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Abstract: Because of the recent development in advanced sensors, data acquisition platforms, and 
data analysis methods, unmanned aerial vehicle (UAV) or drone-based remote sensing has gained 
significant attention from precision agriculture (PA) researchers. The massive amount of raw data 
collected from such sensing platforms demands large-scale data processing algorithms such as 
machine learning and deep learning methods. Therefore, it is timely to provide a detailed survey that 
assimilates, categorises, and compares the performance of various machine learning and deep 
learning methods for PA. This paper summarises and synthesises the recent works using a general 
pipeline of UAV-based remote sensing for precision agriculture research. We classify the different 
features extracted from UAV imagery for various agriculture applications, showing the importance of 
each feature for the performance of the crop model and demonstrating how the multiple feature 
fusion can improve the models’ performance. In addition, we compare and contrast the performances 
of various machine learning and deep learning models for three important crop trait estimations: 
yield estimation, disease detection and crop classification. Furthermore, the recent trends in 
applications of UAVs for PA are briefly discussed in terms of their importance, and opportunities. 
Finally, we recite the potential challenges and suggest future avenues of research in this field. 
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Abbreviations: ANN: Artificial neural network; CC: Canopy cover; CH: Canopy height; CHM: 
Canopy height model; CNN: Convolutional neural network; CV: Canopy volume; CT: Canopy 
temperature; DL: Deep learning; DNN: Deep neural network; ELM: Extreme learning machine; FCN: 
Fully connected network; GPR: Gaussian process regression; GPS: Global positioning system; HS: 
Hyperspectral; HALE: High altitude long endurance; LASSO: Least absolute shrinkage and selection 
operator; LiDAR: Light detection and ranging; LSTM: Long short-term memory; ML: Machine 
learning; MS: Multispectral; MALE: medium-altitude long-endurance; MLR: Multiple linear 
regression; MTCI: MERIS Terrestrial Chlorophyll Index; NIR: Near-infrared; PA: Precision agriculture; 
PLSR: Partial least square regression; RBF: Radial bias function; RGB: Red-green-blue; RF: Random 
forest; SAR: Synthetic aperture radar; SVM: Support vector machine; UAV: Unmanned aerial vehicle; 
VI: Vegetation index; VTOL: Vertical takeoff and landing; VGG: Visual geometry group 

1. Introduction  

The development of advanced sensors, data acquisitions platform and the internet has created 
many opportunities, and challenges for the advancement of agriculture [1]. Moreover, the tremendous 
growth in the use of emerging technologies in agriculture has initiated a large amount of data or 
“Big-data” [2]. The massive production of agriculture data from different smart vehicles such as field 
sensors, aerial vehicles, a global positioning system (GPS), the internet of things (IoT), and cameras [3] 
can be accumulated and intercommunicated to make better decisions for various smart farming 
activities such as crop planting [4], crop irrigation [5], soil management [6], disease detection [7], pest 
identification [8] and so on. To effectively manage such farm activities, it is essential to get field (or 
agriculture) information such as crop water stress, crop vigour, crop height, soil moisture and so on. 
Traditionally, crop information was obtained by scouting the plant regularly and scheduling the farm 
activities accordingly, which is time-consuming as well as laborious. Alternatively, the use of sensors, 
cameras, moving vehicles, and global positioning systems (GPS) in farm management [3] can provide 
a large amount of data to facilitate data-driven smart farming activities. 

Remote sensing has been a widely used and most influential technology for smart farming and 
precision agriculture. The success of remote sensing in precision agriculture is highly affected by 
factors such as the type of platforms (either ground-based, airborne or satellite), sensors that capture 
the region of the electromagnetic spectrum (visible, infrared, or thermal), resolutions (temporal and 
spatial), and energy source (active or passive source) [9]. In the past, airborne or satellite-based 
remote sensing with various sensors such as multispectral, hyperspectral, radio detection and ranging 
(RADAR) and Light Detection and Ranging (LiDAR) was used to acquire such crop-related 
information at a regional or global level. For instance, Vallentin et al. [10] estimated the yield of 
cereal and canola in northeast Germany using satellite remote sensing data with six different optical 
sensors. The study showed that high-resolution images from satellites such as RapidEye and 
Sentinel-2 perform better than low-resolution satellite images with Landsat. However, satellite-based 
remote sensing has three major limitations that make it not often the best choice for precision 
agriculture. First, the satellites capture the image in spatial resolution in meters (eg. Landsat has 30m 
and sentinel has 10m spatial resolution) which is usually inadequate for plant or plot level data 
analysis. Second, the satellite revisiting time is not flexible and often not available to capture the 
necessary images at the required time. Third, environmental conditions such as clouds limit the 
reliable quality of images [11]. 
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In recent years, remote sensing with the unmanned aerial vehicle (UAV) has made prominent 
progress in precision agriculture, although UAVs have been exploited for military, defense, survey 
and other applications for a long time [12]. The UAV is a kind of unmanned system which has 
camera sensors to capture the data along with manual or automated flight management. It has been 
popular and widely investigated in precision agriculture because it has addressed most of the 
limitations that arise with satellite-based remote sensing [13]. For instance, first, it has the flexibility 
of revisiting the field as it can be taken into flight by the user at any time as long as the weather 
allows (thereby providing high temporal resolution imagery). Second, it can capture high spatial 
resolution imagery very closer to the plant producing a bird’s eye view of the field (i.e., resulting in 
the image resolution of centimetres). Third, it is cost-effective and easy to operate and deploy. Finally, 
it can avoid clouds by flying at a lower altitude and resulting in high-quality images. However, the 
extraction of useful information from such spatial big data is the main challenge for the researcher to 
effectively use drones and other remote sensing platforms for precision agriculture [14]. Machine 
learning and deep learning methods for such spatial data analysis have shown some successes in this 
area [15]. 

Many studies have been conducted to investigate the potential use of UAV imagery for 
precision agriculture applications such as yield estimation [16–18], weed detection [14], plant 
counting [19], and disease detection [20] over the years. These existing research works use various 
sensors included in the UAV platforms to capture the field imagery. These sensors mostly include 
red-green-blue (RGB), multispectral, hyperspectral, and thermal. Among these sensors, the majority 
of studies use consumer-grade RGB sensors because of their low cost, in-built reliable camera 
models and high-resolution images. For instance, the spectral information from RGB images 
acquired with UAV was investigated for corn yield estimation by Geipel et al. [16]. A linear 
regression model was used to estimate corn yield with RGB images at three corn growth stages. It 
was found that the images at the end of the season were highly correlated with corn yield. A highly 
accurate method for weed detection in bean and spinach farms with RGB images from UAV was 
investigated by Bah et al. [14] using an unsupervised convolution neural network. A maize plant 
counting with RGB images was performed by Gnadinger et al. [19] using the stretch contrast 
enhancement method to enhance the colour difference in images. The image-based counting showed 
a high correlation (R2 = 0.89) with ground truth. However, the RGB sensors can not capture the 
important information reflected in the infrared range outside of the visible wavelength. Here, the 
multispectral sensors could complement such information and provide better crop health information. 
For instance, Yu et al. [18] developed a soybean yield and maturity estimation model with 
multispectral images and a machine learning approach (Random forest) for large-scale soybean 
breeding trials. They achieved high correlations between aerial data and final soybean yield while 
using canopy geometric features extracted from multispectral images. Similarly, a few existing 
studies reported the potential success of multi-model data fusion approaches combined with machine 
learning in precision agriculture. The hybrid multi-model machine learning methods for estimating 
plant traits such as plant height, density, growth stage, disease and yield have been reported in the 
literature [21,22]. Furthermore, machine learning and deep learning methods showed a magnificent 
triumph for crop disease and pest detection using UAV imagery as reported by existing 
works [7,23,24]. 

