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Abstract: In this article, we study the following bi-nonlocal Kirchhoff-Schrédinger-Poisson system
with critical growth:

- (f IVulzdx) Au+ du = 1’ + ﬂ(f F(x, u)dx) f(x,u), in Q,
Q Q
-A¢p =u,u >0, in Q,

u=¢=0, on 0Q,

where Q c R? is a smooth bounded domain, 1 > 0,0<r<1,0< s < 3(1:1) and f(x, u) satisfies some

suitable assumptions. By using the concentration compactness principle, the multiplicity of positive
solutions for the above system is established.
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1. Introduction and main result
This paper is concerned with the following Kirchhoff-Schrodinger-Poisson system:
- (f IVulza’x) Au+ du =u’ + /l(f F(x, u)dx) f(x,u), in Q,
Q Q

~A¢ = u?,u> 0, in Q, (1.1)
u=¢=0, on 092,
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1-r
3(r+1)

F(x,u) = f f(x,&)dé. We assume that f € Cl(ﬁ X R,R) and there exist constants a;,a, > 0
0

where Q c R? is a smooth bounded domain, 1 > 0,0 < r < 1,0 < s < and

8D < g < 2,0 < 5 < 5=, such that

and s+1° 30r+1)?

a7 < f(x, 1) < at’" forany (x,1) € QX R. (1.2)

When ( f IVulzdx) = 1 and s = 0, the system (1.1) reduces to the boundary value problem
Q

—Au+ Vu+ ¢u = f(x,u), in €,
-A¢ =u*,u>0, in Q, (1.3)
u=¢=0, on 0Q.

Problem (1.3) has been extensively studied, by using variational methods and critical point theory
under suitable assumptions on V, f; see [1-7] and the references therein.

On the other hand, considering just the first equation in (1.1) with the potential equal to zero, we
have the problem

—(a+b fg |Vu|2dx) Au = f(x,u), in Q, (1.4)

u=0, on 0Q,

where a, b > 0, which was proposed by Kirchhoff in [8] as an extension of the classical D’ Alembert’s
wave equation for free vibrations of elastic strings. The appearance of the nonlocal term fQ |Vuldx
in the equations makes them important in many physical applications. We have to point out that such
nonlocal problems appear in other fields like biological systems, such as population density, where u
describes a process which depends on the average of itself (see [9]). The Kirchhoff type problem (1.4)
with critical growth began to call the attention of researchers; we can see [10—18] and the references
therein.

In particular, Che et al. in [19] considered the following Kirchhoff-Schrédinger-Poisson system
with critical growth:

- (a + bf IVulzdx) Au+ V(x)u + ¢u = Ag(x)ul?" + h(x)u’, inR3,
R3
-A¢ =u?,u>0, in R3,

where a > 0,b > 0,q € [4,6), and A > 0 is a parameter. Under some suitable conditions on V(x), g(x)
and A(x), by using the Nehari manifold technique and Ljusternik-Schnirelmann category theory, they
established the number of positive solutions with the topology of the global maximum set of # when A
is small enough. Furthermore, with the aid of the mountain pass theorem, they obtained an existence
result for A sufficiently large.

In [20], Chabrowski investigated the bi-nonlocal problem for the nonlinear elliptic equation of the

form s ,
—(f |Vu|2dx) Au = Q(X)|ulP?u + (f |u|qu) [u]9%u, in Q,
Q Q

% =0, on 0Q),
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where2 < p<2",2<g<2%5s>0,r>0,and 2" = %(N > 3) denotes the critical Sobolev exponent.
The existence of solutions in critical and subcritical cases is obtained by using the variational method.
A similar problem with Dirichlet boundary conditions has been considered in [21]. Motivated by the
above references, we study the existence of multiple positive solutions for system (1.1). Our main
difficulties are as follows: The critical growth of system (1.1) leads to the lack of compactness of the
embedding Hj(Q) — L°(Q), and it is difficult to prove the energy functional belongs to the range
where the (PS) condition holds. We overcome this difficulty by using the concentration compactness
principle.

