Electronic
Research Archive

Research article

Multiple positive solutions for a bi-nonlocal Kirchhoff-Schrödinger-Poisson system with critical growth

Guaiqi Tian ${ }^{1}$, Hongmin Suo ${ }^{1, *}$ and Yucheng $\mathbf{A n}^{2}$

${ }^{1}$ School of Data Sciences and Information Engineering, Guizhou Minzu University, Guiyang 550025, China
${ }^{2}$ School of Sciences, Guizhou University of Engineering Science, Bijie 551700, China

* Correspondence: Email: gzmysxx88@ sina.com.

Abstract: In this article, we study the following bi-nonlocal Kirchhoff-Schrödinger-Poisson system

 with critical growth:$$
\begin{cases}-\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{r} \Delta u+\phi u=u^{5}+\lambda\left(\int_{\Omega} F(x, u) d x\right)^{s} f(x, u), & \text { in } \Omega \\ -\Delta \phi=u^{2}, u>0, & \text { in } \Omega \\ u=\phi=0, & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{3}$ is a smooth bounded domain, $\lambda>0,0 \leq r<1,0<s<\frac{1-r}{3(r+1)}$ and $f(x, u)$ satisfies some suitable assumptions. By using the concentration compactness principle, the multiplicity of positive solutions for the above system is established.

Keywords: Kirchhoff-Schrödinger-Poisson systems; positive solutions; critical growth; concentration compactness principle; multiplicity

1. Introduction and main result

This paper is concerned with the following Kirchhoff-Schrödinger-Poisson system:

$$
\begin{cases}-\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{r} \Delta u+\phi u=u^{5}+\lambda\left(\int_{\Omega} F(x, u) d x\right)^{s} f(x, u), & \text { in } \Omega \tag{1.1}\\ -\Delta \phi=u^{2}, u>0, & \text { in } \Omega \\ u=\phi=0, & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{3}$ is a smooth bounded domain, $\lambda>0,0 \leq r<1,0<s<\frac{1-r}{3(r+1)}$ and $F(x, u)=\int_{0}^{u} f(x, \xi) d \xi$. We assume that $f \in C^{1}(\bar{\Omega} \times \mathbb{R}, \mathbb{R})$ and there exist constants $a_{1}, a_{2}>0$ and $\frac{6(r+1)}{r+2}<q<\frac{4}{s+1}, 0<s<\frac{1-r}{3(r+1)}$, such that

$$
\begin{equation*}
a_{1} t^{q-1} \leq f(x, t) \leq a_{2} t^{q-1} \quad \text { for any }(x, t) \in \bar{\Omega} \times \mathbb{R} . \tag{1.2}
\end{equation*}
$$

When $\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{r}=1$ and $s=0$, the system (1.1) reduces to the boundary value problem

$$
\begin{cases}-\Delta u+V u+\phi u=f(x, u), & \text { in } \Omega \tag{1.3}\\ -\Delta \phi=u^{2}, u>0, & \text { in } \Omega \\ u=\phi=0, & \text { on } \partial \Omega\end{cases}
$$

Problem (1.3) has been extensively studied, by using variational methods and critical point theory under suitable assumptions on V, f; see [1-7] and the references therein.

On the other hand, considering just the first equation in (1.1) with the potential equal to zero, we have the problem

$$
\begin{cases}-\left(a+b \int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(x, u), & \text { in } \Omega, \tag{1.4}\\ u=0, & \text { on } \partial \Omega,\end{cases}
$$

where $a, b>0$, which was proposed by Kirchhoff in [8] as an extension of the classical D'Alembert's wave equation for free vibrations of elastic strings. The appearance of the nonlocal term $\int_{\Omega}|\nabla u|^{2} d x$ in the equations makes them important in many physical applications. We have to point out that such nonlocal problems appear in other fields like biological systems, such as population density, where u describes a process which depends on the average of itself (see [9]). The Kirchhoff type problem (1.4) with critical growth began to call the attention of researchers; we can see [10-18] and the references therein.

In particular, Che et al. in [19] considered the following Kirchhoff-Schrödinger-Poisson system with critical growth:

$$
\begin{cases}-\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x\right) \Delta u+V(x) u+\phi u=\lambda g(x)|u|^{q-1}+h(x) u^{5}, & \text { in } \mathbb{R}^{3}, \\ -\Delta \phi=u^{2}, u>0, & \text { in } \mathbb{R}^{3},\end{cases}
$$

where $a>0, b \geq 0, q \in[4,6)$, and $\lambda>0$ is a parameter. Under some suitable conditions on $V(x), g(x)$ and $h(x)$, by using the Nehari manifold technique and Ljusternik-Schnirelmann category theory, they established the number of positive solutions with the topology of the global maximum set of h when λ is small enough. Furthermore, with the aid of the mountain pass theorem, they obtained an existence result for λ sufficiently large.

In [20], Chabrowski investigated the bi-nonlocal problem for the nonlinear elliptic equation of the form

$$
\begin{cases}-\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{s} \Delta u=Q(x)|u|^{p-2} u+\left(\int_{\Omega}|u|^{q} d x\right)^{r}|u|^{q-2} u, & \text { in } \Omega, \\ \frac{\partial u}{\partial v}=0, & \text { on } \partial \Omega\end{cases}
$$

where $2<p \leq 2^{*}, 2<q<2^{*}, s>0, r>0$, and $2^{*}=\frac{2 N}{N-2}(N \geq 3)$ denotes the critical Sobolev exponent. The existence of solutions in critical and subcritical cases is obtained by using the variational method. A similar problem with Dirichlet boundary conditions has been considered in [21]. Motivated by the above references, we study the existence of multiple positive solutions for system (1.1). Our main difficulties are as follows: The critical growth of system (1.1) leads to the lack of compactness of the embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{6}(\Omega)$, and it is difficult to prove the energy functional belongs to the range where the (PS) condition holds. We overcome this difficulty by using the concentration compactness principle.

Throughout this paper, we make use of the following notations:

- The space $H_{0}^{1}(\Omega)$ is equipped with the norm $\|u\|=\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{\frac{1}{2}}$, and the norm in $L^{p}(\Omega)$ is denoted by $|u|_{p}=\left(\int_{\Omega}|u|^{p} d x\right)^{\frac{1}{p}}$;
- C, C_{1}, C_{2}, \ldots denote various positive constants, which may vary from line to line;
- We denote by S_{ρ} (respectively, B_{ρ}) the sphere (respectively, the closed ball) of center zero and radius ρ, i.e., $S_{\rho}=\left\{u \in H_{0}^{1}(\Omega):\|u\|=\rho\right\}, B_{\rho}=\left\{u \in H_{0}^{1}(\Omega):\|u\| \leq \rho\right\} ;$
- \rightarrow (respectively, -) denotes strong (respectively, weak) convergence;
- Let S be the best Sobolev constant, namely,

$$
\begin{equation*}
S=\inf _{u \in H_{0}^{1}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{2} d x}{\left(\int_{\Omega}|u|^{6} d x\right)^{1 / 3}} . \tag{1.5}
\end{equation*}
$$

Our main result is the following:

Theorem 1.1. Assume that $q(s+1)<4 \leq 2(r+1)<6, \lambda>0$, and $0<s<\frac{1-r}{3(r+1)}$. Then, there exists $\Lambda_{*}>0$ such that for any $\lambda \in\left(0, \Lambda_{*}\right)$, system (1.1) has at least two positive solutions.

Remark 1.1. As we shall see, in the system (1.1), when $f(x, u)=|u|^{q-2} u, F(x, u)=|u|^{q}$, Chabrowski established the existence of solutions. In this paper, due to the nonlocal term ϕ u in (1.1), new treatments are needed for our problem. Therefore, in this article, we extend the relevant results of [20].

2. Proof of Theorem $\mathbf{1 . 1}$

First, by using the Lax-Milgram theorem, for each $u \in H_{0}^{1}(\Omega)$, there exists a unique solution $\phi_{u} \in H_{0}^{1}(\Omega)$ which satisfies the second equation of system (1.1). We substitute ϕ_{u} into the first equation of system (1.1), and then system (1.1) is transformed into the following problem:

$$
\begin{cases}-\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{r} \Delta u+\phi_{u} u=u^{5}+\lambda\left(\int_{\Omega} F(x, u) d x\right)^{s} f(x, u), & \text { in } \Omega \tag{2.1}\\ u>0, & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

We define the energy functional corresponding to problem (2.1) by

$$
I_{\lambda}(u)=\frac{1}{2(r+1)}\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{r+1}+\frac{1}{4} \int_{\Omega} \phi_{u} u^{2} d x-\frac{1}{6} \int_{\Omega}|u|^{6} d x-\frac{\lambda}{s+1}\left(\int_{\Omega} F(x, u) d x\right)^{s+1}
$$

We say that a function $u \in H_{0}^{1}(\Omega)$ is called a weak solution of problem (2.1) if for every $\varphi \in H_{0}^{1}(\Omega)$, there holds

$$
\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{r} \int_{\Omega} \nabla u \nabla \varphi d x+\int_{\Omega} \phi_{u} u \varphi d x-\int_{\Omega}|u|^{4} u \varphi d x-\lambda\left(\int_{\Omega} F(x, u) d x\right)^{s} \int_{\Omega} f(x, u) \varphi d x=0 .
$$

Before proving Theorem 1.1, we give the following important Lemma.

Lemma 2.1. (See $[22,23]$) For all $u \in H_{0}^{1}(\Omega)$, there exists a unique solution $\phi_{u} \in H_{0}^{1}(\Omega)$ of

$$
\begin{cases}-\Delta \phi=u^{2}, & \text { in } \Omega \\ \phi=0, & \text { on } \partial \Omega\end{cases}
$$

and
(1) $\left\|\phi_{u}\right\|^{2}=\int_{\Omega} \phi_{u} u^{2} d x$;
(2) $\phi_{u} \geq 0$. Moreover, $\phi_{u}>0$ when $u \neq 0$;
(3) For each $t \neq 0, \phi_{t u}=t^{2} \phi_{u}$;
(4)

$$
\int_{\Omega}\left|\nabla \phi_{u}\right|^{2} d x=\int_{\Omega} \phi_{u} u^{2} d x \leq S^{-1}|u|_{12 / 5}^{4} \leq C\|u\|^{4}
$$

(5) If $u_{n} \rightharpoonup u$ in $H_{0}^{1}(\Omega)$, then $\phi_{u_{n}} \rightarrow \phi_{u}$ in $H_{0}^{1}(\Omega)$, and

$$
\int_{\Omega} \phi_{u_{n}} u_{n} v d x \rightarrow \int_{\Omega} \phi_{u} u v d x, \quad \forall v \in H_{0}^{1}(\Omega)
$$

Lemma 2.2. There exist constants $\delta, \rho, \Lambda_{0}>0$, for all $\lambda \in\left(0, \Lambda_{0}\right)$ such that the functional I_{λ} satisfies the following conditions:
(i) $\left.I_{\lambda}\right|_{u \in S_{\rho}} \geq \delta>0, \inf _{u \in B_{\rho}} I_{\lambda}(u)<0$;
(ii) There exists $e \in H_{0}^{1}(\Omega)$ with $\|e\|>\rho$ such that $I_{\lambda}(e)<0$.

Proof. (i) According to Hölder's inequality and (1.5), one has

$$
\begin{align*}
\left(\int_{\Omega}|u|^{q} d x\right)^{s+1} & \leq\left[\left(\int_{\Omega}|u|^{6} d x\right)^{\frac{q}{6}}\left(\int_{\Omega} 1 \frac{6}{6-q} d x\right)^{\frac{6-q}{6}}\right]^{s+1} \tag{2.2}\\
& \leq|\Omega|^{\frac{(6-q(s+1)}{6}} S^{-\frac{q(s+1)}{2}}\|u\|^{\|^{(s+1)}} .
\end{align*}
$$

By (1.2), we have

$$
\begin{equation*}
a_{1}|t|^{q} \leq f(x, t) t \leq a_{2}|t|^{q} \quad \text { for any }(x, t) \in \bar{\Omega} \times \mathbb{R}, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a_{1}}{q}|t|^{q} \leq F(x, t) \leq \frac{a_{2}}{q}|t|^{q} \quad \text { for any }(x, t) \in \bar{\Omega} \times \mathbb{R} \tag{2.4}
\end{equation*}
$$

Therefore, it follows from (1.5), (2.2) and (2.4) that

$$
\begin{aligned}
I_{\lambda}(u) & \geq \frac{1}{2(r+1)}\|u\|^{2(r+1)}-\frac{1}{6} S^{-3}\|u\|^{6}-\frac{\lambda}{s+1}\left(\frac{a_{2}}{q}\right)^{s+1}\left(\int_{\Omega}|u|^{q} d x\right)^{s+1} \\
& \geq \frac{1}{2(r+1)}\|u\|^{2(r+1)}-\frac{1}{6} S^{-3}\|u\|^{6}-\frac{\lambda}{s+1}\left(\frac{a_{2}}{q}|\Omega|^{\frac{6-q}{6}} S^{-\frac{q}{2}}\|u\|^{q}\right)^{s+1} \\
& =\|u\|^{q(s+1)}\left[\frac{\|u\|^{2(r+1)-q(s+1)}}{2(r+1)}-\frac{S^{-3}\|u\|^{6-q(s+1)}}{6}-\frac{\lambda}{s+1}\left(\frac{a_{2}}{q}|\Omega|^{\frac{6-q}{6}} S^{-\frac{q}{2}}\right)^{s+1}\right] .
\end{aligned}
$$