A detailed survey on the application of UAVs for various agriculture tasks such as drought 
stress detection, pesticide application, weed detection, nitrogen assessment, biomass and yield 
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estimation was presented in [25]. Maes et al. [25] analyzed and synthesized the scientific progress 
and existing challenge in translating research results into practice. However, the recent progress in 
artificial intelligence (AI) and machine learning (ML) based data analysis methods has a great 
potential to tackle such challenges which need to be synthesised and presented. Chlingaryan et 
al. [26] surveyed the existing research on the application of machine learning algorithms for crop 
yield and nitrogen status estimation. They concluded that remote sensing and machine learning have 
great potential for precision agriculture. The fusion of multiple sensor data with a hybrid approach of 
machine learning was more efficient than a single modality approach on both tasks. However, their 
focus was on the general remote sensing approach of machine learning, therefore, they did not 
consider UAV-based remote sensing exclusively in their survey. 

Table 1. Comparison of this work with existing works. 

Question Maes et 
al. [25] 

Tsouros et 
al. [27] 

Velusamy et 
al. [28] 

Kamilaris et 
al. [29] 

This 
work 

Does the paper review type of UAV 
sensor used for precision agriculture? 

Y Y Y N Y 

Does the paper review the various 
applications of UAV imagery for 
precision agriculture? 

Y Y Y N Y 

Does the paper review types of UAV 
image features used for precision 
agriculture? 

Y Y N N Y 

Does the paper review the machine 
learning methods used for precision 
agriculture? 

N Y N Y Y 

Does the paper review deep learning 
methods used for precision agriculture? 

N N N Y Y 

Note: The ‘Y’ and ‘N’ represent whether the work considered the question or not respectively. 

A recent review [27] reported the latest cases of UAVs for various precision agriculture tasks 
such as weed mapping and management, yield estimation, disease detection, and irrigation 
management. Different types of UAVs along with their data acquisition methodologies were 
discussed. However, this survey did not consider the performance evaluation of machine learning 
and deep learning methods. Similarly, Velusamy et al. [28] surveyed the different UAV types, sensors, 
and their applications in precision agriculture, especially for precise pest management. They also 
reported the existing works on UAVs and other remote sensing technologies for early disease 
detection, crop monitoring and yield estimation. However, they did not discuss the data-driven 
methods used along with UAV imagery for precision agriculture. Besides, Kamilaris et al. [29] 
surveyed different deep learning approaches for precision agriculture with a focus on the machine 
learning pipeline that included data preparation, data augmentation, and model evaluation. They also 
compared the performance of deep learning methods with the existing popular techniques for 
agriculture data analysis such as image processing techniques where deep learning provided high 
accuracy in most cases. However, they did not analyze the contribution of UAVs to smart agriculture 
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issues using advanced data analysis techniques such as machine learning and deep learning. A 
point-wise comparison of this work with existing survey works is listed in Table 1. 

The main contributions of this work are as follows: 

(a) We summarize and synthesize the recent work on the various types of UAVs, sensors and 
their uses in precision agriculture using a proposed UAV data processing pipeline. All stages 
involved in the UAV data processing pipeline such as UAV image processing, feature 
extraction, model building, and evaluation are discussed in this work. 

(b) We assimilate and categorise the various image features derived from UAV-based remote 
sensing with machine learning algorithms. 

(c) We analyze and report the performance of machine learning and deep learning methods on 
UAV image datasets for specific agriculture applications such as yield estimation, disease 
detection and crop classifications.  

(d) We outline the existing challenges and opportunities in precision agriculture brought by 
drones. Also, we report the recent trends and future avenues of UAV-based remote sensing 
for precision agriculture with the aid of bibliometric analysis. 

The rest of the paper is organized as follows. Section 2 explains the step-by-step activities 
performed to find the research articles included in this survey. Section 3 presents the background of 
remote sensing and precision agriculture. Section 4 briefly presents the different types of widely used 
UAVs or drones in precision agriculture. Likewise, Section 5 presents the different sensors used in 
UAVs for agricultural data acquisitions along with their pros and cons. Section 6 elaborates on the 
offline image prepossessing activities involved after the completion of the UAV flight mission. 
Section 7 details the various features extracted from UAV images for machine learning model 
building. Section 8 presents the working setting of machine learning and deep learning approaches 
for precision agriculture with UAV imagery. Section 9 briefly discusses the application of UAV in 
crop yield estimation, crop disease detection and crop classification. Furthermore, we discuss the 
research trend, future research perspective and avenues along with challenges and opportunities in 
Section 10. Finally, we conclude our paper with the future recommendation in Section 11.  

2. The approach for the survey 

We followed the systematic procedure to identify the articles for review. We first designed a 
query string using the terms (“Unmanned aerial vehicle” OR “UAV”) AND (“Machine Learning” OR 
“Deep Learning”) AND (“Precision agriculture”) and performed a database search on three popular 
databases (Web of Science, Scopus, and Google Scholar) limiting our search within the title, abstract, 
and keywords of each article on Jan 10, 2022. As a result, we achieved 204, 141, and 111 articles 
from Scopus, Web of Science, and Google Scholar, respectively with such a query string. Second, we 
performed the initial screening of articles received from each source for duplicacy and peer-review 
criteria. We excluded the pre-prints and not peer-reviewed works in this survey. Then, we carefully 
read each article’s titles, abstracts, keywords, and full text and excluded those articles that were not 
considered either UAV imagery or precision agriculture in their study. After such screening, we 
ended up with only 110 articles. Finally, while analyzing and comparing the performance of machine 
learning and deep learning approaches in various agriculture applications (refer to Section 9), we 
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reviewed additional 12 articles which show the recent trend and applications of data-driven methods 
in precision agriculture. Hence, 122 articles were considered for the final review in this study. The 
detailed pipeline of our survey method is presented in Figure 1. 

 

Figure 1. Stepwise procedure to retrieve the articles reviewed in this survey. 

We will now review the existing papers based on different factors pertinent to the research they 
have presented such as precision agriculture and remote sensing, UAVs and their types, sensors, 
UAV image processing and model building along with their applications in yield prediction, disease 
detection and crop classification in the following sections. 