Throughout this paper, we make use of the following notations:
e The space Hé (Q) is equipped with the norm ||u|| = ( fQ |Vu|2dx)% , and the norm in L”(Q) is denoted

by ful, = ([, lul’d)7;

e C,Cy,C,,... denote various positive constants, which may vary from line to line;

e We denote by S, (respectively, B,) the sphere (respectively, the closed ball) of center zero and
radius p, i.e., S, = {u € Hy(Q) : llull = p}, B, = {u € Hy(Q) : |lull < p};

e — (respectively, —) denotes strong (respectively, weak) convergence;

e Let S be the best Sobolev constant, namely,

oo i I, IVuldx
= m

R (1.5)
ety @\0) ( [ ulodx)'"?

Our main result is the following:

Theorem 1.1. Assume that (s +1) <4 <2(r+1)<6,1>0,and0 < s < 3(1:]).

A, > 0 such that for any A € (0, A.), system (1.1) has at least two positive solutions.

Then, there exists

Remark 1.1. As we shall see, in the system (1.1), when f(x,u) = |ul"">u, F(x,u) = |u|?, Chabrowski
established the existence of solutions. In this paper, due to the nonlocal term ¢pu in (1.1), new treatments
are needed for our problem. Therefore, in this article, we extend the relevant results of [20].

2. Proof of Theorem 1.1

First, by using the Lax-Milgram theorem, for each u € H, (L), there exists a unique solution
¢. € Hy(Q) which satisfies the second equation of system (1.1). We substitute ¢, into the first equation
of system (1.1), and then system (1.1) is transformed into the following problem:

—(f IVulzdx) Au+ ¢ u =1’ +/l(f F(x, u)dx)A f(x,u), in Q,
Q Q

u>0, in Q,
u=0, on 0Q.

2.1)

We define the energy functional corresponding to problem (2.1) by

Lu) = ! f|V|2d r+]+1f 2d —1f||6d —LfF( Yd "
AM_Z(I’+1) qu 4Q¢uux69uxs+1 Qx,ux .
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We say that a function u € Hé(Q) is called a weak solution of problem (2.1) if for every ¢ € Hé (Q),
there holds

(f |Vu|2dx) fVquodx+fgbuucpdx—flul“mpdx—/l(f F(x,u)dx) ff(x,u)(pdx:O.
Q Q Q Q Q Q

Before proving Theorem 1.1, we give the following important Lemma.

Lemma 2.1. (See [22,23]) For all u € Hy(Q), there exists a unique solution ¢, € H}(Q) of

-A¢ =u?, in Q,
¢ =0, on 09,

and

(D Igul? = [, gure*dx;

(2) ¢, = 0. Moreover, ¢, > 0 when u # 0;
(3) Foreacht # 0, ¢, = £dy;

4)
lemlzdx = fdwzdx < §7lultys < Cllull*;
Q Q

S)Ifu, —uin Hé(Q), then ¢, — ¢, in Hé(Q), and

f Gu, upvdx — f puvdx, Vv e Hy(Q).
Q Q

Lemma 2.2. There exist constants 6, p, Ao > 0, for all A € (0, Ay) such that the functional 1, satisfies
the following conditions:

(1) Ilues, =6 >0, inf,,egp I(u) <0y

(i1) There exists e € H(])(Q) with |le|| > p such that I,(e) < O.

Proof. (1) According to Holder’s inequality and (1.5), one has

s+1

s+1 . ] %
( f Iulqu) < ( f |u|6dx) ( f 16-qu)
Q Q Q (2.2)
< |Q|7(6_q)6(”1)5—"(%”||u||q(s+1).

By (1.2), we have

altl? < f(x, 0t < aolt| for any (x,1) € Q X R, (2.3)
and

aq ay -

—|t1? < F(x,t) < —t|? forany (x,1) € Q X R. (2.4)

q q
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Therefore, it follows from (1.5), (2.2) and (2.4) that

L ey~ Ly - A ()" f widx)
2(r+1) 6 s+1\gq o

. 1 ) /l a 6q g s+1
el P70 = —8731u|® - s+—1(;'9' oS g||u||‘f)

I/l(l/t) >

Z P —
2r+ 1) 6
2(r+1)—g(s+1 =34,,]16-q(s+1 s+1
= ||u||‘f(””[|lu|| TSP A (gt |
2(r+1) 6 s+ 1
Let H(f) = 5 2+Dmals+h) — 19 -346-4+D) for 1 > 0, and then there exists

2(r+1)

_ 3S32(r+ 1) —g(s + 1)] & 0
TG D6 -g(s + D] ’
such that max,.o H(f) = H(p) > 0. Setting

(s+ Dg*t's =
s+1|Q|(5 q)(s+1) H(p)’

there exists a constant 6 > 0, such that [j|,es, > 6 for each 4 € (0,Aq). Moreover, for every u €

H,(Q)\{0}, we get
s+1
m M = lim — ﬂl(fF(x Tu)dx)

70+ Tq(s+l) =0t § +

s+1 s+1
e (@) (e <o
s+ 1

So, we obtain I;(tu) < O for all u # 0 and 7 small enough. Hence, for ||u|| small enough, we have

s

Ao =

m = inf I;(u) < 0.

LlEp

(ii) Set u € Hy(€), and we get

22041 5 r+l 4 ) -6 ;
1 < Vul|°d + — Judx — — d
ﬂ<Tu)_2(r+1)(L| u| x) 4L¢u X 6f(;lul X
g(s+1) s+1 s+1
pu 4@ flulqu — —00,
s + 1 q O

as T — +oo, which implies that I,(tu) < 0 for 7 > 0 large enough. Consequently, we can find
eeH l(Q) with ||e|| > p such that I,(e) < 0. The proof is complete. O

Lemma 2.3. Assume that 1> 0, g(s +1) <4 <2(r+1)<6,and0 < s <
I, satisfies the (PS)., condition for each

3( +1) Then, the functional

2 —r 3(r+1) r+1)
Sz j, — D/12(r+1)+q(3+1)
6(r+1)

C)y < Cy =

where
2(r+1)

Q-rR2F+1)—qg(s+1)] 6a§+1 —q(s+ l)a‘fﬂl (b_q)o(ﬁl)S‘w 2+ D-4(+D
6g(r+ 1)(s+1) 2¢°(2—7r) '

D=
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Proof. Let {u,} C Hé (Q2) be a (PS) sequence for I, at the level c,, that is,
L(u,) — c,, and I}(u,) > 0asn — oo. (2.5)

Combining with (2.2)—(2.4), we get

1
ot It o(llul) = L) - = (L) (), )

= (2(r1+ o é) a0 + (% - é)fQSu”uidx
! (f F(x, un)dx)H1 + = A (f F(x, un)dx) ff(x Uy, dx
s+ 1\Jo 6
> (5 — gl a{i (ﬂ) - (—) l( [ |un|4dx)m
2(r+1) 6 6\qg q Q

1 1 ar\"™! a )" (e o gt
> — P A (2 - (2] IS e,
20+ 6 6\q) “s+ilg

Then, this implies that {u,} is bounded in Hé(Q) forall g(s + 1) < 4 < 2(r + 1) < 6. Thus, we may
assume up to a subsequence, still denoted by {u,}, there exists u € Hé (€2) such that

-1

+
1

u, — u, weakly in Hy(Q),
u, — u, stronglyin L”(Q) (1 < p <6), (2.6)
u,(x) = u(x), a.e.inQ,

as n — co. Next, we prove that u, — u strongly in H;(Q). By using the concentration compactness

principle (see [24]), there exist an at most countable set J, a family of points {x;},c; C Q, and positive
numbers {v;}cs, {14} jes such that

6 6
el = dv = [ul’ + > vjo,

jeJ

Vil = du 2 Vul* + ) 6,
jeJ
Moreover, we have 1
,UJ',VJ'ZO, ,UjZSV?. (27)

Let ¢, j(x) be a smooth cut-off function centered at x; such that 0 < ¢, ; < 1, [V, j < ,e>0,and

L in B(x;, %), )38
#e(X) = {0, in Q\ B(x;, ). 28)

Noting that {u,¢, ;} is bounded in H(l) (Q) uniformly for n, combining with (2.6) and (2.8), we have

lim lim f |unl?s jdx < hm lim |lu,|%dx = 0. (2.9)

e—0 n—ooo e—0 n—ooo B(xj,s)
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Similarly, we can obtain

£—0 n—oo

lim lim f Gu, U pe jdx < lim f putt* ¢, dx = 0.
B(xj.e)
By using the Holder inequality and [V, || < , there exists C, > 0, and we have

lim lim f (Vu,, Vo, jyu,dx
Q

-0 n—oo

3 2
< lim lim ( f IVunlzdx) ( f Iunllecps,jlde)
g—0 n—oo Q le)

1

1
6 3
< C, lim f |u|®dx (f |V<Ps,j|3dx)
e20\JB(x;.0) B(x}.6)
1 SYERE
< C; lim f |u|®dx l f (—) dxl
e20 \UB(x;.0) B(xj.e) \€

1

6

< C, lim f |u|®dx
e—0 B(xj.)

=0.

We also derive that

lim lim f |Vun|2<p£,jdx > lir%f |Vu|2g0&jdx + U=,
Q v Ja

e—0 n—ooo
and

e—0 n—oo

lim lim f . jdx = lim f ul®p. jdx +v; = v,
Q =20 Jg
By (2.5) and (2.9)—(2.13), we get

0 =lim llm(l (Un), UnPs, )

e—0n—

= lim lim (f |Vun|2dx) f<Vun,V(u,,gog,,-)>dx+fqﬁunuigo&jdx
e—0n—ooo Q Q . Q

- f |un|6¢s,jdx_ /l(f F(x, un)dx) ff(x’ Mn)unQOg,jdX}
Q Q Q

(2.10)

(2.11)

(2.12)

(2.13)

= lim lim{( f |vun|2dx) f |Vu,,|2¢£,,dx+( f |Vu,,|2dx) f (Vity, Voo Ytpdx — f |u,,|6%,jdx}
&0 n—oo Q Q ‘ Q Q Q

> lim{ (f \Vul>dx +,uj) (f |Vu|2(,og,jdx +u,-) - v,}
e—0 Q Q ; X

r+l
2 l’t] - Vj7

that is, v; > ,u;.”. If v; > 0, by (2.7), we obtain

3(r+1) 3
VjZS 2-r ,UjZSz".

(2.14)
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Now, we show that (2.14) is impossible. Assume that there exists jo € J, such that y;, > § 2 and
x;j, € Q. It follows from (2.2)—(2.5) that

= lim 1)~ 03w, )
- Jim{ (2(r1+ N~ é) (fg 'V”"lzdx)m * (411 ) é) fg"’”n"ﬁ"x

- - j : ( fQ F(x, un)dx)s+1 +%( fg F(x, un)dx)s fg fx, un)undx}

> 6(2,,_:1) { fQ VuPdx + Zuj]r [ fg VuPdx+ Y ﬂ,}

jeJ jeJ
1 a s+1 q(a s+1 s+1
e () -5(5) ([
s+1\gq 6\qg Q
2 - 2 — 6as™ — g(s + Da**! st ot
> r #;(-:—1 + r ||u||2(r+1) _ 2 q( ? 1 |£2|7(6 qz,]( Us—%llullimwl).
6(r+1) 6(r+1) 6(s + 1)g**

Let

s+1 s+1
G) = 2—r 2041 _ /l6a2 —q(s+ Da; 0
6(r+1) 6(s + 1)g**!
It is clear that lim,_,o G(¢) = 0, and lim,_,,. G(f) = +oco. Therefore, there exists 7 > 0 such that
G(T) = mingy G(?), that is,

(6*51>6(»Y+1) S _‘1(52*” tq(s+1)

2-r 6as™ — g(s + Das*!
G/ t — T2r+1 _ /1 2 1
Ol == 64° (2.15)
=0.

|Q| (6—11)6(5-4-1) S _ q(s2+1) Tq(S*'l)_l

From (2.15) we obtain

B /1(6415rl —q(s+ 1)ai+1)
- 2¢°Q2-7)

1
Ggsel) gisel) | 2UTDTIHD
6 S 2 ,

|
and by simple calculation, we have

2—r
6(r+1)

6a§+1 —q(s+ l)atfrl
2q°2 =)

6-q)(s+1) q(s+1)
R S -£=

G(T) =

€|

2(r+1)
:| 2(r+1)—q(s+1)

(s+1)

6as — g(s + Da*t! _ st 1 6as™! — g(s + 1)a*t! s+ Mz

2 g( ' 3 1 (lQlLﬁqS_%) 125 Q( )aj lQl(ﬁ il I)S_q<2|>
6(s + 1)g** 2¢°(2—r)

2(r+1)
6a§+1 — q(s + 1)(Jl‘iJr1 (6-g)(s+1) s _gls+) ] 2r+D=q(s+1)
6 2

2¢°(2=7)

_@2-nlgs+1)-2(r+1)]
- 6g(r+ 1)(s + 1)

Hence, we can see that
2 —-r 3(r+1) 2(r+1

)
S — DA
6(r+ 1) !

Ccy =
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where

2(r+1)

_ Q-n2r+1) - q(S +1)] 6a§+1 - q(S + 1)61‘;“ |Q|(6—q)6(.y+])5_w Ar+D=qls+1)
- 6g(r+ 1)(s + 1) 2¢°(2 —r) '

We obtain that ¢; > c¢,. This is a contradiction, which indicates that v; = u; = 0 for every j € J, which
implies that u, — u in L%(Q)). We may assume that

f Vi, |>dx — A2, f |Vul?dx < A>.
Q Q

Combining with (2.5) and (2.6), we have

0 = lim (I} (u,), u, — u)

= lim[( f |Vu,,|2dx) ( f |V, dx — f VunVudx)+ f Gu, (1t — U)X — f |ttty — w)dx
n—co Q ‘ Q Q Q Q
—/l(f F(x,un)dx) ff(x, u,)(u, — u)dx
Q Q
:Az’(Az— f |Vu|2dx).
Q

Hence, we obtain

f|VMn|2dx - f |Vul’dx asn — oo,
Q Q

which implies u, — u in Hy(Q). The proof is complete. |

Choose the extremal function

satisfying

~AU, = U> inR%,
Let ¥ € C'(R?) such that ¥(x) = 1 on Bx(0), ¥(x) = 0 on R3 \ Bg(0), and 0 < ¥(x) < 1 on R3. Set
uz(x) = Y(x)U.(x). From [25], one has

I, IVuPdx = 3 + O(e),
I, lucl®dx = 3 + O,

and
O(g?), a€[2,3),
lusl® ={0(%|Ingl), a =3, (2.16)
0(="), ac(3,6).

Then, we have the following Lemma.

Electronic Research Archive Volume 30, Issue 12, 4493-4506.
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Lemma 2.4. Suppose that 1 >0, g(s + 1) <

3(r+1) 2(r+1)
sup I (tu,) < S5 _ pameias,

2 -
20 6(r + 1)

Proof. According to the definition of u, and (2.4), it holds that

1 s+1 1 a s+1 s+1
(f F(x, tug)dx) > 146+D (—l) (f |ug|qu)
s+ 1 Q s+ 1 q Q
% s+1
e
> m( f —qu)
Brp(0) (82 + |x]?)2
= (73/18(6 s+1) (fR/za y2 — dy)yrl
o (1+y?):2

E-g)s+) ! 2 s
> C3/18 ! (f y—qdy)
o (1+y?)?

[ q)(S+1)

> C4 Ade 2

From Lemma 2.1 and (2.16), we have the following estimate:

fvgbué de <S§" 1|u8|]2/5 = 0(3 ).
Q
Since I(tu,) — —oo as t — oo, by Lemma 2.2, there exists ¢, > 0 such that

L(t.u,) = sup L(tuy) > 6 > 0.

>0

(2.17)

(2.18)

Moreover, by the continuity of ,, there exist positive constants #; and #, such that 0 <, <1, <1, <

+00. As a consequence of the above fact, one has

1 r+l1 1
sup I,(tu,) = su { thufdx) +—f tusPdx
up fae) = sup 2(r+1>(g' | 7 Jy Pl
+1

1 6 A
- = tu dx — —— F(x, tu,)d }
6jg;lulx s+1(£ (xu)x)

1 r+l 1 (6q)(s+l)
< ViuPdx| — - t£6d}+0 AC
S}io{zo 1)(fg| " x) 6f|u| x| + 06 - e

2(r+1)
)r+1 6=20r+1)

2 | ([ IVuePdx
SO+ [ luglodx

2—r1r 30+ (6-q)s+1)

r+1
( f IVuglzdx) +O0@EH) - ACe 2
Q

< S 4 Cse— AC
6(r+ 1) 587 Aka®
< 2—r s 3e) DTS 21)r+1( 5
A r+1)—q(s+
6(r+1)

6= q)(Hl)
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6(r+1 20D
We have used the fact that (’+ b cg< L o and let & = A0,
2(r+)—g(s+1) 2(r+1)—g(s+1)
) 2—r 3eeny | 2D Cs + D\Co6Ea-q
0</l<A1:m1n{ . = , }’
6(r+ 1)D Cy
and then
(6— q)(v+l) (r+1)(6— q)(s+l)+l
C58 C4/18 = C5/12(r+1) q(r+1) — C4/1 2r+D—q(s+1)
+1) s+ DI+ 1(6-g)=q]
= /l2<r+1) q(s+1) CS — C4/1 2(r+1)—q(s+1)
2(r+1)
< =D A2+D=qGs+D) |
The proof is complete. O

Lemma 2.5. Suppose that 0 < A < Ay (Ao is as in Lemma 2.2). Then, system (1.1) has a positive
solution u, satisfying I,(u,) < O.

Proof. It follows from Lemma 2.2 that

m= inf I(u)<O0.
ueB,(0)

By the Ekeland variational principle [26], there exists a minimizing sequence {u,} C B,(0) such that
1 1 —_—
L(uw,) < inf L)+ =, Lv) = Lu,) — =[lv—ull, ve By0).
ueB,(0) n n

Therefore, we obtain that 7;(«,) — m and I'(u,) — 0 as n — oo. Since {u,} is a bounded sequence, and

B,(0) is a closed convex set, we may assume up to a subsequence, still denoted by {u,}, there exists
uy € B,(0) € Hy(Q) such that

u, — u,, weakly in Hy(Q),
u, — u,, stronglyin L4(Q) (1 < p < 6),
u,(x) = uy(x), ae.in Q.

By the lower semi-continuity of the norm with respect to weak convergence, we get

1

o 1 1 AT | ,
= hnm_)glf[(z(r D 6) (fg [Vu,| dx) + (4_1 - E)Lqﬁunundx
1 s+1 1 s
— /1S+ 7 (f F(x, u,,)dx) + E(L F(x, un)dx) fgf(x, un)undx]
oy .
6(r+ D (f [V, dx) + EL%MACZX
1 s+1 1 s
-A (f F(x, uﬂ)dx) +—(f F(x,uﬂ)dx) ff(x,uﬂ)uﬂdx
s+ 1 Q 6 Q Q

1
= Li(uy) — 60}(”1), uy) = Ii(uy) > m.
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Thus, I,(u;) = m < 0, and we can see that u; # 0. I,(Ju)]) = Li(u,), which suggests that u, > O.
Therefore, by the strong maximum principle, we obtain that u, is a positive solution of system (1.1).
The proof is complete. O

Lemma 2.6. Assume that 0 < 4 < A, (A. = min{Agy, A1}). Then, the system (1.1) has a positive
solution u, € Hy(Q) with I(u.) > 0.

Proof. From the mountain pass lemma and Lemma 2.2, there exists a sequence {u,} C H(l) () such that
L(u,) = ¢, >0, and I)(u,) —> 0asn — oo,

where

cp = lyrellf max L(y(0),

and
[ = {y € C(10, 11 H{(©) : 7(0) = 0,%(1) = ¢}

According to Lemma 2.3, we know that {u,} C H(l)(Q) has a convergent subsequence, still denoted by
{u,}, such that u, — u, in Hj(Q) as n — co.

L(u,) = lim Li(u,) = ¢, > 6 > 0,

which implies that u, # 0. It is similar to Lemma 2.5 that u, > 0, that is, u, is a positive solution of
system (1.1) such that /,(u.) > 0. The proof is complete. O
3. Conclusions

In this paper, we considered a class of bi-nonlocal Kirchhoff-Schrédinger-Poisson system with crit-
ical growth. Under some suitable assumptions, by using the concentration compactness principle, we
obtained the multiplicity of positive solutions.
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