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Abstract: As a special kind of entropy, decision self-information effectively considers the uncertainty 
information of both the lower and upper approximations. However, it is limited to rough binary 
relations, which limits its application to complex problems. In addition, parameterized fuzzy β 
covering, as an extension of the covering-based rough set model, can effectively characterize the 
similarity between samples. We combine decision self-information with a parameterized fuzzy β 
neighborhood to propose decision self-information in fuzzy environments, and we study its important 
properties. On this basis, a three-way multi-attribute group decision-making algorithm is established, 
and a practical problem is solved. The effectiveness of the proposed method is verified by 
experimental analysis. 
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1. Introduction 

Zakowski [1] first proposed the covering-based rough set model [2], which is a natural extension 
of the classical rough set model and an effective tool to deal with uncertain information. However, like 
traditional rough sets, covering-based rough sets deal with discrete attributes that belong or do not 
belong in a dataset, which limits their application in complex environments. To this end, Dubois and 
Prade [3] introduced the concept of fuzzy rough sets and extended rough set theory to the fuzzy 
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environment, and scholars have proposed various improved fuzzy rough set models. Ma [4] defined 
two pairs of fuzzy approximation operators in the covering-based fuzzy approximation space, which 
show the properties and topological importance of the complementary neighborhood. D’eer et al. [5] 
discussed the relationship between various fuzzy covering-based fuzzy rough set models. Ma [6] 
proposed the concept of fuzzy β covering and fuzzy β neighborhoods. Zhan et al. [7] improved the 
fuzzy β neighborhood, proposed a covering-based variable-precision fuzzy rough set model, and 
applied it to multi-attribute decision-making. Zhang et al. [8] explained the fuzzy binary relation in 
fuzzy β approximation space from the perspective of pessimism and optimism, which makes up for 
the defect that the fuzzy β neighborhood operator cannot obtain the fuzzy binary relation between 
objects. However, the fuzzy β covering-based model proposed by Ma cannot guarantee that the lower 
approximation is included in the upper approximation. Subsequently, Zhang et al. [9] and Huang et al. [10] 
proposed a parameterized fuzzy β covering-based model that guarantees that the lower approximation 
is included in the upper approximation while reducing the influence of noisy data. Dai et al. [11,12] 
constructed four kinds of fuzzy β neighborhood operators with reflexivity by using fuzzy logic 
operators and used fuzzy β covering relations to describe the similarity between samples. 

Information entropy [13] is another important and effective method to characterize information 
uncertainty, which is widely used in the fields of artificial intelligence, multi-attribute decision-making, 
attribute reduction, and information security. In recent years, information entropy has been combined 
with rough set theory in various types of entropy models [14,15]. Liao et al. [16] considering the scale 
diversity between different attributes, proposed a new uncertainty measure, which provides effective 
support for some decision-making constrained by test cost. Li et al [17]. proposed an uncertainty 
measurement method for fuzzy relational information systems, and gave an axiomatic definition of 
granularity measurement. Wang et al. [18–20] constructed various types of entropy according to 
different binary relations, among them a special form of entropy, decision self-information [21], which 
takes into account uncertainty information in both the lower and upper approximations. However, 
decision self-information is limited to rough binary relations, which limits its application to complex 
problems. We combine decision self-information with parameterized fuzzy β covering to enable its 
application in fuzzy environments. 

In an increasingly complex social environment, multi-attribute decision-making problems are part 
of daily life. Traditional decision-making methods [22,23] are insufficient to solve complex 
uncertainty problems in real life, and many methods have been proposed [24–27]. Zhang et al. [28] 
constructed a reflexive fuzzy α neighborhood operator, proposed a fuzzy α rough set model based on 
the fuzzy neighborhood operator, and applied it to multi-attribute decision-making. Wang and Miao [29] 
proposed exponential hesitant fuzzy entropy and gave a hesitant fuzzy multi-attribute decision-making 
model based on the entropy weight method. Yao [30] proposed three ideas to solve complex and 
uncertain multi-attribute decision-making problems. In recent years, the three-way decision model has 
been successfully applied in various fields [31–34]. Zhang et al. [35] proposed a classification and 
ranking decision method based on three-way decision theory and the TOPSIS model. Ye et al. [36] 
established a three-way multi-attribute decision-making model in an incomplete environment. Zhang 
et al. [37] proposed a three-way decision-making model based on a utility function, and Zhan et al. [38] 
proposed a relative utility function and established a three-way multi-attribute decision-making model 
based on utility theory in incomplete fuzzy information systems. Decision research using behavioral 
theory is a hot topic recently, applying regret theory to multi-attribute decision making can reflect the 
risk attitude and psychological behavior of decision makers and improve the scientificity of decision 
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making [39–41]. The above models have one thing in common: they involve only one decision-maker 
or multiple decision-makers that agree. However, due to different backgrounds, decision-making 
experience, and subjective preferences, the opinions of decision-makers may diverge and cannot be 
compromised. We select one of multiple decision-makers who is most suitable to make a decision. 

We combine parameterized fuzzy β covering and decision self-information, propose decision self-
information based on a parameterized fuzzy β neighborhood to determine the most suitable decision-
maker, and propose a three-way multi-attribute group decision-making model based on a 
parameterized fuzzy β neighborhood. The classification and ranking results of all alternatives can be 
obtained. The effectiveness of the proposed method is experimentally verified. 

2. Basic knowledge 

2.1. Parameterized fuzzy β neighborhood 

The parameterized fuzzy β covering [10], as an extension of the covering-based rough set model, 
can effectively characterize the similarity between samples. 

Let ℂ 𝐶 ,𝐶 ,⋯,𝐶   be the fuzzy 𝛽  covering group of 𝑈 ,𝛽 ∈ 0,1  , and let 𝑈,ℂ   be a 
fuzzy 𝛽 covering information list. If 𝒫 ⊆ ℂ, then for all 𝑥 ∈ 𝑈, the fuzzy 𝛽 neighborhood of 𝑥 
with regard to 𝒫 is 

𝒩𝒫 𝑥 ⋂ 𝐾|𝐾∈𝐶,𝐶∈𝒫,𝐾 𝑥 ⩾𝛽 . 

Given real numbers 𝜆 ∈ 0,1 and 𝑥 ∈ 𝑈, the parameterized fuzzy 𝛽 neighborhood is defined as 

𝒩𝒫
, 𝑥 𝑦

0, 𝒩𝒫 𝑥 𝑦 𝜆;

𝒩𝒫 𝑥 𝑦 , 𝒩𝒫 𝑥 𝑦 ⩾ 𝜆;
 

where 𝜆 is the fuzzy 𝛽 neighborhood radius. 
Let 𝑈,ℂ   be a fuzzy 𝛽  covering information list, 𝜆 ∈ 0,1  , and 𝒫 ⊆ ℂ . Then for all 𝑋 ∈

ℱ 𝑈 , the lower and upper approximations of 𝑋 are respectively 

𝐶𝒫
, 𝑋 𝑥

1 𝒩𝒫
, 𝑥 𝑦 ∨𝑋 𝑦 ,

∈

𝑋 𝑥 ⩾ 1 𝛽;

0, 𝑋 𝑥 1 𝛽;

 

�̅�𝒫
, 𝑋 𝑥

𝒩𝒫
, 𝑥 𝑦 ∧𝑋 𝑦 ,

∈

𝑋 𝑥 ⩽ 𝛽;

1, 𝑋 𝑥 𝛽.