3. Precision agriculture and remote sensing 

The existing works [30–33] emphasized the importance of remote sensing techniques for 
precision agriculture. Here, we discuss the background of remote sensing and precision agriculture 
while coupling them with UAVs and their application. 

The continuous increment in population poses severe challenges to the agricultural production 
system to meet the global food demands. The protection of the natural ecosystem is also equally 
important while providing quality food to everyone [34]. To make more informed and better 
decisions to tackle such challenges, advanced technologies are necessary where precision agriculture 
(PA) or smart agriculture helps the farmers to improve crop yield and assists them in farm 
management. For instance, using a large amount of in-farm sensor data and analytical techniques, 
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farmers can map the effective fertilizer and irrigation applications thereby saving time and cost [30]. 
PA can help to improve crop productivity and thereby increase crop yield because farmers will be 
able to provide optimized inputs such as water and agrochemicals including fertilizer, pesticides and 
growth regulators using crop information acquired with advanced sensing technology [31]. 

Remote sensing has been a key source of information for precision agriculture. It is a 
non-destructive way of acquiring information about objects of interest by recording the reflected or 
emitted energy from targets. It consists of various stages in a pipeline: source of illumination, 
interaction with the target, recording of reflected energy by sensors, transmission, reception and 
processing, interpretation, and analysis of images [35]. Various remote sensing platforms such as 
field-based sensors (fixed and moving vehicles), and airborne sensors (satellite, aircraft) have been 
largely used in the past decades to effectively manage the farm activities such as pesticide 
application [8], yield estimation [16], disease detection [36] and irrigation management [37,38]. The 
frequently used remote sensing platforms for precision agriculture are depicted in Figure 2. 

 

Figure 2. Commonly used remote sensing platform for precision agriculture. 

Initially, precision agriculture methods used field-based sensors, satellite, and aerial imagery 
sensors to assess the plant status non-destructively [30]. Satellite-based precision agriculture has 
been employed to estimate agricultural parameters such as yield, plant biomass, and cropland cover 
at the global or regional level. The satellite has its own visiting time and sensor capability, which 
cannot be managed by the farmer to get real-time farm data and images [32]. Instead, aerial imagery 
is usually acquired with sensors mounted in manned aircraft that flies over a large field at a lower 
altitude and resulting in high spatial resolution images compared to satellite images. The satellite and 
manned aerial images are prone to cloud and other environmental effects which reduce the image 
quality. The ground-based sensor systems can provide very high spatial resolution imagery. 
Nevertheless, it is time-consuming to move these sensors from place to place to measure infield 
variability [39] and can only cover the limited field area compared to aerial imagery. 
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Recently, an unmanned aerial vehicle (UAV), also known as a drone, was developed to fly for a 
certain time at a specific height. These drones have multiple applications such as aerial photography, 
shipping and delivery, disaster management, search and rescue, precision agriculture, and many 
more [33]. In precision agriculture, the latest sensors embedded in the unmanned aerial vehicle (UAV) 
can collect crop field images at high resolution with multiple visible and non-visible light spectrums. 
These images can be further analysed using image analysis methods to extract insightful information 
such as variability in crop stress including biotic (disease and pests) and abiotic (water and nutrient 
deficient etc.) [23,40], water stress [41], and fertilizer deficiency [42]. In such a situation, the farmer 
can precisely apply the fertilizer or other pesticides to a specific plant or area rather than applying it 
to the whole field. Since drones have the flexibility of flight and the capability of acquiring very 
high-resolution images of the crop field compared to satellite imagery, it has a great potential of 
working to provide a bird-eye view over the agriculture field. It has explored a new horizon of 
data-driven intelligent farming or smart farming [43] which could be complemented by the Internet 
of Things (IoT) and machine learning methods as demonstrated for the prediction of apple disease by 
Akther et al. [44]. 

4. UAVs and their types 

UAV (Unmanned aerial vehicle) or drone is a type of remotely piloted aerial vehicle without 
any operating human on the board. Initially, it was developed for use in missions classified as dull, 
dirty, or dangerous. The broad and diverse applications of UAVs lead to the development of different 
types of UAVs [45]. It ranges from very small UAVs (e.g., 2 kg or less in weight) or nano-UAVs 
used for commercial applications to large UAVs (e.g., more than 150 kg) used for military 
surveillance [46]. With a walkthrough of existing literature [14,20,47,48], the research works can be 
differentiated based on the type of UAV they use for data acquisitions. Here, we briefly discuss the 
different types of UAVs, mainly focusing their application on precision agriculture. 

The classification of UAVs can be achieved based on three criteria: a) wings or rotors, b) size or 
weights and c) altitude or range. The existing works have classified the UAV on their own basis and 
there is no standard classification. However, we reported our classification based on their application 
to agriculture. The high-level taxonomy of UAV types is presented in Figure 3. 

Based on their wings and rotors design characteristics, UAVs can be grouped into five 
categories: a) Fixed-wing b) Rotary-wing c) Flapping-wing d) Hybrid-wing e) Parafoil-wing [27]. A 
fixed-wing UAV resembles the design of an aeroplane, flies at high speeds, covers a large area and 
carries more payloads. However, they need a large space or runway for takeoff which limit their 
application in small agriculture field. Whereas a Rotary-wing UAV resembles a helicopter design and 
can takeoff and land vertically. This kind of UAV is further distinguished by either a single-rotor or a 
multi-rotor. A single-rotor UAV has one main and one tail rotor whereas a multi-rotor UAV comes 
with three or more rotors and is known as a tri-copter (3-rotors), quadcopter (4-rotors), hexacopter (6 
motors) and octa-copter (8-rotors). Because of their vertical takeoff and landing (VTOL) capability, 
good camera control and easy-to-use nature, they are the most widely used UAV in precision 
agriculture [28]. The other UAVs in this category are flapping-wing, hybrid-wing and parafoil-wing 
which are rarely used in precision agriculture applications [27]. 

Similarly, there are five types of UAVs based on their size and weights: Micro (250 g or less), 
very small (250.1 g to 2 kg), small (2.01 kg to 25 kg), medium (25.01 kg to 150 kg) and large (more 



4285 

Electronic Research Archive  Volume 30, Issue 12, 4277-4317. 

than 150 kg) (Note that it is based on Australian standard and might have different weights ranges in 
other places)1. Among these UAVs, small and medium-size drones are widely used in precision 
agriculture (refer to Table 2). 

  

Figure 3. Classification of UAV based on size, wings, and range. 

The altitude and range that the drone can cover are also critical in precision agriculture because 
it determines the field size that the drone can monitor at a time. The low-altitude drone which can fly 
less than 600 m and have a low range of 2 km is known as a “Hand-held” UAV. A bit high altitude of 
up to 1500 m and a range of less than 10km is covered by a “close” UAV. The large drones that are 
specially designed to cover a wide range and fly at high altitudes are Tactical (<5500 m altitude and 
160 km range), medium-altitude long-endurance--MALE (<9100 m altitude and <200 km range), 
high-altitude long-endurance HALE (>9100 m altitude) and hypersonic (>15200 m and >200 km 
range) [49]. The flight height for drone missions is set by government regulatory agencies in many 
countries. For instance, drones are not allowed to fly higher than 120 m above ground level for 
recreational activity in Australia, according to CASA (Civil aviation safety authority) of Australia2. 

