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Abstract: As a special kind of entropy, decision self-information effectively considers the uncertainty
information of both the lower and upper approximations. However, it is limited to rough binary
relations, which limits its application to complex problems. In addition, parameterized fuzzy
covering, as an extension of the covering-based rough set model, can effectively characterize the
similarity between samples. We combine decision self-information with a parameterized fuzzy 3
neighborhood to propose decision self-information in fuzzy environments, and we study its important
properties. On this basis, a three-way multi-attribute group decision-making algorithm is established,
and a practical problem is solved. The effectiveness of the proposed method is verified by
experimental analysis.
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1. Introduction

Zakowski [1] first proposed the covering-based rough set model [2], which is a natural extension
of the classical rough set model and an effective tool to deal with uncertain information. However, like
traditional rough sets, covering-based rough sets deal with discrete attributes that belong or do not
belong in a dataset, which limits their application in complex environments. To this end, Dubois and
Prade [3] introduced the concept of fuzzy rough sets and extended rough set theory to the fuzzy
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environment, and scholars have proposed various improved fuzzy rough set models. Ma [4] defined
two pairs of fuzzy approximation operators in the covering-based fuzzy approximation space, which
show the properties and topological importance of the complementary neighborhood. D’eer et al. [5]
discussed the relationship between various fuzzy covering-based fuzzy rough set models. Ma [6]
proposed the concept of fuzzy B covering and fuzzy B neighborhoods. Zhan et al. [7] improved the
fuzzy B neighborhood, proposed a covering-based variable-precision fuzzy rough set model, and
applied it to multi-attribute decision-making. Zhang et al. [8] explained the fuzzy binary relation in
fuzzy B approximation space from the perspective of pessimism and optimism, which makes up for
the defect that the fuzzy B neighborhood operator cannot obtain the fuzzy binary relation between
objects. However, the fuzzy § covering-based model proposed by Ma cannot guarantee that the lower
approximation is included in the upper approximation. Subsequently, Zhang et al. [9] and Huang et al. [10]
proposed a parameterized fuzzy  covering-based model that guarantees that the lower approximation
is included in the upper approximation while reducing the influence of noisy data. Dai et al. [11,12]
constructed four kinds of fuzzy P neighborhood operators with reflexivity by using fuzzy logic
operators and used fuzzy B covering relations to describe the similarity between samples.

Information entropy [13] is another important and effective method to characterize information
uncertainty, which is widely used in the fields of artificial intelligence, multi-attribute decision-making,
attribute reduction, and information security. In recent years, information entropy has been combined
with rough set theory in various types of entropy models [14,15]. Liao et al. [16] considering the scale
diversity between different attributes, proposed a new uncertainty measure, which provides effective
support for some decision-making constrained by test cost. Li et al [17]. proposed an uncertainty
measurement method for fuzzy relational information systems, and gave an axiomatic definition of
granularity measurement. Wang et al. [18-20] constructed various types of entropy according to
different binary relations, among them a special form of entropy, decision self-information [21], which
takes into account uncertainty information in both the lower and upper approximations. However,
decision self-information is limited to rough binary relations, which limits its application to complex
problems. We combine decision self-information with parameterized fuzzy 3 covering to enable its
application in fuzzy environments.

In an increasingly complex social environment, multi-attribute decision-making problems are part
of daily life. Traditional decision-making methods [22,23] are insufficient to solve complex
uncertainty problems in real life, and many methods have been proposed [24—27]. Zhang et al. [28]
constructed a reflexive fuzzy a neighborhood operator, proposed a fuzzy a rough set model based on
the fuzzy neighborhood operator, and applied it to multi-attribute decision-making. Wang and Miao [29]
proposed exponential hesitant fuzzy entropy and gave a hesitant fuzzy multi-attribute decision-making
model based on the entropy weight method. Yao [30] proposed three ideas to solve complex and
uncertain multi-attribute decision-making problems. In recent years, the three-way decision model has
been successfully applied in various fields [31-34]. Zhang et al. [35] proposed a classification and
ranking decision method based on three-way decision theory and the TOPSIS model. Ye et al. [36]
established a three-way multi-attribute decision-making model in an incomplete environment. Zhang
et al. [37] proposed a three-way decision-making model based on a utility function, and Zhan et al. [38]
proposed a relative utility function and established a three-way multi-attribute decision-making model
based on utility theory in incomplete fuzzy information systems. Decision research using behavioral
theory is a hot topic recently, applying regret theory to multi-attribute decision making can reflect the
risk attitude and psychological behavior of decision makers and improve the scientificity of decision
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making [39—41]. The above models have one thing in common: they involve only one decision-maker
or multiple decision-makers that agree. However, due to different backgrounds, decision-making
experience, and subjective preferences, the opinions of decision-makers may diverge and cannot be
compromised. We select one of multiple decision-makers who is most suitable to make a decision.

We combine parameterized fuzzy  covering and decision self-information, propose decision self-
information based on a parameterized fuzzy B neighborhood to determine the most suitable decision-
maker, and propose a three-way multi-attribute group decision-making model based on a
parameterized fuzzy B neighborhood. The classification and ranking results of all alternatives can be
obtained. The effectiveness of the proposed method is experimentally verified.

2. Basic knowledge
2.1. Parameterized fuzzy ff neighborhood

The parameterized fuzzy  covering [10], as an extension of the covering-based rough set model,
can effectively characterize the similarity between samples.