 

2.2. Three-way decision-related theories 

Based on the three-way decision model [30], Zhang [37] and Zhan et al. [38] proposed a three-

way decision model using utility theory to improve classification accuracy. 
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Suppose the state set 𝛺 𝑇, 𝑇   indicates that an object belongs to states 𝑇  and 𝑇 . 𝔄
𝑎 ,𝑎 ,𝑎   is an action set, where 𝑎 , 𝑎 , 𝑎   represent acceptance, delay, and rejection, respectively. 

Table 1 gives the corresponding utility and relative utility of alternatives 𝑥  in the two states of the three 
actions. 𝑢  , 𝑢  , and 𝑢   denote the utility of alternative 𝑥   in taking actions 𝑎  , 𝑎  , and 𝑎  , 
respectively, in 𝑇. Similarly, 𝑢 , 𝑢 , and 𝑢  denote the utility of alternative 𝑥  in adopting 𝑎 , 𝑎 , 
and 𝑎 , respectively, in 𝑇. 

The relative utility function can be understood as follows. When the utility of action 𝑎  is used as the 
criterion and 𝑥 ∈ 𝑇, 𝑢 , 𝑢 , and 0 are the relative utility functions of 𝑎 , 𝑎 , and 𝑎 , respectively; 
similarly, when the utility of action 𝑎   is used as the criterion and 𝑥 ∈ 𝑇 , 0, 𝑢  , and 𝑢   are the 
relative utility functions of 𝑎  , 𝑎  , and 𝑎  , respectively; where𝑢 𝑢 𝑢  , 𝑢 𝑢 𝑢  , 
𝑢 𝑢 𝑢 , and 𝑢 𝑢 𝑢 . 

Table 1. Two types of utility functions. 

 Primitive utility function Relative utility function 
 𝑇 𝑃  𝑇 𝑁  𝑇 𝑃  𝑇 𝑁  
𝑎  𝑢  𝑢  𝑢  0 
𝑎  𝑢  𝑢  𝑢  𝑢  
𝑎  𝑢  𝑢  0 𝑢  

Suppose 𝑥   is a class of objects with respect to 𝑥  induced by the binary relation 𝑅 , and 𝑥  is a 
conditional probability of 𝑇 such that 𝑃𝑟 𝑇| 𝑥 . Then, based on the relative utility function, the expected 
utility 𝒰 𝑎◇|𝑥 ◇ 𝑃,𝐵,𝑁  of 𝑥 can be calculated as 

𝒰 𝑎◇|𝑥 𝑢◇ 𝑃𝑟 𝑇| 𝑥 𝑢◇ 𝑃𝑟 𝑇| 𝑥 . 

According to the Bayesian decision rule, the action with the greatest utility value should be 
selected, which leads to the following rule: 

𝑃  if 𝒰 𝑎 |𝑥 ⩾ 𝒰 𝑎 |𝑥  and 𝒰 𝑎 |𝑥 ⩾ 𝒰 𝑎 |𝑥 , then 𝑥 ∈ 𝑃𝑜𝑠 𝑇 ; 
𝐵  if 𝒰 𝑎 |𝑥 ⩾ 𝒰 𝑎 |𝑥  and 𝒰 𝑎 |𝑥 ⩾ 𝒰 𝑎 |𝑥 , then 𝑥 ∈ 𝐵𝑛𝑑 𝑇 ;  
𝑁  if 𝒰 𝑎 |𝑥 ⩾ 𝒰 𝑎 |𝑥  and 𝒰 𝑎 |𝑥 ⩾ 𝒰 𝑎 |𝑥 , then 𝑥 ∈ 𝑁𝑒𝑔 𝑇 ,  

where 𝑃𝑜𝑠 𝑇 , 𝐵𝑛𝑑 𝑇 , and 𝑁𝑒𝑔 𝑇 , respectively, indicate the accepted domain, delayed domain, and 
rejected domain. 

Based on 𝑃𝑟 𝑇| 𝑥 𝑃𝑟 𝑇| 𝑥 1, 𝑃 𝑁 gives the following equivalent rules: 
𝑃′  if 𝑃𝑟 𝑇|𝑥 ⩾ 𝛼 and 𝑃𝑟 𝑇|𝑥 ⩾ 𝛾, then 𝑥 ∈ 𝑃𝑜𝑠 𝑇 ; 
𝐵′  if 𝑃𝑟 𝑇|𝑥 ⩽ 𝛼 and 𝑃𝑟 𝑇|𝑥 ⩾ 𝛽, then 𝑥 ∈ 𝐵𝑛𝑑 𝑇 ; and 
𝑁′  if 𝑃𝑟 𝑇|𝑥 ⩽ 𝛾 and 𝑃𝑟 𝑇|𝑥 ⩽ 𝛽, then 𝑥 ∈ 𝑁𝑒𝑔 𝑇 , 

where thresholds 𝛼, 𝛽, and 𝛾 can be expressed as: 

𝛼 𝑢 𝑢 , 𝛽
𝑢 𝑢

𝑢 𝑢 , 𝛾 . 

3. Decision self-information based on parameterized fuzzy 𝛽 neighborhood 

We improve decision self-information so that it can be applied in fuzzy environments based on 
the idea of decision self-information studied by Wang et al [21]. We use the upper and lower 
approximations based on parameterized fuzzy 𝛽 neighborhoods to construct three decision indicators 
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with different meanings to calculate the decision accuracy and roughness. Then four uncertainty 
measures are constructed, i.e., decision self-information based on parameterized fuzzy 𝛽 
neighborhoods, and we study their important properties. 

Definition 1. Let 𝑈,ℂ,𝐷  be a fuzzy 𝛽 covering decision information list. 𝒩𝒫
, 𝑥  is the fuzzy 𝛽 

neighborhood induced by 𝒫 on 𝑈, 𝜆 ∈ 0,1 , 𝒫 ⊆ ℂ, and 𝑇is the target set obtained by the decision 

attribute. Then, for decision index 𝑑𝑒𝑐 𝑇   of fuzzy set 𝑇 , the decision index 𝑐𝑒𝑟𝑡𝒫 𝑇   is 

determined, and the possible decision index 𝑝𝑜𝑠𝑠𝒫 𝑇  is defined as: 

𝑑𝑒𝑐 𝑇 |𝑇|, 𝑐𝑒𝑟𝑡𝒫 𝑇 𝐶𝒫
, 𝑇 , 𝑝𝑜𝑠𝑠𝒫 𝑇 �̅�𝒫

, 𝑇 , 

where |. |  represents the cardinality of the fuzzy set, 𝐶𝒫
,   and �̅�𝒫

,   are the lower and upper 

approximations, respectively, constructed by 𝒩𝒫
, 𝑥 . According to neighborhood fuzzy rough set 

theory, the definite decision index 𝑐𝑒𝑟𝑡𝒫 𝑇  of 𝑇 is used as the lower approximation cardinality, 

indicating the degree of membership that the object definitely belongs to 𝑇; the possible decision 

index 𝑝𝑜𝑠𝑠𝒫 𝑇  of 𝑇 is used as the upper approximation cardinality, indicating that the object may 

belong to 𝑇 degrees of affiliation. 
Proposition 3.1. 𝑐𝑒𝑟𝑡𝒫 𝑇 ⩽ 𝑑𝑒𝑐 𝑇 ⩽ 𝑝𝑜𝑠𝑠𝒫 𝑇 . 

