary value problem of a
nonlinear elliptic equation in three dimensions, J. Math. Anal. Appl., 426 (2015), 1232-1261.
https://doi.org/10.1016/j.jmaa.2014.12.047

©2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 30, Issue 4, 1374-1413.


http://dx.doi.org/https://doi.org/10.1088/1361-6420/aa9c2a
http://dx.doi.org/https://doi.org/10.1088/1361-6420/aa9c2a
http://dx.doi.org/https://doi.org/10.1007/PL00001493
http://dx.doi.org/https://doi.org/10.1016/j.jde.2014.09.011
http://dx.doi.org/https://doi.org/10.1007/s00229-015-0764-4
http://dx.doi.org/https://doi.org/10.1080/03605302.2011.635323
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2011.04.018
http://dx.doi.org/https://doi.org/10.1016/j.na.2009.02.092
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2010.01.020
http://dx.doi.org/https://doi.org/10.1007/978-3-0348-8428-0
http://dx.doi.org/https://doi.org/10.1016/S0092-8240(05)80044-8
http://dx.doi.org/https://doi.org/10.1080/01630563.2011.594198
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2014.12.047
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	The ill-posedness of the nonlinear parabolic equation with random noise
	Regularization result with constant coefficient and globally Lipschitz source function
	The second regularized solution and the error estimate

	Regularization result with locally Lipschitz source 
	Regularization result with more general source term
	 Proof of Theorem 6.1
	Proof of the existence of solution of Problem (6.1) 
	Proof of the uniqueness of solution of Problem (6.1) 
	Convergence estimate


	Application to some specific equations
	Ginzburg-Landau equation
	The nonlinear Fisher–KPP equation
	The second equation


