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Abstract: In this paper, we use a moment-based method to test the existence of the individual and
time effects in unbalanced panel data models with time-invariant regressors. Based on the difference
of two variance estimators of idiosyncratic errors, three test statistics are proposed. The test statistics
for individual (time) effect is robust when the time (individual) effect exists, and is robust for the
correlation between explanatory variables and individual or time effect. Additionally, they do not
require prior distributional assumptions on the error term. The asymptotic properties of estimators and
the test statistics are given in this paper. The Monte Carlo simulations show that the test statistics have
good power in finite samples at various situations and a real example is studied for illustration.
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1. Introduction

The panel data model has been widely used in economics and finance, as it can provide more
information compared to the time series and cross-section model [1–4]. Also, it can relieve the problem
that the important variables are not included in the model by adding individual and time effects to
represent the heterogeneity and commonality of units respectively. Therefore, it is very important to
test whether the individual and time effects are in the model, see, e.g., Breush and Pagan [5], Honda [6],
Baltagi and Li [7], Bera et al. [8] and Baltagi et al. [9], etc.

If the model contains variables that should not present the estimators of this model will be incon-
sistent and even the statistic inference will be unreliable. For example, when the ture model is a linear
panel data model with individual effect but a linear panel data model is incorrectly specified, the bias
estimate of regression parameters will mislead policy makers. This motivated us to test whether the
individual and time effects exist in the model.

Many scholars studied the testing methods of the existence of random effects. Breush and Pagan [5]
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proposed the Lagrange multiplier (LM) test under the assumption of normality of error terms, but
Honda [6] found that the LM test was also robust under the assumption of non-normality and proposed
two one-way tests on the basis of LM test. Baltagi and Li [7] further applied the LM test to the
unbalanced panel. Bera et al. [8] used LM to test the individual effect when the idiosyncratic errors
have autocorrelation. However, the above models they studied contain only one effect in the error
term. For example, when we need to test individual effect, the test results will be distorted if the time
effect exists. Baltagi et al. [9] used the LM test method based on the existence of two effects in the
model. But LM test requires normality hypothesis and uncorrelation among explanatory variables,
random effects and error term. Therefore, when the individual or time effect in the model is related to
the explanatory variables, the estimation results will be biased when the ordinary least square (OLS)
or general least square (GLS) estimation is used. We know that the individual or time effect is often
related to the explanatory variables in the real econometric problem. Wu and Li [10] proposed a test
method for individual and time effects based on moment estimation without making assumptions about
the distribution of error terms and the independence between random effects and explanatory variables.
The main idea is to construct the difference between the two variance estimators of the error terms of
the model. One of the variance estimators of the error term is consistent regardless of whether there is
an individual or time effect. Another variance estimator of the error term is only consistent under the
null hypothesis. Therefore, the difference between them can be used to construct the test statistics, that
is to say, the test statistics are close to zero under the null hypothesis and large under the alternative
one. Also, the proposed test statistics are robust when testing one effect and the other effect exists.

In real economics applications, when factors such as age and race are considered, time-invariant
variables should be included in the regression model. Pesaran [11], Sebastian and Claudia [12] and
many other scholars studied the panel data model with time-invariant regressors. On the basis of Wu
and Li [10], Chen et al. [13] further proposed the individual and time effect tests for the two-way
error panel model with time-invariant regressors, which also combined with Pesaran [11]’s proposed
estimation method when the time-invariant variables are endogenous. However, previous literature has
not studied the test for an unbalanced panel with time-invariant variables.

Due to the complex external environment, panel data is often unbalanced or incomplete and the
missing data may be random or non random. It is necessary to directly study the estimation and sta-
tistical inference of the unbalanced panel in order to get a precise conclusion. In the unbalanced panel
model, the estimation and test methods for model contained one or two effects and for the different
types of missing data are different. For example, on the basis of the testing idea put forward by Wu and
Li [10] mentioned above, if the data is monotonically missing (the data of an individual after a certain
time point is missing) and it is a linear panel model with only individual effect, the test method pro-
posed by Wu and Li [10] can still be used in the unbalanced panel [14]. However, if the time effect also
exists in the model, it is necessary to classify the cross-section individuals with the same missing type
into one group. The main reason is that the common time effect can only be removed within the group
when using OLS or other estimation methods to obtain accurate estimators. Besides, the interference
of individual (time) effects should be avoided during the construction of test statistics [15]. If the data
is random missing, the cross-sectional units with the same missing type need to be divided together,
that is, the individuals can be differentiated in pairs to eliminate the time effect [16]. To sum up, many
scholars have studied the test of parametric models in the unbalanced panel, but the test for individual
and time effects in the unbalanced panel has not been studied. Therefore, we use a moment-based
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method to test the individual and time effects in the unbalanced panel data model with time-invariant
regressors.

The contribution of this paper is the following two aspects. First, considering the difficulty to obtain
the whole balanced panel data sample, we study a two-way error component time-invariant regressors
model with an unbalanced panel. Also, a effective estimation method is given. Second, referring
to Wu and Li [10]’s method, we have build the moment-based test statistics for individual and time
effects in the unbalanced panel data model by using the difference of the two variance estimators of the
error term. The test for individual (time) effect is robust no matter the existence of time (individual)
effect and robust in regards to the correlation between the explanatory variable and individual or time
effect. Furthermore, it is unnecessary to make a distributional assumption for the error in advance. The
simulations demonstrate that the power of the test statistics is high in various situations.

The rest of this paper is organized as follows. In the Section 2, we introduce the basic model and
the estimation process. Tests for individual and time effects are shown in Sections 3 and 4 respectively.
Section 5 is the jointly test for two effects in the basic model and Section 6 is Monte Carlo simulations
and a real example analysis. The conclusion is in Section 7. The proof of the relevant theorems will be
presented in Appendix.