Proof. From 𝐶𝒫
, 𝑇 ⊆ 𝑇 ⊆ �̅�𝒫

, 𝑇 , we obtain 𝑐𝑒𝑟𝑡𝒫 𝑇 ⩽ 𝑑𝑒𝑐 𝑇 ⩽ 𝑝𝑜𝑠𝑠𝒫 𝑇 . 
Proposition 3.2. If 𝒫 ⊆ 𝒫 ⊆ ℂ, then: 

(1) 𝑐𝑒𝑟𝑡𝒫 𝑇 ⩽ 𝑐𝑒𝑟𝑡𝒫 𝑇 ; 

(2) 𝑝𝑜𝑠𝑠𝒫 𝑇 ⩾ 𝑝𝑜𝑠𝑠𝒫 𝑇 . 

Proof. (1) Since 𝒫 ⊆ 𝒫 ⊆ ℂ , then 𝒩𝒫
, 𝑥 ⊇ 𝒩𝒫

, 𝑥  , and 1 𝒩𝒫
, 𝑥 ⊆ 1 𝒩𝒫

, 𝑥  . 

From the structure of 𝐶𝒫
, 𝑇   we obtain 𝐶𝒫

, 𝑇 ⊆ 𝐶𝒫
, 𝑇   or 𝐶𝒫

, 𝑇 ⩽ 𝐶𝒫
, 𝑇  , and 

𝑐𝑒𝑟𝑡𝒫 𝑇 ⩽ 𝑐𝑒𝑟𝑡𝒫 𝑇 . 

(2) Since 𝒫 ⊆ 𝒫 ⊆ ℂ, we obtain 𝑥 𝒫
, ⊇ 𝑥 𝒫

, . Furthermore, from the structure of �̅�𝒫
, 𝑇  

we obtain �̅�𝒫
, 𝑇 ⊇ �̅�𝒫

, 𝑇  or �̅�𝒫
, 𝑇 ⩾ �̅�𝒫

, 𝑇 , so we also obtain 𝑝𝑜𝑠𝑠𝒫 𝑇 ⩾ 𝑝𝑜𝑠𝑠𝒫 𝑇 . 

Proposition 3.2 shows that both the definite and possible decision indexes are monotonic. As the 
number of attributes increases, the decision-making index increases, as does the decision-making 
consistency. As the number of attributes increases, the possible decision indicators decrease, and the 
decision uncertainty decreases. 
Definition 2. Let 𝒫 ⊆ ℂ  and 𝑇  be the target set obtained from the decision attribute. Then the 
accuracy 𝛼𝒫 𝑇  and roughness 𝜌𝒫 𝑇  of the decision index are determined as 

𝛼𝒫 𝑇
𝑐𝑒𝑟𝑡𝒫 𝑇
𝑑𝑒𝑐 𝑇

, 𝜌𝒫 𝑇 1
𝑐𝑒𝑟𝑡𝒫 𝑇
𝑑𝑒𝑐 𝑇

. 

It is clear that by Proposition 3.1, 0 ⩽ 𝛼𝒫 𝑇 , 𝜌𝒫 𝑇 ⩽ 1. 
Proposition 3.3. Let 𝒫 ⊆ 𝒫 ⊆ ℂ. Then: 

(1) 𝛼𝒫 𝑇 ⩽ 𝛼𝒫 𝑇 , 
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(2) 𝜌𝒫 𝑇 ⩾ 𝜌𝒫 𝑇 . 

Proof. (1) By Proposition 3.2, we know that 𝑐𝑒𝑟𝑡𝒫 𝑇 ⩽ 𝑐𝑒𝑟𝑡𝒫 𝑇 . Hence 
𝒫 ⩽ 𝒫 , and therefore 𝛼𝒫 𝑇 ⩽ 𝛼𝒫 𝑇 . 

(2) The proof is similar to that of (1). 
Proposition 3.3 shows that the accuracy and roughness of the definite decision index are monotonic. 

Definition 3. Let 𝑈,ℂ,𝐷  be a fuzzy 𝛽 covering decision information list, 𝒫 ⊆ ℂ, and 𝑇 the target 
set obtained from the decision attribute. Then the definite decision self-information definition of 
𝑈,ℂ,𝐷  is 

𝐼𝒫 𝑇 𝜌𝒫 𝑇 ln𝛼𝒫 𝑇 . 

Proposition 3.4. Let 𝒫 ⊆ 𝒫 ⊆ ℂ. Then 𝐼𝒫 𝑇 ⩾ 𝐼𝒫 𝑇 . 

Proof. By Proposition 3.3, we know that 𝛼𝒫 𝑇 ⩽ 𝛼𝒫 𝑇  and 𝜌𝒫 𝑇 ⩾ 𝜌𝒫 𝑇 . Therefore, 

𝐼𝒫 𝑇 ⩾ 𝐼𝒫 𝑇 . 
Definition 4. Let 𝒫 ⊆ ℂ  and 𝑇  be the target set obtained from the decision attribute. Then the 
accuracy 𝛼𝒫 𝑇  and roughness 𝜌𝒫 𝑇  of the possible decision index are 

𝛼𝒫 𝑇
𝑑𝑒𝑐 𝑇

𝑝𝑜𝑠𝑠𝒫 𝑇
, 𝜌𝒫 𝑇 1

𝑑𝑒𝑐 𝑇
𝑝𝑜𝑠𝑠𝒫 𝑇

. 

It is clear that by Proposition 3.1, 0 ⩽ 𝛼𝒫 𝑇 , 𝜌𝒫 𝑇 ⩽ 1. 
Proposition 3.5. Let 𝒫 ⊆ 𝒫 ⊆ ℂ. Then: 

(1) 𝛼𝒫 𝑇 ⩽ 𝛼𝒫 𝑇 ; 

(2) 𝜌𝒫 𝑇 ⩾ 𝜌𝒫 𝑇 . 

Proof. The proof is similar to that of Proposition 3.3. 
Proposition 3.5 shows that the accuracy and roughness of the possible decision index are monotonic. 

Definition 5. Let 𝑈,ℂ,𝐷  be a fuzzy 𝛽 covering decision information list, 𝒫 ⊆ ℂ, and 𝑇 the target 
set obtained from the decision attribute. Then the possible decision self-information definition of 
𝑈,ℂ,𝐷  is 

𝐼𝒫 𝑇 𝜌𝒫 𝑇 ln𝛼𝒫 𝑇 . 

Proposition 3.6. Let 𝒫 ⊆ 𝒫 ⊆ ℂ. Then 𝐼𝒫 𝑇 ⩾ 𝐼𝒫 𝑇 . 

Proof. By Proposition 3.5, we know that 𝛼𝒫 𝑇 ⩽ 𝛼𝒫 𝑇  and 𝜌𝒫 𝑇 ⩾ 𝜌𝒫 𝑇 . Therefore, 

𝐼𝒫 𝑇 ⩾ 𝐼𝒫 𝑇 . 

Next, we propose another two types of decision self-information to characterize the uncertainty 
of fuzzy information, and we consider using both upper and lower approximation information to 
measure the uncertainty of the target concept. 
Definition 6. Let 𝒫 ⊆ ℂ, and let 𝑇 be the target set obtained from the decision attribute. Then the 
corresponding accuracy 𝛼𝒫 𝑇  and roughness 𝜌𝒫 𝑇  of the decision index are: 

𝛼𝒫 𝑇
𝑐𝑒𝑟𝑡𝒫 𝑇
𝑝𝑜𝑠𝑠𝒫 𝑇

, 𝜌𝒫 𝑇 1
𝑐𝑒𝑟𝑡𝒫 𝑇
𝑝𝑜𝑠𝑠𝒫 𝑇

. 