Let $H(t)=\frac{1}{2(r+1)} t^{2(r+1)-q(s+1)}-\frac{1}{6} S^{-3} t^{6-q(s+1)}$ for $t>0$, and then there exists

$$
\rho=\left[\frac{3 S^{3}[2(r+1)-q(s+1)]}{(r+1)[6-q(s+1)]}\right]^{\frac{1}{6-2(r+1)}}>0
$$

such that $\max _{t>0} H(t)=H(\rho)>0$. Setting

$$
\Lambda_{0}=\frac{(s+1) q^{s+1} S^{\frac{q(s+1)}{2}}}{a_{2}^{s+1}|\Omega|^{\frac{(6-q()(s+1)}{6}}} H(\rho),
$$

there exists a constant $\delta>0$, such that $\left.I_{\lambda}\right|_{u \in S_{\rho}} \geq \delta$ for each $\lambda \in\left(0, \Lambda_{0}\right)$. Moreover, for every $u \in$ $H_{0}^{1}(\Omega) \backslash\{0\}$, we get

$$
\begin{aligned}
\lim _{\tau \rightarrow 0^{+}} \frac{I_{\lambda}(\tau u)}{\tau^{q(s+1)}} & =\lim _{\tau \rightarrow 0^{+}}-\frac{\lambda}{s+1}\left(\int_{\Omega} F(x, \tau u) d x\right)^{s+1} \\
& \leq-\frac{\lambda}{s+1}\left(\frac{a_{1}}{q}\right)^{s+1}\left(\int_{\Omega}|u|^{q} d x\right)^{s+1}<0 .
\end{aligned}
$$

So, we obtain $I_{\lambda}(\tau u)<0$ for all $u \neq 0$ and τ small enough. Hence, for $\|u\|$ small enough, we have

$$
m=\inf _{u \in B_{\rho}} I_{\lambda}(u)<0 .
$$

(ii) Set $u \in H_{0}^{1}(\Omega)$, and we get

$$
\begin{aligned}
I_{\lambda}(\tau u) \leq & \frac{\tau^{2(r+1)}}{2(r+1)}\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{r+1}+\frac{\tau^{4}}{4} \int_{\Omega} \phi_{u} u^{2} d x-\frac{\tau^{6}}{6} \int_{\Omega}|u|^{6} d x \\
& -\lambda \frac{\tau^{q(s+1)}}{s+1}\left(\frac{a_{1}}{q}\right)^{s+1}\left(\int_{\Omega}|u|^{q} d x\right)^{s+1} \rightarrow-\infty,
\end{aligned}
$$

as $\tau \rightarrow+\infty$, which implies that $I_{\lambda}(\tau u)<0$ for $\tau>0$ large enough. Consequently, we can find $e \in H_{0}^{1}(\Omega)$ with $\|e\|>\rho$ such that $I_{\lambda}(e)<0$. The proof is complete.

Lemma 2.3. Assume that $\lambda>0, q(s+1)<4 \leq 2(r+1)<6$, and $0<s<\frac{1-r}{3(r+1)}$. Then, the functional I_{λ} satisfies the $(P S)_{c_{\lambda}}$ condition for each

$$
c_{\lambda}<c_{*}=\frac{2-r}{6(r+1)} S^{\frac{3(r+1)}{2-r}}-D \lambda^{\frac{2(r+1)}{2(r+1)-q(s+1)}},
$$

where

$$
D=\frac{(2-r)[2(r+1)-q(s+1)]}{6 q(r+1)(s+1)}\left[\frac{6 a_{2}^{s+1}-q(s+1) a_{1}^{s+1}}{2 q^{s}(2-r)}|\Omega|^{\frac{(6-q(s+1)}{s}} S^{-\frac{q(s+1)}{2}}\right]^{\frac{\frac{2(r+1)}{2(r+1)-q(s+1)}}{} .}
$$

Proof. Let $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ be a $(P S)$ sequence for I_{λ} at the level c_{λ}, that is,

$$
\begin{equation*}
I_{\lambda}\left(u_{n}\right) \rightarrow c_{\lambda}, \text { and } I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty . \tag{2.5}
\end{equation*}
$$

Combining with (2.2)-(2.4), we get

$$
\begin{aligned}
c_{\lambda}+1+o\left(\left\|u_{n}\right\|\right) \geq & I_{\lambda}\left(u_{n}\right)-\frac{1}{6}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
= & \left(\frac{1}{2(r+1)}-\frac{1}{6}\right)\left\|u_{n}\right\|^{2(r+1)}+\left(\frac{1}{4}-\frac{1}{6}\right) \int_{\Omega} \phi_{u_{n}} u_{n}^{2} d x \\
& -\lambda \frac{1}{s+1}\left(\int_{\Omega} F\left(x, u_{n}\right) d x\right)^{s+1}+\frac{\lambda}{6}\left(\int_{\Omega} F\left(x, u_{n}\right) d x\right)^{s} \int_{\Omega} f\left(x, u_{n}\right) u_{n} d x \\
\geq & \left(\frac{1}{2(r+1)}-\frac{1}{6}\right)\left\|u_{n}\right\|^{2(r+1)}+\lambda\left[\frac{q}{6}\left(\frac{a_{1}}{q}\right)^{s+1}-\frac{1}{s+1}\left(\frac{a_{2}}{q}\right)^{s+1}\right]\left(\int_{\Omega}\left|u_{n}\right|^{q} d x\right)^{s+1} \\
\geq & \left(\frac{1}{2(r+1)}-\frac{1}{6}\right)\left\|u_{n}\right\|^{2(r+1)}+\lambda\left[\frac{q}{6}\left(\frac{a_{1}}{q}\right)^{s+1}-\frac{1}{s+1}\left(\frac{a_{2}}{q}\right)^{s+1}\right]|\Omega|^{\frac{(6-q)(s+1)}{6}} S^{-\frac{q(s+1)}{2}}\left\|u_{n}\right\|^{q(s+1)} .
\end{aligned}
$$