2. Model and estimation

Consider a two-way error component panel data model with time-invariant regressors,

yit = α + X
′

itβ + Z
′

iγ + vit,

vit = µi + ηt + εit,
(2.1)

where yit is the response variable at unit i and time t, Xit = (Xit,1, · · · , Xit,p)
′

is a p × 1 vector of time
varying explanatory variables, X

′

it is the transpose of Xit, β is a p × 1 vector of parameter. Zi is a m × 1
time-invariant exogenous variables * and γ is also a parameter. The error term vit contains unobservable
individual effect µi and time effect ηt, which are both random effects. µi is assumed to be independent
and identically distributed with mean zero and finite variance σ2

µ. ηt, like µi, has mean zero and finite
variance σ2

η. Also, The idiosyncratic error εit is assumed to be identified independent distribution with
mean zero and variance σ2

ε .
It is difficult to obtain all the sample data due to several factors including migration. In application,

we often get unbalanced panels. However, the traditional methods for balanced panels are not suitable
for unbalanced panel data models. We have to propose other effective methods for incomplete data
model. It is worth noting that, in unbalanced panel data, if we use normal centering transformation
for all units, the time effect will not be removed completely. The reason is that the individuals have
different length of time T. Therefore, we can regard each group as a balanced panel data that they also
have the same length of time by referring the grouping method of Wu et al. [15]. So, we can solve this
problem by centering in each group.

Divide n cross-section units into L disjoint groups N1, · · · ,NL such that the observed time periods
are identical for each i ∈ Nl with l = 1, 2, · · · , L. There are nl units with time Tl in group Nl. The
whole number of the sample is N =

∑L
l=1 nlTl. For each group Nl,

yli = ιTlα + Xliβ + (ιTlZ
′

i )γ + ιTlµli + ηl + εli , li ∈ Nl, i = 1, · · · , nl, (2.2)
*We only consider that Zi is exogenous for simplicity.
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where yli = (yli,tl,1 , yli,tl,2 · · · , yli,tl,Tl
)
′

, ιTl is a vector of one with dimension Tl and the other right-hand-side
variables are stacked accordingly. Next, estimate the unbalanced panel data model.

First, we estimate β by making a centering transformation in each group to remove the time effect,

ỹli = X̃liβ + (ιTl Z̃
′

i )γ + ιTl µ̃li + ε̃li , li ∈ Nl, i = 1, · · · , nl, (2.3)

where ỹli = yli −
1
nl

∑nl
i=1 yli . X̃li , Z̃

′

i , µ̃li and ε̃li are defined similarly. We can find matrix QTl such that
(T−1/2

l ιTl ,QTl) is a Tl × Tl orthogonal matrix (e.g., Wu and Li [10]). Denote the jth column vector of
matrix QTl by ql j = (ql j1, · · · , ql jTl)

′

, l = 1, · · · , L, j = 1, · · · ,Tl−1. Then, multiplying model (2.3) with
Q
′

Tl
, we have

Q
′

Tl
ỹli = Q

′

Tl
X̃liβ + Q

′

Tl
ε̃li , li ∈ Nl, i = 1, · · · , nl, (2.4)

where Q
′

Tl
ιTl = 0, so the time-invariant regressors and individual effect are also removed. We can use

OLS to obtain the consistent estimator of β,

β̂ = arg min
β

L∑
l=1

nl∑
i=1

||Q
′

Tl
ỹli − Q

′

Tl
X̃liβ||

2 =

 L∑
l=1

nl∑
i=1

X̃
′

li PTl X̃li

−1  L∑
l=1

nl∑
i=1

X̃
′

li PTl ỹli

 , (2.5)

where PTl = QTl Q
′

Tl
= ITL −

1
TL
ιTLι

′

TL
that ITL is TL×TL identity matrix and Q

′

Tl
QTl = ITl−1.

Theorem 2.1. Under some mild conditions, |Σ1| > 0 and as n → ∞ with fixed time period, β̂ has the
following asymptotic normal distribution,

√
n(β̂ − β)

d
−→ N(0,Σ−1

1 Σ2Σ
−1
1 ) (2.6)

where Σ1 =
∑L

l=1 ml[E(X
′

li
PTl Xli) − EX

′

li
PTl EXli], Σ2 =

∑L
l=1 mlE[(Xli − EXli)

′

PTlεliε
′

li
(Xli − EXli)] and

ml = limn→∞
nl
n , see Shao et al. [25]. Note that the result is based on the large individuals and short

time period.

The proof of the asymptotic distribution of β̂ can refer Wu et al. [10] since the time-invariant vari-
ables are removed after the transformation.

Second, estimate γ. Peseran and Zhou [11] used the filtered method to obtain the estimator of γ by
the regression of ûit on Zi and mentioned that the estimator is still consistent under unbalanced panel
data model. Details of estimating procedure are as follow. For each groupNl, the average over time of
ûit,

¯̂uli = α + Z
′

liγ + v̄li , i = 1, · · · , nl, (2.7)

where ¯̂uli = 1
Tl

∑Tl
t=1 uit, X̄li = 1

Tl

∑Tl
t=1 Xit v̄li = 1

Tl

∑Tl
t=1 εli and ûit can be estimated by yit − X

′

itβ̂. Next, we
can make the centering transformation over cross-section units in each group. Thus, the estimator of γ
is

γ̂ =

 L∑
l=1

nl∑
i=1

(Zli − Z̄)(Zli − Z̄)
′

−1 L∑
l=1

nl∑
i=1

(Zli − Z̄)( ¯̂uli −
¯̂u), (2.8)

where Z̄ = 1
nl

∑nl
i=1 Zli , ¯̂u = 1

nl

∑nl
i=1

¯̂uli . For the identifying assumption of γ, the time-invariant variables
are not correlated to the individual effect in this paper and the endogenous regressors can be considered
in the future study.
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Assumption 2.1. The error term εit is cross-sectional uncorrelated and unrelated with explanatory
variables Xit for i = 1, · · · , nl and t = 1, · · · ,Tl, E(εitε js|X,Z) = 0 for t, s and i , j, E(εitXit,p) = 0 for i,
j and p.

Assumption 2.2. The εit can be heterogeneous, E(εitεis) = ri(t, s), where ri(t, t) = r2
i and ri(t, s) < K,

K is the nonzero constant and K < ∞.