Understandably, UAVs with smooth and lightweight in size, multi-rotor in design and low and 
medium range have great potential to be used in precision agriculture. They can acquire high-quality 

 
1 https://www.casa.gov.au/drones/drone-rules/drone-safety-rules/types-drones (accessed date 05/02/2022) 
2 https://www.casa.gov.au/drones/drone-rules/drone-safety-rules (accessed date: 01/05/2022) 
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data with high throughput which can be used to create crop models such as the canopy height model 
from structure-from-motion (SfM) generated point cloud. They also can capture multi-angular data 
and operate multiple sensors at the same time, thereby capturing crop information at multiple scales, 
which allow drones to be useful for advanced data modelling method such as multi-model data 
fusion [21]. Though it has many advantages over traditional remote sensing, a few limitations and 
technical issues might arise during the use of UAVs. Technical issues such as engine power, payload 
capacity, takeoff and landing, short flight duration, maintaining aircraft stability at a different altitude, 
engine failure, and regulatory measures are critical. The regulation criteria set by the government and 
other regulatory agencies determine their legal uses and other flight parameters such as flight height, 
and safety measurement which might limit the possible experiments that the researcher would like to 
undertake [12]. In addition, the UAV image processing and model building techniques such as 
machine learning and deep learning which require highly technical skills might be challenging to get 
acquainted with in the first step for precision agriculture researchers and farmers. 

Table 2. Various sensors used in UAVs for precision agriculture applications along with 
important parameters*.  

Ref. Crop Type of UAV Sensor Height Application 
[14] Bean & Spinach Multi-rotor RGB 20 m Weed detection 

[16] Corn Multi-rotor RGB 50 m Yield estimation 

[47] Maize Multi-rotor (Quadcopter) RGB &NIR 100 m Vigour and yield estimation 
[17] Rice Multi-motor (Octocopter) MS (6-band) 100 m Yield estimation 
[50] Rice & Wheat Multi-rotor MS (4-band) 30 m Yield estimation 
[36] Peanut Multi-rotor MS (4-band) 20 m Disease detection 
[51] Wheat Multi-rotor HS 30 m Disease detection 
[19] Maize Multi-rotor (Octocopter) RGB 50 m Plant counting 
[52] Coffee &Corn Multi-rotor SAR 120 m Growth estimation 
[53] Grapes Multi-rotor Thermal 70 m Water stress estimation 
[54] Maize Fixed wing MS (4-band) - Yield estimation 
[55] Rice Multi-rotor (Octocopter) MS  Yield estimation 
[48] Maize Fixed wing MS 150 m Yield and stress detection 
[56] Vine Multirotor MS 50 m Yield estimation 
[18] Soybean Multi-rotor (Octocopter) RGB &NIR 95 m Maturity estimation 
[57] Sugarcane Multirotor RGB 50 m Yield estimation 
[58] Sorghum Fixed wing MS (3 bands) 62 m Stress assessment 
[20] Barely Fixed wing MS - Disease detection 
[59] Corn & Barley Fixed wing MS & Thermal - Crop monitoring 
[60] Soybean Multi-rotor (octocopter) Thermal 125 m Water status assessment 
[61] Wheat & barley Multi-rotor HS - Biomass and nitrogen estimation 
[62] Corn Multi-rotor RGB 10m Plant counting 
*Note that Height denotes the flight height of the UAV mission, and RGB, NIR, SAR, MS and HS denote the 
red-green-blue, near-infrared, synthetic aperture radar, multispectral and hyperspectral sensors respectively. 
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5. Sensors and their types 

In remote sensing activities, the common information carrier is the electromagnetic (EM) 
spectrum [35]. It is a form of energy that consists of wavelength and frequency, divided into a range 
of spectrum from shorter wavelengths to longer wavelengths as depicted in Figure 4. Since different 
materials react with a specific range of wavelength in this spectrum, only a few sections of the 
spectrum are practically useful for remote sensing applications. For instance, the visible spectrum 
(the only spectrum portion that the human eye can capture) is mostly used in photogrammetry 
applications [63]. The infrared and thermal portions of the spectrum are reflected in the form of heat 
and are used in agricultural applications. The ultra-violet portion of the spectrum is used in the 
analysis of some rocks and minerals [64]. 

 

Figure 4. The wavelength range of electromagnetic spectrum for various sensors. 

There are two types of sensors based on light sources. Passive sensors use the reflected light 
source to capture the information and do not have their own source of light while active sensors do 
have their own source of light and capture the reflected portion of light from the object in the domain. 
Passive sensors include low-cost RGB sensors, multispectral sensors, hyperspectral sensors, and 
thermal sensors while RADAR and LiDAR are examples of active sensors [12].  

5.1. RGB sensors 

The RGB sensors capture the spectrum in the visible wavelength range. These are relatively 
low-cost, easy-to-use sensors. As they provide high-resolution low-cost images, they were hugely 
exploited by existing works (refer to Table 2) to address various agricultural applications such as 
weed detection [14], yield estimation [16], and plant counting [19]. Since they only provide the 
information on visible wavelengths, which is not sufficient to acquire some crop health-related 
information such as pathophysiological change after maturity [18], RGB sensors are complemented 
with other sensors such as near infra-red (NIR) and multispectral sensors. For example, Yu et al. [18] 
proposed a soybean maturity estimation with RGB and NIR images where the individual soybean 
plots were classified into mature or not mature by associating the spectral information of each plot to 
the binary variable (mature or not-mature). 
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5.2. Multispectral sensors 

The multispectral sensors capture more than one EM spectrum band: red, green, blue, and 
near-infrared (NIR). They are largely used in precision agriculture as the NIR band is strongly 
reflected by green vegetation, which is useful to differentiate the vegetation signature such as health 
status and chlorophyll content [65]. The crop information such as canopy cover, plant density and 
vegetation indices derived from UAV-based RGB and multispectral images were used by Garcia et 
al. [66] for corn yield estimation with an artificial neural network (ANN). They explored not only 
various multispectral vegetation but also included RGB-based crop information such as canopy cover 
and plant density to improve the performance of the neural network for corn yield estimation. 

 

Figure 5. Sensors used in UAV-based remote sensing platform for precision agriculture. 