It is clear that by Proposition 3.1, 0 ⩽ 𝛼𝒫 𝑇 , 𝜌𝒫 𝑇 ⩽ 1. 
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Proposition 3.7. Let 𝒫 ⊆ 𝒫 ⊆ ℂ. Then: 
(1) 𝛼𝒫 𝑇 ⩽ 𝛼𝒫 𝑇 ; 

(2) 𝜌𝒫 𝑇 ⩾ 𝜌𝒫 𝑇 . 

Proof. The proof is similar to that of Proposition 3.3. 
Proposition 3.7 shows that the precision and roughness of relative decision indicators are monotonic. 

Definition 7. Let 𝑈,ℂ,𝐷  be a fuzzy 𝛽 covering decision information list, 𝒫 ⊆ ℂ, and 𝑇 the target 
set obtained by the decision attribute. Then the relative decision self-information definition of 𝑈,ℂ,𝐷  
is 𝐼𝒫 𝑇 𝜌𝒫 𝑇 ln𝛼𝒫 𝑇 . 
Proposition 3.8. Let 𝒫 ⊆ 𝒫 ⊆ ℂ. Then 𝐼𝒫 𝑇 ⩾ 𝐼𝒫 𝑇 . 

Proof. By Proposition 3.7, we know that 𝛼𝒫 𝑇 ⩽ 𝛼𝒫 𝑇  and 𝜌𝒫 𝑇 ⩾ 𝜌𝒫 𝑇 . Therefore, 

𝐼𝒫 𝑇 ⩾ 𝐼𝒫 𝑇 . 

Example 1. Suppose there is a fuzzy 𝛽  covering information list 𝑈,ℂ,𝐷  , where 𝑈
𝑥 ,𝑥 ,𝑥 ,𝑥 ,𝑥 , ℂ 𝐶 ,𝐶 ,𝐶 ,𝐶 , 𝐷 𝑇 ,𝑇 , with data as shown in Table 2. Let 𝛽 0.6, 𝜆

0.3. According to the fuzzy 𝛽 covering decision information list 𝑈,ℂ,𝐷 , the parameterized fuzzy 
𝛽 domain is obtained, as shown in Table 3. 

Table 2. Fuzzy 𝛽 covering decision information table 𝑈,ℂ,𝐷 . 

𝐶  𝐶  𝐶  𝐶  𝑇  𝑇  
𝑥  0.6 0.6 0.55 0.51 0.47 0.46 
𝑥  0.5 0.5 0.6 0.61 0.62 0.65 
𝑥  0.63 0.6 0.58 0.73 0.64 0.33 
𝑥  0.52 0.8 0.8 0.55 0.69 0.53 
𝑥  0.56 0.4 0.43 0.6 0.39 0.48 

Table 3. Parameterized fuzzy 𝛽 neighborhood. 

𝒩ℂ
, 𝑥 /𝑈 𝑥  𝑥  𝑥  𝑥  𝑥  

𝒩ℂ
, 𝑥  0.6 0.51 0.51 0.55 0.51 

𝒩ℂ
, 𝑥  0.5 0.6 0.5 0.5 0.61 

𝒩ℂ
, 𝑥  0.6 0.58 0.6 0.58 0.73 

𝒩ℂ
, 𝑥  0.52 0.55 0.52 0.8 0.55 

𝒩ℂ
, 𝑥  0.4 0.43 0.4 0.4 0.6 

Furthermore, we can obtain the upper and lower approximations of the parameterized fuzzy 
𝛽 neighborhood: 

𝐶ℂ
, 𝑇 . . . .

, 

�̅�ℂ
, 𝑇 . .

, 

𝐶ℂ
, 𝑇 . . . .

, 
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�̅�ℂ
, 𝑇 . . . .

. 

Therefore, we can obtain the decision index 𝑑𝑒𝑐 𝑇  of 𝑇 𝑖 1,2 , and determine the decision 
index 𝑐𝑒𝑟𝑡ℂ 𝑇  and possible decision index 𝑝𝑜𝑠𝑠ℂ 𝑇 . The results are shown in Table 4. Furthermore, 
we can obtain the values of three kinds of decision self-information of 𝑇 , as shown in Table 5. 

Table 4. Values of each decision index. 

 𝑇  𝑇  
𝑑𝑒𝑐 𝑇  2.81 2.45 
𝑐𝑒𝑟𝑡ℂ 𝑇  2.42 2.12 
𝑝𝑜𝑠𝑠ℂ 𝑇  3.86 2.8 

Table 5. Three decision self-information of 𝑇 . 

 𝑇  𝑇  
𝐼ℂ 𝑇  0.0207 0.0195 
𝐼ℂ 𝑇  0.0864 0.0167 
𝐼ℂ 𝑇  0.1742 0.0676 

4. Decision self-information based on parameterized fuzzy 𝛽 neighborhood 

4.1. Parameterized fuzzy 𝛽 neighborhood class 

Next, we construct the parameterized fuzzy 𝛽 neighborhood class and convert it to the classic set. 

Definition 8. Let 𝑈,ℂ   be a fuzzy 𝛽  covering information list, 𝒫 ⊆ ℂ , and let 𝒩𝒫
, 𝑥   be 

parameterized fuzzy 𝛽 neighborhoods. Then the parameterized fuzzy 𝛽 neighborhood class is 

𝑥
𝒩𝒫

, 𝑦∈𝑈|𝒩𝒫
, 𝑥 𝑦 ⩾𝛽 . 

Proposition 4.1. Let 𝑈,ℂ   be a fuzzy 𝛽  covering information list, 𝒫 ⊆ ℂ , and let 𝑥
𝒩𝒫

,   be 

parameterized fuzzy 𝛽 neighborhood classes. If 𝜆 ⩽ 𝛽, then 
(1) for any 𝑥 ∈ 𝑈, 𝑥 ∈ 𝑥

𝒩𝒫
, ; 

(2) ⋃ 𝑥
𝒩𝒫

,∈ 𝑈. 

Proof. (1) From the definition of the fuzzy 𝛽  neighborhood 𝒩𝒫 𝑥  , we know that 

𝒩𝒫 𝑥 𝑥 ⩾ 𝛽 . When 𝜆 ⩽ 𝛽  and 𝒩𝒫 𝑥 𝑥 ⩾ 𝛽 ⩾ 𝜆 , then 𝒩𝒫
, 𝑥 𝑥 𝒩𝒫 𝑥 𝑥 ⩾ 𝛽 , and 

therefore 𝑥 ∈ 𝑥
𝒩𝒫

, . 

(2) It is clear from (1). 

Proposition 4.1 shows that the parameterized fuzzy 𝛽 neighborhood class 𝑥
𝒩𝒫

,  is reflexive 

when 𝜆 ⩽ 𝛽, and the union of the parameterized fuzzy 𝛽 neighborhood classes for all objects can 
cover the domain of discourse 𝑈. 
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4.2. Construction of three-way decision-making model 

Next, we construct conditional probabilities based on parameterized fuzzy 𝛽  neighborhood 
classes, and establish a three-way decision model. 