Then, this implies that $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(\Omega)$ for all $q(s+1)<4 \leq 2(r+1)<6$. Thus, we may assume up to a subsequence, still denoted by $\left\{u_{n}\right\}$, there exists $u \in H_{0}^{1}(\Omega)$ such that

$$
\left\{\begin{array}{l}
u_{n} \rightharpoonup u, \quad \text { weakly in } H_{0}^{1}(\Omega) \tag{2.6}\\
u_{n} \rightarrow u, \quad \text { strongly in } L^{p}(\Omega)(1 \leq p<6), \\
u_{n}(x) \rightarrow u(x), \quad \text { a.e. in } \Omega
\end{array}\right.
$$

as $n \rightarrow \infty$. Next, we prove that $u_{n} \rightarrow u$ strongly in $H_{0}^{1}(\Omega)$. By using the concentration compactness principle (see [24]), there exist an at most countable set J, a family of points $\left\{x_{j}\right\}_{j \in J} \subset \bar{\Omega}$, and positive numbers $\left\{v_{j}\right\}_{j \in J},\left\{\mu_{j}\right\}_{j \in J}$ such that

$$
\begin{gathered}
\left|u_{n}\right|^{6} \rightharpoonup d v=|u|^{6}+\sum_{j \in J} v_{j} \delta_{x_{j}}, \\
\left|\nabla u_{n}\right|^{2} \rightharpoonup d \mu \geq|\nabla u|^{2}+\sum_{j \in J} \mu_{j} \delta_{x_{j}} .
\end{gathered}
$$

Moreover, we have

$$
\begin{equation*}
\mu_{j}, v_{j} \geq 0, \mu_{j} \geq S v_{j}^{\frac{1}{3}} \tag{2.7}
\end{equation*}
$$

Let $\varphi_{\varepsilon, j}(x)$ be a smooth cut-off function centered at x_{j} such that $0 \leq \varphi_{\varepsilon, j} \leq 1,\left|\nabla \varphi_{\varepsilon, j}\right| \leq \frac{2}{\varepsilon}, \varepsilon>0$, and

$$
\varphi_{\varepsilon, j}(x)= \begin{cases}1, & \text { in } B\left(x_{j}, \frac{\varepsilon}{2}\right) \tag{2.8}\\ 0, & \text { in } \Omega \backslash B\left(x_{j}, \varepsilon\right)\end{cases}
$$

Noting that $\left\{u_{n} \varphi_{\varepsilon, j}\right\}$ is bounded in $H_{0}^{1}(\Omega)$ uniformly for n, combining with (2.6) and (2.8), we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \int_{\Omega}\left|u_{n}\right|^{q} \varphi_{\varepsilon, j} d x \leq \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \int_{B\left(x_{j}, \varepsilon\right)}\left|u_{n}\right|^{q} d x=0 \tag{2.9}
\end{equation*}
$$

Similarly, we can obtain

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \int_{\Omega} \phi_{u_{n}} u_{n}^{2} \varphi_{\varepsilon, j} d x \leq \lim _{\varepsilon \rightarrow 0} \int_{B\left(x_{j}, \varepsilon\right)} \phi_{u} u^{2} \varphi_{\varepsilon, j} d x=0 \tag{2.10}
\end{equation*}
$$

By using the Hölder inequality and $\left|\nabla \varphi_{\varepsilon, j}\right| \leq \frac{2}{\varepsilon}$, there exists $C_{2}>0$, and we have

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \int_{\Omega}\left\langle\nabla u_{n}, \nabla \varphi_{\varepsilon, j}\right\rangle u_{n} d x \\
\leq & \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty}\left(\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\Omega}\left|u_{n}\right|^{2}\left|\nabla \varphi_{\varepsilon, j}\right|^{2} d x\right)^{\frac{1}{2}} \\
\leq & C_{1} \lim _{\varepsilon \rightarrow 0}\left(\int_{B\left(x_{j}, \varepsilon\right)}|u|^{6} d x\right)^{\frac{1}{6}}\left(\int_{B\left(x_{j}, \varepsilon\right)}\left|\nabla \varphi_{\varepsilon, j}\right|^{3} d x\right)^{\frac{1}{3}} \tag{2.11}\\
\leq & C_{1} \lim _{\varepsilon \rightarrow 0}\left(\int_{B\left(x_{j}, \varepsilon\right)}|u|^{6} d x\right)^{\frac{1}{6}}\left[\int_{B\left(x_{j}, \varepsilon\right)}\left(\frac{2}{\varepsilon}\right)^{3} d x\right]^{\frac{1}{3}} \\
\leq & C_{2} \lim _{\varepsilon \rightarrow 0}\left(\int_{B\left(x_{j}, \varepsilon\right)}|u|^{6} d x\right)^{\frac{1}{6}} \\
= & 0 .
\end{align*}
$$

We also derive that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{2} \varphi_{\varepsilon, j} d x \geq \lim _{\varepsilon \rightarrow 0} \int_{\Omega}|\nabla u|^{2} \varphi_{\varepsilon, j} d x+\mu_{j}=\mu_{j} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \int_{\Omega}\left|u_{n}\right|^{6} \varphi_{\varepsilon, j} d x=\lim _{\varepsilon \rightarrow 0} \int_{\Omega}|u|^{6} \varphi_{\varepsilon, j} d x+v_{j}=v_{j} \tag{2.13}
\end{equation*}
$$

By (2.5) and (2.9)-(2.13), we get

$$
\begin{aligned}
0= & \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n} \varphi_{\varepsilon, j}\right\rangle \\
= & \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty}\left\{\left(\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x\right)^{r} \int_{\Omega}\left\langle\nabla u_{n}, \nabla\left(u_{n} \varphi_{\varepsilon, j}\right)\right\rangle d x+\int_{\Omega} \phi_{u_{n}} u_{n}^{2} \varphi_{\varepsilon, j} d x\right. \\
& \left.-\int_{\Omega}\left|u_{n}\right|^{6} \varphi_{\varepsilon, j} d x-\lambda\left(\int_{\Omega} F\left(x, u_{n}\right) d x\right)^{s} \int_{\Omega} f\left(x, u_{n}\right) u_{n} \varphi_{\varepsilon, j} d x\right\} \\
= & \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty}\left\{\left(\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x\right)^{r} \int_{\Omega}\left|\nabla u_{n}\right|^{2} \varphi_{\varepsilon, j} d x+\left(\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x\right)^{r} \int_{\Omega}\left\langle\nabla u_{n}, \nabla \varphi_{\varepsilon, j}\right\rangle u_{n} d x-\int_{\Omega}\left|u_{n}\right|^{6} \varphi_{\varepsilon, j} d x\right\} \\
\geq & \lim _{\varepsilon \rightarrow 0}\left\{\left(\int_{\Omega}|\nabla u|^{2} d x+\mu_{j}\right)^{r}\left(\int_{\Omega}|\nabla u|^{2} \varphi_{\varepsilon, j} d x+\mu_{j}\right)-v_{j}\right\} \\
\geq & \mu_{j}^{r+1}-v_{j},
\end{aligned}
$$

that is, $v_{j} \geq \mu_{j}^{r+1}$. If $v_{j}>0$, by (2.7), we obtain

$$
\begin{equation*}
v_{j} \geq S^{\frac{3(r+1)}{2-r}}, \quad \mu_{j} \geq S^{\frac{3}{2-r}} \tag{2.14}
\end{equation*}
$$

Now, we show that (2.14) is impossible. Assume that there exists $j_{0} \in J$, such that $\mu_{j_{0}} \geq S^{\frac{3}{2-r}}$ and $x_{j_{0}} \in \Omega$. It follows from (2.2)-(2.5) that

$$
\begin{aligned}
c_{\lambda}= & \lim _{n \rightarrow \infty}\left\{I_{\lambda}\left(u_{n}\right)-\frac{1}{6}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right\} \\
= & \lim _{n \rightarrow \infty}\left\{\left(\frac{1}{2(r+1)}-\frac{1}{6}\right)\left(\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x\right)^{r+1}+\left(\frac{1}{4}-\frac{1}{6}\right) \int_{\Omega} \phi_{u_{n}} u_{n}^{2} d x\right. \\
& \left.-\frac{\lambda}{s+1}\left(\int_{\Omega} F\left(x, u_{n}\right) d x\right)^{s+1}+\frac{\lambda}{6}\left(\int_{\Omega} F\left(x, u_{n}\right) d x\right)^{s} \int_{\Omega} f\left(x, u_{n}\right) u_{n} d x\right\} \\
\geq & \frac{2-r}{6(r+1)}\left(\int_{\Omega}|\nabla u|^{2} d x+\sum_{j \in J} \mu_{j}\right)^{r}\left(\int_{\Omega}|\nabla u|^{2} d x+\sum_{j \in J} \mu_{j}\right) \\
& -\lambda\left[\frac{1}{s+1}\left(\frac{a_{2}}{q}\right)^{s+1}-\frac{q}{6}\left(\frac{a_{1}}{q}\right)^{s+1}\right]\left(\int_{\Omega}|u|^{q} d x\right)^{s+1} \\
\geq & \frac{2-r}{6(r+1)} \mu_{j_{0}}^{r+1}+\frac{2-r}{6(r+1)}\|u\|^{2(r+1)}-\lambda \frac{6 a_{2}^{s+1}-q(s+1) a_{1}^{s+1}}{6(s+1) q^{s+1}}|\Omega|^{\frac{(6-q)(s+1)}{6}} S^{-\frac{q(s+1)}{2}}\|u\|^{q(s+1)} .
\end{aligned}
$$

Let

$$
G(t)=\frac{2-r}{6(r+1)} t^{2(r+1)}-\lambda \frac{6 a_{2}^{s+1}-q(s+1) a_{1}^{s+1}}{6(s+1) q^{s+1}}|\Omega|^{\frac{(6-q(s+1)}{6}} S^{-\frac{q(s+1)}{2}} t^{q(s+1)} .
$$

It is clear that $\lim _{t \rightarrow 0} G(t)=0$, and $\lim _{t \rightarrow+\infty} G(t)=+\infty$. Therefore, there exists $T>0$ such that $G(T)=\min _{t \geq 0} G(t)$, that is,

$$
\begin{align*}
\left.G^{\prime}(t)\right|_{T} & =\frac{2-r}{3} T^{2 r+1}-\lambda \frac{6 a_{2}^{s+1}-q(s+1) a_{1}^{s+1}}{6 q^{s}}|\Omega|^{\frac{(6-q)(s+1)}{6}} S^{-\frac{q(s+1)}{2}} T^{q(s+1)-1} \tag{2.15}\\
& =0 .
\end{align*}
$$

From (2.15) we obtain

$$
T=\left(\frac{\lambda\left(6 a_{2}^{s+1}-q(s+1) a_{1}^{s+1}\right)}{2 q^{s}(2-r)}|\Omega|^{\frac{(6-q)(s+1)}{6}} S^{-\frac{q(s+1)}{2}}\right)^{\frac{1}{2(r+1)-q(s+1)}}
$$

and by simple calculation, we have

$$
\begin{aligned}
G(T)= & \frac{2-r}{6(r+1)}\left[\lambda \frac{6 a_{2}^{s+1}-q(s+1) a_{1}^{s+1}}{2 q^{s}(2-r)}|\Omega|^{\frac{(6-q)(s+1)}{6}} S^{-\frac{q(s+1)}{2}}\right]^{\frac{2(r+1)}{2(+1)-q(s+1)}} \\
& -\lambda \frac{6 a_{2}^{s+1}-q(s+1) a_{1}^{s+1}}{6(s+1) q^{s+1}}\left(|\Omega|^{\frac{6-q}{6}} S^{-\frac{q}{2}}\right)^{s+1}\left[\lambda \frac{6 a_{2}^{s+1}-q(s+1) a_{1}^{s+1}}{2 q^{s}(2-r)}|\Omega|^{\frac{(6-q)(s+1)}{6}} S^{-\frac{q(s+1)}{2}}\right]^{\frac{\frac{q(s+1)}{2(r(1)-q(s+1)}}{\frac{2(r+1)}{}}} \\
= & \frac{(2-r)[q(s+1)-2(r+1)]}{6 q(r+1)(s+1)}\left[\lambda \frac{6 a_{2}^{s+1}-q(s+1) a_{1}^{s+1}}{2 q^{s}(2-r)}|\Omega|^{\frac{(6-q)(s+1)}{6}} S^{-\frac{q(s+1)}{2}}\right]^{\frac{2(r+1)-q(s+1)}{2}} .
\end{aligned}
$$

Hence, we can see that

$$
c_{\lambda} \geq \frac{2-r}{6(r+1)} S^{\frac{3(r+1)}{2-r}}-D \lambda^{\frac{2(r+1)}{2(r+1)-q(s+1)}},
$$

where

$$
D=\frac{(2-r)[2(r+1)-q(s+1)]}{6 q(r+1)(s+1)}\left[\frac{6 a_{2}^{s+1}-q(s+1) a_{1}^{s+1}}{2 q^{s}(2-r)}|\Omega|^{\frac{(6-q)(s+1)}{6}} S^{-\frac{q(s+1)}{2}}\right]^{\frac{2(r+1)}{2(r+r))(q(s+1)}} .
$$

We obtain that $c_{\lambda} \geq c_{*}$. This is a contradiction, which indicates that $v_{j}=\mu_{j}=0$ for every $j \in J$, which implies that $u_{n} \rightarrow u$ in $L^{6}(\Omega)$. We may assume that

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x \rightarrow A^{2}, \int_{\Omega}|\nabla u|^{2} d x \leq A^{2} .
$$

Combining with (2.5) and (2.6), we have

$$
\begin{aligned}
0= & \lim _{n \rightarrow \infty}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle \\
= & \lim _{n \rightarrow \infty}\left[\left(\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x\right)^{r}\left(\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x-\int_{\Omega} \nabla u_{n} \nabla u d x\right)+\int_{\Omega} \phi_{u_{n}} u_{n}\left(u_{n}-u\right) d x-\int_{\Omega}\left|u_{n}\right|^{4} u_{n}\left(u_{n}-u\right) d x\right. \\
& \left.-\lambda\left(\int_{\Omega} F\left(x, u_{n}\right) d x\right)^{s} \int_{\Omega} f\left(x, u_{n}\right)\left(u_{n}-u\right) d x\right] \\
= & A^{2 r}\left(A^{2}-\int_{\Omega}|\nabla u|^{2} d x\right) .
\end{aligned}
$$

Hence, we obtain

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x \rightarrow \int_{\Omega}|\nabla u|^{2} d x \text { as } n \rightarrow \infty
$$

which implies $u_{n} \rightarrow u$ in $H_{0}^{1}(\Omega)$. The proof is complete.
Choose the extremal function

$$
U_{\varepsilon}(x)=\frac{\left(3 \varepsilon^{2}\right)^{\frac{1}{4}}}{\left(\varepsilon^{2}+|x|^{2}\right)^{\frac{1}{2}}}, \varepsilon>0,
$$

satisfying

$$
-\Delta U_{\varepsilon}=U_{\varepsilon}^{5} \text { in } \mathbb{R}^{3}
$$

Let $\Psi \in C^{1}\left(\mathbb{R}^{3}\right)$ such that $\Psi(x)=1$ on $B_{\frac{R}{2}}(0), \Psi(x)=0$ on $\mathbb{R}^{3} \backslash B_{R}(0)$, and $0 \leq \Psi(x) \leq 1$ on \mathbb{R}^{3}. Set $u_{\varepsilon}(x)=\Psi(x) U_{\varepsilon}(x)$. From [25], one has

$$
\left\{\begin{array}{l}
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x=S^{\frac{3}{2}}+O(\varepsilon) \\
\int_{\Omega}\left|u_{\varepsilon}\right|^{6} d x=S^{\frac{3}{2}}+O\left(\varepsilon^{3}\right)
\end{array}\right.
$$

and

$$
\left|u_{\varepsilon}\right|_{\alpha}^{\alpha}= \begin{cases}O\left(\varepsilon^{\frac{\alpha}{2}}\right), & \alpha \in[2,3), \tag{2.16}\\ O\left(\varepsilon^{\frac{\alpha}{2}}|\ln \varepsilon|\right), & \alpha=3, \\ O\left(\varepsilon^{\frac{6-\alpha}{2}}\right), & \alpha \in(3,6)\end{cases}
$$

Then, we have the following Lemma.

Lemma 2.4. Suppose that $\lambda>0, q(s+1)<4 \leq 2(r+1)<6$, and $0<s<\frac{1-r}{3(r+1)}$. Then,

$$
\sup _{t \geq 0} I_{\lambda}\left(t u_{\varepsilon}\right)<\frac{2-r}{6(r+1)} S^{\frac{3(r+1)}{2-r}}-D \lambda^{\frac{2(r+1)}{2(r+1)-q(s+1)}} .
$$

Proof. According to the definition of u_{ε} and (2.4), it holds that

$$
\begin{align*}
\frac{\lambda}{s+1}\left(\int_{\Omega} F\left(x, t u_{\varepsilon}\right) d x\right)^{s+1} & \geq \frac{\lambda}{s+1} t^{q(s+1)}\left(\frac{a_{1}}{q}\right)^{s+1}\left(\int_{\Omega}\left|u_{\varepsilon}\right|^{q} d x\right)^{s+1} \\
& \geq C_{3} \lambda\left(\int_{B_{R / 2}(0)} \frac{\varepsilon^{\frac{q}{2}}}{\left.\left(\varepsilon^{2}+|x|^{2}\right)^{\frac{q}{2}} d x\right)^{s+1}}\right. \\
& =C_{3} \lambda \varepsilon^{\frac{(6-q)(s+1)}{2}}\left(\int_{0}^{R / 2 \varepsilon} \frac{y^{2}}{\left(1+y^{2}\right)^{\frac{q}{2}}} d y\right)^{s+1} \tag{2.17}\\
& \geq C_{3} \lambda \varepsilon^{\frac{(6-q)(s+1)}{2}}\left(\int_{0}^{1} \frac{y^{2}}{\left(1+y^{2}\right)^{\frac{q}{2}}} d y\right)^{s+1} \\
& \geq C_{4} \lambda \varepsilon^{\frac{(6-q)(s+1)}{2}} .
\end{align*}
$$

From Lemma 2.1 and (2.16), we have the following estimate:

$$
\begin{equation*}
\int_{\Omega} \phi_{u_{\varepsilon}} u_{\varepsilon}^{2} d x \leq S^{-1}\left|u_{\varepsilon}\right|_{12 / 5}^{4} \leq O\left(\varepsilon^{2}\right) . \tag{2.18}
\end{equation*}
$$

Since $I_{\lambda}\left(t u_{\varepsilon}\right) \rightarrow-\infty$ as $t \rightarrow \infty$, by Lemma 2.2, there exists $t_{\varepsilon}>0$ such that

$$
I_{\lambda}\left(t_{\varepsilon} u_{\varepsilon}\right)=\sup _{\Delta>0} I_{\lambda}\left(t u_{\varepsilon}\right) \geq \delta>0 .
$$

Moreover, by the continuity of I_{λ}, there exist positive constants t_{1} and t_{2} such that $0<t_{1} \leq t_{\varepsilon} \leq t_{2}<$ $+\infty$. As a consequence of the above fact, one has

$$
\begin{aligned}
\sup _{t \geq 0} I_{\lambda}\left(t u_{\varepsilon}\right)= & \sup _{t \geq 0}\left\{\frac{1}{2(r+1)}\left(\int_{\Omega}\left|\nabla t u_{\varepsilon}\right|^{2} d x\right)^{r+1}+\frac{1}{4} \int_{\Omega} \phi_{t u_{\varepsilon}}\left|t u_{\varepsilon}\right|^{2} d x\right. \\
& \left.-\frac{1}{6} \int_{\Omega}\left|t u_{\varepsilon}\right|^{6} d x-\frac{\lambda}{s+1}\left(\int_{\Omega} F\left(x, t u_{\varepsilon}\right) d x\right)^{s+1}\right\} \\
\leq & \sup _{t \geq 0}\left\{\frac{1}{2(r+1)}\left(\int_{\Omega}\left|\nabla t u_{\varepsilon}\right|^{2} d x\right)^{r+1}-\frac{1}{6} \int_{\Omega}\left|t u_{\varepsilon}\right|^{6} d x\right\}+O\left(\varepsilon^{2}\right)-\lambda C_{4} \varepsilon^{\frac{(6-q)(s+1)}{2}} \\
\leq & \frac{2-r}{6(r+1)}\left[\frac{\left(\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x\right)^{r+1}}{\int_{\Omega}\left|u_{\varepsilon}\right|^{6} d x}\right]^{\frac{2(r+1)}{6-2(r+1)}}\left(\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x\right)^{r+1}+O\left(\varepsilon^{2}\right)-\lambda C_{4} \varepsilon^{\frac{(6-q)(s+1)}{2}} \\
\leq & \frac{2-r}{6(r+1)} S^{\frac{3(r+1)}{2-r}}+C_{5} \varepsilon-\lambda C_{4} \varepsilon^{\frac{(6-q(s+1)}{2}} \\
< & \frac{2-r}{6(r+1)} S^{\frac{3(r+1)}{2-r}}-D \lambda^{\frac{2(r+1)}{2(r+1)-q(s+1)}} .
\end{aligned}
$$

We have used the fact that $\frac{6(r+1)}{r+2}<q<\frac{4}{s+1}$ and let $\varepsilon=\lambda^{\frac{2(r+1)}{2(r+1)-q(s+1)}}$.

$$
0<\lambda<\Lambda_{1}=\min \left\{\left[\frac{2-r}{6(r+1) D} S^{\frac{3(r+1)}{2-r}}\right]^{\frac{2(r+1)-q(s+1)}{2(r+1)}},\left(\frac{C_{5}+D}{C_{4}}\right)^{\frac{2(r+1)-q(s+1)}{(s+1)(r+1)(6+q)-q)}}\right\},
$$

and then

$$
\begin{aligned}
C_{5} \varepsilon-C_{4} \lambda \varepsilon^{\frac{(6-q)(s+1)}{2}} & =C_{5} \lambda^{\frac{2(r+1)}{(r+1)-q(s+1)}}-C_{4} \lambda^{\frac{(r+1)(6-q)(s+1)}{2(r+1)-q(s+1)}+1} \\
& =\lambda^{\frac{2(r+1)}{2(r+1)-q(s+1)}}\left(C_{5}-C_{4} \lambda^{\frac{(s+1)(r+1)(9-q)-q]}{2(r+1)-q(s+1)}}\right) \\
& <-D \lambda^{\frac{2(r+1)}{2(r+1)(q(s+1)}} .
\end{aligned}
$$

The proof is complete.

Lemma 2.5. Suppose that $0<\lambda<\Lambda_{0}$ (Λ_{0} is as in Lemma 2.2). Then, system (1.1) has a positive solution u_{λ} satisfying $I_{\lambda}\left(u_{\lambda}\right)<0$.

Proof. It follows from Lemma 2.2 that

$$
m=\inf _{u \in \overline{B_{\rho}}(0)} I_{\lambda}(u)<0
$$

By the Ekeland variational principle [26], there exists a minimizing sequence $\left\{u_{n}\right\} \subset \overline{B_{\rho}(0)}$ such that

$$
I_{\lambda}\left(u_{n}\right) \leq \inf _{u \in \overline{B_{\rho}(0)}} I_{\lambda}(u)+\frac{1}{n}, \quad I_{\lambda}(v) \geq I_{\lambda}\left(u_{n}\right)-\frac{1}{n}\left\|v-u_{n}\right\|, \quad v \in \overline{B_{\rho}(0)}
$$

Therefore, we obtain that $I_{\lambda}\left(u_{n}\right) \rightarrow m$ and $I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $\left\{u_{n}\right\}$ is a bounded sequence, and $\overline{B_{\rho}(0)}$ is a closed convex set, we may assume up to a subsequence, still denoted by $\left\{u_{n}\right\}$, there exists $u_{\lambda} \in \overline{B_{\rho}(0)} \subset H_{0}^{1}(\Omega)$ such that

$$
\left\{\begin{array}{l}
u_{n} \rightharpoonup u_{\lambda}, \quad \text { weakly in } H_{0}^{1}(\Omega), \\
u_{n} \rightarrow u_{\lambda}, \quad \text { strongly in } L^{q}(\Omega)(1 \leq p<6), \\
u_{n}(x) \rightarrow u_{\lambda}(x), \quad \text { a.e. in } \Omega .
\end{array}\right.
$$

By the lower semi-continuity of the norm with respect to weak convergence, we get

$$
\begin{aligned}
m \geq & \liminf _{n \rightarrow \infty}\left[I_{\lambda}\left(u_{n}\right)-\frac{1}{6}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right] \\
= & \liminf _{n \rightarrow \infty}\left[\left(\frac{1}{2(r+1)}-\frac{1}{6}\right)\left(\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x\right)^{r+1}+\left(\frac{1}{4}-\frac{1}{6}\right) \int_{\Omega} \phi_{u_{n}} u_{n}^{2} d x\right. \\
& \left.-\lambda \frac{1}{s+1}\left(\int_{\Omega} F\left(x, u_{n}\right) d x\right)^{s+1}+\frac{\lambda}{6}\left(\int_{\Omega} F\left(x, u_{n}\right) d x\right)^{s} \int_{\Omega} f\left(x, u_{n}\right) u_{n} d x\right] \\
\geq & \frac{2-r}{6(r+1)}\left(\int_{\Omega}\left|\nabla u_{\lambda}\right|^{2} d x\right)^{r+1}+\frac{1}{12} \int_{\Omega} \phi_{u_{\lambda}} u_{\lambda}^{2} d x \\
& -\lambda \frac{1}{s+1}\left(\int_{\Omega} F\left(x, u_{\lambda}\right) d x\right)^{s+1}+\frac{\lambda}{6}\left(\int_{\Omega} F\left(x, u_{\lambda}\right) d x\right)^{s} \int_{\Omega} f\left(x, u_{\lambda}\right) u_{\lambda} d x \\
= & I_{\lambda}\left(u_{\lambda}\right)-\frac{1}{6}\left\langle I_{\lambda}^{\prime}\left(u_{\lambda}\right), u_{\lambda}\right\rangle=I_{\lambda}\left(u_{\lambda}\right) \geq m .
\end{aligned}
$$

Thus, $I_{\lambda}\left(u_{\lambda}\right)=m<0$, and we can see that $u_{\lambda} \not \equiv 0 . \quad I_{\lambda}\left(\left|u_{\lambda}\right|\right)=I_{\lambda}\left(u_{\lambda}\right)$, which suggests that $u_{\lambda} \geq 0$. Therefore, by the strong maximum principle, we obtain that u_{λ} is a positive solution of system (1.1). The proof is complete.

Lemma 2.6. Assume that $0<\lambda<\Lambda_{*}\left(\Lambda_{*}=\min \left\{\Lambda_{0}, \Lambda_{1}\right\}\right)$. Then, the system (1.1) has a positive solution $u_{*} \in H_{0}^{1}(\Omega)$ with $I_{\lambda}\left(u_{*}\right)>0$.

Proof. From the mountain pass lemma and Lemma 2.2, there exists a sequence $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ such that

$$
I_{\lambda}\left(u_{n}\right) \rightarrow c_{\lambda}>0, \text { and } I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty,
$$

where

$$
c_{\lambda}=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{\lambda}(\gamma(t)),
$$

and

$$
\Gamma=\left\{\gamma \in C\left([0,1], H_{0}^{1}(\Omega)\right): \gamma(0)=0, \gamma(1)=e\right\} .
$$

According to Lemma 2.3, we know that $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ has a convergent subsequence, still denoted by $\left\{u_{n}\right\}$, such that $u_{n} \rightarrow u_{*}$ in $H_{0}^{1}(\Omega)$ as $n \rightarrow \infty$.

$$
I_{\lambda}\left(u_{*}\right)=\lim _{n \rightarrow \infty} I_{\lambda}\left(u_{n}\right)=c_{\lambda}>\delta>0,
$$

which implies that $u_{*} \not \equiv 0$. It is similar to Lemma 2.5 that $u_{*}>0$, that is, u_{*} is a positive solution of system (1.1) such that $I_{\lambda}\left(u_{*}\right)>0$. The proof is complete.

3. Conclusions

In this paper, we considered a class of bi-nonlocal Kirchhoff-Schrödinger-Poisson system with critical growth. Under some suitable assumptions, by using the concentration compactness principle, we obtained the multiplicity of positive solutions.

Acknowledgments

The authors thank the anonymous referees for careful reading and some helpful comments, which greatly improved the manuscript. This work is supported by the National Natural Science Foundation of China (No.11661021; No.11861021).

Conflict of interest

The authors declare there are no conflicts of interest.

References

1. A. Ambrosetti, D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404. https://doi.org/10.1142/S021919970800282X
2. A. Azzollini, P. d'Avenia, A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779-791. https://doi.org/10.1016/j.anihpc.2009.11.012
3. A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. https://doi.org/10.1016/j.jmaa.2008.03.057
4. G. Cerami, G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differ. Equation, 248 (2010), 521-543. https://doi.org/10.1016/j.jde.2009.06.017
5. P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2 (2002), 177-192. https://doi.org/10.1515/ans-20020205
6. C. Y. Lei, G. S. Liu, C. M. Chu, H. M. Suo, New multiple solutions for a SchrödingerPoisson system involving concave-convex nonlinearities, Turkish J. Math., 44 (2020), 986-997. https://doi.org/10.3906/mat-1807-100
7. D. Ruiz, G. Siciliano, A note on the Schrödinger-Poisson-Slater equation on bounded domains, Adv. Nonlinear Stud., 8 (2008), 179-190. https://doi.org/10.1515/ans-2008-0106
8. G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
9. C. O. Alves, F. J. S. A. Corrêa, T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93. https://doi.org/10.1016/j.camwa.2005.01.008
10. C. O. Alves, F. J. Corrêa, G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equation Appl., 2 (2010), 409-417. http://www.ele-math.com
11. W. Chen, Y. Wu, Nontrivial solutions for 4-superlinear Schrödinger-Kirchhoff equations with indefinite potentials, J. Funct. Spaces, 2021 (2021). https://doi.org/10.1155/2021/5551561
12. N. C. Eddine, M. A. Ragusa, Generalized critical Kirchhoff-type potential systems with Neumann boundary conditions, Appl. Anal., 101 (2022), 3958-3988. https://doi.org/10.48550/arXiv.2203.11942
13. G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401 (2013), 706-713. https://doi.org/10.1016/j.jmaa.2012.12.053
14. C. Y. Lei, H. M. Suo, C. M. Chu, L. T. Guo, On ground state solutions for a Kirchhoff type equation with critical growth, Comput. Math. Appl., 72 (2016), 729-740. https://doi.org/10.1016/j.camwa.2016.05.027
15. J. F. Liao, P. Zhang, X. P. Wu, Existence of positive solutions for Kirchhoff problems, Electron. J. Differ. Equations, 280 (2015), 1-12. http://www.researchgate.net/publication/285186304
16. A. Razani, Two weak solutions for fully nonlinear Kirchhoff-type problem, Filomat, 35 (2021), 3267-3278. https://doi.org/10.2298/FIL2110267R
17. J. Wang, L. X. Tian, J. X. Xu, F. B. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equation, 253 (2012), 2314-2351. https://doi.org/10.1016/j.jde.2012.05.023
18. Q. L. Xie, X. P. Wu, C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Commun. Pure Appl. Anal., 12 (2013), 2773-2786. http://www.researchgate.net/publication/265705177.
19. G. F. Che, H. B. Chen, Existence and multiplicity of positive solutions for Kirchhoff-Schrödinger-Poisson system with critical growth, RACSAM, 78 (2020). https://doi.org/10.4134/JKMS.J190833
20. J. Chabrowski, On bi-nonlocal problem for elliptic equations with Neumann boundary conditions, J. Anal. Math., 134 (2018), 303-334. https://doi.org/10.1007/s11854-018-0011-5
21. F. J. S. A. Corrêa, G. M. Figueiredo, Existence and multiplicity of nontrivial solutions for a bi-nonlocal equation, Adv. Differ. Equations, 18 (2013), 587-608.
22. V. Benci, D. Fortunato, An eigenvalue problem for the SchrödingerMaxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. http://www.researchgate.net/publication/254300288
23. D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. https://doi.org/10.1016/j.jfa.2006.04.005
24. P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 2, Rev. Mat. Iberoam., 1 (1985), 45-121. https://doi.org/10.4171/RMI/12
25. H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical sobolev exponents, Comm. Pure. Appl. Math., 36 (1983), 437-477. https://doi.org/10.1002/cpa. 3160360405
26. I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