5.3. Hyperspectral sensors 

Besides these low-cost sensors such as RGB and multispectral, several studies employed 
hyperspectral sensors and UAVs for precision agriculture [61,67]. The number of spectral bands and 
their width of energy spectrum measured by the sensor distinguish the hyperspectral and 
multispectral sensors. Generally, multispectral sensors receive the energy spectrum on the wider 
bands and a few numbers of channels (ranges from 5 to 12) while hyperspectral sensors consist of 
hundred or thousand of narrower bands. This allows the hyperspectral sensors to capture the 
fine-grained information (in both spatial and spectral ranges) about the crop in each narrow band 
which might be missed because of the wider band in multispectral sensors. A biomass and nitrogen 
estimation for wheat and barley crops was reported in [61] using UAV-based hyperspectral remote 
sensing. They carried out preprocessing such as laboratory calibration, spectral correction and pixel 
transformation followed by feature extraction which included NDVI, and linear and non-linear 
mixing. These features were utilized for biomass and nitrogen estimation with the k-nearest 
neighbour method. An early wilt disease detection method for olive trees was reported by Calderon 
et al. [68] with UAV imagery. The study pointed out the effectiveness of multiple features such as 
crown temperatures, hyperspectral indices, and structural indices (NDVI) while estimating 
physiological stress and damage caused by Verticillium wilt (VW). 

While comparing to RGB and multispectral sensors used in several studies (refer to Table 2), 
the hyperspectral sensors seem to be used for fewer applications. Probably, this is because of their 
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high cost and complex data processing requirement [69]. The high cost of high-resolution 
spectroscopy might not be necessary for agriculture areas such as crop counting and yield estimation 
where the multispectral or even RGB sensors are good enough. The complexity of data acquisition 
and processing involved in hyperspectral imaging requires special training which is another 
limitation that prevents its widespread use in agriculture. However, researchers have already begun 
to work on developing low-cost hyperspectral sensors and simple data processing tools which 
certainly will bring the benefits of hyperspectral imaging in precision agriculture in the near 
future [70]. 

5.4. Thermal sensors 

Thermal sensors capture the radiation in the range (1 µm to 14 µm) emitted from the surface of 
an object and convert it into temperature. They are able to detect an increase in leaf temperature in 
wider crop areas compared to local measurements, which makes them a better fit for monitoring crop 
water status and other stress due to excessive temperature. Thermal remote sensing (RS) has been 
used to monitor crop water status [53,71–73], crop vegetation monitoring [59] and so on. Most of the 
works on water stress estimation convert the radiant temperature measured by a thermal camera with 
linear regression and then calculate a crop water stress index (CWSI) [74]. Matese et al. [53] 
investigated the estimation of water stress on grape vineyards with crop water stress index (CWSI) 
derived from thermal UAV images acquired in the spectral range (7.5–13 µm). Similarly, sugar beet 
water stress monitoring was proposed in [72] by utilizing the data from thermal sensors along with a 
low-cost infra-red thermometer. Another work by Zhang et al. [73] compared the maize water stress 
using RGB and thermal images at the farm scale. Their study demonstrated that the combined use of 
high-resolution RGB and thermal images provides a more accurate canopy temperature (Tc) for 
maize. A soybean water stress estimation grown under different irrigation conditions was analyzed 
by Crusiol et al. [60]. Naturally, the usage of UAV-based thermal remote sensing is increasing these 
days because of more automation in UAV flight management, cost-effectiveness, and availability of 
data processing tools. However, more research and development are sought on the fusion of data 
collected with multiple sources such as thermal sensors, RGB sensors, and weather stations. 
Likewise, the standard calibration of raw images acquired with thermal sensors to reduce the 
atmospheric effects and climatic conditions is essential. 

5.5. LiDAR and SAR 

Apart from passive sensors discussed above, few works employ active sensors such as SAR 
(Synthetic aperture radar) and LiDAR (Light Detection and Ranging) with specific applications in 
precision agriculture. A crop growth deficit monitoring with differential synthetic aperture radar 
interferometry (DInSAR) operated in three bands (P, L and C) was developed by Ore et al. [52] for 
three crops: coffee, sugar, and corn. They used two interferometric C-bands antennas to calculate the 
digital surface model (DSM) which was further used in the DInSAR calculation. This provides a 
height accuracy of better than 5 cm with 1 m spatial resolution which showed the potential of 
DInSAR as a complementary tool to provide crop growth information for precision agriculture tasks 
such as yield estimation, plant density estimation and so on. A study on UAV-based LiDAR data to 
analyze the growth of maize height was proposed in [75] where LiDAR data was employed to 
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generate the canopy height model (CHM). The UAV-measured maize height was found to be highly 
correlated with ground truth which confirms the effectiveness of UAV-based LiDAR for plant height 
estimation and crop lodging monitoring. 

The hierarchical taxonomy of the sensors used in UAVs is presented in Figure 5. Also, the use 
of various sensors in precision agriculture along with UAV parameters is reported in Table 2. 

6. UAV image processing 

After the pre-flight preparation for UAV data acquisitions such as the selection of drone, sensor, 
and flight mission (location, timing, equipment, etc.), the UAV flight returns a large amount of raw 
data. However, the raw data are not yet suitable to extract information and reach conclusions, 
because the UAV platforms are rarely designed for on-the-fly data processing. Thus, necessary image 
correction activities such as atmospheric, radiometric, and geometric corrections are performed as 
post-flight UAV image processing. In addition, a single image can not cover the entire field of 
interest in most cases, it is necessary to capture several overlapping images which are later stitched 
together to form a single orthomosaic. To perform such image stitching, a scale-invariant feature 
transform (SIFT) algorithm is generally used [76]. It consists of mainly three steps: image 
pre-processing, image registration (feature extraction, feature matching and transformation) and 
image fusion. After these steps, a single mosaic image is obtained for a flight which is further 
rectified for geo-locations corrections using ground control points (GCPs) to get the ortho-rectified 
single map. 

Since the electromagnetic energy reflected from the earth’s surface interferes with various 
atmospheric-surface activities such as gaseous absorption, aerosol scattering and absorption, accurate 
surface reflectance can only be measured after such correction. The amount of such noise is 
negligible in low-altitude remote sensing with UAVs. However, radiometric calibration is essential to 
standardize the relationship between incoming radiation and sensor output taken at different times or 
locations [77]. UAV-based remote sensing uses empirical correction, colour balancing, and irradiance 
normalization. There are two commonly used approaches for radiometric calibrations: a) ground 
measurements at the time of data acquisition and b) radiometric calibration target. The reflectance 
measurements of such white calibration panels are used for image calibration. Similarly, geometric 
correction of field images is required due to the variation in the sensor positions, platform rotation, 
terrain effects, lens distortion, etc. These pre-processing options are generally available on 
commercial data processing packages (Agisoft PhotoScan® and Pix4dMapper®). For instance, Ji et 
al. [78] used a structure from motion (SfM) based software (Pix4DMapper) to generate final data 
products such as digital surface model (DSM), digital terrain model (DTM) and orthomosaic 
(reflectance map). The summary of UAV data processing software along with their applications in 
agriculture is listed in Table 3. 

Many photogrammetry and UAV vendors provide cloud services for easy and low-cost UAV 
image processing tools over the cloud. However, they have specific limitations such as storage 
capacity, upload and download bandwidth and limited data product as output. Therefore, most of the 
works preferred to use offline UAV image pre-processing with a local computer. Generally, the 
images acquired with a planned UAV mission are downloaded into a high-performance computer for 
further processing. While capturing images, there are a few important parameters that need to be 
managed such as flight height, image overlapping percentage and field of interest because these 
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parameters determine the output image quality. The onboard navigation system and flight planner 
can assist to manage the flight mission in auto-pilot mode [79]. 

