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Abstract: In this article, we study the following bi-nonlocal Kirchhoff-Schrödinger-Poisson system
with critical growth:

−

(∫
Ω

|∇u|2dx
)r

∆u + φu = u5 + λ

(∫
Ω

F(x, u)dx
)s

f (x, u), in Ω,

−∆φ = u2, u > 0, in Ω,

u = φ = 0, on ∂Ω,

where Ω ⊂ R3 is a smooth bounded domain, λ > 0, 0 ≤ r < 1, 0 < s < 1−r
3(r+1) and f (x, u) satisfies some

suitable assumptions. By using the concentration compactness principle, the multiplicity of positive
solutions for the above system is established.

Keywords: Kirchhoff-Schrödinger-Poisson systems; positive solutions; critical growth;
concentration compactness principle; multiplicity

1. Introduction and main result

This paper is concerned with the following Kirchhoff-Schrödinger-Poisson system:
−

(∫
Ω

|∇u|2dx
)r

∆u + φu = u5 + λ

(∫
Ω

F(x, u)dx
)s

f (x, u), in Ω,

−∆φ = u2, u > 0, in Ω,

u = φ = 0, on ∂Ω,

(1.1)
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where Ω ⊂ R3 is a smooth bounded domain, λ > 0, 0 ≤ r < 1, 0 < s < 1−r
3(r+1) and

F(x, u) =

∫ u

0
f (x, ξ)dξ. We assume that f ∈ C1(Ω × R,R) and there exist constants a1, a2 > 0

and 6(r+1)
r+2 < q < 4

s+1 , 0 < s < 1−r
3(r+1) , such that

a1tq−1 ≤ f (x, t) ≤ a2tq−1 for any (x, t) ∈ Ω × R. (1.2)

When
(∫

Ω

|∇u|2dx
)r

= 1 and s = 0, the system (1.1) reduces to the boundary value problem


−∆u + Vu + φu = f (x, u), in Ω,

−∆φ = u2, u > 0, in Ω,

u = φ = 0, on ∂Ω.

(1.3)

Problem (1.3) has been extensively studied, by using variational methods and critical point theory
under suitable assumptions on V , f ; see [1–7] and the references therein.

On the other hand, considering just the first equation in (1.1) with the potential equal to zero, we
have the problem −

(
a + b

∫
Ω

|∇u|2dx
)
∆u = f (x, u), in Ω,

u = 0, on ∂Ω,

(1.4)

where a, b > 0, which was proposed by Kirchhoff in [8] as an extension of the classical D’Alembert’s
wave equation for free vibrations of elastic strings. The appearance of the nonlocal term

∫
Ω
|∇u|2dx

in the equations makes them important in many physical applications. We have to point out that such
nonlocal problems appear in other fields like biological systems, such as population density, where u
describes a process which depends on the average of itself (see [9]). The Kirchhoff type problem (1.4)
with critical growth began to call the attention of researchers; we can see [10–18] and the references
therein.

In particular, Che et al. in [19] considered the following Kirchhoff-Schrödinger-Poisson system
with critical growth:−

(
a + b

∫
R3
|∇u|2dx

)
∆u + V(x)u + φu = λg(x)|u|q−1 + h(x)u5, in R3,

−∆φ = u2, u > 0, in R3,

where a > 0, b ≥ 0, q ∈ [4, 6), and λ > 0 is a parameter. Under some suitable conditions on V(x), g(x)
and h(x), by using the Nehari manifold technique and Ljusternik-Schnirelmann category theory, they
established the number of positive solutions with the topology of the global maximum set of h when λ
is small enough. Furthermore, with the aid of the mountain pass theorem, they obtained an existence
result for λ sufficiently large.

In [20], Chabrowski investigated the bi-nonlocal problem for the nonlinear elliptic equation of the
form −

(∫
Ω

|∇u|2dx
)s

∆u = Q(x)|u|p−2u +

(∫
Ω

|u|qdx
)r

|u|q−2u, in Ω,

∂u
∂ν

= 0, on ∂Ω,
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where 2 < p ≤ 2∗, 2 < q < 2∗, s > 0, r > 0, and 2∗ = 2N
N−2 (N ≥ 3) denotes the critical Sobolev exponent.