Let C = {C;,C;,-+,C;p} be the fuzzy B covering group of U,S € [0,1], and let (U,C) be a
fuzzy [ covering information list. If P € C, then for all x € U, the fuzzy [ neighborhood of x
with regard to P is

NP (%) = N{K|KEC,CEPK (x)>p).
Given real numbers A € [0,1]and x € U, the parameterized fuzzy S neighborhood is defined as

0, NY () < A

NEA(0)( >={
7Y T NI 00, MEO) > A

where A is the fuzzy f neighborhood radius.
Let (U,C) be a fuzzy B covering information list, A € [0,1], and P € C. Then for all X €
F(U), the lower and upper approximations of X are respectively

A0 ) = ye/\u{(l‘]\ff’l(x)(y))v;((y)}, X(x) > 1

0, X(x)<1-p;

VP wmmm), xw <p;

CEA 0 () =14,%

1, X(x) > pB.
2.2. Three-way decision-related theories

Based on the three-way decision model [30], Zhang [37] and Zhan et al. [38] proposed a three-
way decision model using utility theory to improve classification accuracy.
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Suppose the state set 2 = {T,—T} indicates that an object belongs to states T and —T. U =
{ap,ag,ay} is an action set, where ap,ag,ay represent acceptance, delay, and rejection, respectively.
Table 1 gives the corresponding utility and relative utility of alternatives x; in the two states of the three
actions. upp, Ugp, and uyp denote the utility of alternative x; in taking actions ap, ag, and ay,
respectively, in T. Similarly, upy, ugy,and uyy denote the utility of alternative x; in adopting ap, ag,
and ay, respectively, in —T.

The relative utility function can be understood as follows. When the utility of action ap is used as the
criterion and x; € T, #ipp, ligp, and O are the relative utility functions of ap, ag, and ay, respectively;
similarly, when the utility of action ay is used as the criterion and x; € =T, 0, figy, and iy are the
relative utility functions of ap, ag, and ay, respectively; wheretipp = Upp — Uyp, Ugp = Ugp — Uyp,
gy = Uy — Upy,and fyy = Uyy — Upy-

Table 1. Two types of utility functions.

Primitive utility function Relative utility function
T(P) —T(N) T(P) —T(N)
ap Upp Upn Upp 0
ap Upp Upn Upp Upy
an Unp Unn 0 Uyy

Suppose [x]g is a class of objects with respect to x induced by the binary relation R, and x is a
conditional probability of T suchthat Pr(T|[x]g). Then, based on the relative utility function, the expected
utility U(ae|x)(¢=P,B,N) of x canbe calculated as

U(ao|x) = tiopPr(T|[x]g) + TionPr(—T|[x]R).

According to the Bayesian decision rule, the action with the greatest utility value should be
selected, which leads to the following rule:

(P) if U(ap|x) > U(ag|x) and U(ap|x) > U(ay|x), then x € Pos(T);

(B) if U(ag|x) = U(ap|x) and U(ag|x) > U(ay|x),then x € Bnd(T);

(N) if U(ay|x) > U(ap|x) and U(ay|x) > U(ag|x),then x € Neg(T),
where Pos(T), Bnd(T), and Neg(T), respectively, indicate the accepted domain, delayed domain, and
rejected domain.

Based on Pr(T|[x]g) + Pr(—=T|[x]g) = 1, (P) — (N)gives the following equivalent rules:

(P") if Pr(T|x) > a and Pr(T|x) > y,then x € Pos(T);

(B") if Pr(T|x) < a and Pr(T|x) > fB,then x € Bnd(T); and

(N") if Pr(T|x) <y and Pr(T|x) < B,then x € Neg(T),
where thresholds a, [, and y can be expressed as:

UpN _ _ (uyy—Upn) _ __Unwn

~ apn+(Upp—lpp) U (Uyy—lpy)+iipp’ Unn+ipp

3. Decision self-information based on parameterized fuzzy [ neighborhood
We improve decision self-information so that it can be applied in fuzzy environments based on

the idea of decision self-information studied by Wang et al [21]. We use the upper and lower
approximations based on parameterized fuzzy B neighborhoods to construct three decision indicators
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with different meanings to calculate the decision accuracy and roughness. Then four uncertainty
measures are constructed, i.e., decision self-information based on parameterized fuzzy f
neighborhoods, and we study their important properties.

Definition 1. Let (U,C,D) beafuzzy B covering decision information list. ]\ff (%) is the fuzzy B
neighborhood inducedby P on U, A € [0,1], P € C,and Tis the target set obtained by the decision
attribute. Then, for decision index dec(T) of fuzzy set T, the decision index certp(T) is

determined, and the possible decision index possy(T) is defined as:

dec(T) = IT|,certy(T) = |¢5™ ()|, possy(T) = |C7(7)|,

where |.| represents the cardinality of the fuzzy set, Qf‘l and ffj’l are the lower and upper
approximations, respectively, constructed by Njf A (x). According to neighborhood fuzzy rough set
theory, the definite decision index certy(T) of T is used as the lower approximation cardinality,
indicating the degree of membership that the object definitely belongs to T; the possible decision
index possp(T) of T is used as the upper approximation cardinality, indicating that the object may

belong to T degrees of affiliation.
Proposition 3.1. certy(T) < dec(T) < possy(T).

Proof. From gf"l(T) CTC Cﬁ'A(T), we obtain certy(T) < dec(T) < possp(T).
Proposition 3.2. If P; € P, € C, then:

(1) certp (T) < certp,(T);
(2) possp, (T) > possy, (T).

Proof. (1) Since P, € P, € C, then Nyﬁl’l(x) ) ]\@,i"l(x), and 1— Nyﬁl’l(x) c1- Njfi’l(x).
B.A . B.A B.A B.A B.A
From the structure of C,”(T) we obtain Cp, (T) Cp, (T) or |g?1 (T)| < |g3,2 (T)| , and
certp (T) < certyp,(T)
. : B.A B.A ~B.A
(2) Since P; € P, € C, we obtain [x]g[,1 2 [x]7>2 . Furthermore, from the structure of €, (T)

we obtain C_ﬁl’l(T) -} C_'gz’l(T) or |C_£1"1(T)| > |C_'£2’A(T)|, so we also obtain possp (T) > possp, (T).
Proposition 3.2 shows that both the definite and possible decision indexes are monotonic. As the

number of attributes increases, the decision-making index increases, as does the decision-making

consistency. As the number of attributes increases, the possible decision indicators decrease, and the

decision uncertainty decreases.

Definition 2. Let ? € C and T be the target set obtained from the decision attribute. Then the

accuracy a3(T) and roughness p5(T) of the decision index are determined as

certp(T)
dec(T)

certp(T)
dec(T)

It is clear that by Proposition 3.1, 0 < a3(T), p5(T) < 1.
Proposition 3.3. Let P; € P, € C. Then:

(1) ap (T) < ap,(T),

ap(T) = pp(T) =1—
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2) p3,(T) = p3,(T).
Proof. (1) By Proposition 3.2, we know that cert? (T) < certyp,(T). Hence

certr, (D) - cete, (D o0 d therefore ab (T) < ab. (T).
P, P2

dec(T)  dec(T) ’

(2) The proof is similar to that of (1).

Proposition 3.3 shows that the accuracy and roughness of the definite decision index are monotonic.
Definition 3. Let (U,C,D) beafuzzy B covering decision information list, P € C,and T the target
set obtained from the decision attribute. Then the definite decision self-information definition of
(UCD) is

I5(T) = —pp(T)Inap (7).

Proposition 3.4. Let P, € P, € C. Then I? (T) > Ig; (T).
Proof. By Proposition 3.3, we know that aspl (T) < a:pz (T) and pspl (T) > pga (T). Therefore,

I5,(T) > I, (T).
Definition 4. Let P € C and T be the target set obtained from the decision attribute. Then the
accuracy a3(T) and roughness p3(T) of the possible decision index are

dec(T) , = dec(T)
ssp (PP =1~ sy

It is clear that by Proposition 3.1, 0 < a3(T),p3(T) < 1
Proposition 3.5. Let P; € P, € C. Then:

(1) a3, (T) < ag%z (T);

(2) P?l (1) > P?z (D).

Proof. The proof is similar to that of Proposition 3.3.

Proposition 3.5 shows that the accuracy and roughness of the possible decision index are monotonic.
Definition 5. Let (U,C,D) beafuzzy B covering decision information list, P € C,and T the target
set obtained from the decision attribute. Then the possible decision self-information definition of
(U,C,D) is

ap(T) =

13(T) = —p3(T)Ina3(T).
Proposition 3.6. Let P; € P, € C. Then I? (T) > I? (M.
Proof. By Proposition 3.5, we know that apl (T) < a?Z (T) and ppl (T) > p;,;2 (T). Therefore,

13,(T) > 13,(T).

Next, we propose another two types of decision self-information to characterize the uncertainty
of fuzzy information, and we consider using both upper and lower approximation information to
measure the uncertainty of the target concept.

Definition 6. Let P € C, and let T be the target set obtained from the decision attribute. Then the
corresponding accuracy a>(T) and roughness p3(T) of the decision index are:

certyp(T) certp(T)

@ (T) = possy(1)’" > = possp(T)

It is clear that by Proposition 3.1, 0 < a3(T), p3(T) < 1
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Proposition 3.7. Let P; € P, € C. Then:

(1) a3 (T) < a3, (T);

2) p3,(T) > p3,(T).

Proof. The proof is similar to that of Proposition 3.3.

Proposition 3.7 shows that the precision and roughness of relative decision indicators are monotonic.
Definition 7. Let (U,C,D) beafuzzy B covering decision information list, P € C,and T the target
set obtained by the decision attribute. Then the relative decision self-information definition of (U,C,D)
is I3(T) = —p3(Dna3 (T).

Proposition 3.8. Let P, € P, € C. Then I? (T) > Ig; (7).

Proof. By Proposition 3.7, we know that a:pl (7T < a? (T) and p:p (T) > p? (T). Therefore,

13, (T) > 13,(T).

Example 1. Suppose there is a fuzzy S covering information list (U,C,D), where U =
{x1,%2,%3,%4,x5}, C={Cy,C5,C5,C,}, D = {T;,T,}, with data as shown in Table 2. Let f = 0.6, A =
0.3. According to the fuzzy S covering decision information list (U,C,D), the parameterized fuzzy
f domain is obtained, as shown in Table 3.

Table 2. Fuzzy [ covering decision information table (U,C,D).

C, C, Cs C, T, T,

X 0.6 0.6 0.55 0.51 0.47 0.46
X 0.5 0.5 0.6 0.61 0.62 0.65
X3 0.63 0.6 0.58 0.73 0.64 0.33
X4 0.52 0.8 0.8 0.55 0.69 0.53
Xs 0.56 0.4 0.43 0.6 0.39 0.48

Table 3. Parameterized fuzzy £ neighborhood.