Definition 9. Let 𝑈,ℂ,𝐷  be a fuzzy 𝛽 covering decision information list, 𝒫 ⊆ ℂ, let 𝑥
𝒩𝒫

,  be 

parameterized fuzzy 𝛽 neighborhood classes, and let 𝑇 𝑥  be a decision attribute value of target 
𝑥 ∈ 𝑈. Then the conditional probability of target 𝑥  is 

𝑃𝑟 𝑇| 𝑥
𝒩𝒫

,

∑ ∈
𝒩𝒫

,

𝒩𝒫
,

. 

Conditional probability 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

,   shows that target 𝑥   in 𝑥
𝒩𝒫

,   belongs to the 

probability of the target set 𝑇. 

Proposition 4.2. Let 𝑇  be the complement of fuzzy set 𝑇 . Then 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

,

𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, 1. 

Proof. Since 𝑇  is the complement of the fuzzy set 𝑇 , then ∀𝑥 ∈ 𝑈 , 𝑇 𝑥 1 𝑇 𝑥  . 
Therefore, 

𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

,

∑ 𝑇 𝑥∈
𝒩𝒫

,

𝑥
𝒩𝒫

,

∑ 𝑇 𝑥∈
𝒩𝒫

,

𝑥
𝒩𝒫

,

∑ 𝑇 𝑥 𝑇 𝑥∈
𝒩𝒫

,

𝑥
𝒩𝒫

,

𝑥
𝒩𝒫

,

𝑥
𝒩𝒫

,

1. 

Example 2. (continued from Example 1). The parameterized fuzzy 𝛽  neighborhood class can be 
obtained from the parameterized fuzzy 𝛽 neighborhood in Table 3: 

𝑥
𝒩ℂ

, 𝑥 , 𝑥
𝒩ℂ

, 𝑥 ,𝑥 , 𝑥
𝒩ℂ

, 𝑥 ,𝑥 ,𝑥 , 𝑥
𝒩ℂ

, 𝑥 , 𝑥
𝒩ℂ

, 𝑥 . 

Furthermore, as an example, we can calculate the conditional probability of 𝑇 : 

𝑃𝑟 𝑇 | 𝑥
𝒩ℂ

, 0.46, 𝑃𝑟 𝑇 | 𝑥
𝒩ℂ

, 0.57, 𝑃𝑟 𝑇 | 𝑥
𝒩ℂ

, 0.42, 𝑃𝑟 𝑇 | 𝑥
𝒩ℂ

,

0.53, 𝑃𝑟 𝑇 | 𝑥
𝒩ℂ

, 0.48. 

According to the relative utility function studied by Zhan et al. [38], the standard deviation of the 
utility values of all alternatives given by the decision-maker is used to measure the dispersion of the 
decision-maker’s preference: 
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𝜙 ∑ 𝑇 𝑥 𝑇 𝑛 1⁄ , 

where 𝑇 ∑ 𝑇 𝑥 /𝑛 is the average of the utility values of all the alternatives below state 𝑇. The 
larger the value of 𝜙, the better the decision-maker’s ability to distinguish all alternatives, i.e., the 
greater the priority difference. According to the utility value 𝑇 𝑥 , taking into account the priority 
difference, we calculate the relative utility function of taking action 𝑎  in state 𝑇, 

𝑢
𝑇 𝑥 , 𝑇 𝑥 ⩾ 𝑇;

𝑇 𝑥
1 𝜙⁄

, 𝑇 𝑥 𝑇.
 

Similarly, we calculate the relative utility function of taking action 𝑎  in state 𝑇: 

𝑢
1 𝑇 𝑥 , 𝑇 𝑥 ⩽ 𝑇;

1 𝑇 𝑥
1 𝜙⁄

, 𝑇 𝑥 𝑇.
 

A risk coefficient, 𝜎 ∈ 0.5,1 , is introduced to calculate the relative utility function of adopted 
behavior 𝑎  under different states, i.e., 𝑢 𝜎𝑢  and 𝑢 𝜎𝑢 . 

According to the relative utility function [38] and our constructed conditional probability, the 
expected utility values of three behaviors of all objects 𝑥  are calculated as: 

𝒰 𝑎 |𝑥 𝑢 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, 𝑢 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, , 

𝒰 𝑎 |𝑥 𝑢 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, 𝑢 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, , 

𝒰 𝑎 |𝑥 𝑢 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, 𝑢 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, . 

Since 𝑢 0 and 𝑢 0, we can simplify these to: 

𝒰 𝑎 |𝑥 𝑢 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, , 

𝒰 𝑎 |𝑥 𝑢 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, 𝑢 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, , 

𝒰 𝑎 |𝑥 𝑢 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, . 

According to the Bayesian decision rule, the action with the greatest utility value should be 
selected, so the following three decision rules can be obtained: 

𝑃  if 𝒰 𝑎 |𝑥 ⩾ 𝒰 𝑎 |𝑥  and 𝒰 𝑎 |𝑥 ⩾ 𝒰 𝑎 |𝑥 , then 𝑥 ∈ 𝑃𝑜𝑠 𝑇 ; 
𝐵  if 𝒰 𝑎 |𝑥 ⩾ 𝒰 𝑎 |𝑥  and 𝒰 𝑎 |𝑥 ⩾ 𝒰 𝑎 |𝑥 , then 𝑥 ∈ 𝐵𝑛𝑑 𝑇 ; 
𝑁  if 𝒰 𝑎 |𝑥 ⩾ 𝒰 𝑎 |𝑥  and 𝒰 𝑎 |𝑥 ⩾ 𝒰 𝑎 |𝑥 ,then 𝑥 ∈ 𝑁𝑒𝑔 𝑇 , 

where 𝑃𝑜𝑠 𝑇 , 𝐵𝑛𝑑 𝑇 , and 𝑁𝑒𝑔 𝑇  indicate the accepted, delayed, and rejected domain, respectively. 
According to Proposition 4.2, 𝑃 𝑁  is equivalent to the following rule: 
𝑃1  if 𝑃𝑟 𝑇| 𝑥

𝒩𝒫
, ⩾ 𝛼  and 𝑃𝑟 𝑇| 𝑥

𝒩𝒫
, ⩾ 𝛾 , then 𝑥 ∈ 𝑃𝑜𝑠 𝑇 ; 

𝐵1  if 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, ⩽ 𝛼  and 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, ⩾ 𝛽 , then 𝑥 ∈ 𝐵𝑛𝑑 𝑇 ; 
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𝑁1  if 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, ⩽ 𝛾  and 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, ⩽ 𝛽 ,then 𝑥 ∈ 𝑁𝑒𝑔 𝑇 , 

where thresholds 𝛼 , 𝛽 , and 𝛾  can be calculated as 

𝛼
𝑢

𝑢 𝑢 𝑢
, 𝛽

𝑢 𝑢

𝑢 𝑢 𝑢
, 𝛾

𝑢

𝑢 𝑢
. 

If 𝜎 ∈ 0.5,1 , then 𝛽 𝛾 𝛼 , and 𝑃1 𝑁1  can be simplified as follows: 
𝑃2  if 𝑃𝑟 𝑇| 𝑥

𝒩𝒫
, ⩾ 𝛼 , then 𝑥 ∈ 𝑃𝑜𝑠 𝑇 ; 

𝐵2  if 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, ⩽ 𝛼  and 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, ⩾ 𝛽 , then 𝑥 ∈ 𝐵𝑛𝑑 𝑇 ; 

𝑁2  if 𝑃𝑟 𝑇| 𝑥
𝒩𝒫

, ⩽ 𝛽 , then 𝑥 ∈ 𝑁𝑒𝑔 𝑇 . 

Example 3. (continued from Example 2). Letting 𝜎 0.6, we calculate all relative utility function 
values, as shown in Table 6. It is further possible to calculate thresholds 𝛼  and 𝛽 . Some important 
results can be seen in Table 7. 

Table 6. Relative utility functions of all objects. 

 𝑢  𝑢  𝑢  𝑢  𝑢  𝑢  
𝑥  0.4154 0.2493 0 0 0.3480 0.5800 
𝑥  0.6833 0.4100 0 0 0.1830 0.3050 
𝑥  0.2853 0.1712 0 0 0.4211 0.7019 
𝑥  0.5705 0.3423 0 0 0.2554 0.4257 
𝑥  0.4359 0.2616 0 0 0.3366 0.5610 

Table 7. Conditional probability and two thresholds. 

 𝑃𝑟 𝑇 | 𝑥
𝒩ℂ

,  𝛼  𝛽  

𝑥  0.46 0.6768 0.4821 
𝑥  0.57 0.4010 0.2293 
𝑥  0.42 0.7868 0.6212 
𝑥  0.53 0.5281 0.3322 
𝑥  0.48 0.6587 0.4618 

According to the decision rule, 𝑃2 𝑁2  lets us attain all of the final decision behaviors of 
the targets: 

𝑃𝑜𝑠 𝑇 𝑥 ,𝑥 , 𝐵𝑛𝑑 𝑇 𝑥 , 𝑁𝑒𝑔 𝑇 𝑥 ,𝑥 . 

5. Three-way multi-attribute group decision-making model based on parameterized fuzzy 
𝛽 neighborhood 

We consider that the relative decision self-information 𝐼𝒫 𝑇   contains both upper and lower 
approximation information. Hence, we build a three-way multi-attribute group decision model based 
on relative decision self-information to solve real-life problems. 
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5.1. Problem statement 

In the real world, the uncertainty and complexity of the social environment bring certain 
difficulties to decision-makers, and an important decision can require multiple decision-makers, whose 
evaluations can differ due to their knowledge, experience, and subjective factors. When they cannot 
reach an agreement, we need to choose the most suitable decision-maker. The parameterized fuzzy 𝛽 
covering, as an extension of the covering-based rough set model, provides an effective method to deal 
with uncertain information. We establish a three-way multi-attribute decision-making model based on 
parameterized fuzzy 𝛽 neighborhoods to solve the uncertain multi-attribute decision-making problem 
in the real world when multiple decision-makers disagree. 

The parameterized fuzzy 𝛽  neighborhoods of all alternatives are obtained based on fuzzy 𝛽 
covering decision information list 𝑈,ℂ,𝐷 , and the upper and lower approximations of all decision-
makers are further obtained. We use relative decision self-information to measure the uncertainty of 
all decision-makers and select the one with the smallest entropy value. We construct conditional 
probabilities using parameterized fuzzy 𝛽 neighborhoods and use this to further revise the decision-
maker’s decision preference. We calculate the relative utility function values of all the alternatives. 
Using classification rule 𝑃2 𝑁2   and comparing the magnitude between the conditional 
probability and thresholds 𝛼  and 𝛽 , we determine the final decision action for each alternative. 

Finally, we can calculate the expected utility value of all the alternatives to take the final 
decision action, 

𝐸𝑈 𝑥
𝒰 𝑎 |𝑥 , 𝑥 ∈ 𝑃𝑜𝑠 𝑇 ;
𝒰 𝑎 |𝑥 , 𝑥 ∈ 𝐵𝑛𝑑 𝑇 ;
𝒰 𝑎 |𝑥 , 𝑥 ∈ 𝑁𝑒𝑔 𝑇 .

 

All alternatives can be sorted according to the expected utility values and priorities of the three 
domains. We sort according to the expected utility value of each domain, 𝑥 , 𝑥 ∈ 𝑃𝑜𝑠 𝑇   and 
𝒰 𝑎 |𝑥 𝒰 𝑎 |𝑥 ; then 𝑥 ≻ 𝑥 . Then we consider the priority of each domain as 
𝑃𝑜𝑠 𝑇 ≻ 𝐵𝑛𝑑 𝑇 ≻ 𝑁𝑒𝑔 𝑇 . 

3.2. Three-way multi-attribute group decision-making algorithm based on parameterized fuzzy 
neighborhood 

According to the above properties and decision rules, we can obtain a three-way multi-attribute 
group decision-making algorithm based on parameterized fuzzy neighborhood. 

Input: Fuzzy 𝛽 covering decision information list 𝑈,ℂ,𝐷 , evaluation of all alternatives by 𝑙 
decision-makers 𝐷 𝑇 ,𝑇 ,⋯,𝑇  and 𝜆 

Output: The most suitable decision-maker, and the classification and ranking of each alternative 
Step 1 The decision information list 𝑈,ℂ,𝐷   is covered by fuzzy 𝛽 , and the parameterized 

fuzzy 𝛽 neighborhoods 𝒩ℂ
, 𝑥  of all alternatives are calculated; 

Step 2 Calculate the lower approximation 𝐶ℂ
, 𝑇  and upper approximation �̅�ℂ

, 𝑇  based 

on the neighborhood of parameterized fuzzy 𝛽 for all decision-makers, where 𝑗 1,2,⋯,𝑙 ; 
Step 3 Calculate the decision self-information 𝐼ℂ 𝑇  of all decision-makers; 
Step 4 Find the smallest value of the decision self-information𝐼ℂ 𝑇

min 𝐼ℂ 𝑇 ,𝐼ℂ 𝑇 ,⋯,𝐼ℂ 𝑇 , and then the most suitable decision-maker is 𝑇 ; 
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Step 5 According to Definitions 8 and 9, calculate the conditional probabilities of each alternative, 
𝑃𝑟 𝑇 | 𝑥

𝒩𝒫
, ; 

Step 6 Calculate the relative utility function values and thresholds 𝛼  and 𝛽  for all alternatives 
from the relative utility function in Section 3.2; 

Step 7 According to the decision rule, 𝑃2 𝑁2  obtains the domain corresponding to the 
final decision behavior of all alternatives; 

Step 8 Calculate expected utility value 𝐸𝑈 𝑥  of all alternatives; 
Step 9 Compare the priorities of 𝑃𝑜𝑠 𝑇 ≻ 𝐵𝑛𝑑 𝑇 ≻ 𝑁𝑒𝑔 𝑇   and the expected utility 

values of the alternatives in each domain to rank all the alternatives. 
The pseudo-code program is as follows: 

Algorithm 1: Three-way multi-attribute group decision-making algorithm based on parameterized 
fuzzy neighborhood 
Input: 𝜆,𝛽, 𝑈,ℂ,𝐷 ,𝐷 𝑇 ,𝑇 ,⋯,𝑇  
Output：The most suitable decision-maker, and the classification and ranking of each alternative 
1: 𝑛 ← |𝑈|;𝑙 ← |𝑇| 
2: for 𝑖 1 → 𝑛 
3:    for 𝑘 1 → 𝑛 
4:       if 𝒩ℂ 𝑥 𝑥 ⩾ 𝜆 then 𝒩ℂ

, 𝑥 𝑥 𝒩ℂ 𝑥 𝑥  

5: else 𝒩ℂ
, 𝑥 𝑥 0 

6: Cycle calculate 
7: 𝐶ℂ

, 𝑇 𝑥 𝑎𝑛𝑑�̅�ℂ
, 𝑇 𝑥  

8: Calculate 𝐼ℂ 𝑇  
9: 𝑇 ← min 𝐼ℂ 𝑇  

10: Cycle calculate 

11:      𝑃𝑟 𝑇 | 𝑥
𝒩𝒫

, 𝑎𝑛𝑑𝑃𝑟 𝑇 | 𝑥
𝒩𝒫

,  

12:      𝒰 𝑎 |𝑥 , 𝒰 𝑎 |𝑥 𝑎𝑛𝑑𝒰 𝑎 |𝑥  

13:      calculate the threshold 𝛼 𝑎𝑛𝑑𝛽  

14: Determine 𝑥 ∈ 𝑃𝑜𝑠 𝑇 ,𝑥 ∈ 𝐵𝑛𝑑 𝑇  or 𝑥 ∈ 𝑁𝑒𝑔 𝑇  

15: Calculate 𝐸𝑈 𝑥  

16: Compare 𝑃𝑜𝑠 𝑇 ≻ 𝐵𝑛𝑑 𝑇 ≻ 𝑁𝑒𝑔 𝑇   and the expected utility 

values of the alternatives in each domain to rank all the alternatives. 
17: Return 

The time complexity of calculating the neighborhoods 𝒩ℂ
, 𝑥  of all alternatives is 𝑂 𝑛 , 

the time complexity of calculating the lower approximation 𝐶ℂ
, 𝑇   and upper approximation 

�̅�ℂ
, 𝑇  is 𝑂 𝑛 𝑙 , the time complexity of calculating the decision self-information 𝐼ℂ 𝑇  of all 

decision-makers is 𝑂 𝑛 𝑙 , the time complexity of finding the smallest value of the decision self-
information𝐼ℂ 𝑇 is 𝑂 𝑛 𝑙 , the time complexity of calculating the conditional probabilities of each 
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alternative 𝑃𝑟 𝑇 | 𝑥
𝒩𝒫

,  and the relative utility function values and thresholds 𝛼  and 𝛽  for all 

alternatives is 𝑂 𝑛 𝑙 , the time complexity of calculating the domain corresponding to the final 
decision behavior of all alternatives and expected utility value 𝐸𝑈 𝑥  of all alternatives is 𝑂 𝑛 𝑙 , 
So the total time complexity of Algorithm 1 is 𝑂 𝑛 𝑙 . 

5.3. Numerical example 

We use examples from the literature [25] to verify the effectiveness of the proposed method. 
Example 4. An investment company intends to select some projects for investment, and decision-

makers make choices based on the benefits that each project can bring. There are eight investment 
projects 𝑈 𝑥 ,𝑥 ,⋯,𝑥 , which the company considers from five aspects ℂ 𝐶 ,𝐶 ,𝐶 ,𝐶 ,𝐶 , 
which represent expected benefits, environmental factors, market saturation, social benefits, and 
energy conservation. 𝐶  and 𝐶  are cost attributes, and the rest are benefit attributes. The attribute 
weight 𝑊 0.3,0.1,0.3,0.2,0.1  is transformed to the evaluation result of the benefit standard, as 
shown in Table 8. Three experts are evaluating these eight projects, with results as shown in Table 9. 

Table 8. Attribute evaluation table of each investment project. 

 𝐶  𝐶  𝐶  𝐶  𝐶  
𝑥  0.8 0.6 0.7 0.8 0.9 
𝑥  0.9 0.5 0.5 0.7 0.6 
𝑥  0.3 0.6 0.4 0.4 0.3 
𝑥  0.5 0.8 0.8 0.7 0.6 
𝑥  0.7 0.4 0.4 0.5 0.8 
𝑥  0.4 0.2 0.3 0.7 0.3 
𝑥  0.9 0.5 0.9 0.8 0.7 
𝑥  0.6 0.2 0.2 0.3 0.4 

Table 9. Assessment of eight projects by three experts. 

 𝑇  𝑇  𝑇  
𝑥  0.76 0.48 0.6 
𝑥  0.67 0.45 0.65 
𝑥  0.38 0.10 0.33 
𝑥  0.67 0.42 0.78 
𝑥  0.55 0.32 0.48 
𝑥  0.4 0.23 0.38 
𝑥  0.82 0.68 0.64 
𝑥  0.36 0.19 0.34 

We obtain the parameterized fuzzy 𝛽 neighborhoods of all alternatives based on the fuzzy 𝛽 
coverage decision information list 𝑈,ℂ,𝐷 . Let 𝛽 0.6, 𝜆 0.3, as shown in Table 10. 

Then we can obtain the lower and upper approximations of the three experts based on the 
parameterized fuzzy 𝛽 neighborhood: 
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𝐶ℂ
, 𝑇 . . . . . .

, 

�̅�ℂ
, 𝑇 . . . .

, 

𝐶ℂ
, 𝑇 . . . .

, 

�̅�ℂ
, 𝑇 . . . . . . .

, 

𝐶ℂ
, 𝑇 . . . . .

, 

�̅�ℂ
, 𝑇 . . . . .

. 

The relative decision self-information of the three experts is calculated as: 

𝐼ℂ 𝑇 0.1233, 𝐼ℂ 𝑇 0.1644, 𝐼ℂ 𝑇 0.1882. 

From this, we obtain 𝐼ℂ 𝑇 𝐼ℂ 𝑇 𝐼ℂ 𝑇 , from which we see that the most suitable expert 
is 𝑇 . We can get the parameterized fuzzy 𝛽 neighborhood class from the table as: 

𝑥
𝒩ℂ

, 𝑥 , 𝑥
𝒩ℂ

, 𝑥 ,𝑥 ,𝑥 , 𝑥
𝒩ℂ

, 𝑥 ,𝑥 ,𝑥 ,𝑥 , 𝑥
𝒩ℂ

, 𝑥 ,𝑥 ,𝑥 , 

𝑥
𝒩ℂ

, 𝑥 ,𝑥 ,𝑥 ,𝑥 , 𝑥
𝒩ℂ

, 𝑥 ,𝑥 ,𝑥 ,𝑥 ,𝑥 , 𝑥
𝒩ℂ

, 𝑥 ,𝑥 , 

𝑥
𝒩ℂ

, 𝑥 ,𝑥 ,𝑥 ,𝑥 ,𝑥 . 

Table 10. Parameterized fuzzy 𝛽 neighborhood of all investment projects. 

𝒩ℂ
, 𝑥 /𝑈 𝑥  𝑥  𝑥  𝑥  𝑥  𝑥  𝑥  𝑥  

𝒩ℂ
, 𝑥  0.6 0.8 0.6 0.6 0.8 0.8 0.7 0.8 

𝒩ℂ
, 𝑥  0.5 0.6 0.5 0.5 0.6 0.7 0.5 0.9 

𝒩ℂ
, 𝑥  0.3 0.3 0.6 0.3 0.3 0.4 0.3 0.3 

𝒩ℂ
, 𝑥  0.5 0.5 0.8 0.6 0.5 0.7 0.5 0.5 

𝒩ℂ
, 𝑥  0.4 0.5 0.4 0.4 0.7 0.5 0.4 0.7 

𝒩ℂ
, 𝑥  0 0.3 0 0 0.3 0.7 0.3 0.4 

𝒩ℂ
, 𝑥  0.5 0.7 0.5 0.5 0.7 0.8 0.7 0.9 

𝒩ℂ
, 𝑥  0 0.3 0 0 0.4 0.3 0 0.6 

From the relative utility function and the decision preference of 𝑇 , two thresholds and 
conditional probabilities can be obtained, as shown in Table 11. 