The existence of solutions in critical and subcritical cases is obtained by using the variational method.
A similar problem with Dirichlet boundary conditions has been considered in [21]. Motivated by the
above references, we study the existence of multiple positive solutions for system (1.1). Our main
difficulties are as follows: The critical growth of system (1.1) leads to the lack of compactness of the
embedding H1

0(Ω) ↪→ L6(Ω), and it is difficult to prove the energy functional belongs to the range
where the (PS) condition holds. We overcome this difficulty by using the concentration compactness
principle.

Throughout this paper, we make use of the following notations:

• The space H1
0(Ω) is equipped with the norm ‖u‖ = (

∫
Ω
|∇u|2dx)

1
2 , and the norm in Lp(Ω) is denoted

by |u|p = (
∫

Ω
|u|pdx)

1
p ;

• C,C1,C2, . . . denote various positive constants, which may vary from line to line;
• We denote by S ρ (respectively, Bρ) the sphere (respectively, the closed ball) of center zero and

radius ρ, i.e., S ρ = {u ∈ H1
0(Ω) : ‖u‖ = ρ}, Bρ = {u ∈ H1

0(Ω) : ‖u‖ ≤ ρ};
• → (respectively, ⇀) denotes strong (respectively, weak) convergence;
• Let S be the best Sobolev constant, namely,

S = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx( ∫

Ω
|u|6dx

)1/3 . (1.5)

Our main result is the following:

Theorem 1.1. Assume that q(s + 1) < 4 ≤ 2(r + 1) < 6, λ > 0, and 0 < s < 1−r
3(r+1) . Then, there exists

Λ∗ > 0 such that for any λ ∈ (0,Λ∗), system (1.1) has at least two positive solutions.

Remark 1.1. As we shall see, in the system (1.1), when f (x, u) = |u|q−2u, F(x, u) = |u|q, Chabrowski
established the existence of solutions. In this paper, due to the nonlocal term φu in (1.1), new treatments
are needed for our problem. Therefore, in this article, we extend the relevant results of [20].

2. Proof of Theorem 1.1

First, by using the Lax-Milgram theorem, for each u ∈ H1
0(Ω), there exists a unique solution

φu ∈ H1
0(Ω) which satisfies the second equation of system (1.1). We substitute φu into the first equation

of system (1.1), and then system (1.1) is transformed into the following problem:
−

(∫
Ω

|∇u|2dx
)r

∆u + φuu = u5 + λ

(∫
Ω

F(x, u)dx
)s

f (x, u), in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.

(2.1)

We define the energy functional corresponding to problem (2.1) by

Iλ(u) =
1

2(r + 1)

(∫
Ω

|∇u|2dx
)r+1

+
1
4

∫
Ω

φuu2dx −
1
6

∫
Ω

|u|6dx −
λ

s + 1

(∫
Ω

F(x, u)dx
)s+1

.
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We say that a function u ∈ H1
0(Ω) is called a weak solution of problem (2.1) if for every ϕ ∈ H1

0(Ω),
there holds(∫

Ω

|∇u|2dx
)r ∫

Ω

∇u∇ϕdx +

∫
Ω

φuuϕdx −
∫

Ω

|u|4uϕdx − λ
(∫

Ω

F(x, u)dx
)s ∫

Ω

f (x, u)ϕdx = 0.

Before proving Theorem 1.1, we give the following important Lemma.

Lemma 2.1. (See [22, 23]) For all u ∈ H1
0(Ω), there exists a unique solution φu ∈ H1

0(Ω) of−∆φ = u2, in Ω,

φ = 0, on ∂Ω,

and
(1) ‖φu‖

2 =
∫

Ω
φuu2dx;

(2) φu ≥ 0. Moreover, φu > 0 when u , 0;
(3) For each t , 0, φtu = t2φu;
(4) ∫

Ω

|∇φu|
2dx =

∫
Ω

φuu2dx ≤ S −1|u|412/5 ≤ C‖u‖4;

(5) If un ⇀ u in H1
0(Ω), then φun → φu in H1

0(Ω), and∫
Ω

φununvdx→
∫

Ω

φuuvdx, ∀ v ∈ H1
0(Ω).

Lemma 2.2. There exist constants δ, ρ,Λ0 > 0, for all λ ∈ (0,Λ0) such that the functional Iλ satisfies
the following conditions:
(i) Iλ|u∈S ρ

≥ δ > 0, infu∈Bρ
Iλ(u) < 0;

(ii) There exists e ∈ H1
0(Ω) with ‖e‖ > ρ such that Iλ(e) < 0.

Proof. (i) According to Hölder’s inequality and (1.5), one has

(∫
Ω

|u|qdx
)s+1

≤

(∫
Ω

|u|6dx
) q

6
(∫

Ω

1
6

6−q dx
) 6−q

6


s+1

≤ |Ω|
(6−q)(s+1)

6 S −
q(s+1)

2 ‖u‖q(s+1).

(2.2)

By (1.2), we have
a1|t|q ≤ f (x, t)t ≤ a2|t|q for any (x, t) ∈ Ω × R, (2.3)

and
a1

q
|t|q ≤ F(x, t) ≤

a2

q
|t|q for any (x, t) ∈ Ω × R. (2.4)
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Therefore, it follows from (1.5), (2.2) and (2.4) that

Iλ(u) ≥
1

2(r + 1)
‖u‖2(r+1) −

1
6

S −3‖u‖6 −
λ

s + 1

(
a2

q

)s+1 (∫
Ω

|u|qdx
)s+1

≥
1

2(r + 1)
‖u‖2(r+1) −

1
6

S −3‖u‖6 −
λ

s + 1

(
a2

q
|Ω|

6−q
6 S −

q
2 ‖u‖q

)s+1

= ‖u‖q(s+1)
[
‖u‖2(r+1)−q(s+1)

2(r + 1)
−

S −3‖u‖6−q(s+1)

6
−

λ

s + 1

(
a2

q
|Ω|

6−q
6 S −

q
2

)s+1 ]
.

Let H(t) = 1
2(r+1) t

2(r+1)−q(s+1) − 1
6S −3t6−q(s+1) for t > 0, and then there exists

ρ =

[
3S 3[2(r + 1) − q(s + 1)]

(r + 1)[6 − q(s + 1)]

] 1
6−2(r+1)

> 0,

such that maxt>0 H(t) = H(ρ) > 0. Setting

Λ0 =
(s + 1)qs+1S

q(s+1)
2

as+1
2 |Ω|

(6−q)(s+1)
6

H(ρ),

there exists a constant δ > 0, such that Iλ|u∈S ρ
≥ δ for each λ ∈ (0,Λ0). Moreover, for every u ∈

H1
0(Ω)\{0}, we get

lim
τ→0+

Iλ(τu)
τq(s+1) = lim

τ→0+
−

λ

s + 1

(∫
Ω

F(x, τu)dx
)s+1

≤ −
λ

s + 1

(
a1

q

)s+1 (∫
Ω

|u|qdx
)s+1

< 0.

So, we obtain Iλ(τu) < 0 for all u , 0 and τ small enough. Hence, for ‖u‖ small enough, we have

m = inf
u∈Bρ

Iλ(u) < 0.

(ii) Set u ∈ H1
0(Ω), and we get

Iλ(τu) ≤
τ2(r+1)

2(r + 1)

(∫
Ω

|∇u|2dx
)r+1

+
τ4

4

∫
Ω

φuu2dx −
τ6

6

∫
Ω

|u|6dx

− λ
τq(s+1)

s + 1

(
a1

q

)s+1 (∫
Ω

|u|qdx
)s+1

→ −∞,

as τ → +∞, which implies that Iλ(τu) < 0 for τ > 0 large enough. Consequently, we can find
e ∈ H1