N(CB'A(xi)/U X1 X2 X3 X4 X5
NEA () 0.6 0.51 0.51 0.55 0.51
NP2 (xy) 0.5 0.6 0.5 0.5 0.61
NP2 (x3) 0.6 0.58 0.6 0.58 0.73
NP2 (xy) 0.52 0.55 0.52 0.8 0.55
NP2 (xs) 0.4 0.43 0.4 0.4 0.6

Furthermore, we can obtain the upper and lower approximations of the parameterized fuzzy
[ neighborhood:

LA _ 047 0.62 0.64 0.69 0
Gy ="+ -+ -+ T+

Xy X3 X4 xs’

CEMT) =+~ —+—+ 2,
X1 X2 X3 Xg Xs

B.A _% 065 053 , 048

CENTy) = +x2+x3+x4+x5,

Electronic Research Archive Volume 30, Issue 12, 4553-4573.
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oo (Ty) =ttt
Therefore, we can obtain the decision index dec(T;) of T;(i=1,2), and determine the decision
index certc(T;) and possible decision index possc(T;). The results are shown in Table 4. Furthermore,

we can obtain the values of three kinds of decision self-information of T;, as shown in Table 5.

Table 4. Values of each decision index.

(5} Ty
dec(T;) 2.81 2.45
certe(T;) 2.42 2.12
possc(T;) 3.86 2.8

Table 5. Three decision self-information of T;.

Ty Ty
14(T) 0.0207 0.0195
14(T) 0.0864 0.0167
13(T) 0.1742 0.0676

4. Decision self-information based on parameterized fuzzy f neighborhood
4.1. Parameterized fuzzy [ neighborhood class

Next, we construct the parameterized fuzzy [ neighborhood class and convert it to the classic set.
Definition 8. Let (U,C) be a fuzzy [ covering information list, P € C, and let N?ﬁ ‘A(x) be

parameterized fuzzy [ neighborhoods. Then the parameterized fuzzy B neighborhood class is
B.A
={y€eU|N, >p .
[l g2 = {YEUINS ) () >8)

Proposition 4.1. Let (U,C) be a fuzzy B covering information list, P € C, and let [x]. .pr be

Nf’
parameterized fuzzy [ neighborhood classes. If A < B, then

(1) forany x € U, x € [x], p;

P

(2) Useulx]ypa =U.

Proof. (1) From the definition of the fuzzy [ neighborhood Npﬁ (x), we know that
NF(x)(x) > B. When 2 < B and NP (x)(x) > B > A, then NP (x)(x) = N¥ () (x) > B, and
therefore x € [x] ABA-

P
(2) It is clear from (1).

Proposition 4.1 shows that the parameterized fuzzy B neighborhood class [x] ABA is reflexive
P

when A < B, and the union of the parameterized fuzzy [ neighborhood classes for all objects can
cover the domain of discourse U.

Electronic Research Archive Volume 30, Issue 12, 4553-4573.
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4.2. Construction of three-way decision-making model

Next, we construct conditional probabilities based on parameterized fuzzy [ neighborhood
classes, and establish a three-way decision model.

Definition 9. Let (U,C,D) be a fuzzy B covering decision information list, P € C, let [x;] ABA be
P

parameterized fuzzy [ neighborhood classes, and let T(x;) be a decision attribute value of target
x; € U. Then the conditional probability of target x; is

Zxjelri]_pa T(x;)
?

Pr (T| [x;] wpr) =

Conditional probability Pr (T|[xl-] ) shows that target x; in [x;], 2 belongs to the
P

npA
probability of the target set T.

Proposition 4.2. Let —T be the complement of fuzzy set T . Then Pr (Tl[xi]]\rf"l)-l'

Pr (_'Tl[xi]]\ff"l) =1

Proof. Since =T is the complement of the fuzzy set T, then Vx; € U, =T (x;) =1 —T(x;).
Therefore,

ije[xi]Nﬁ,A T(xj) ije[xi]Nﬁ,/l _‘T(xj)
P n P

Pr (T| [xi]N?B,]L) + Pr (—|T| [xi]N?B,a) =

[x:],,.6.4 | Lxil yp2

?
Lujelxil pa (T(xj)"'_'T(xj)) |[xi]NB.A|
P P
‘[xi]]\@)@ﬂ

[xi]]\@)&l

Example 2. (continued from Example 1). The parameterized fuzzy [ neighborhood class can be
obtained from the parameterized fuzzy f neighborhood in Table 3:

el ypa = {oad ol pa = oaxsd [xsl yppa = xn,xs,xs ), [xal o pa = {2l [xs]ypa = {acs
Furthermore, as an example, we can calculate the conditional probability of T,:
Pr (T = 0.46, Pr (T. 1) =0.57,Pr(T. 1) =042, Pr(T. :
7'( Zl[xl]N(cﬁ”l) T( ZI[xZ]N(C“) 7'( 2|[x3]N(CB/1) 7’( 2|[x4]NCB/1)
= 0.53,Pr (T 2 ) = 0.48.
7'( 2|[x5]N(CB/1)
According to the relative utility function studied by Zhan et al. [38], the standard deviation of the

utility values of all alternatives given by the decision-maker is used to measure the dispersion of the
decision-maker’s preference:

Electronic Research Archive Volume 30, Issue 12, 4553-4573.
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6= |EL T~/ (),

where T = (X, T(x;))/n is the average of the utility values of all the alternatives below state T. The
larger the value of ¢, the better the decision-maker’s ability to distinguish all alternatives, i.e., the
greater the priority difference. According to the utility value T (x;), taking into account the priority
difference, we calculate the relative utility function of taking action ap in state T,

B (T(xi))l_d), T(x)>T;
o)’ re) <7

Similarly, we calculate the relative utility function of taking action ay in state —T:

N (1-TG)) ", T@)<T;
i =
"asr@))" P, rey > T

A risk coefficient, o € (0.5,1], is introduced to calculate the relative utility function of adopted
behavior ap under different states, i.e., tigp = ollpp and gy = olijyy-

According to the relative utility function [38] and our constructed conditional probability, the
expected utility values of three behaviors of all objects x; are calculated as:

Ulaplx) = hpPr (TIlxid, ) + pwPr (<TI0 p)
U(ag|x) = hpPr (TIlxil p2) + Wb Pr (~TI0xi] p2).

Ulay|x;) = AypPr (T|[xi]N?£;,/1) + iy Pr (—|T|[xi]N3,/1).

P

Since 1iby = 0 and i} = 0, we can simplify these to:

U ) = abpPr (T|[x;
(aplx;) = tipp 7”( |[xl]N?B./1),
U(ag|x) = thpPr (TIxi] p2) + Wb Pr (~TI0xi] g2,

U(aylx) = AjwPr (= T1lx]p0)

According to the Bayesian decision rule, the action with the greatest utility value should be
selected, so the following three decision rules can be obtained:

(P) if U(ap|x;) > U(ag|x;) and U(ap|x;) > U(ay|x;), then x; € Pos(T);

(B) if U(ap|x;) > Ulagl|x;) and U(ag|x;) > Ulay|x;), then x; € Bnd(T);

(N) if Ulay|x;) > U(apl|x;) and U(ay|x;) > U(ag|x;)then x; € Neg(T),
where Pos(T), Bnd(T),and Neg(T) indicate the accepted, delayed, and rejected domain, respectively.

According to Proposition 4.2, (P) — (N) is equivalent to the following rule:

(P1) if Pr (T|[xi]N35,A) > &, and Pr (T|[xl-] > 7,, then x; € Pos(T);

Z Njf.l
(B1) if Pr (T|[xl-]Ng,,1) < &; and Pr (T|[xi] ) > f;, then x; € Bnd(T);
P

NEA

Electronic Research Archive Volume 30, Issue 12, 4553-4573.
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(N1) if Pr(T|[x;],2) < 7 and Pr(T|[x],64) < Bi.then x; € Neg(T),
P P

where thresholds &;, f5;, and 7; can be calculated as

i ~L ~1 ~1
4 = gy 5 Uyy — Upn 9 = UnN
i ~i ~i ~i ~i VT A ~1 "
uBN + (upp—qu (uNN_uBN) + uBP uNN + uPP

Bi =

If o € (0.51], then 8; < #; < &;, and (P1) — (N1) can be simplified as follows:
(P2) if Pr (T|[xl-] &;, then x; € Pos(T);

(B2) if Pr (T|[ ]N“) and Pr (T|[ ]N“) > B, then x; € Bnd(T):;
(N2) if Pr (T|[x ]J\r’”) < ,Bl, then x; € Neg(T).

>
<@

Example 3. (continued from Example 2). Letting o = 0.6, we calculate all relative utility function
values, as shown in Table 6. It is further possible to calculate thresholds &; and B;. Some important
results can be seen in Table 7.

Table 6. Relative utility functions of all objects.

~L

pp Upp fyp ipy gy Unn
Xy 0.4154 0.2493 0 0 0.3480 0.5800
X, 0.6833 0.4100 0 0 0.1830 0.3050
X3 0.2853 0.1712 0 0 0.4211 0.7019
X4 0.5705 0.3423 0 0 0.2554 0.4257
X 0.4359 0.2616 0 0 0.3366 0.5610

Table 7. Conditional probability and two thresholds.

Pr (Tz | [xi]N(Cﬁ./l) a; B;
X1 0.46 0.6768 0.4821
Xy 0.57 0.4010 0.2293
X3 0.42 0.7868 0.6212
X4 0.53 0.5281 0.3322
Xsg 0.48 0.6587 0.4618

According to the decision rule, (P2) — (N2) lets us attain all of the final decision behaviors of
the targets:

Pos(T,) = {x2,x4}, Bnd(T;) = {xs}, Neg(T,) = {x1,x3}.

5. Three-way multi-attribute group decision-making model based on parameterized fuzzy
f neighborhood

We consider that the relative decision self-information I3(T) contains both upper and lower

approximation information. Hence, we build a three-way multi-attribute group decision model based
on relative decision self-information to solve real-life problems.
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5.1. Problem statement

In the real world, the uncertainty and complexity of the social environment bring certain
difficulties to decision-makers, and an important decision can require multiple decision-makers, whose
evaluations can differ due to their knowledge, experience, and subjective factors. When they cannot
reach an agreement, we need to choose the most suitable decision-maker. The parameterized fuzzy f
covering, as an extension of the covering-based rough set model, provides an effective method to deal
with uncertain information. We establish a three-way multi-attribute decision-making model based on
parameterized fuzzy [ neighborhoods to solve the uncertain multi-attribute decision-making problem
in the real world when multiple decision-makers disagree.

The parameterized fuzzy [ neighborhoods of all alternatives are obtained based on fuzzy f
covering decision information list (U,C,D), and the upper and lower approximations of all decision-
makers are further obtained. We use relative decision self-information to measure the uncertainty of
all decision-makers and select the one with the smallest entropy value. We construct conditional
probabilities using parameterized fuzzy [ neighborhoods and use this to further revise the decision-
maker’s decision preference. We calculate the relative utility function values of all the alternatives.
Using classification rule (P2) — (N2) and comparing the magnitude between the conditional
probability and thresholds @&; and f;, we determine the final decision action for each alternative.

Finally, we can calculate the expected utility value of all the alternatives to take the final
decision action,

U(ap|x;), x; € Pos(T);
EU(x;) = {U(aplx;), x; € Bnd(T);
U(ay|x;), x; € Neg(T).

All alternatives can be sorted according to the expected utility values and priorities of the three
domains. We sort according to the expected utility value of each domain, x;,x; € Pos(T) and
Ulap|x;) > U(ap |xj); then x; > x;. Then we consider the priority of each domain as
Pos(T) > Bnd(T) > Neg(T).

3.2. Three-way multi-attribute group decision-making algorithm based on parameterized fuzzy
neighborhood

According to the above properties and decision rules, we can obtain a three-way multi-attribute
group decision-making algorithm based on parameterized fuzzy neighborhood.

Input: Fuzzy S covering decision information list (U,C,D), evaluation of all alternatives by [
decision-makers D = {T;,T,,--,T;} and A

Output: The most suitable decision-maker, and the classification and ranking of each alternative

Step 1 The decision information list (U,C,D) is covered by fuzzy B, and the parameterized
fuzzy B neighborhoods J\f(cﬁ ’A(xi) of all alternatives are calculated,;

Step 2 Calculate the lower approximation gf A (T]) and upper approximation Cf A (T]) based

on the neighborhood of parameterized fuzzy B for all decision-makers, where (j=1,2,::+,1);
Step 3 Calculate the decision self-information I3 (Tj) of all decision-makers;

Step 4 Find the smallest value of the decision self-informationlg (T},) =
min{I3(T,),1&(T,),-- 12 (T))}, and then the most suitable decision-maker is Tj;

Electronic Research Archive Volume 30, Issue 12, 4553-4573.



4565

Step 5 According to Definitions 8 and 9, calculate the conditional probabilities of each alternative,

pr (Tkl[xi]Njf./l ;

Step 6 Calculate the relative utility function values and thresholds &; and f3; for all alternatives
from the relative utility function in Section 3.2;

Step 7 According to the decision rule, (P2) — (N2) obtains the domain corresponding to the
final decision behavior of all alternatives;

Step 8 Calculate expected utility value EU(x;) of all alternatives;

Step 9 Compare the priorities of Pos(Ty) > Bnd(T) > Neg(T,) and the expected utility
values of the alternatives in each domain to rank all the alternatives.

The pseudo-code program is as follows:

Algorithm 1: Three-way multi-attribute group decision-making algorithm based on parameterized
fuzzy neighborhood

Input: A4,8,(U,C,D),D = {T,,T,, - T;}

Output: The most suitable decision-maker, and the classification and ranking of each alternative

l: n <« |U;l < |T|
2: fori=1-n
3: for k=1-n
4 it WV ()G > 4 then NI Ge) () = ME Ge) ()
5: else ]\/"(Cﬁ"l(xl-)(xk) =0
6: Cycle calculate
. B.A ~B.A
7 Ce () G)and Ce (T;) (x:)
8: Calculate I¢(T;)
9: Ty < miin{lg (T}
10: Cycle calculate
11 Pr(Til[x;] N,fm) andPr (7| [x;] N?“)
12: Uap|x), Ulaglx)andU(ayx)
13: calculate the threshold &;andp;
14: Determine x; € Pos(Tj),xl- € Bnd(Tj) or x; € Neg(Tj)
15: Calculate EU(x;)
16: Compare Pos(Tj) > Bnd(Tj) > Neg(Tj) and the expected utility
values of the alternatives in each domain to rank all the alternatives.
17: Return

The time complexity of calculating the neighborhoods N(CB ’A(xi) of all alternatives is 0(n?),
the time complexity of calculating the lower approximation gf A(T]) and upper approximation

C_f A(T]) is 0(n?xl), the time complexity of calculating the decision self-information I3 (TJ) of all

decision-makers is O(nxl), the time complexity of finding the smallest value of the decision self-
informationIg (T})is O(nXxl), the time complexity of calculating the conditional probabilities of each
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alternative Pr (Tk |[x;] ) and the relative utility function values and thresholds &; and B; forall

NEA

alternatives is 0(n?x1), the time complexity of calculating the domain corresponding to the final
decision behavior of all alternatives and expected utility value EU(x;) of all alternatives is O(nxl),
So the total time complexity of Algorithm 1 is 0(n?xl).

5.3. Numerical example

We use examples from the literature [25] to verify the effectiveness of the proposed method.

Example 4. An investment company intends to select some projects for investment, and decision-
makers make choices based on the benefits that each project can bring. There are eight investment
projects U = {x;,x5,"**,Xg}, which the company considers from five aspects C = {C;,C;,C5,C,,Cs},
which represent expected benefits, environmental factors, market saturation, social benefits, and
energy conservation. C, and (3 are cost attributes, and the rest are benefit attributes. The attribute
weight W = {0.3,0.1,0.3,0.2,0.1} is transformed to the evaluation result of the benefit standard, as
shown in Table 8. Three experts are evaluating these eight projects, with results as shown in Table 9.