Table 3. Recent studies that use various software packages to generate UAV mosaic 
images for crop monitoring+. 

Ref. Crop Application Software Summary 
[11] Grape variability 

assessment 
Agisoft 

PhotoScan® 
• Multispectral images were generated with more than 1000 aerial 
images and the flight was kept at 35 m above the ground resulting in 
5 cm GSD images. 

[79] Tea water stress 
assessment 

Pix4D 
mapper® 

• A thermal camera was used to collect thermal images with 12 
GCP and the drone mission was kept at 60m above the ground 

[80] Maize Biomass 
estimation 

Agisoft 
PhotoScan® 

• Aerial images were captured with a 16 MP RGB camera having 
80% forward and 60% side overlap. 
• Flights’ heights were maintained at 65 m and 120 m above the 
ground surface. 

[55] Rice Yield 
estimation 

Agisoft 
PhotoScan® 

• Image mosaicking for both RGB and multispectral images was 
performed and saved into TIFF. 
• The reflectance correction was carried out with five calibration 
targets measured at 0.5 m height before each flight by a handheld 
spectrometer. 

[16] Corn Yield 
estimation 

Agisoft 
PhotoScan® 

• Image alignment, mosaicking and Geo-referencing were 
performed with SfM algorithms and crop height was derived by 
subtracting DTM from DEM. 

[78] Bean height and 
yield 

estimation 

Pix4D 
mapper® 

• Final data products such as DSM, DTM and Reflectance maps 
were generated after image stitching and calibration. 

[66] Corn Yield 
estimation 

Pix4D 
mapper® 

• UAV images acquired with 80% overlap and 80% side-lap were 
used to generate orthomosaic using structure-from-motion (SfM). 

+Note that DTM, DSM, GCP and GSD denote the digital terrain model, digital surface model ground control point and ground sample 

distance respectively. 

7. Feature extraction 

Once the data is collected by different sensing platforms such as airborne platforms (satellite, 
aircraft, or UAV) or field-based sensors (field spectroscopy or IoT devices), they need to be further 
processed to get useful information. Specific applications such as forestry, agriculture, or 
environments need specific data analysis techniques. Therefore, feature extraction is an essential step 
while building crop models using data-driven methods such as machine learning and deep learning. 
The type of features also depends on the sensors used for image acquisition as the different sensors 
have the ability to capture field images at various spectrums which ultimately leads to a variety of 
crop features that can be extracted from such images. This section assimilates and examines the 
various crop features extracted with UAV imagery, mainly targeting their uses for crop model 
building and training. 
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Figure 6. The peanut field images represented in (a) RGB and (b) NDVI with individual 
plots divided using shapefile overlayed on the respective images. 

7.1. Spectral features 

Spectral features are extracted with the reflectance measured by sensors on various ranges of 
EM. The light reflected by the object's surface depends on its materials such as soil, rocks, water, and 
crops. For instance, water largely absorbs the EM spectrum in the near and mid-infrared wavelength 
range, whereas soil is more reflective in the mid-infrared range and green vegetation is highly 
reflective in the near-infrared range. Therefore, the reflectance and absorption of electromagnetic 
radiation by earth objects are differentiable [81]. Utilizing such differences in object reflectance of 
the light spectrum, the spectral indices are derived by algebraic manipulation of such individual 
spectral bands, commonly known as spectral indices. A spectral index that quantifies crop vegetation 
properties such as crop biomass, vigour and stress in a remote sensing image is commonly known as 
vegetation index (VI). It results from the pixel-level information calculated using various operations 
on a different spectral band of images. The vegetation indices used in precision agriculture are 
mainly derived from a) visible light b) near-infrared and c) mid-infrared spectrum (refer to Figure 5). 
Researchers have proposed various formulas to calculate vegetation indices to extract useful 
information such as biomass estimation and plant health estimation based on different applications 
and complex environment characteristics [7]. Therefore, it is necessary to include different band 
information in VI calculation for different applications. However, the calculation of VI is affected by 
the data acquisition platform, sensors, and other parameters such as noise. Based on sensors, VIs can 
be classified as a) RGB-based VIs, b) Multispectral VIs, and c) Hyperspectral VIs [67]. 

RGB-based VIs utilize three bands (RGB) to construct the vegetation indices and are mostly 
used for high-resolution image applications such as plant counting, plant density estimation, canopy 
coverage and so on. The multispectral VIs are extended further to include the near-infrared band in 
addition to the visible light spectrum. They are mostly used in plant health monitoring based on red 
and near-infrared bands. The most widely used multispectral vegetation index (VI) is the Normalized 
Difference Vegetation Index (NDVI), which is calculated from “near-infrared (NIR)” and the “red” 
band because healthy vegetation reflects more NIR light and less visible light as the chlorophyll 
absorbs the “red” light and reflects the NIR [50]. The higher the NDVI value the better the 
vegetation’s health [82]. Zerbato et al. [82] investigated the applicability of NDVI measured with 



4293 

Electronic Research Archive  Volume 30, Issue 12, 4277-4317. 

terrestrial sensors to estimate the peanut crop yield in a randomized block design. In this study, 
NDVI was found to be highly correlated with crop productivity, vegetation covers, and plant density. 
Similarly, NDVI generated from multispectral UAV images was found highly effective in predicting 
yield and detecting fertilizer application levels in rice and wheat field experiments [50]. 

Several other vegetation indices such as Normalized Difference Red Edge (NDRE), Green 
Normalized Difference Vegetation Index (GNDVI), and Ratio Vegetation Index (RVI) are also based 
on near-infrared reflectance along with other reflectance bands such as red-edge, green, and red, 
respectively [55,66]. These vegetation indices were derived from the formula of NDVI by replacing 
the red band with the red edge in NDRE and green on GNDVI. A few vegetation indices based on a 
light spectrum other than NIR such as Green Vegetation Index (GVI) and Red Edge Ratio (RER) 
index with a specific application were also used in precision agriculture [40]. As an example, 
Figure 6(b) represents the NDVI map of the peanut plant at the late growth stage, which shows the 
spatial variability over the pixel distribution of healthy peanut plants (green pixels) vs stressed 
peanut plants (yellow pixels). NDVI has been used to estimate various crop parameters such as 
vegetation cover, plant density, crop biomass, crop yield, and fertilizer applications. It is noticed that 
the multispectral images were calibrated with a surface reflectance panel, and their pixel value 
ranges between 0 and 1. However, digital images do not go through such calibration steps. Hence, 
the normalization of pixel values must be carried out before computing vegetation indices. 