0(Ω) with ‖e‖ > ρ such that Iλ(e) < 0. The proof is complete. �

Lemma 2.3. Assume that λ > 0, q(s + 1) < 4 ≤ 2(r + 1) < 6, and 0 < s < 1−r
3(r+1) . Then, the functional

Iλ satisfies the (PS )cλ condition for each

cλ < c∗ =
2 − r

6(r + 1)
S

3(r+1)
2−r − Dλ

2(r+1)
2(r+1)−q(s+1) ,

where

D =
(2 − r)[2(r + 1) − q(s + 1)]

6q(r + 1)(s + 1)

[
6as+1

2 − q(s + 1)as+1
1

2qs(2 − r)
|Ω|

(6−q)(s+1)
6 S −

q(s+1)
2

] 2(r+1)
2(r+1)−q(s+1)

.
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Proof. Let {un} ⊂ H1
0(Ω) be a (PS ) sequence for Iλ at the level cλ, that is,

Iλ(un)→ cλ, and I′λ(un)→ 0 as n→ ∞. (2.5)

Combining with (2.2)–(2.4), we get

cλ + 1 + o(‖un‖) ≥ Iλ(un) −
1
6

〈
I′λ(un), un

〉
=

(
1

2(r + 1)
−

1
6

)
‖un‖

2(r+1) +

(
1
4
−

1
6

) ∫
Ω

φunu
2
ndx

− λ
1

s + 1

(∫
Ω

F(x, un)dx
)s+1

+
λ

6

(∫
Ω

F(x, un)dx
)s ∫

Ω

f (x, un)undx

≥

(
1

2(r + 1)
−

1
6

)
‖un‖

2(r+1) + λ

q
6

(
a1

q

)s+1

−
1

s + 1

(
a2

q

)s+1 (∫
Ω

|un|
qdx

)s+1

≥

(
1

2(r + 1)
−

1
6

)
‖un‖

2(r+1) + λ

q
6

(
a1

q

)s+1

−
1

s + 1

(
a2

q

)s+1 |Ω| (6−q)(s+1)
6 S −

q(s+1)
2 ‖un‖

q(s+1).

Then, this implies that {un} is bounded in H1
0(Ω) for all q(s + 1) < 4 ≤ 2(r + 1) < 6. Thus, we may

assume up to a subsequence, still denoted by {un}, there exists u ∈ H1
0(Ω) such that

un ⇀ u, weakly in H1
0(Ω),

un → u, strongly in Lp(Ω) (1 ≤ p < 6),
un(x)→ u(x), a.e. in Ω,

(2.6)

as n → ∞. Next, we prove that un → u strongly in H1
0(Ω). By using the concentration compactness

principle (see [24]), there exist an at most countable set J, a family of points {x j} j∈J ⊂ Ω̄, and positive
numbers {ν j} j∈J, {µ j} j∈J such that

|un|
6 ⇀ dν = |u|6 +

∑
j∈J

ν jδx j ,

|∇un|
2 ⇀ dµ ≥ |∇u|2 +

∑
j∈J

µ jδx j .

Moreover, we have
µ j, ν j ≥ 0, µ j ≥ S ν

1
3
j . (2.7)

Let ϕε, j(x) be a smooth cut-off function centered at x j such that 0 ≤ ϕε, j ≤ 1, |∇ϕε, j| ≤ 2
ε
, ε > 0, and

ϕε, j(x) =

1, in B(x j,
ε
2 ),

0, in Ω \ B(x j, ε).
(2.8)

Noting that {unϕε, j} is bounded in H1
0(Ω) uniformly for n, combining with (2.6) and (2.8), we have

lim
ε→0

lim
n→∞

∫
Ω

|un|
qϕε, jdx ≤ lim

ε→0
lim
n→∞

∫
B(x j,ε)

|un|
qdx = 0. (2.9)
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Similarly, we can obtain

lim
ε→0

lim
n→∞

∫
Ω

φunu
2
nϕε, jdx ≤ lim

ε→0

∫
B(x j,ε)

φuu2ϕε, jdx = 0. (2.10)

By using the Hölder inequality and |∇ϕε, j| ≤ 2
ε
, there exists C2 > 0, and we have

lim
ε→0

lim
n→∞

∫
Ω

〈∇un,∇ϕε, j〉undx

≤ lim
ε→0

lim
n→∞

(∫
Ω

|∇un|
2dx

) 1
2
(∫

Ω

|un|
2|∇ϕε, j|

2dx
) 1

2

≤ C1 lim
ε→0

(∫
B(x j,ε)

|u|6dx
) 1

6
(∫

B(x j,ε)
|∇ϕε, j|

3dx
) 1

3

≤ C1 lim
ε→0

(∫
B(x j,ε)

|u|6dx
) 1

6
∫

B(x j,ε)

(
2
ε

)3

dx
 1

3

≤ C2 lim
ε→0

(∫
B(x j,ε)

|u|6dx
) 1

6

= 0.

(2.11)

We also derive that

lim
ε→0

lim
n→∞

∫
Ω

|∇un|
2ϕε, jdx ≥ lim

ε→0

∫
Ω

|∇u|2ϕε, jdx + µ j = µ j, (2.12)

and
lim
ε→0

lim
n→∞

∫
Ω

|un|
6ϕε, jdx = lim

ε→0

∫
Ω

|u|6ϕε, jdx + ν j = ν j. (2.13)

By (2.5) and (2.9)–(2.13), we get

0 = lim
ε→0

lim
n→∞
〈I′λ(un), unϕε, j〉

= lim
ε→0

lim
n→∞

{ (∫
Ω

|∇un|
2dx

)r ∫
Ω

〈
∇un,∇(unϕε, j)

〉
dx +

∫
Ω

φunu
2
nϕε, jdx

−

∫
Ω

|un|
6ϕε, jdx − λ

(∫
Ω

F(x, un)dx
)s ∫

Ω

f (x, un)unϕε, jdx
}

= lim
ε→0

lim
n→∞

{ (∫
Ω

|∇un|
2dx

)r ∫
Ω

|∇un|
2ϕε, jdx +

(∫
Ω

|∇un|
2dx

)r ∫
Ω

〈∇un,∇ϕε, j〉undx −
∫

Ω

|un|
6ϕε, jdx

}
≥ lim

ε→0

{ (∫
Ω

|∇u|2dx + µ j

)r (∫
Ω

|∇u|2ϕε, jdx + µ j

)
− ν j

}
≥ µr+1

j − ν j,

that is, ν j ≥ µ
r+1
j . If ν j > 0, by (2.7), we obtain

ν j ≥ S
3(r+1)

2−r , µ j ≥ S
3

2−r . (2.14)
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Now, we show that (2.14) is impossible. Assume that there exists j0 ∈ J, such that µ j0 ≥ S
3

2−r and
x j0 ∈ Ω. It follows from (2.2)–(2.5) that

cλ = lim
n→∞

{
Iλ(un) −

1
6
〈I′λ(un), un〉

}
= lim

n→∞

{ (
1

2(r + 1)
−

1
6

) (∫
Ω

|∇un|
2dx

)r+1

+

(
1
4
−

1
6

) ∫
Ω

φunu
2
ndx

−
λ

s + 1

(∫
Ω

F(x, un)dx
)s+1

+
λ

6

(∫
Ω

F(x, un)dx
)s ∫

Ω

f (x, un)undx
}

≥
2 − r

6(r + 1)

∫
Ω

|∇u|2dx +
∑
j∈J

µ j


r ∫

Ω

|∇u|2dx +
∑
j∈J

µ j


− λ

 1
s + 1

(
a2

q

)s+1

−
q
6

(
a1

q

)s+1 (∫
Ω

|u|qdx
)s+1

≥
2 − r

6(r + 1)
µr+1

j0 +
2 − r

6(r + 1)
‖u‖2(r+1) − λ

6as+1
2 − q(s + 1)as+1

1

6(s + 1)qs+1 |Ω|
(6−q)(s+1)

6 S −
q(s+1)

2 ‖u‖q(s+1).

Let

G(t) =
2 − r

6(r + 1)
t2(r+1) − λ

6as+1
2 − q(s + 1)as+1

1

6(s + 1)qs+1 |Ω|
(6−q)(s+1)

6 S −
q(s+1)

2 tq(s+1).

It is clear that limt→0 G(t) = 0, and limt→+∞G(t) = +∞. Therefore, there exists T > 0 such that
G(T ) = mint≥0 G(t), that is,

G′(t)|T =
2 − r

3
T 2r+1 − λ

6as+1
2 − q(s + 1)as+1

1

6qs |Ω|
(6−q)(s+1)

6 S −
q(s+1)

2 T q(s+1)−1

= 0.
(2.15)

From (2.15) we obtain

T =

(
λ(6as+1

2 − q(s + 1)as+1
1 )

2qs(2 − r)
|Ω|

(6−q)(s+1)
6 S −

q(s+1)
2

) 1
2(r+1)−q(s+1)

,

and by simple calculation, we have

G(T ) =
2 − r

6(r + 1)

[
λ

6as+1
2 − q(s + 1)as+1

1

2qs(2 − r)
|Ω|

(6−q)(s+1)
6 S −

q(s+1)
2

] 2(r+1)
2(r+1)−q(s+1)

− λ
6as+1

2 − q(s + 1)as+1
1

6(s + 1)qs+1

(
|Ω|

6−q
6 S −

q
2

)s+1
[
λ

6as+1
2 − q(s + 1)as+1

1

2qs(2 − r)
|Ω|

(6−q)(s+1)
6 S −

q(s+1)
2

] q(s+1)
2(r+1)−q(s+1)

=
(2 − r)[q(s + 1) − 2(r + 1)]

6q(r + 1)(s + 1)

[
λ

6as+1
2 − q(s + 1)as+1

1

2qs(2 − r)
|Ω|

(6−q)(s+1)
6 S −

q(s+1)
2

] 2(r+1)
2(r+1)−q(s+1)

.

Hence, we can see that

cλ ≥
2 − r

6(r + 1)
S

3(r+1)
2−r − Dλ

2(r+1)
2(r+1)−q(s+1) ,
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where

D =
(2 − r)[2(r + 1) − q(s + 1)]

6q(r + 1)(s + 1)

[
6as+1

2 − q(s + 1)as+1
1

2qs(2 − r)
|Ω|

(6−q)(s+1)
6 S −

q(s+1)
2

] 2(r+1)
2(r+1)−q(s+1)

.

We obtain that cλ ≥ c∗. This is a contradiction, which indicates that ν j = µ j = 0 for every j ∈ J, which
implies that un → u in L6(Ω). We may assume that∫

Ω

|∇un|
2dx→ A2,

∫
Ω

|∇u|2dx ≤ A2.

Combining with (2.5) and (2.6), we have

0 = lim
n→∞

〈
I′λ(un), un − u

〉
= lim

n→∞

[ (∫
Ω

|∇un|
2dx

)r (∫
Ω

|∇un|
2dx −

∫
Ω

∇un∇udx
)

+

∫
Ω

φunun(un − u)dx −
∫

Ω

|un|
4un(un − u)dx

− λ

(∫
Ω

F(x, un)dx
)s ∫

Ω

f (x, un)(un − u)dx
]

= A2r

(
A2 −

∫
Ω

|∇u|2dx
)
.

Hence, we obtain ∫
Ω

|∇un|
2dx→

∫
Ω

|∇u|2dx as n→ ∞,

which implies un → u in H1
0(Ω). The proof is complete. �

Choose the extremal function

Uε(x) =
(3ε2)

1
4

(ε2 + |x|2)
1
2

, ε > 0,

satisfying
−∆Uε = U5

ε in R3.

Let Ψ ∈ C1(R3) such that Ψ(x) = 1 on BR
2
(0), Ψ(x) = 0 on R3 \ BR(0), and 0 ≤ Ψ(x) ≤ 1 on R3. Set

uε(x) = Ψ(x)Uε(x). From [25], one has
∫

Ω
|∇uε|2dx = S

3
2 + O(ε),∫

Ω
|uε|6dx = S

3
2 + O(ε3),

and

|uε|αα =


O(ε

α
2 ), α ∈ [2, 3),

O(ε
α
2 | ln ε|), α = 3,

O(ε
6−α

2 ), α ∈ (3, 6).

(2.16)

Then, we have the following Lemma.
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Lemma 2.4. Suppose that λ > 0, q(s + 1) < 4 ≤ 2(r + 1) < 6, and 0 < s < 1−r
3(r+1) . Then,

sup
t≥0

Iλ(tuε) <
2 − r

6(r + 1)
S

3(r+1)
2−r − Dλ

2(r+1)
2(r+1)−q(s+1) .

Proof. According to the definition of uε and (2.4), it holds that

λ

s + 1

(∫
Ω

F(x, tuε)dx
)s+1

≥
λ

s + 1
tq(s+1)

(
a1

q

)s+1 (∫
Ω

|uε|qdx
)s+1

≥ C3λ

(∫
BR/2(0)

ε
q
2

(ε2 + |x|2)
q
2
dx

)s+1

= C3λε
(6−q)(s+1)

2

(∫ R/2ε

0

y2

(1 + y2)
q
2
dy

)s+1

≥ C3λε
(6−q)(s+1)

2

(∫ 1

0

y2

(1 + y2)
q
2
dy

)s+1

≥ C4λε
(6−q)(s+1)

2 .

(2.17)

From Lemma 2.1 and (2.16), we have the following estimate:∫
Ω

φuεu
2
εdx ≤ S −1|uε|412/5 ≤ O(ε2). (2.18)

Since Iλ(tuε)→ −∞ as t → ∞, by Lemma 2.2, there exists tε > 0 such that

Iλ(tεuε) = sup
t>0

Iλ(tuε) ≥ δ > 0.

Moreover, by the continuity of Iλ, there exist positive constants t1 and t2 such that 0 < t1 ≤ tε ≤ t2 <

+∞. As a consequence of the above fact, one has

sup
t≥0

Iλ(tuε) = sup
t≥0

{ 1
2(r + 1)

(∫
Ω

|∇tuε|2dx
)r+1

+
1
4

∫
Ω

φtuε |tuε|
2dx

−
1
6

∫
Ω

|tuε|6dx −
λ

s + 1

(∫
Ω

F(x, tuε)dx
)s+1 }

≤ sup
t≥0

{ 1
2(r + 1)

(∫
Ω

|∇tuε|2dx
)r+1

−
1
6

∫
Ω

|tuε|6dx
}

+ O(ε2) − λC4ε
(6−q)(s+1)

2

≤
2 − r

6(r + 1)


(∫

Ω
|∇uε|2dx

)r+1∫
Ω
|uε|6dx


2(r+1)

6−2(r+1) (∫
Ω

|∇uε|2dx
)r+1

+ O(ε2) − λC4ε
(6−q)(s+1)

2

≤
2 − r

6(r + 1)
S

3(r+1)
2−r + C5ε − λC4ε

(6−q)(s+1)
2

<
2 − r

6(r + 1)
S

3(r+1)
2−r − Dλ

2(r+1)
2(r+1)−q(s+1) .
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We have used the fact that 6(r+1)
r+2 < q < 4

s+1 and let ε = λ
2(r+1)

2(r+1)−q(s+1) .

0 < λ < Λ1 = min
{ [

2 − r
6(r + 1)D

S
3(r+1)

2−r

] 2(r+1)−q(s+1)
2(r+1)

,

(
C5 + D

C4

) 2(r+1)−q(s+1)
(s+1)[(r+1)(6−q)−q] }

,

and then
C5ε −C4λε

(6−q)(s+1)
2 = C5λ

2(r+1)
2(r+1)−q(s+1) −C4λ

(r+1)(6−q)(s+1)
2(r+1)−q(s+1) +1

= λ
2(r+1)

2(r+1)−q(s+1)

(
C5 −C4λ

(s+1)[(r+1)(6−q)−q]
2(r+1)−q(s+1)

)
< −Dλ

2(r+1)
2(r+1)−q(s+1) .

The proof is complete. �

Lemma 2.5. Suppose that 0 < λ < Λ0 (Λ0 is as in Lemma 2.2). Then, system (1.1) has a positive
solution uλ satisfying Iλ(uλ) < 0.

Proof. It follows from Lemma 2.2 that

m = inf
u∈Bρ(0)

Iλ(u) < 0.

By the Ekeland variational principle [26], there exists a minimizing sequence {un} ⊂ Bρ(0) such that

Iλ(un) ≤ inf
u∈Bρ(0)

Iλ(u) +
1
n
, Iλ(v) ≥ Iλ(un) −

1
n
‖v − un‖, v ∈ Bρ(0).

Therefore, we obtain that Iλ(un)→ m and I′λ(un)→ 0 as n→ ∞. Since {un} is a bounded sequence, and
Bρ(0) is a closed convex set, we may assume up to a subsequence, still denoted by {un}, there exists
uλ ∈ Bρ(0) ⊂ H1

0(Ω) such that
un ⇀ uλ, weakly in H1

0(Ω),
un → uλ, strongly in Lq(Ω) (1 ≤ p < 6),
un(x)→ uλ(x), a.e. in Ω.

By the lower semi-continuity of the norm with respect to weak convergence, we get

m ≥ lim inf
n→∞

[
Iλ(un) −

1
6
〈I′λ(un), un〉

]
= lim inf

n→∞

[ ( 1
2(r + 1)

−
1
6

) (∫
Ω

|∇un|
2dx

)r+1

+

(
1
4
−

1
6

) ∫
Ω

φunu
2
ndx

− λ
1

s + 1

(∫
Ω

F(x, un)dx
)s+1

+
λ

6

(∫
Ω

F(x, un)dx
)s ∫

Ω

f (x, un)undx
]

≥
2 − r

6(r + 1)

(∫
Ω

|∇uλ|2dx
)r+1

+
1

12

∫
Ω

φuλu
2
λdx

− λ
1

s + 1

(∫
Ω

F(x, uλ)dx
)s+1

+
λ

6

(∫
Ω

F(x, uλ)dx
)s ∫

Ω

f (x, uλ)uλdx

= Iλ(uλ) −
1
6
〈I′λ(uλ), uλ〉 = Iλ(uλ) ≥ m.
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Thus, Iλ(uλ) = m < 0, and we can see that uλ . 0. Iλ(|uλ|) = Iλ(uλ), which suggests that uλ ≥ 0.
Therefore, by the strong maximum principle, we obtain that uλ is a positive solution of system (1.1).
The proof is complete. �

Lemma 2.6. Assume that 0 < λ < Λ∗ (Λ∗ = min{Λ0,Λ1}). Then, the system (1.1) has a positive
solution u∗ ∈ H1

0(Ω) with Iλ(u∗) > 0.

Proof. From the mountain pass lemma and Lemma 2.2, there exists a sequence {un} ⊂ H1
0(Ω) such that

Iλ(un)→ cλ > 0, and I′λ(un)→ 0 as n→ ∞,

where
cλ = inf

γ∈Γ
max
t∈[0,1]

Iλ(γ(t)),

and
Γ =

{
γ ∈ C([0, 1],H1

0(Ω)) : γ(0) = 0, γ(1) = e
}
.

According to Lemma 2.3, we know that {un} ⊂ H1
0(Ω) has a convergent subsequence, still denoted by

{un}, such that un → u∗ in H1
0(Ω) as n→ ∞.

Iλ(u∗) = lim
n→∞

Iλ(un) = cλ > δ > 0,

which implies that u∗ . 0. It is similar to Lemma 2.5 that u∗ > 0, that is, u∗ is a positive solution of
system (1.1) such that Iλ(u∗) > 0. The proof is complete. �

3. Conclusions

In this paper, we considered a class of bi-nonlocal Kirchhoff-Schrödinger-Poisson system with crit-
ical growth. Under some suitable assumptions, by using the concentration compactness principle, we
obtained the multiplicity of positive solutions.
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