Table 8. Attribute evaluation table of each investment project.

G G, Cs Cy Cs
b9 0.8 0.6 0.7 0.8 0.9
X 0.9 0.5 0.5 0.7 0.6
X3 0.3 0.6 0.4 0.4 0.3
X4 0.5 0.8 0.8 0.7 0.6
X5 0.7 0.4 0.4 0.5 0.8
Xe 0.4 0.2 0.3 0.7 0.3
X, 0.9 0.5 0.9 0.8 0.7
Xg 0.6 0.2 0.2 0.3 0.4

Table 9. Assessment of eight projects by three experts.

Ty T, T3

X, 0.76 0.48 0.6

X, 0.67 0.45 0.65
X3 0.38 0.10 0.33
X, 0.67 0.42 0.78
Xs 0.55 0.32 0.48
X 0.4 0.23 0.38
X, 0.82 0.68 0.64
Xg 0.36 0.19 0.34

We obtain the parameterized fuzzy [ neighborhoods of all alternatives based on the fuzzy f
coverage decision information list (U,C,D). Let 8 = 0.6,4 = 0.3, as shown in Table 10.

Then we can obtain the lower and upper approximations of the three experts based on the
parameterized fuzzy [ neighborhood:
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pA Vo 4 057 067 , 055 | 04 082 0
g(c (Tl) N + X2 + 3+ Xq + X5 +x6 + X7 +x8,
~ .55
CPAMT) ==+ —+22 4 1 2% 0, 1, 0%
X1 X2 X3 X4 X5 Xe X7 Xg
C'B)L(TZ)_%_F%_}_ +%+ + — +@+_
X1 X2 X3 X4 X5 Xe X7 x8
Cg’l(TZ):%+%+_+%+Q+%+ +£
X3 X3 X4 X5 Xe X7 Xg
B.A _ % 0.65 0 0.78 0.48 0.64 i
G (T =+ T+ +x4+x5+ —+
CMT) =2 b ko 2
X3 X4 X5 X6 X7 Xg

The relative decision self-information of the three experts is calculated as:

13(T,) = 0.1233,13(T,) = 0.1644,13(T;) = 0.1882.

From this, we obtain I (T;) < I2(T,) < I3 (T;), from which we see that the most suitable expert
is T;. We can get the parameterized fuzzy [ neighborhood class from the table as:

[xl]NCB’A = {x1}, [xz]NCB,l = {x1,%2,%7}, [x3]N(CB./1 = {X1,%2,X3,X4}, [x‘*]J\f(CB"l = {X1,%2,%4},

[-7(:5]]%3‘/1 = {x1'x21x51x7}’ [-7(:6]]\&{3:)L = {x11x21x41x6'x7}' [96'7]]\%!3,)L = {x1'x7}l

[XS]N(C[?.A = {X1,%2,X5,%7,Xg}.

Table 10. Parameterized fuzzy [ neighborhood of all investment projects.

Ncﬁ’l (x)/U x; Xy X3 X4 Xs X X, Xg
N ep) 0.6 0.8 0.6 0.6 0.8 0.8 0.7 0.8
NP () 0.5 0.6 0.5 0.5 0.6 0.7 0.5 0.9
NLA(x3) 0.3 0.3 0.6 0.3 0.3 0.4 0.3 0.3
NLA () 0.5 0.5 0.8 0.6 0.5 0.7 0.5 0.5
NLA (xs) 0.4 0.5 0.4 0.4 0.7 0.5 0.4 0.7
NEA () 0 0.3 0 0 0.3 0.7 0.3 0.4
NEA ) 0.5 0.7 0.5 0.5 0.7 0.8 0.7 0.9
NEA () 0 0.3 0 0 0.4 0.3 0 0.6

From the relative utility function and the decision preference of T;, two thresholds and

conditional probabilities can be obtained, as shown in Table 11.

To more intuitively show the relationship between the conditional probability and the threshold,
we show a comparison chart between them, as shown in Figure 1. From the decision rule (P2) — (N2),

the final decision classification result of expert T; can be obtained as:

Pos(T;) = {x1,X2,X4,X5,X7}, Bnd(T;) = {x3,x¢,xg}, Neg(T;) = @

The expected utility of all investment projects can then be calculated, as shown in Figure 2, from
which a complete ranking can be obtained:x; > x; > x, > X, > X5 > X3 > Xg > Xg.
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The company can make decisions on which projects to invest in based on the final decision
classification and ranking results of expert T;.

Table 11. Conditional probabilities and thresholds of each project.

pr (T1 | [xi]N(CB.l) a; Bi
X1 0.76 0.2477 0.1277
Xy 0.75 0.3500 0.1931
X3 0.62 0.7675 0.5947
X4 0.7 0.3500 0.1931
Xs 0.7 0.6178 0.4181
Xg 0.66 0.7511 0.5729
X7 0.79 0.1789 0.0883
Xg 0.63 0.7835 0.6166
f———— &
09t -
08
0.7}
06
05}
04}
03}
0.2t
01}
0 .
X1 )(2 Xs )(4 X5 Xﬁ X? Xa

Figure 1. Comparison of conditional probabilities with two thresholds.

EU(x;)
0.80

P 0.6714
S 070 0.6069

S 060 05401 0.5041
£ os0
5 040 0.2683 03315 2629 0.2622
T 030 : : :
S 020

g 0.10

o 0.0
£ X1 X2 X3 X4 X5 X6 X7 X8

mu(aP|xi) 0.6069 0.5401 0.5041 0.3375 0.6714

® u(aB|xi) 0.2683 0.2629 0.2622

W u(aN |xi)

Bu(aP|xi) mu(aB|xi) ™ u(aN]|xi)

Figure 2. Expected utility values of all investment projects.
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5.4. Experiment analysis

To illustrate the effectiveness of our method, we compare it with state-of-the-art and traditional
decision-making methods, i.e., the methods of Zhan et al. [38], Ye et al. [34], and Zhang et al. [35],
the TOPSIS method [23], and the WAA operator method [22]. The classifications and ranking results
of different methods are shown in Tables 12 and 13.

Table 12. Classification results of different methods.

Pos(T) Bnd(T) Neg(T)
Our method {x1,%2,%4,X5,%7} {x3,%6,%5} 1)
Zhan et al.’s method {o1,%5,%4,%7} {x3,%5,%6} {xs}
Ye et al.’s method {21,%5,%4,%5,%7} {x3,%6,%5} 1)
Zhang et al.’s method {x,} {x1,%5,%,} {x3,%5,%6,%g}

Table 13. Ranking results of different methods.

Ranking Optimal
Our method T, X7 > X1 > Xy > X4 > Xg > X3 > Xg > Xg X7
T, X7 > Xg4 > Xg > X1 > X3 > Xg > Xg > Xg X
Ty Xg > Xg > X7 > X1 > Xg > Xg > Xg > X3 Xq
Zhan et al.’s method Xy > X1 > Xy > X4 > X3 > Xg > Xg > Xg X5
Ye et al.’s method X7 > X1 > X4 > Xy > Xg > X3 > Xg > Xg X7
Zhang et al.’s method Xy > X1 > X4 > Xg > Xg > Xg > Xg > X3 Xy
TOPSIS method X7 > X1 > Xy > X4 > Xg > Xg > Xg > X3 X7
WAA operator method Xy > X1 > Xy R X4 > Xg > Xg > Xg > Xg X7

Table 13 includes the ranking results of experts T;(i=1,2,3). It can be found that the results of
expert T; are most similar to those of other methods, and the optimal objects are all x,, while the
optimal results of expert T; are x,, indicating that experts T3 and T; are different. By the method in
this paper, expert T; can be selected from the three experts T;(i=1,2,3) for decision-making, with
results basically consistent with those of other methods, which shows that the proposed method is
effective. To observe the difference between the ranking results of our and other methods, we compare
the ranking results of different methods in Figure 3.

To further illustrate the effectiveness of the proposed method, SRCC is used to analyze the
correlation between the ranking results of different methods, as shown in Table 14.

A ratio greater than 0.8 between the ranking results of two methods indicates that the correlation
between them is significant. It can be seen from the table that the differences between the proposed
method and the other methods are greater than 0.8, indicating the effectiveness of the method.

From the above analysis, we can find that the results obtained by using the decision information
of T; expert is the most reasonable. Due to the lack of decision-making experience of T; expert on
this issue, the results obtained by using the decision-making information of T; expert is not ideal.
Therefore, the proposed model can effectively improve the scientificity of decision-making while
comparing the decision-making information of many experts and avoiding incorporating the lack of
experience expert information.
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Figure 3. Comparison of ranking results of different methods.
Table 14. SRCCs between different methods.
Our Zhanetal’s Yeetal.’s Zhangetal.’s TOPSIS WAA operator
method  method method method method method
Our method 1 0.9286 0.9524 0.9048 0.9286 0.9643
Zhan et al.’s method 1 0.8571 0.8095 0.8333 0.8929
Ye et al.’s method 1 0.9048 0.8810 0.9167
Zhang et al.’s method 1 0.9762 0.9643
TOPSIS method 1 0.9643
WAA operator method 1

6. Conclusions

Decision self-information is a special kind of entropy and is an effective tool to characterize
uncertain information. In this paper, the parameterized fuzzy f neighborhood was combined with
decision self-information to extend it to the fuzzy environment and apply it to multi-attribute group
decision-making. We defined three kinds of decision-making self-information, studied their important
properties, and defined the parameterized fuzzy [ neighborhood class and the corresponding
conditional probability to establish a three-way decision-making model. We applied relative decision
self-information, including both upper and lower approximation information, to three-way multi-
attribute group decision-making, solving the problem of disagreement among multiple decision-
makers in the real world. A three-way multi-attribute group decision-making algorithm based on a
parameterized fuzzy B neighborhood was proposed and was used to solve a practical example. An
experimental analysis showed the effectiveness of the proposed method. The main contributions of
this paper are listed as follows:

(1) In this paper, the advantages of parametric fuzzy [ neighborhood satisfying reflexivity and
effectively reducing the influence of noise data are used to construct decision self-information based
on parametric fuzzy [ neighborhood. This measure can effectively describe the target concept in
fuzzy environment.
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(2) In order to avoid incorporating inexperienced expert information in the process of group
decision-making, we construct a three-way multi-attribute group decision-making algorithm based on
parametric fuzzy f neighborhood to measure multiple experts and select the most suitable experts for
decision-making. The advantage of doing so is that the process can both compare the decision-making
information of multiple experts and avoid fusing the information of inexperienced experts.

In solving multi-attribute decision-making problems, we will consider the impact of risk aversion
or benefit maximization of psychological behavior on decision-making, which is a direction worthy of
further study. In addition, group consensus decision-making based on regret theory will be one of our
future research directions.
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