7.2. Structural features 

Structural information about crops such as crop height, density, volume and coverage is highly 
correlated with crop traits such as biomass, and yield [83]. The crop height can be measured either 
using LiDAR or photogrammetry techniques. Since the LiDAR can obtain three-dimensional (3D) 
information about the target at multiple vertical layers, it can be used to derive crop height as 
suggested by Zhou et al. [75]. The difference between layers at the top of the crop (digital surface 
model) and the bottom of the crop (digital terrain model), is used to estimate the plant height, 
commonly known as the canopy height model. Similarly, the photogrammetry technique discussed 
in [21] used the RGB-derived points cloud-based digital terrain model (DTM) and digital surface 
model (DSM). The digital terrain model (DTM) is a points cloud orthomosaic of the field taken 
before crop plantation, whereas the digital surface model (DSM) is the points cloud model after crop 
plantation. By subtracting DTM from DSM, a plant height for each pixel on orthomosaic is derived. 
However, the canopy tropical might not be uniform in all places, the mean height method was 
applied for height estimation. The accuracy of these methods depends on various conditions of UAV 
flight parameters such as altitude, speed, location of flight lines, crop characteristics (crop 
consistency) and field terrain. A combination of height estimated from LiDAR data with vegetation 
indices was claimed to be more accurate in estimating pasture’s sward height and above-ground mass 
at a very fine spatial scale using UAV [84]. 

The canopy coverage is derived from the ratio of vegetation pixels with total pixels per plot 
(field of interest). The vegetation area is discriminated from the non-vegetation area by either using 
threshold criteria [16] or machine learning approaches [55]. The threshold-based approach finds the 
appropriate vegetation index (VI) value so that the pixel values below/above that threshold are 
classified as crop vs non-crop pixels. For example, the excessive green (ExG) index with a threshold 
value (r = 51) was used in [16] to classify crop vs non-crop pixels where the pixels with a value 
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below the threshold were taken as non-crop pixels and pixels that were above the thresholds were 
classified as crop pixels. The machine learning approaches segment the pixel into background vs 
crop by training the learning model. For instance, a support vector machine (SVM) classifier was 
trained to classify RGB image pixels into either background or vegetation pixels using colour 
features. A total of 5000 pixels were used to train the SVM model. Then the SVM classifies each 
pixel into background vs vegetation. Then, the canopy coverage was derived as a ratio of the number 
of vegetation pixels to total pixels in a plot [55]. The canopy coverage is further used to calculate 
plant density as discussed in [66] where authors counted the number of plants presented in a plant 
coverage area to derive the plant density (plant m−2). 

 

Figure 7. Visualization of three texture features derived from (a) RGB image of peanut 
field acquired with UAV (b) dissimilarity (c) homogeneity (d) contrast. 

7.3. Texture features 

An image texture determines the spatial arrangement of pixel intensities on the images. Various 
statistical approaches exist to measure the image texture such as edge detection, and co-occurrence 
matrices. The grey level co-occurrence matrix (GLCM) is the widely used texture feature in existing 
works. It was first proposed by Haralick et al. [85] which revealed that the spatial distribution of 
pixels at a certain offset (d) and angle (θ) can be measured with such a co-occurrence matrix for a 
grey-scale image. They extracted 14 texture measures from such GLCM matrix such as mean (ME), 
variance (VA), homogeneity (HO), contrast (CO), dissimilarity (DI), entropy (EN), second moment 
(SE), correlation (CO) and so on, which are commonly known as Haralick features. They have been 
shown effective for image fusion, change detection and image classification tasks. For example, Guo 
et al. [86] combined the GLCM texture features with NDVI to identify the tasseling date of summer 
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maize. They considered four GLCM texture measures: contrast, correlation, energy, and homogeneity, 
where the contrast texture feature performed better than other textures. Similarly, Bah et al. [14] used 
six Haralick features: autocorrelation, contrast, correlation, dissimilarity, energy, and entropy for 
weed detection. They reported the highest accuracy of 96.99% for weed detection in the spinach field 
using Haralick features along with other RGB image features such as colour, Histogram of gradient 
(HOG) and Gabor. The above discussion shows that the texture features can supplement the other 
image feature such as spectral and structural for crop trait estimations. An illustration of three 
Haralick features namely, dissimilarity, contrast and homogeneity derived from RGB peanut images 
acquired with a drone is shown in Figure 7. 

8. Model building and evaluation 

Once the preprocessing and feature extraction steps are completed, the crop model to address 
specific applications needs to be developed. For instance, a linear regression model for yield 
estimation with vegetation index (VI) as a dependent variable and yield as an independent variable 
was developed by Guan et al. [50]. The data analysis can be performed with either traditional 
statistical methods such as correlation and regression analysis or learning models such as machine 
learning and deep learning [21]. Since the learning models are data-driven, a set of potential input 
(independent) and output (dependent) variables to train and test the model are important. Once the 
input and output variables for the model are established, it is followed by the selection of a specific 
machine learning algorithm, hyper-parameter tuning and model evaluation [15]. In this section, we 
review the various machine learning and deep learning models that have been developed for 
precision agriculture applications such as yield estimation, disease detection and crop classification. 

While synthesizing the review for model evaluation, we classified the learning models into two 
categories based on the output variables: a) regression task for continuous output variable and b) 
classification task for the discrete or categorical output variable. To evaluate the regression model, the 
widely used evaluation matrices are coefficient of determination (R2), root means square error (RMSE) 
and means absolute error (MAE). The coefficient of determination measures how much variability the 
model can explain while the other two metrics define how much difference the model output is from 
the actual output [87]. The classification models are evaluated on the basis of f-score and accuracy [88]. 
These matrices measure the model's prediction ability in comparison to the actual output. 

8.1. Machine learning-based models 

Machine learning models have been investigated for various data modelling purposes such as 
image recognition [89], text classification [90], and stock market prediction [87] because of their 
ability to find the pattern associated with input and output data [54]. Since the precision agriculture 
system attempts to get information from agricultural data to help farmers make better decisions for 
farm management concerning time and space [91], researchers have analyzed and investigated 
machine learning methods to extract a specific pattern from agricultural data. The specific pipeline of 
machine learning approach for UAV imagery-based precision agriculture is shown in Figure 8. 
Herein, we observe mainly three steps: image processing, feature extraction, and model building 
when applying machine learning methods to UAV imagery. Since machine learning methods are 
data-driven, their throughput is always dependent on the given input, the image pre-processing is an 
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essential step in this pipeline. The pre-processing of UAV images includes image stitching, image 
calibration, geo-referencing and orthomosaic generation (refer to section 6). Once the reflectance 
map or orthophoto is generated for a particular flight mission (which covers the area of the 
agriculture field), the field of interest (FoI) is extracted. It generally consists of three steps. First, it is 
uploaded to some geographic information system (GIS) such as QGIS software in [66] or ArcGIS 
software in [47] to extract the area of interest by specifying the coordinates of a boundary point of 
the field. Then, the extracted map is further cropped and rotated to align the crop plots. Finally, a 
shape file is built to separate the individual plot on the map. A sample of plot division is shown in 
Figure 6 where the peanut field orthomosaic is divided into individual plots using a shape file 
represented as rectangles. 

 

Figure 8. The machine learning-based crop models pipeline using UAV imagery. 