Assumption 2.3. The time-invariant variable Zli is uncorrelated to the individual effect µli and the
error term ε̄li and also µli and ε̄li are independently distributed. The fourth moment of Zi is finite.
E(Ziµli) = 0, E(Ziε̄li) = 0, E(||Zi||

2µ2
li
) = 0, E(||Zi||

2ε̄2
li
) = 0, E(Ziµi) = 0 and E(||Zi||

2µiε̄li) = 0 for all i, j.

These assumptions are similar to Peseran and Zhou [11].

Theorem 2.2. Under the Assumptions 2.1–2.3 and suppose that |Σ3| > 0, as n → ∞ with fixed time
period, the estimator γ has the following asymptotic distribution,

√
n(γ̂ − γ)

d
−→ N(0,Σ−1

3 (Σ4 + Ω1 + Ω2)Σ−1
3 ) (2.9)

where the definition of Σ3, Σ4, Ω1 and Ω2 can be seen in Eqs (A.8), (A.10), (A.14) and (A.15) in the
Appendix.

3. Test for individual effect

In this section, we construct a test statistic for individual effect in model (2.2). The hypothesis is:

Hµ
0 : σ2

µ = 0,Hµ
1 : σ2

µ > 0.

After the transformation of original model, we obtain model (2.4) and the moment condition of Q
′

Tl
ε̃li:

L∑
l=1

nl∑
i=1

E||Q
′

Tl
ε̃li ||

2 =

L∑
l=1

ni∑
i=1

Tl−1∑
j=1

E(q
′

l j
ε̃li)

2 = c1σ
2
ε , (3.1)

where c1 =
∑L

l=1 c1l with c1l = (nl − 1)(Tl − 1). Then, the estimator of σ2
ε is:

σ̂2
0ε =

1
c1

L∑
l=1

nl∑
i=1

||Q
′

Tl
(ỹli − X̃li β̂)||2 = c−1

1

L∑
l=1

nl∑
i=1

(ỹli − X̃li β̂)
′

PTl(ỹli − X̃li β̂), (3.2)

where the β̂ is obtained from Eq (2.5). σ̂2
0ε is a consistent estimator of σ2

0ε under the null hypothesis,
alternative hypothesis, and irregardless of the existence of µi and ηt (see Wu et al. [10]).

We can construct the fourth-order moment of the variance of error σε by referring Wu and Zhu [17]
and Wu et al. [15].

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

E(q
′

l j
ε̃li)

4 = c2λ
4
ε + c2c3(σ2

ε )
2 (3.3)

where λ4
ε = Eε4

it.

c2 =

L∑
l=1

Tl−1∑
j=1

Tl∑
t=1

q4
l jt(nl − 1)(n2

l − 3nl + 3)/n2
l , (3.4)
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c3 = c−1
2

L∑
l=1

3(nl − 1)2(Tl − 1)/nl − 3. (3.5)

Thus, the estimator of the λ4
ε ,

λ̂4
ε = c−1

2

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

E(q
′

l j
ε̃li)

4 − c3(σ̂2
0ε)

2 = c−1
2

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

(q
′

l j
(ỹli − X̃li β̂))4 − c3(σ̂2

0ε)
2 (3.6)

is consistent under some mild conditions.
Next, we should obtain the consistent estimator of β under the null hypothesis. Under the null

hypothesis, the original model (2.2) becomes

yli = lTlα + Xliβ + (ιTlZ
′

i )γ + ηl + εli , li ∈ Nl, i = 1, · · · , nl. (3.7)

We just need to remove the time effect by centering in each group,

ỹli = X̃liβ + (ιTl Z̃
′

i )γ + ε̃li , li ∈ Nl, i = 1, · · · , nl. (3.8)

It holds that
L∑

l=1

ni∑
i=1

E||ε̃li ||
2 = c2σ

2
ε . (3.9)

where c4 =
∑L

l=1 c4l with c4l = (nl − 1)Tl. Similarly,

σ̂2
1ε =

1
c4

L∑
l=1

nl∑
i=1

||(ỹli − X̃li β̂ − (ιTl Z̃
′

i )γ̂)||2, (3.10)

where the γ̂ is obtained in Eq (2.8). However, σ̂2
1ε is only consistent under Hµ

1 (see Wu et al. [10])
while σ̂2

0ε is both consistent under Hµ
0 and Hµ

1 . Therefore, we can construct a test statistic by following
Hausman [18],

Tµ = ω−1/2
n

√
n(σ̂2

1ε − σ̂
2
0ε) (3.11)

where ωn = anλ̂
4
ε + bn(σ̂2

0ε)
2 is used to standardize the test statistic. The

an =
1
n

L∑
l=1

nl

(
n2

c2
4

Tl +
n2

c2
1

(Tl +
1
Tl
− 2) −

2n2

c1c4
(Tl − 1)

)
, (3.12)

bn =
1
n

L∑
l=1

nl

(
n2

c2
4

Tl(Tl − 1) +
n2

c2
1

(Tl − 1)(Tl +
3
Tl
− 2) −

2n2

c1c4
(Tl − 1)2

)
. (3.13)

That Tµ will be close to zero under the Hµ
0 but large under Hµ

1 .

Assumption 3.1. The individual effect µi = n−
1
4µ0i, where µ0i is i.i.d. with zero mean and finite variance

σ2
1 > 0.

Assumption 3.2. E(µiεit) = 0, n
1
2 E(µ2

i ε
2
it) < ∞, E(n

1
4 Xit,pµi) < ∞ for each i, t and p.
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The assumptions can refer to Wu et al. [15].

Theorem 3.1. Suppose the explanatory variable Xit, time-invariant variable Zit and error term εit are
i.i.d sequence with EX4

it < ∞, |Σ1| > 0, EZ4
it < ∞, |Σ3| > 0 and Eε5

it < ∞. Under the Assumptions 3.1
and 3.2, we have the following asymptotic distribution,

Tµ − Φ−1/2
n σ2

1 →d N(0, 1) (3.14)

where Φn = anλ
4
ε + bn(σ2

0ε)
2, a = limn→∞ an, b = limn→∞ bn.

The proof of the above theorem is in Appendix.

4. Test for time effect

In this section, we will test the time effect of model (2.2). Consider the heteroscedasticity of η, the
hypothesis is as follows,

Hη
0 : var(η1) = · · · = var(ηT) = 0, Hη

1 : at least one of them is nonzero.

where T is the largest number of time of all groups. Similar to the test for individual, under Hη
0 , the

model (2.2) reduces to,

yli = lTlα + Xliβ + (ιTlZ
′

i )γ + ιTlµliεli , li ∈ Nl, i = 1, · · · , nl. (4.1)

We obtain the variance estimator of error by eliminating the individual effect and the time-invariant
variables by the same orthogonal transformation mentioned in the Section 2. We have

Q
′

Tl
yli = Q

′

Tl
Xliβ + Q

′

Tl
εli , li ∈ Nl, i = 1, · · · , nl. (4.2)

It also holds that
L∑

l=1

ni∑
i=1

E||Q
′

Tl
εli ||

2 = c5σ
2
ε , (4.3)

where c5 =
∑L

l=1 c5l with c5l = (Tl − 1)nl. So,

σ̂2
2ε =

1
c5

L∑
l=1

nl∑
i=1

||Q
′

Tl
(yli − Xli β̂)||2 = c−1

5

L∑
l=1

nl∑
i=1

(yli − Xli β̂)
′

PTl(yli − Xli β̂). (4.4)

That σ̂2
2ε is consistent under the null hypothesis Hη

0 but inconsistent under Hη
1 (see Wu et al. [10]). The

difference between σ̂2
2ε and σ̂2

0ε should be small under Hη
0 . A test statistic for time effect is

Tη =
c5

σ̂2
0ε

(σ̂2
1ε − σ̂

2
0ε) +

L∑
l=1

(Tl − 1). (4.5)

Then, we set some assumptions to study the properties of Tη (refer to Wu et al. [15]).

Assumption 4.1. The time effect ηt = n−1/2η0t, where η0t is random variable with mean zero and finite
variance Eη2

0t > 0.
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Theorem 4.1. Suppose that EX2
it,p < ∞, Eε2

it < ∞, |Σ1| > 0 and E(Xit,pε
2
is) for i, t, p, s. If the Assumption

4.1 holds, we have

Tη −→

L∑
l=1

||σεQ
′

Tl
ηl + N(0, ITl−1 − σ

−2
ε Σ8l)||2 (4.6)

where η = (η0tl,1 , η0tl,2 , · · · , η0tl,Tl
), Σ8l = Σ9l +Σ

′

9l−Σ10l with Σ9l = mlQ
′

Tl
E(εliε

′

li
PTl(Xli −EXli))Σ

−1
1 EX

′

li
QTl

and Σ10l = mlQ
′

Tl
EXliΣ

−1
1 Σ2Σ

−1
1 × EX

′

li
QTl .

See Wu et al. [15] for similar discussion and the proof is omitted in this paper.
We can obtain that Σ8l = 0 if the EXit is independent over time period. Then, the time effect test

statistic Tη follows chi-distribution under the null hypothesis, which is very efficient in real application.
In order to satisfy this condition, we consider two transformations as same as Wu et al. [15]. Firstly,
centralize the Xit in the original model by deducing 1

nl

∑nl
i=1 Xli in each group. Secondly, transform the

explained variable yli,t into yli,t − Xl·,tβ̂. Theorem 4.1 still holds after the above transformation.

5. Test jointly for two effects

In this section, we consider the jointly test for the two effects of model (2.2). The hypothesis is as
follows,

Hµη
0 : σ2

µ = var(η1) = · · · = var(ηT) = 0,Hη
1 : at least one of them is nonzero.

Under the null hypothesis Hµη
0 , the original model becomes

yli = ιTlα + Xliβ + (ιTlZ
′

i )γ + εli , li ∈ Nl, i = 1, · · · , nl. (5.1)

We have
N∑

l=1

nl∑
i=1

E||εli ||
2 =

L∑
l=1

nlTlσ
2
ε = Nσ2

ε . (5.2)

The estimator of the variance of the error term is

σ̂2
3ε =

1
N

L∑
l=1

nl∑
i=1

||yli − ιTlα̂ − Xli β̂ − (ιTlZ
′

i )γ̂||
2, (5.3)

where β̂ and γ̂ are obtained from (2.5) and (2.8). Referring to Pesaran and Zhou [11], the consistent
estimator of α is that α̂ = 1

N

∑L
l=1

∑nl
i=1 ι

′

Tl
(yli − Xli β̂ − (ιTlZ

′

i )γ̂). σ̂2
3ε is only consistent under Hµη

0 . The
test statistic can be similarly constructed based on the difference between σ̂2

3ε and σ̂2
0ε ,

Tηµ = ω−1/2
n

√
n(σ̂2

3ε − σ̂
2
0ε) (5.4)

where ωn is as same as (3.11).

Theorem 5.1. Under the Assumptions 3.1, 3.2 and 4.1 mentioned above, EX4
it < ∞, |Σ1| > 0, EZ4

it < ∞,
|Σ3| > 0 and Eε5

it < ∞, we have the following asymptotic distribution,

Tηµ − Φ−1/2
n σ2

1 →d N(0, 1) (5.5)

where Φn = anλ
4
ε + bn(σ2

0ε)
2 and σ1 is defined in Assumption 3.1.

The proof of the theorem is similar to Theorem 3.1 and omitted in this paper since we can also refer
to Wu et al. [15].
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6. Simulations

In order to evaluate the performance of the test method, Monte Carlo simulations are used to com-
pute the empirical power of the test statistics based on 1000 replications.

6.1. Monte Carlo

We consider the data generating process as follows,

yit = α + X
′

itβ + Z
′

iγ + µi + ηt + εit, i = 1, · · · , n, t = 1, · · · ,Ti, (6.1)

where the explanatory variables and time-invariant variables are two-dimensional, Xit = (Xit,1, Xit,2)
′

,
Zi = (Zi,1,Zi,2)

′

, β = (β1, β2)
′

with β1 = 1 and β2 = 1, γ = (γ1, γ2)
′

with γ1 = 1 and γ2 = 1, {µi} and
{ηt} are i.i.d. with mean zero, finite variance var(µi) = σ2

µ and var(ηt) = σ2
η. In this unbalanced panel

data model, we assume that it has three groups with different time periods Ti, which is T = [4, 8, 12].
The number of cross-section units in each group is random (see Wu et al. [15]). Referring to Chen et
al. [13], we also set time-varying variables generated by

Xit,1 = kµig1t + 3hηt + w(1)
it , Xit,2 = kµig2t + hηt + w(2)

it , (6.2)

where k and h are constant and we can use them to control the correlations between Xit and individual
effect µi and time effect η respectively. The correlation form has no effect on the results. For simplicity,
we only set this form. g1t and g2t are uniformly distributed U(1, 2), w(1)

it and w(2)
it are i.i.d. normal

distribution with mean zero and one variance. In this paper, we assume that the time-invariant variable
Zi is exogenous.

Zi,1 = 1 + w̄i1 + ε(1)
i , Zi,2 = 1 + w̄i2 + ε(2)

i , (6.3)

where w̄i1 = T−1 ∑T
t=1 w(1)

it , w̄i2 = T−1 ∑T
t=1 w(2)

it , ε(1)
i and ε(2)

i are i.i.d. N(0, 1). Next, we describe
the estimators of two parameters and the power of the test statistics in different situations. And we
choose n = 50, 100, 150, 200 to evaluate the performance of the test statistics as the cross-section units
increase. First, we summarize the performance of the estimators in Table 1 when the individual and
time effects exist simultaneously. The value of the β̂1 and β̂2 (γ̂1 and γ̂2) is very close, so we just show
the result of β̂1 and γ̂1. Both γ̂ and β̂ have small deviations and variances. The standard deviations of
the two estimators also decrease when the sample size increases. We can see that the estimator is very
close to the true value.

Second, we evaluate the empirical power of individual test statistic Tµ in two different distributions

of error term. They are εit ∼ N(0, 1) and εit ∼

√
1
2 χ

2(1). Table 2 shows that power of the Tµ is still high
even the time effect η exists and we omit the result here because the results are same as that when the
time effect does not exist. The individual effect test statistic is robust under two types of distribution
and also robust to the correlation between the explanatory variables and individual effect. Besides, the
empirical power of Tµ increases with the increase of sample size.
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Table 1. Finite sample performance of the estimators of β̂1 and γ̂1 in case of k = 0, k = 1 and
h = 0 with ση = 0.2. (The values in the parentheses are the standard deviation).

n
σµ = 0.2 σµ = 0.4

k=0 k=1 k=0 k=1
β̂1 50 1.0037 1.0039 1.0037 1.0041

(0.0748) (0.0746) (0.0748) (0.0748)
100 0.9981 0.9981 0.9980 0.9981

(0.0528) (0.0529) (0.0529) (0.0530)
150 1.0001 1.0003 1.0001 0.9999

(0.0436) (0.0433) (0.0436) (0.0437)
200 1.0022 1.0023 1.0020 1.0024

(0.0387) (0.0388) (0.0361) (0.0400)
γ̂1 50 0.9988 0.9986 0.9986 1.1895

(0.0038) (0.0040) (0.0062) (0.2510)
100 1.0012 1.0014 1.0016 1.1120

(0.0018) (0.0017) (0.0029) (0.0030)
150 0.9988 0.9987 0.9981 0.9983

(0.0011) (0.0012) (0.0018) (0.0020)
200 0.9993 0.9994 0.9995 0.9996

(0.0009) (0.0008) (0.0014) (0.0015)

Table 2. Empirical powers of the tests Tµ in case of k = 0, k = 1 and h = 0 with ση = 0.

εit ∼ N(0, 1) n σµ
Tµ

εit ∼

√
1
2 χ

2(1) n σµ
Tµ

k=0 k=1 k=0 k=1
50 0.1 0.0455 0.0500 50 0.1 0.0555 0.0550

0.2 0.2410 0.2590 0.2 0.2450 0.2605
0.3 0.6760 0.6355 0.3 0.6600 0.6215
0.4 0.9425 0.8805 0.4 0.9195 0.8570

100 0.1 0.0810 0.0855 100 0.1 0.0695 0.0710
0.2 0.4475 0.4535 0.2 0.4110 0.4090
0.3 0.9255 0.8790 0.3 0.8910 0.8410
0.4 0.9990 0.9860 0.4 0.9857 0.9854

150 0.1 0.0830 0.0850 150 0.1 0.1960 0.2090
0.2 0.6010 0.5870 0.2 0.4140 0.4530
0.3 0.9860 0.9625 0.3 0.9810 0.9470
0.4 1.0000 0.9980 0.4 0.9995 0.9970

200 0.1 0.1095 0.1085 200 0.1 0.0970 0.1050
0.2 0.7190 0.7065 0.2 0.6790 0.6635
0.3 0.9995 0.9870 0.3 0.9960 0.9825
0.4 1.0000 1.0000 0.4 1.0000 1.0000
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Next, we evaluate the time effect test statistic Tη. Table 3 shows that the power of Tη is higher than
the individual effect test statistic Tµ. When the individual effect µ > 0, the power of the Tη is as same
as the result of Tµ > 0 and we omit here. Besides, the power of the Tη increases as the sample size
increases. Also, Tη is robust to the correlation between the explanatory variables and time effect.

Table 4 displays the empirical power of the Tµη when the explanatory variables are not related to the
time effect (h = 0). The test statistics becomes larger as the sample size increases. According to the
Tables 2 and 3, the power of Tη is higher than Tµ. So the value of ση will have a greater impact on Tµη

than σµ. When ση is large, such as ση = 0.4, the power of Tµη is high at different values of σµ. When
the sample size is small like n = 50, 100, the power is also very high. Thus, we just simulate n = 50
and 100.

Table 5 displays the empirical power of the Tµη when the explanatory variables are not related to
the individual effect (k = 0). Tµη is robust under h = 0 and h = 1. When σµ = ση = 0, Tµη is as same
as Table 4 no matter h = 0 or h = 1 and k = 1 or k = 1 and Tµη just increases with the sample data
increases. So, we omit this case here.

To sum up, three test statistics proposed in this paper are robust and have good power under several
unique situations. Furthermore, many studies verified that these types of moment-based test methods
have higher power than LM tests proposed by Breush and Pagan, [5], Honda’s test [6] and conditional
LM tests proposed by Baltagi et al. [9], see, e.g., Wu and Li [10], wu et al. [15], Chen et al. [13], etc,
for more details.

Table 3. Empirical powers of the tests Tη in case of h = 0, h = 1 and k = 0 with σµ = 0.

n ση
Tη

h=0 h=1
50 0.1 0.1575 0.1730

0.2 0.5565 0.5405
0.3 0.8955 0.8180
0.4 0.9890 0.9250

100 0.1 0.2955 0.2950
0.2 0.8605 0.8325
0.3 0.9980 0.9730
0.4 1.000 0.9950

150 0.1 0.4095 0.4010
0.2 0.9675 0.9405
0.3 1.0000 0.9965
0.4 1.0000 0.9995

200 0.1 0.5345 0.5405
0.2 0.9865 0.978
0.3 1.0000 0.9785
0.4 1.0000 1.0000
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Table 4. Empirical powers of the tests Tµη in case of k = 1 and k = 0 with h = 0.

n ση σµ
Tµη n ση σµ

Tµη

k=0 k=1 k=0 k=1
50 0.0 0.0 0.0400 0.0400 100 0.0 0.0 0.0310 0.0310

0.1 0.0684 0.0685 0.1 0.0865 0.0855
0.2 0.2345 0.2480 0.2 0.4320 0.4380
0.3 0.6430 0.6130 0.3 0.9095 0.8650
0.4 0.9240 0.8600 0.4 0.9975 0.9830

0.2 0.0 0.2590 0.2590 0.2 0.0 0.4400 0.4400
0.1 0.3305 0.3335 0.1 0.5565 0.5595
0.2 0.5855 0.5770 0.2 0.8640 0.8575
0.3 0.8575 0.8300 0.3 0.9875 0.9765
0.4 0.9810 0.9480 0.4 0.9995 0.9975

0.4 0 0.9165 0.9165 0.4 0 0.9850 0.9850
0.1 0.9370 0.9380 0.1 0.9925 0.9910
0.2 0.9755 0.9700 0.2 0.9985 0.9985
0.3 0.9935 0.9890 0.3 1.0000 1.0000
0.4 0.9990 0.9965 0.4 1.0000 1.0000

Table 5. Empirical powers of the tests Tµη in case of h = 1 and h = 0 with k = 0.

n σµ ση
Tµη n σµ ση

Tµη

h=0 h=1 h=0 h=1

50 0.0 0.1 0.0805 0.0860 100 0.0 0.1 0.0815 0.0915
0.2 0.2590 0.2965 0.2 0.4390 0.4385
0.3 0.6370 0.6075 0.3 0.8675 0.8200
0.4 0.9165 0.8090 0.4 0.9850 0.9640

0.2 0.1 0.3270 0.3345 0.2 0.1 0.5660 0.5695
0.2 0.5855 0.5740 0.2 0.8640 0.8465
0.3 0.8565 0.8000 0.3 0.9800 0.9645
0.4 0.9755 0.9150 0.4 0.9985 0.9920

0.4 0.1 0.9445 0.9455 0.4 0.1 0.9990 0.9990
0.2 0.9810 0.9765 0.2 0.9995 0.9995
0.3 0.9965 0.9905 0.3 1.0000 0.9995
0.4 0.9990 0.9950 0.4 1.0000 1.0000

6.2. A real example

Economic development is of great importance to countries and regions. There are many factors
affecting the economic growth, see, e.g., Oleg [19], Iuliana [20], Carlsen [21], etc. The impact of
foreign direct investment (FDI) on economic growth has been one of the focuses in economics. It can
provide some useful suggestions for policymakers. Richard et al. [22] studied nine OECD countries
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and seven industries by using the cross-section data and concluded that FDI promotes economic growth
through technology spillover. Borenztein et al. [23] studied 69 developing countries and found that
FDI can only promote economic growth of host countries when advanced technology has sufficient
absorptive capacity, and this impact depends on human capital. Besides, there are many other factors
have effects on economic growth.

In order to study the relationship between FDI and economic growth, Kottardi and Stengos [24]
considered the traditional linear model,

yit = β1(FDI/Y)it + β2ln(DI/Y)it + β3nit + β4hit + εit. (6.4)

where yit is per capita GDP growth rate in ith province and tth time point, (FDI/Y)it is the ratio of foreign
direct investment to total output, (DI/Y)it is the ratio of local investment to total output, nit is natural
population growth rate, hit is human capital and εit is the idiosyncratic error. However, it is widely
accepted that the effect of FDI on economic growth has the cross-sectional units heterogeneity due to
the environment and some relevant policies on different provinces and regions. Also, the economic
growth may have a trend over time, which cannot be captured by other variables. So, the model may
contain the individual and time effects (µi and ηt). Then, one may wonder whether the individual and
time effects exist. Therefore, the possible model for this example is as follows,

yit = β1(FDI/Y)it + β2ln(DI/Y)it + β3nit + β4hit + µi + ηt + εit. (6.5)

In this section, the model (6.5) can also be used to study the effect on economic growth of China.
Our model utilized the panel data of 30 provincial regions in China from 1992 to 2017 (excluding
Tibet) and the data are from China Statistical Yearbook and statistical yearbooks of various regions.

Since the proposed test method is very general, it can also be used for two-way error component
panel data model without time-invariant variables. In order to illustrate the efficiency of the proposed
test, we chose three types of unbalanced panel data sample with T = [10, 18, 26] from the original
database and the number of cross-section units are random.

Table 6. Values of three test statistics.

Tµ Tη Tµη

Case 1 201.1669 2514.3201 498.8891
Case 2 278.1351 4467.8232 839.4362
Case 3 143.8810 1598.8783 374.0413

Table 6 gives the results of the test statistics in three different cases. The p-value of Tµ, Tη and
Tµη are all less than 0.0001. So, we have to reject the null hypothesis at a significance level of 0.05.
Similarly, the time effect test statistic Tη is larger than Tµ, which has the same result we obtained in
the simulation. Thus, we conclude that the effect of FDI on economic growth has the heterogeneity
over provinces and the time effect should be included in the model to get the correct estimator when
studying this problem.
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7. Conclusions

In this paper, we construct three test statisitics for individual effect, time effect and jointly effects
in unbalanced panel data models which include the time-invariant variables. The test is based on the
moment method using the difference of two variance estimators of error. When we test the individual
effect, the test statistic is efficient no matter the existence of the time effect, and vice versa. Further-
more, three test statistics are robust to the correlations between the explanatory variables and individual
or time effect. There is no need to make some distributional assumption on error term. The simula-
tion results show that the proposed test statistics are robust under various situations and they all have
good finite sample properties. We also studied the relationship between FDI and economic growth, and
found that the effect of FDI on economic growth has heterogeneity and common time characteristics.

In fact, traditional linear models are not efficient in actual application. The nonparametric model
has been widely used for several years and we can consider a more effective test method of various
nonparametric panel models in the future. In addition, the time-invariant variables could be endoge-
nous. We can study the estimation and test methods for this kind of situation such as embedding the
instrumental variable method or system generalized method of moments.
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Appendix

The proof of the theorems is as follows.

Proof. For theorem 2.2. We can refer the proof of Pesaran [11]. For each group Nl, according to the
estimation,

¯̂uli −
¯̂u = (µli − µ̄) + (ε̄li − ε̄) + (Zli − Z̄)

′

γ − (X̄li − X̄)
′

(β̂ − β) (A.1)

where µ̄ = 1
nl

∑nl
i= µli , ε̄ = 1

nl

∑nl
i= εli. For the identification, we have

∑L
l=1

∑nl
i=1(Zli − Z̄)(µ̄+ ε̄) = 0. On the

basis of the estimator γ̂, we have

γ̂ − γ =

1
n

L∑
l=1

nl∑
i=1

(Zli − Z̄)(Zli − Z̄)
′

−1
1
n

L∑
l=1

nl∑
i=1

(Zli − Z̄)ζli (A.2)

where ζli = µli + ε̄li − (X̄li − X̄)
′

(β̂ − β). For each group Nl, noting that β̂ is consistent to β, we have

E[(Zli − Z̄)ζli |Z, X, µ] = (Zli − Z̄)µli (A.3)

For i = 1, · · · , nl, Z and X is the matrix that contains Zi and Xit respectively, and µ is the vector that
contains µli . Under the Assumption 2.3, E((Zli − Z̄)µli) = 0. We have E(γ̂) = γ that γ̂ is consistent to γ.

Then, we will proof that the γ̂ is a
√

n consistent estimator of γ.

1
n

L∑
l=1

nl∑
i=1

(Zli − Z̄)ζli =
1
n

L∑
l=1

nl∑
i=1

(Zli − Z̄)(µli + ε̄li)

−

1
n

L∑
l=1

nl∑
i=1

(Zli − Z̄)(X̄li − X̄)
′

 (β̂ − β)

(A.4)

Under the Assumptions 2.2 and 2.3, 1
n

∑L
l=1

∑nl
i=1(Zli − Z̄)(X̄li − X̄)

′

will converge to finite value. In this
paper, we assume that the individual effects in each group are the same, so the variance of the effect is
constant σ2

µ.

1
n

L∑
l=1

nl∑
i=1

(Zli − Z̄)(µli + ε̄li)→d N(0, ωliTl Qzz) (A.5)

where ωliTl = σ2
µ +

r2
i

Tl
+ 1

T 2
l
Σri(s, t). Then we have

1
n

L∑
l=1

nl∑
i=1

(Zli − Z̄)ζli = Op(N−1/2) + Op(β̂ − β) (A.6)
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We know that β̂ − β = Op(N−1/2). Then,

γ̂ − γ = Op(N−1/2) (A.7)

Next, obtain the asymptotic variance of the estimator γ̂. According to the Eq (A.2), the first term of
right side,

1
n

L∑
l=1

nl∑
i=1

(Zli − Z̄)(Zli − Z̄)
′

=

L∑
l=1

nl

n
1
nl

nl∑
i=1

(Zli − Z̄)(Zli − Z̄)
′

=

L∑
l=1

mlE
[
(Zli − EZli)(Zli − EZli)

′
]

+ op(1) = Σ3 + op(1)

(A.8)

where ml = limn→∞
nl
n , this setting is commonly used in Shao et al. [25].

1
√

n

L∑
l=1

nl∑
i=1

(Zli − Z̄)ζli =
1
√

n

L∑
l=1

nl∑
i=1

(Zli − Z̄)µli

+
1
√

n

L∑
l=1

nl∑
i=1

(Zli − Z̄)
[
ε̄li − (X̄li − X̄)

′

(β̂ − β)
] (A.9)

The variance of the first term of above formula,

var

 1
√

n

L∑
l=1

nl∑
i=1

(Zli − Z̄)µli

 = var

 L∑
l=1

√
nl

n
1
√

nl

nl∑
i=1

(Zli − Z̄)µli


=

L∑
l=1

mlσµE((Zli − EZli)(Zli − EZli)
′

) + op(1)

= Σ4 + op(1)

(A.10)

where Σ4 = var
[∑L

l=1

√
nl
n

1
√

nl

∑nl
i=1(Zli − Z̄)µli

]
. First, we know that

1
√

n

L∑
l=1

nl∑
i=1

(Zli − Z̄)(X̄li − X̄)
′

=

L∑
l=1

√
nl

n
1
√

nl

nl∑
i=1

(Zli − Z̄)(X̄li − X̄)
′

=

L∑
l=1

ml[E(Zli X̄
′

li) − E(Zli)E(X̄li)
′

] + op(1)

= Σ5 + op(1)

(A.11)

where Σ5 =
∑L

l=1 ml[E(Zli X̄
′

li
) − E(Zli)E(X̄li)

′

]. Then, the second term,

1
√

n

L∑
l=1

nl∑
i=1

(Zli − Z̄)
[
ε̄li − (X̄li − X̄)

′

(β̂ − β)
]

=

L∑
l=1

√
nl

n
1
√

nl

nl∑
i=1

[
(Zli − Z̄)T−1

l ι
′

Tl
− Σ5Σ

−1
1 (Xli − EXli)

′

PTl

]
εli

=

L∑
l=1

ml
1
√

nl

nl∑
i=1

ξli

(A.12)
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where ξli =
[
(Zli − Z̄)T−1

l ι
′

Tl
− Σ5Σ

−1
1 (Xli − EXli)

′

PTl

]
εli . According to Assumption 2.3, we have

E(ξli) = 0 (A.13)

and

var(
L∑

l=1

ml
1
√

nl

nl∑
i=1

ξli) =

L∑
l=1

mlE(ε̄2
li (Zli − EZli)(Zli − EZli)

′

)

−

L∑
l=1

mlE[(Zli − EZli)ι
′

Tl
εliε

′

li PTl(Xli − EXli)Σ
−1
1 Σ5]

− Σ5Σ
−1
1

L∑
l=1

mlE[(Zli − EZli)ι
′

Tl
εliε

′

li PTl(Xli − EXli)]
′

+ Σ5Σ
−1
1 Σ2Σ

−1
1 Σ

′

5 + op(1) = Ω1 + op(1)

(A.14)

The covariance of the two term in Eq (A.9),

E

 1
√

n

L∑
l=1

nl∑
i=1

(Zli − Z̄)µli

L∑
l=1

ml
1
√

nl

nl∑
i=1

ξli


=

L∑
l=1

mlE[µli ε̄li(Zli − EZli)(Zli − EZli)
′

]

−

L∑
l=1

mlE[(Zli − EZli)µliε
′

li PTl(Xli − EXli)]Σ
−1
1 Σ5 + op(1)

=Σ6 − Σ7Σ
−1
1 Σ5 + op(1) = Ω2 + op(1)

(A.15)

where Σ6 =
∑L

l=1 mlE[µli ε̄li(Zli − EZli)(Zli − EZli)
′

] and Σ7 =
∑L

l=1 mlE[(Zli − EZli)µliε
′

li
PTl(Xli − EXli)].

Following the central limit theorem, we have

1
√

n

L∑
l=1

nl∑
i=1

(Zli − Z̄)ζli →d N(0,Σ4 + Ω1 + Ω2) (A.16)

Therefore, we can obtain the asymptotic distribution of γ̂,
√

n(γ̂ − γ)
d
−→ N(0,Σ−1

3 (Σ4 + Ω1 + Ω2)Σ−1
3 ) (A.17)

Lemma 7.1. Suppose that Eε4
it < ∞, EXit4 < ∞ and under the Assumption 2.1 for each i, t, σ̂2

0ε and λ̂4
ε

is consistent estimator of σ2
ε and λ4

ε respectively. The proof can be seen the proof of Lemma 2 of Wu et
al. [15]. This is because the time-invariant variables are removed after the centering transformation.

Proof. For theorem 3.1. According to the lemma 7.1 and Eq (2.4), we have

√
nσ̂2

0ε =

√
n

c1

L∑
l=1

nl∑
i=1

E||Q
′

Tl
ˆ̃εli ||

2

=

√
n

c1

L∑
l=1

nl∑
i=1

ε
′

li PTlεli + op(1)

(A.18)

Electronic Research Archive Volume 30, Issue 12, 4574–4592.



4592

and
√

nσ̂2
1ε =

√
n

c4

L∑
l=1

nl∑
i=1

E||Q
′

Tl
ˆ̃εli ||

2

=

√
n

c4

L∑
l=1

nl∑
i=1

E||X̃li(β − β̂) + (ιTl Z̃
′

i )(γ − γ̂) + ιTl µ̃li + ε̃li ||
2

(A.19)

Note that
√

n(β̂ − β) = Op(1) and
√

n(γ̂ − γ) = Op(1). Besides, use some limit theorems and the proof
in Appendix of Chen et al. [13] and we suppose the explanatory variable Xit and time-invariant variable
Zit are i.i.d sequence and EX4

it < ∞, EZ4
it < ∞. We have

√
nσ̂2

1ε =

√
n

c4

L∑
l=1

nl∑
i=1

ε
′

liεli + σ2
1 + op(1) (A.20)

where σ2
1 is defined in Assumption 3.2.

√
nσ̂2

1ε − σ̂
2
0ε =

√
n

c4

L∑
l=1

nl∑
i=1

ε
′

liεli −

√
n

c1

L∑
l=1

nl∑
i=1

ε
′

li PTlεli + σ2
1 + op(1)

=
1
√

n

L∑
l=1

nl∑
i=1

ςli + σ2
1 + op(1)

(A.21)

where ςli = n
c4
ε
′

li
εli−

n
c1
ε
′

li
PTlεli and ςli is independent cross units. It holds that limn→∞

1
n

∑L
l=1

∑nl
i=1 Eςli = 0

and

lim
n→∞

1
n

L∑
l=1

nl∑
i=1

E(ςli)
2 = 0

where ωn = anλ
4
ε + bn(σ2

0ε)
2 is used to standardize the test statistics. The

a = lim
n→∞

an = lim
n→∞

1
n

L∑
l=1

nl

(
n2

c2
4

Tl +
n2

c2
1

(Tl +
1
Tl
− 2) −

2n2

c1c4
(Tl − 1)

)
(A.22)

b = lim
n→∞

bn = lim
n→∞

1
n

L∑
l=1

nl

(
n2

c2
4

Tl(Tl − 1) +
n2

c2
1

(Tl − 1)(Tl +
3
Tl
− 2) −

2n2

c1c4
(Tl − 1)2

)
(A.23)

The above proof process is the same as Wu et al. [15] and we also have the same result ω−1/2
n
√

n(σ̂2
1ε −

σ̂2
0ε) − Φ

−1/2
n σ2

1 →d N(0, 1). Thus, the proof of theorem is complete.
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