To more intuitively show the relationship between the conditional probability and the threshold, 
we show a comparison chart between them, as shown in Figure 1. From the decision rule 𝑃2 𝑁2 , 
the final decision classification result of expert 𝑇  can be obtained as: 

𝑃𝑜𝑠 𝑇 𝑥 ,𝑥 ,𝑥 ,𝑥 ,𝑥 , 𝐵𝑛𝑑 𝑇 𝑥 ,𝑥 ,𝑥 , 𝑁𝑒𝑔 𝑇 ∅. 

The expected utility of all investment projects can then be calculated, as shown in Figure 2, from 
which a complete ranking can be obtained:𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 . 
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The company can make decisions on which projects to invest in based on the final decision 
classification and ranking results of expert 𝑇 . 

Table 11. Conditional probabilities and thresholds of each project. 

 𝑃𝑟 𝑇 | 𝑥
𝒩ℂ

,  𝛼  𝛽  

𝑥  0.76 0.2477 0.1277 
𝑥  0.75 0.3500 0.1931 
𝑥  0.62 0.7675 0.5947 
𝑥  0.7 0.3500 0.1931 
𝑥  0.7 0.6178 0.4181 
𝑥  0.66 0.7511 0.5729 
𝑥  0.79 0.1789 0.0883 
𝑥  0.63 0.7835 0.6166 

 

Figure 1. Comparison of conditional probabilities with two thresholds. 

 

Figure 2. Expected utility values of all investment projects. 
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5.4. Experiment analysis 

To illustrate the effectiveness of our method, we compare it with state-of-the-art and traditional 
decision-making methods, i.e., the methods of Zhan et al. [38], Ye et al. [34], and Zhang et al. [35], 
the TOPSIS method [23], and the WAA operator method [22]. The classifications and ranking results 
of different methods are shown in Tables 12 and 13. 

Table 12. Classification results of different methods. 

 𝑃𝑜𝑠 𝑇  𝐵𝑛𝑑 𝑇  𝑁𝑒𝑔 𝑇  
Our method 𝑥 ,𝑥 ,𝑥 ,𝑥 ,𝑥  𝑥 ,𝑥 ,𝑥 ∅ 
Zhan et al.’s method 𝑥 ,𝑥 ,𝑥 ,𝑥  𝑥 ,𝑥 ,𝑥  𝑥  
Ye et al.’s method 𝑥 ,𝑥 ,𝑥 ,𝑥 ,𝑥  𝑥 ,𝑥 ,𝑥  ∅ 
Zhang et al.’s method 𝑥  𝑥 ,𝑥 ,𝑥  𝑥 ,𝑥 ,𝑥 ,𝑥  

Table 13. Ranking results of different methods. 

 Ranking Optimal 
Our method 𝑇  𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥  𝑥  

𝑇  𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥  𝑥  
𝑇  𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥  𝑥  

Zhan et al.’s method 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥  𝑥  
Ye et al.’s method 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥  𝑥  
Zhang et al.’s method 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥  𝑥  
TOPSIS method 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥  𝑥  
WAA operator method 𝑥 ≻ 𝑥 ≻ 𝑥 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥 ≻ 𝑥  𝑥  

Table 13 includes the ranking results of experts 𝑇 𝑖 1,2,3 . It can be found that the results of 
expert 𝑇  are most similar to those of other methods, and the optimal objects are all 𝑥 , while the 
optimal results of expert 𝑇  are 𝑥 , indicating that experts 𝑇  and 𝑇  are different. By the method in 
this paper, expert 𝑇  can be selected from the three experts 𝑇 𝑖 1,2,3  for decision-making, with 
results basically consistent with those of other methods, which shows that the proposed method is 
effective. To observe the difference between the ranking results of our and other methods, we compare 
the ranking results of different methods in Figure 3. 

To further illustrate the effectiveness of the proposed method, 𝑆𝑅𝐶𝐶  is used to analyze the 
correlation between the ranking results of different methods, as shown in Table 14. 

A ratio greater than 0.8 between the ranking results of two methods indicates that the correlation 
between them is significant. It can be seen from the table that the differences between the proposed 
method and the other methods are greater than 0.8, indicating the effectiveness of the method. 

From the above analysis, we can find that the results obtained by using the decision information 
of 𝑇  expert is the most reasonable. Due to the lack of decision-making experience of 𝑇  expert on 
this issue, the results obtained by using the decision-making information of 𝑇  expert is not ideal. 
Therefore, the proposed model can effectively improve the scientificity of decision-making while 
comparing the decision-making information of many experts and avoiding incorporating the lack of 
experience expert information. 
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Figure 3. Comparison of ranking results of different methods. 

Table 14. 𝑆𝑅𝐶𝐶𝑠 between different methods. 

 Our 

method 

Zhan et al.’s 

method 

Ye et al.’s 

method  

Zhang et al.’s 

method 

TOPSIS 

method 

WAA operator 

method 

Our method 1 0.9286 0.9524 0.9048 0.9286 0.9643 

Zhan et al.’s method  1 0.8571 0.8095 0.8333 0.8929 

Ye et al.’s method   1 0.9048 0.8810 0.9167 

Zhang et al.’s method    1 0.9762 0.9643 

TOPSIS method     1 0.9643 

WAA operator method      1 

6. Conclusions 

Decision self-information is a special kind of entropy and is an effective tool to characterize 
uncertain information. In this paper, the parameterized fuzzy 𝛽 neighborhood was combined with 
decision self-information to extend it to the fuzzy environment and apply it to multi-attribute group 
decision-making. We defined three kinds of decision-making self-information, studied their important 
properties, and defined the parameterized fuzzy 𝛽  neighborhood class and the corresponding 
conditional probability to establish a three-way decision-making model. We applied relative decision 
self-information, including both upper and lower approximation information, to three-way multi-
attribute group decision-making, solving the problem of disagreement among multiple decision-
makers in the real world. A three-way multi-attribute group decision-making algorithm based on a 
parameterized fuzzy 𝛽 neighborhood was proposed and was used to solve a practical example. An 
experimental analysis showed the effectiveness of the proposed method. The main contributions of 
this paper are listed as follows: 

(1) In this paper, the advantages of parametric fuzzy 𝛽 neighborhood satisfying reflexivity and 
effectively reducing the influence of noise data are used to construct decision self-information based 
on parametric fuzzy 𝛽  neighborhood. This measure can effectively describe the target concept in 
fuzzy environment. 



4571 

Electronic Research Archive  Volume 30, Issue 12, 4553–4573. 

(2) In order to avoid incorporating inexperienced expert information in the process of group 
decision-making, we construct a three-way multi-attribute group decision-making algorithm based on 
parametric fuzzy 𝛽 neighborhood to measure multiple experts and select the most suitable experts for 
decision-making. The advantage of doing so is that the process can both compare the decision-making 
information of multiple experts and avoid fusing the information of inexperienced experts. 

In solving multi-attribute decision-making problems, we will consider the impact of risk aversion 
or benefit maximization of psychological behavior on decision-making, which is a direction worthy of 
further study. In addition, group consensus decision-making based on regret theory will be one of our 
future research directions. 
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