 

Figure 9. Deep learning-based crop model pipeline using UAV imagery. 

8.2. Deep learning-based models 

The neural network model inspired by the human brain has been used for a long time for data 
modelling. They consist of layered architecture having a number of nodes or neurons for data 
processing in each layer. Here, shallow networks consist of a lower number of layers (usually three 
or fewer) while deep neural networks go beyond this. While looking into existing works on deep 
learning for precision agriculture, most of the models considered end-to-end image recognition tasks 
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such as crop classification [92], weed detection [93], and crop segmentation [94]. They mostly use 
the convolutions neural network (CNN). CNN extracts the image feature with convolution operations 
in each layer, thereby reducing the image size with selective image features passed to the next layer. 
Hence, deep learning with convolutional neural networks allows automatic feature extraction 
whereas it must be done manually in the machine learning pipeline (refer to Section 8.1). The general 
pipeline for a deep learning-based crop model using UAV imagery is shown in Figure 9. 

9. UAV Applications in precision agriculture 

9.1. Crop yield estimation 

Maximizing crop yield with minimum growth cost is a key goal of a smart agriculture system. 
Early identification of biotic and abiotic stresses of crops that hinder crop yield is beneficial. It helps 
the farmer to manage well in advance so that the spread of diseases and pests can be reduced by 
applying appropriate control techniques thereby increasing the yield. Hence, the estimation of yield 
and related parameters such as biomass, plant health, nitrogen status, and soil conditions are 
important.  

UAV-based remote sensing has been hugely applied for yield estimation of various crops (refer 
to Tables 4 and 5). Since the performance of crop yield estimation models differs from one crop to 
another crop, it is quite challenging to compare the performance of the crop yield estimation models. 
Here, we synthesized the performance of crop yield estimation models from three perspectives: crop, 
input features, and machine learning models. We adapt these criteria because the input image features 
used in yield estimation methods vary from crop to crop which ultimately affects the output of the 
yield prediction model. 

The yield estimation for corn was investigated in [16,66] with spectral and structural features 
using various regression models. A linear regression model [16] with spectral and spatial features 
(ExG, NGRDI and PPRb) achieved an R2 of 0.74. Furthermore, an artificial neural network (ANN) 
model was proposed in [66] using both structural (canopy cover, canopy height and canopy volume) 
and spectral (RGB and multispectral) features provided minimum errors (0.449 t.ha−1 RMSE and 
0.209 t.ha−1 MAE ) on corn yield estimations. Similarly, another artificial neural network model for 
tomato yield estimation was reported in [83] which achieved the best result (R2 = 0.70) while 
combining the plant attributes, vegetation index and weather information as input features. 
Furthermore, various machine learning methods such as Support vector regression (SVR), and 
LASSO regression were compared for wheat yield estimation by Shafiee et al. [95] where LASSO 
regression was better in terms of training time while both regression models provided good 
performance metrics (R2 = 0.90) on yield estimation. 

Analyzing the features used in each crop yield estimation model, the performance of yield 
estimation models with multi-model features dominated the single feature model. For instance, the 
maize yield estimation model [65] with vegetation index (MRBVI) produced a coefficient of 
determination (R2) of 0.57 using support vector machine regression. In contrast, when the yield 
estimation model [55] with multiple features such as canopy cover, canopy height, RGB and 
multispectral VI using random forest regression produced an R2 of 0.85 with minimum error (3.65% 
for RMSE). While comparing the performance of machine learning algorithms on yield estimation, 
LASSO regression [95] has the highest coefficient of determination (R2) of 0.90 for the wheat crop, 
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followed by a back-propagation neural network (BP-NN) [96] with an R2 of 0.85 for cotton crop. 
The majority of the crop yield estimation models had the coefficient of determination (R2) in the 
range of 0.70 to 0.80. 

Table 4. Performance comparison of different machine learning models on crop yield 
estimation+. 

Ref. Crop Feature Methods RMSE 

(t.ha−1) 

MAE 

(t.ha−) 

R2 Remarks 

[16] Corn ExG, NGRDI, & 

PPRb 

LR - - 0.74 The combination of spectral and spatial 

indices provided the best results. 

[17] Rice MS & RGB VI MLR 0.926 - 0.76 Regression models such as Linear and 

logarithmic were implemented at the 

various growth stage. 

[83] Tomato CC, CH, CV, 

ExG, & ETc 

ANN   0.70 A combination of plant attributes, VI and 

weather information provides the best 

yield estimation. 

[66] Corn CC, plant 

density, RGB & 

MS VI 

ANN 0.449 0.209 0.92 The ANN with WDRVI, plant density and 

canopy cover as input features provided 

the best yield estimation among other 

features. 

[65] Maize MRBVI ANN, SVM, 

RF & ELM 

  0.57 The SVM provided the best yield 

estimation with MRBVI. 

[54] Maize VI F, SVM, 

LR, ANN, 

Ensemble 

0.853 - 0.60 The ensemble method based on additive 

regression provided the best yield 

estimation. 

[55] Rice CH, CC, RGB & 

MS VIs 

RF 3.65% 

(*) 

- 0.85 RF was trained with a model transfer concept 

where the trained model from the 2017 yield 

data was transferred to the 2018 yield data. 

[56] Vine NDVI, CV & CT LR, RF, 

SVM, GPR 

- - 0.80 The GPR model provided the highest 

performance with the canopy thickness 

feature. 

[95] Wheat NDVI, EVI & 

MTCI 

SVR, and 

LASSO  

0.374 - 0.90 LASSO regression was better in terms of 

training time while both regressions provide 

good performance on yield estimation. 

[21] Soybean VI, CH, CC, 

Thermal & 

Texture 

DNN, 

PLSR, RF, 

SVR 

15.9% 

(*) 

 0.72 Among the two DNNs with data fusion at 

the input level and feature level, the later 

DNN produced the highest performance. 

[96] Cotton MS-based VI BP-NN - - 0.85 Multi-temporal VI with image 

segmentation significantly improves the 

cotton yield estimation. 
+ Note that the value of the Correlation coefficient (R) is changed into R2 when the original work has reported only the R value. 

Similarly, the RMSE and MAE are expressed in t.ha−1 to make the comparison on the level ground. The (*) represents the Relative 

RMSE. 
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Table 5. Performance comparison of various deep learning models on crop yield 
estimation+. 

Ref. Crop Inputs Methods RMSE 
(t.ha−1) 

MAE 
(t.ha−1) 

R2 Remarks 

[97] Soybean MS images 
and wilt traits 

vector 

Mixed 
CNN 

0.3910 - 0.78 
 

Seven image features; the Red-edge 
band of the multispectral images, three 
VIs, a DEM and two texture features 
were used to train CNN along with a 
categorical wilt trait vector which 
resulted in the best yield estimation. 

[98] Rice RGB and MS 
images 

CNN 0.6580 - 0.58 The two-branch CNN (one branch with 
RGB and another with MS images) was 
trained and tested where RGB image has 
a significant contribution to yield 
prediction. 

[22] