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1. Introduction

In this paper, we study the initial-boundary value problem for logarithmic hyperbolic equation of
p−Laplacian type

utt + ∆pu = |u|p−2u ln |u|, (x, t) ∈ Ω × R+, (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.2)

u(x, t) = 0, (x, t) ∈ ∂Ω × R+, (1.3)

where

∆pu = −

n∑
i=1

∂

∂xi

(∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣p−2 ∂u
∂xi

)
, p > 2. (1.4)

Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, and parameter p fulfills

2 < p < +∞, N ≤ p; 2 < p ≤
N p

N − p
, N > p. (1.5)
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The logarithmic nonlinearity arises in a lot of different areas of physics such as quantum mechanics
and inflation cosmology, and is applied to nuclear physics, optics and geophysics [1–8]. Because of
these special physical meanings, the research of evolution equations with logarithmic nonlinearity has
attracted much attention.

When the logarithmic term in Eq (1.1) is replaced by nonlinear source term |u|r−2u, the Eq (1.1)
becomes

utt + ∆pu = |u|r−2u, (x, t) ∈ Ω × R+. (1.6)

In the case of p = 2 and r > 2, J. Ball [9] and M. Tsustsumi [10] obtained the blow-up solutions with
negative initial energy. By using the concavity method, H. A. Levine and L. E. Payne [11] established
the nonexistence of global weak solutions for Eq (1.6) with the conditions (1.2) and (1.3). Y. J. Ye
[12] proved the global existence and blow-up result of solutions to the Eq (1.6) with initial-boundary
value conditions. S. Ibrahim and A. Lyaghfouri [13] considered the Cauchy problem of (1.6), under
appropriate assumptions, they established the finite time blow-up of solutions and, hence, extended a
result by V. A. Galaktionov and S. I. Pohozaev [14]. For the Eq (1.6) with dissipative term, Y. J. Ye
[15, 16] studied the global solutions by constructing a stable set in W1,p

0 (Ω) and the decay property of
solution by using an integral inequality [17].

S. A. Messaoudi and B. S. Said-Houari [18] considered the nonlinear hyperbolic type equation

utt + ∆αu + ∆βut − ∆ut + a|ut|
m−2ut = b|u|p−2u,

where a, b > 0, α, β,m, p > 2 and Ω is a bounded domain in RN(N ≥ 1). Under suitable conditions
on α, β,m, p, they proved a global nonexistence result of solutions with negative initial energy. For the
nonlinear wave equation of p-Laplacian type

utt + ∆pu − ∆ut + q(x, u) = f (x).

C. Chen et al.[19] obtained the global existence and uniqueness of solutions and established the long-
time behavior of solutions.

L. C. Nhan and T. X. Le [20] studied the existence and nonexistence of global weak solutions for a
class of p-Laplacian evolution equations with logarithmic nonlinearity and gave sufficient conditions
for the large time decay and blow-up of solutions. Later, Y. Z. Han et al. [21] also considered this
problem. They studied global solutions and blow-up solution for arbitrarily high initial energy. For a
mixed pseudo-parabolic p-Laplacian type equation with logarithmic term, under various assumptions
about initial values, H. Ding and J. Zhou [22] proved the solution exists globally and blow up in finite
time. Moreover, T. Boudjeriou [23] was concerned with the fractional p-Laplacian with logarithmic
nonlinearity, by applying the potential well theory and a differential inequality, he proved the existence
and decay estimates of global solutions and obtained the blow-up result of solutions.

T. Cazenave and A. Haraux [8] considered the following logarithmic wave equation

utt − ∆u = u ln |u|, (1.7)

they gave the existence of solutions for the Cauchy problem of Eq (1.7). P. Gorka [4] obtained the
global existence of weak solutions for the initial-boundary value problem of Eq (1.7). K. Bartkowski
and P. Gorka [7] proved the existence of classical solutions and weak solutions for the corresponding
one dimensional Cauchy problem of Eq (1.7). In the case of 0 < E(0) ≤ d, W. Lian et al. [24]
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proved the global existence of solution and obtained the blow-up of solution for the Eq (1.7) with the
conditions (1.2) and (1.3).

In this paper, by means of the potential well theory and the concavity analysis method [25–29], we
prove the global existence and blow-up of solutions of the problem (1.1)–(1.3).

For simplicity, we denote Lp(Ω) and L2(Ω) norm by ‖·‖p and by ‖·‖ respectively. The space W1,p
0 (Ω)

norm ‖ · ‖W1,p
0 (Ω) is replaced by ‖∇ · ‖p.

2. Preliminaries

At first, we define the weak solutions of the problem (1.1)–(1.3) and give a few known lemmas.
Definition 2.1. [30] If

u ∈ C([0,T ),W1,p
0 (Ω)), ut ∈ C([0,T ), L2(Ω)), utt ∈ C([0,T ),W−1,p′(Ω))

and satisfies ∫
Ω

uttϕdx +

∫
Ω

∆puϕdx =

∫
Ω

|u|p−2u ln |u|ϕdx,

then u(t) is called a weak solution of (1.1)–(1.3) on [0,T ), where ϕ ∈ W1,p
0 (Ω).

Lemma 2.1. [31] Let q be a real number with 2 ≤ q < +∞ if 2 ≤ n ≤ p and 2 ≤ q ≤ np
n−p if 2 < p < n.

Then there exists a positive constant C depending on Ω, p and q such that ‖u‖q ≤ C‖∇u‖p.
Lemma 2.2. [30] Let B0, B, B1 be Banach spaces with B0 ⊆ B ⊆ B1 and

X = {u : u ∈ Lp([0,T ]; B0), ut ∈ Lq[0,T ]; B1)}, 1 ≤ p, q ≤ +∞.

Suppose that B0 is compactly embedded in B and that B is continuously embedded in B1, then (i) the
embedding of X into Lp(0,T ; B) is compact if p < +∞. (ii) the embedding of X into C([0,T ]; B) is
compact if p = +∞ and q > 1.
Lemma 2.3. [32] Assume that un(x) is a bounded sequence in Lq(Ω), 1 ≤ q < +∞, un(x)→ u(x) a.e..
Then u(x) ∈ Lq(Ω) and un(x)→ u(x) weakly converges in Lq(Ω).
Lemma 2.4. [33, 34, 35] (L2−logarithmic Sobolev inequality ) If v ∈ H1

0(Ω), then∫
Ω

|v|2 ln |v|dx ≤ ‖v‖2 ln ‖v‖ +
a2

2π
‖∇v‖2 −

n
2

(1 + ln a)‖v‖2, ∀a > 0. (2.1)

In order to deal with the logarithmic term |u|p−2u ln |u| in Eq (1.1), we introduce the following
Lp−logarithmic Sobolev inequality.
Lemma 2.5. [36] Let u ∈ W1,p

0 (Ω), then one has the inequality∫
Ω

|u|p ln |u|dx ≤ ‖u‖p
p ln ‖u‖p +

(p − 2)a2

4π
‖u‖p

p +
a2

2π
‖∇u‖p

p −
n
p

(1 + ln a)‖u‖p
p, (2.2)

where a > 0 is a constant.
For convenience, in the following we are going to give the proof of Lemma 2.5.

Electronic Research Archive Volume 30, Issue 3, 1035–1051.



1038

Proof. By (2.1) in Lemma 2.4, we have∫
Ω

|v|2 ln |v|dx ≤ ‖v‖2 ln ‖v‖ +
a2

2π
‖∇v‖2 −

n
2

(1 + ln a)‖v‖2

=

∫
Ω

|v|2dx · ln
( ∫

Ω

|v|2dx
) 1

2

+
a2

2π

∫
Ω

|∇v|2dx −
n
2

(1 + ln a)
∫

Ω

|v|2dx.

(2.3)

Let v = u
p
2 in (2.3), then we obtain

1
2

∫
Ω

|u|p ln |u|pdx ≤

∫
Ω

|u|pdx · ln
( ∫

Ω

|u|pdx
) 1

2

+
a2

2π

∫
Ω

|∇u
p
2 |2dx −

n
2

(1 + ln a)
∫

Ω

|u|pdx

=
1
2
‖u‖p

p ln ‖u‖p
p +

a2

2π

∫
Ω

|∇u
p
2 |2dx −

n
2

(1 + ln a)‖u‖p
p.

(2.4)

By direct computation, we get

∇u
p
2 =

p
2

u
p
2−1 · ∇u =

p
2

u
p−2

2 · ∇u. (2.5)

From (2.5) and Hölder inequality, we receive∫
Ω

|∇u
p
2 |2dx =

p2

4

∫
Ω

|u|p−2|∇u|2dx

≤
p2

4

( ∫
Ω

|u|pdx
) p−2

p
( ∫

Ω

|∇u|pdx
) 2

p

=
p2

4
‖u‖p−2

p ‖∇u‖2p.

(2.6)

By Young inequality XY ≤ Xα

α
+ Yβ

β
with α =

p
p−2 , β =

p
2 , we conclude that

p2

4
‖u‖p−2

p ‖∇u‖2p ≤
p2

4

( p − 2
p
‖u‖p

p +
2
p
‖∇u‖p

p

)
=

p(p − 2)
4

‖u‖p
p +

p
2
‖∇u‖p

p. (2.7)

It follows from (2.4), (2.6) and (2.7) that

1
2

∫
Ω

|u|p ln |u|pdx ≤
1
2
‖u‖p

p ln ‖u‖p
p +

a2

2π

( p(p − 2)
4

‖u‖p
p +

p
2
‖∇u‖p

p

)
−

n
2

(1 + ln a)‖u‖p
p,

which implies∫
Ω

|u|p ln |u|dx ≤ ‖u‖p
p ln ‖u‖p +

(p − 2)a2

4π
‖u‖p

p +
a2

2π
‖∇u‖p

p −
n
p

(1 + ln a)‖u‖p
p.

This completes the proof of Lemma 2.5.
Next, we define the following functionals

J(u) =
1
p
‖∇u‖p

p −
1
p

∫
Ω

|u|p ln |u|dx +
1
p2 ‖u‖

p
p (2.8)
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and
K(u) = ‖∇u‖p

p −
1
p

∫
Ω

|u|p ln |u|dx, (2.9)

for u ∈ W1,p
0 (Ω). By (2.8) and (2.9), we have

J(u) =
1
p2 ‖u‖

p
p +

1
p
K(u). (2.10)

We denote the energy functional by

E(t) =
1
2
‖ut‖

2 +
1
p
‖∇u‖p

p −
1
p

∫
Ω

|u|p ln |u|dx +
1
p2 ‖u‖

p
p =

1
2
‖ut‖

2 +J(u), (2.11)

for u ∈ W1,p
0 (Ω), t ≥ 0.

E(0) =
1
2
‖u1‖

2 +
1
p
‖∇u0‖

p
p −

1
p

∫
Ω

|u0|
p ln |u0|dx +

1
p2 ‖u0‖

p
p =

1
2
‖u1‖

2 +J(u0) (2.12)

is the initial total energy.
Moreover, we define the Nehari manifold [37]

N = {u ∈ W1,p
0 (Ω)/{0} : K(u) = 0, ‖∇u‖p , 0},

the stable set
W = {u ∈ W1,p

0 (Ω) : K(u) > 0, J(u) < d} ∪ {0}

and the unstable set
U = {u ∈ W1,p

0 (Ω) : K(u) < 0 J(u) < d},

where
d = inf{sup

θ≥0
J(θu) : u ∈ W1,p

0 (Ω), ‖∇u‖p , 0}. (2.13)

It is readily seen that the potential well depth d defined in (2.13) can also be characterized as

d = inf
u∈N
J(u). (2.14)

Lemma 2.6. Let u ∈ W1,p
0 (Ω) and ‖u‖p , 0, then we have

(a) lim
θ→0+
J(θu) = 0, lim

θ→+∞
J(θu) = −∞;

(b) K(θu) = θJ ′(θu)


> 0, 0 < θ < θ∗,

= 0, θ = θ∗,

< 0, θ∗ < θ < +∞.

(2.15)

Proof. (a) For u ∈ W1,p
0 (Ω),

J(θu) =
θp

p
‖∇u‖p

p −
θp

p

∫
Ω

|u|p ln |u|dx −
θp

p
‖u‖p

p ln θ +
θp

p2 ‖u‖
p
p.
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It is easy to get from ‖u‖p , 0 that (a) is valid.
(b) An elementary calculation shows that

d
dθ
J(θu) = θp−1

(
‖∇u‖p

p −

∫
Ω

|u|p ln |u|dx − ‖u‖p
p ln θ

)
. (2.16)

Let d
dθJ(θu) = 0, then we have

θ∗ = exp
(‖∇u‖p

p −
∫

Ω
|u|p ln |u|dx

‖u‖p
p

)
. (2.17)

It follows from (2.9) that

K(θu) = θp
(
‖∇u‖p

p −

∫
Ω

|u|p ln |u|dx − ‖u‖p
p ln θ

)
. (2.18)

From (2.16), (2.17) and (2.18), the Eq (2.15) holds.

Lemma 2.7. Suppose that u ∈ W1,p
0 (Ω) and ‖∇u‖p , 0. Then d ≥ M, where M = 1

p2 (2π)
n
2 e

2(n+p)−p2
2 .

Proof. From Lemma 2.6 and Eq (2.10), one has

sup
θ≥0
J(θu) = J(θ∗u) =

1
p2 ‖θ∗u‖

p
p +

1
p
K(θ∗u) =

1
p2 ‖θ∗u‖

p
p. (2.19)

We get from Lemma 2.5 that

K(u) = ‖∇u‖p
p −

1
p

∫
Ω

|u|p ln |u|dx

≥

(
1 −

a2

2π

)
‖∇u‖p

p +

(n
p

ln(ae) −
(p − 2)a2

4π
− ln ‖u‖p

)
‖u‖p

p.

Choosing a =
√

2π, we have

K(u) ≥
(n

p
ln(
√

2π e) −
p − 2

2
− ln ‖u‖p

)
‖u‖p

p

=

[
ln

(
(2π)

n
2p e

2(n+p)−p2
2p

)
− ln ‖u‖p

]
‖u‖p

p.

(2.20)

It follows from K(θ∗u) = 0 and (2.20) that

ln
(
(2π)

n
2 e

2(n+p)−p2
2

)
− ln ‖θ∗u‖p

p ≤ 0,

which implies

‖θ∗u‖p
p ≥ (2π)

n
2 e

2(n+p)−p2
2 . (2.21)

Thus, we obtain from (2.19) and (2.21) that

sup
θ≥0
J(θu) ≥

1
p2 (2π)

n
2 e

2(n+p)−p2
2 . (2.22)

Thus, by (2.13) and (2.22), we conclude that d ≥ M > 0.
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3. Existence of global solutions

In this section, we state and prove the global existence result for the problem (1.1)–(1.3).
Theorem 3.1. Assume that p satisfies (1.5). If u0 ∈ W1,p

0 (Ω), u1 ∈ L2(Ω) and 0 < E(0) <

M, K(u0) ≥ 0, then there is a global weak solution u(x, t) to the problem (1.1)–(1.3) which meets
u(x, t) ∈ L∞([0,+∞); W1,p

0 (Ω)), ut(x, t) ∈ L∞([0,+∞); L2(Ω)).
Proof. Assume that {ω j}

∞
j=1 is a basis of space W1,p

0 (Ω) and that Vk is the subspace of W1,p
0 (Ω)

generated by {ω1, ω2, · · · , ωm}, m = 1, 2, · · · . We shall look for the approximate solutions um(t) =
m∑

j=1

g jm(t)ω j with g jm(t) ∈ C2[0,T ], ∀T > 0. Here the functions g jm(t) fulfil the following system of

equations
(umtt, ω j) + (∆pum, ω j) = (|um|

p−2um ln |um|, ω j), j = 1, 2, · · · ,m (3.1)

with initial data
um(0) = u0m, umt(0) = u1m. (3.2)

Because W1,p
0 (Ω) is dense in L2(Ω), so there exist α jm and β jm such that

u0m =

m∑
j=1

g jm(0)ω j =

m∑
j=1

α jmω j → u0(x) strongly in W1,p
0 (Ω), m→ ∞, (3.3)

u1m =

m∑
j=1

g′jm(0)ω j =

m∑
j=1

β jmω j → u1(x) strongly in L2(Ω), m→ ∞. (3.4)

By Picard’s iteration method, the solutions g jm(t) for the Cauchy problem (3.1)–(3.2) exist in t ∈
[0, tm), tm ≤ T. By the uniformly boundedness of functions g jm(t) and the extension theorem, these
solutions g jm(t) exists in the whole interval [0,T ].

Multiplying both sides of (3.1) by g′jm(t), summing on j from 1 to m and then integrating over [0, t],
we obtain

Em(t) =
1
2
‖umt(t)‖2 +J(um(t)) =

1
2
‖umt(0)‖2 +J(um(0)) = Em(0) < M ≤ d. (3.5)

From (3.5), it is easy to verify
um(t) ∈ W, ∀t ∈ [0,T ]. (3.6)

Assume that there exists a time t1 ∈ (0,T ) such that um(t1) <W, then, by the continuity of um(t) on t,
we get um(t1) ∈ ∂W. Thus, we receive either

J(um(t1)) = d, (3.7)

or
K(um(t1)) = 0, ‖∇um‖p , 0. (3.8)

From (3.5), we have J(um(t1)) < d. Thus, the case (3.7) is impossible.
If (3.8) is valid, um(t1) ∈ N . From (2.13), we obtain J(um(t1)) ≥ d. This contradicts with (3.5).

Therefore, the case (3.8) is also impossible as well.
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We deduce from (2.10), (3.5) and (3.6) that

M > J(um) =
1
p2 ‖um‖

p
p +

1
p
K(um) >

1
p2 ‖um‖

p
p, (3.9)

which implies that
‖um‖

p
p < Mp2. (3.10)

Taking a =
√
π in (2.2), we have from Lemma 2.5, Eqs (2.8) and (2.9) that

‖∇um‖
p
p = 2K(um) + 2

∫
Ω

|um|
p ln |um|dx − ‖∇um‖

p
p

= 2pJ(um) −
2
p
‖um‖

p
p − ‖∇um‖

p
p + 2

∫
Ω

|um|
p ln |um|dx

≤ 2pJ(um) −
2
p
‖um‖

p
p +

p − 2
2
‖um‖

p
p

−
n
p

ln(πe2)‖um‖
p
p + 2‖um‖

p
p ln ‖um‖p

≤ 2pJ(um) +
p − 2

2
‖um‖

p
p + 2‖um‖

p
p ln ‖um‖p < CM.

(3.11)

Here CM = 2pM +
(p−2)p2

2 M + 2pM ln(p2M). From (3.5), we have

‖umt‖
2 < 2M. (3.12)

For u, v ∈ W1,p
0 (Ω), by (1.4), we have (∆pu, v) =

∫
Ω
|∇u|p−2|∇u| · |∇v|dx). Hence, from Hölder inequality

and (3.11), we obtain

‖∆pu‖W−1,p′ (Ω) ≤ ‖∇u‖p−1
p < C

p−1
p

M . (3.13)

It follows from (3.10)–(3.13) that the following limitations are true.

um → u weakly star in L∞(0,T ; W1,p
0 (Ω)), (3.14)

um → u weakly star in L∞(0,T ; Lp(Ω)), (3.15)

umt → ut weakly star in L∞(0,T ; L2(Ω)), (3.16)

∆pum → χ weakly star in L∞(0,T ; W−1,p′(Ω)). (3.17)

Combining (3.15) and (3.16) with Lemma 2.2 yields

um → u strongly in C([0,T ]; L2(Ω)), (3.18)

which implies

|um|
p−2um ln |um| → |u|p−2u ln |u| almost everywhere (x, t) ∈ Ω × (0,T ). (3.19)
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Let Ω1 = {x ∈ Ω : |um(x, t) ≤ 1} and Ω2 = {x ∈ Ω : |um(x, t) ≥ 1}, then by means of direct calculation,
we know from Lemma 2.1 and Eq (3.11)∫

Ω

∣∣∣∣∣|um|
p−2um ln |um|dx

∣∣∣∣∣p′
=

∫
Ω1

∣∣∣∣∣|um|
p−2um ln |um|dx

∣∣∣∣∣p′ +

∫
Ω2

∣∣∣∣∣|um|
p−2um ln |um|dx

∣∣∣∣∣p′
≤ [(p − 1)e]−p′ |Ω| +

( n − p
p(p − 1)

)p′ ∫
Ω2

|um|
np

n−p

≤ [(p − 1)e]−p′ |Ω| +

( n − p
p(p − 1)

)p′

C
np

n−p ‖∇um‖
np

n−p
p ≤ LM,

(3.20)

where 1
p + 1

p′ = 1 and LM = [(p − 1)e]−p′ |Ω| +

(
n−p

p(p−1)

)p′

C
np

n−p C
n

n−p

M . From Lemma 2.3, Eqs (3.19) and

(3.20), we receive

|um|
p−2um ln |um| → |u|p−2u ln |u| weakly in L∞(0,T ; Lp′(Ω)). (3.21)

Now, we prove χ = ∆pu. For this reason, multiplying both sides of (3.1) by an arbitrary smooth
function ϕ(t) ∈ C2[0,T ] and integrating over [0,T ], we have

(umt(T ), ϕ(T )ω j) +

∫ T

0
(∆pum, ϕ(t)ω j)dt = (umt(0), ϕ(0)ω j)

+

∫ T

0
(umt, ϕ

′(t)ω j)dt +

∫ T

0
(|um|

p−2um ln |um|, ϕ(t)ω j)dt.

(3.22)

Taking the limitation of both sides of Eq (3.22) with j fixed and m→ ∞, we get

(ut(T ), ϕ(T )ω j) +

∫ T

0
(χ, ϕ(t)ω j)dt

= (ut(0), ϕ(0)ω j) +

∫ T

0
(ut, ϕ

′(t)ω j)dt +

∫ T

0
(|u|p−2u ln |u|, ϕ(t)ω j)dt.

(3.23)

By (3.23),we have

(ut(T ), ψ(T )) +

∫ T

0
(χ, ψ(t))dt

= (ut(0), ψ(0)) +

∫ T

0
(ut, ψ

′(t))dt +

∫ T

0
(|u|p−2u ln |u|, ψ(t))dt,

(3.24)

for every ψ ∈ L2(0,T ; W1,p
0 (Ω)), ψ′ ∈ L2(0,T ; L2(Ω)). In particular, Setting ψ = u in (3.24) , we obtain

(ut(T ), u(T )) +

∫ T

0
(χ, u)dt

= (ut(0), u(0)) +

∫ T

0
‖ut(t)‖2dt +

∫ T

0
(|u|p−2u ln |u|, u)dt.

(3.25)
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On the other hand, multiplying both sides of (3.1) by g jm(t), summing on j from 1 to m and integrating
over [0,T ], we get

(umt(T ), um(T )) +

∫ T

0
(∆pum, um)dt = (umt(0), um(0)

+

∫ T

0
‖umt‖

2dt +

∫ T

0
(|um|

p−2um ln |um|, um)dt.

(3.26)

Taking the inferior limitation on both sides of (3.26) as m→ ∞, we have

(ut(T ), u(T )) + lim
m→∞

inf
∫ T

0
(∆pum, um)dt

≤ (ut(0), u(0)) +

∫ T

0
‖ut‖

2dt +

∫ T

0
(|u|p−2u ln |u|, u)dt.

(3.27)

We conclude from (3.25) and (3.27) that

lim
m→∞

inf
∫ T

0
(∆pum, um)dt ≤

∫ T

0
(χ, u)dt. (3.28)

By the monotonicity of operator ∆p, we have∫ T

0
(∆pum − ∆pv, um − v)dt ≥ 0, ∀v ∈ L∞(0,T ; W1,p

0 (Ω)). (3.29)

We get from (3.28) and (3.29) that

lim
m→∞

inf
∫ T

0
(∆pum − ∆pv, um − v)dt

≤

∫ T

0
(χ, u − v)dt −

∫ T

0
(∆pv, u − v)dt =

∫ T

0
(χ − ∆pv, u − v)dt.

(3.30)

Combining (3.29) with (3.30) yields that∫ T

0
(χ − ∆pv, u − v)dt ≥ 0. (3.31)

Let v = u − λω, then, by (3.31), we obtain

λ

∫ T

0
(χ − ∆p(u − λω), ω)dt ≥ 0, (3.32)

for any ω ∈ Lp(0,T ; W1,p
0 (Ω)) and any real number λ.

As λ > 0, λ→ 0, from (3.32) and the hemicontinuity of operator ∆p, we conclude that∫ T

0
(χ − ∆pu, ω)dt ≥ 0. (3.33)
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Similarly, when λ < 0, λ→ 0, we have ∫ T

0
(χ − ∆pu, ω)dt ≤ 0. (3.34)

Thus, for all ω ∈ Lp(0,T ; W1,p
0 (Ω)), we deduce from (3.33) and (3.34) that∫ T

0
(χ − ∆pu, ω)dt = 0, (3.35)

which implies that χ = ∆pu.
Next, we prove above solution u(x, t) satisfies (1.2), i.e., u(x, 0) = u0(x), ut(x, 0) = u1(x).
We conclude from Eqs (3.15), (3.16) and Lemma 1.2 that u(t) : [0,T ] → L2(Ω) is continuous.

Therefore, um(0)→ u(0) weakly in L2(Ω). According to (3.3), one has u(0) = u0.
To prove ut(0) = u1, let ξ(t) be a smooth function with ξ(0) = 1, ξ(T ) = 0. Noting∫ T

0
(umtt, ξω j)dt = −

∫ T

0
(umt, ξtω j)dt − (umt(0), ξ(0)ω j).

For given j, as m→ ∞, we get in the distribution sense∫ T

0
(utt, ξω j)dt = −

∫ T

0
(ut, ξtω j)dt − (ut(0), ξ(0)ω j) (3.36)

inD′([0,T ]). On the other hand,∫ T

0
(umtt, ξω j)dt =

∫ T

0
[(−∆pum, ξω j) + (|um|

p−2um ln |um|, ξω j)]dt

converges to ∫ T

0
[(−∆pu, ξω j) + (|u|p−2u ln |u|, ξω j)]dt =

∫ T

0
(utt, ξω j)dt

as m→ ∞. Therefore, ∫ T

0
(utt, ξω j)dt = −

∫ T

0
(ut, ξtω j)dt − (u1, ξ(0)ω j). (3.37)

From (3.36) and (3.37), we have (ut(0), ω j) = (u1, ω j). By the density of{ω j}
m
j=1 in L2(Ω), we get

ut(0) = u1. This completes the proof of Theorem 3.1.
For the case ofK(u0) ≥ 0 and E(0) = M ≤ d, the global existence result of solutions to the problem

(1.1)–(1.3) reads as follows:
Theorem 3.2. Assume that p fulfils (1.5). If u0 ∈ W1,p

0 (Ω), u1 ∈ L2(Ω) and E(0) = M ≤ d, K(u0) ≥ 0,
then there exists a global weak solution u(x, t) for the problem (1.1)–(1.3) which satisfies u(x, t) ∈
L∞([0,+∞); W1,p

0 (Ω)), ut(x, t) ∈ L∞([0,+∞); L2(Ω)).
Proof. For the case ‖∇u0‖p , 0, let us suppose that ρk = 1 − 1

k and u0k = ρku0, k ≥ 2. The problem
(1.1)–(1.3) can be written as follows:

utt + ∆pu = |u|p−2u ln |u|, (x, t) ∈ Ω × R+,

u(x, 0) = u0k(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × R+.

(3.38)
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From K(u0) ≥ 0 and Lemma 2.6, we have θ∗ = θ∗(u0) ≥ 1. Accordingly, we get K(u0k) > 0. By (2.3),
we obtain

0 < J(u0k) =
1
p2 ‖u0k‖

p
p +

1
p
K(u0k) < J(u0). (3.39)

Therefore, we receive

0 < Ek(0) =
1
2
‖u1‖

2 +J(u0k) <
1
2
‖u1‖

2 +J(u0) = E(0) = M ≤ d,

which implies that u0k ∈ W.
For each k, by Theorem 3.1, there exists a global weak solution uk(t) of the problem (3.38) such that

uk(t) ∈ L∞([0,+∞); W1,p
0 (Ω)), ukt(t) ∈ L∞([0,+∞); L2(Ω)) and

(ukt, v) +

∫ t

0
(∆puk, v)ds = (u1, v) +

∫ t

0
(|uk|

p−2uk ln |uk|, v)ds (3.40)

for any v ∈ W1,p
0 (Ω).

In addition,

Ek(t) =
1
2
‖ukt‖

2 +J(uk) =
1
2
‖u1‖

2 + J(u0k) = Ek(0) < M ≤ d. (3.41)

By using (3.41) and combining with the same argument as (3.6), we can prove uk(t) ∈ W.

For the case ‖∇u0‖p = 0, we get J(u0) = 0 by K(u0) ≥ 0. Thus, we have E(0) = 1
2‖u1‖

2 +J(u0) =
1
2‖u1‖

2 = M. Let ρk = 1 − 1
k , u1k = ρku1(x), k ≥ 2, we consider the following problem

utt + ∆pu = |u|p−2u ln |u|, (x, t) ∈ Ω × R+,

u(x, 0) = u0(x), ut(x, 0) = u1k(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × R+.

(3.42)

Noting

0 < Ek(0) =
1
2
‖u1k‖

2 +J(u0) =
1
2
‖ρku1‖

2 <
1
2
‖u1‖

2 = M. (3.43)

By Eq (3.43) and Theorem 3.1, there is a global weak solution uk(t) for the problem (3.42) such that
uk(t) ∈ L∞(0,+∞; W1,p

0 (Ω)), ukt(t) ∈ L∞(0,+∞; L2(Ω)) and uk(t) ∈ W for each k.
The remainder of the proof for Theorem 3.2 is the same as those of Theorem 3.1. Here, we omit

them.

4. Nonexistence of global solutions

Lemma 4.1. [38, 39] If nonnegative function Φ(t) ∈ C2 satisfies

Φ(t)Φ′′(t) − (1 + ρ)Φ′(t)2 ≥ 0,

for Φ(0) > 0, Φ′(0) > 0 and ρ > 0, then there exists a time T∗ such that 0 < T∗ ≤
Φ(0)
ρΦ′(0) and

lim
t→T−∗

Φ(t) = +∞.
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Lemma 4.2. Suppose that u(t) is a solution of (1.1)–(1.3). If u0 ∈ U and E(0) < d, then u(t) ∈ U and
E(t) < d, ∀t ≥ 0.
Proof. From the conservation of energy, we obtain E(t) = E(0) < d. From (2.11), we get

J(u) ≤ E(t) < d. (4.1)

Assume that there is t∗ ∈ [0,+∞) such that u(t∗) < U, then by continuity of K(u(t)) on t, we obtain
K(u(t∗)) = 0. That means u(t∗) ∈ N . From (2.14), we have J(u(t∗)) ≥ d, which is contradiction with
(4.1). Therefore, the conclusion in Lemma 4.2 holds.

Theorem 4.1. Suppose that 0 < E(0) < d and
∫

Ω

u0u1dx > 0, then there is no global weak solution

u(t) to the problem (1.1)–(1.3). Namely, there exists a time T∗ such that lim
t→T−∗
‖u(t)‖2 = +∞, where the

lifespan T∗ is estimated by 0 < T∗ <
4Ψ(0)

(p−2)Ψ′(0) , Ψ(t) is given in (4.19).
Proof. By u0 ∈ U, E(0) < d and Lemma 4.2, we get u ∈ U. Thus,

K(u) = ‖∇u‖p
p −

∫
Ω

|u|p ln |u|dx < 0. (4.2)

From (2.13) and (2.19), we have

d ≤ sup
θ≥0
J(θu) =

1
p2 ‖θ∗u‖

p
p. (4.3)

We deduce from (2.17), (4.2) and (4.3) that

d ≤
1
p2 ‖u‖

p
p. (4.4)

Let
Ψ(t) = ‖u(t)‖2 =

∫
Ω

u2dx. (4.5)

Then there is a real number α > 0, which satisfies

Ψ(t) ≥ α > 0. (4.6)

By differentiating on both sides of (4.5), we get

Ψ′(t) = 2
∫

Ω

uutdx. (4.7)

From (4.7), we obtain

Ψ′′(t) = 2‖ut‖
2 + 2

∫
Ω

uuttdx. (4.8)

Combining (1.1) with (4.8), we get

Ψ′′(t) = 2(‖ut(t)‖2 +

∫
Ω

|u|p ln |u|dx − ‖∇u‖p
p) = 2[‖ut(t)‖2 − K(u)]. (4.9)
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By u ∈ U and (4.9), we receive Ψ′′(t) > 0. Combining (4.5), (4.7) and (4.9), we get

Ψ(t)Ψ′′(t) −
p + 2

4
Ψ′(t)2

= 2Ψ(t)
[
‖ut(t)‖2 +

∫
Ω

|u|p ln |u|dx − ‖∇u‖p
p

]
−(p + 2)Ψ(t)‖ut(t)‖2 + (p + 2)Υ(t),

(4.10)

where

Υ(t) = ‖u(t)‖2 · ‖ut(t)‖2 −
( ∫

Ω

uutdx
)2

. (4.11)

By Cauchy-Schwarz inequality, we get( ∫
Ω

uutdx
)2

≤ ‖u(t)‖2‖ut(t)‖2. (4.12)

This inequality (4.12) guarantees Υ(t) ≥ 0. By (4.10), we have

Ψ(t)Ψ′′(t) −
p + 2

4
Ψ′(t)2 ≥ Ψ(t)Π(t), (4.13)

where
Π(t) = −p‖ut‖

2 + 2
∫

Ω

|u|p ln |u|dx − 2‖∇u‖p
p. (4.14)

From (2.11) and (4.14), we obtain

Π(t) = −2pE(t) +
2
p
‖u‖p

p. (4.15)

By (4.4), (4.15) and E(t) = E(0) < d, we get

Π(t) ≥ −2pE(0) + 2pd = 2p[d − E(0)] > 0. (4.16)

Therefore, there exists β > 0 such that
Π(t) ≥ β > 0. (4.17)

Combining (4.6), (4.13) and (4.17), we conclude that

Ψ(t)Ψ′′(t) −
p + 2

4
Ψ′(t)2 ≥ αβ > 0, ∀t ≥ 0. (4.18)

Let ρ =
p−2

4 > 0, then, by the differential inequality (4.18) and Lemma 4.1, one has

0 < T∗ <
4Ψ(0)

(p − 2)Ψ′(0)
, (4.19)

and
lim
t→T−∗

Ψ(t) = +∞. (4.20)

From (4.5) and (4.20), we have lim
t→T−∗
‖u(t)‖2 = +∞.

This completes the proof of Theorem 4.1.
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5. Conclusions

By applying Galerkin method and Lp-Sobolev logarithmic inequality, and combining with the po-
tential well theory, we prove the global existence result of solutions in this paper. Namely, assume that
p satisfies (1.5). If u0 ∈ W1,p

0 (Ω), u1 ∈ L2(Ω) and 0 < E(0) ≤ M, K(u0) ≥ 0, then there is a global weak
solution u(x, t) of the problem (1.1)–(1.3). Meanwhile, under the condition of positive initial energy,
by using the concavity analysis method, we establish the finite time blow-up result of solutions and

give the lifespan estimate of solutions. The result read as follows: If 0 < E(0) < d and
∫

Ω

u0u1dx > 0,

then the solutions of the problem (1.1)–(1.4) blows up in finite time and the lifespan T∗ is estimated by
0 < T∗ <

4Ψ(0)
(p−2)Ψ′(0) .
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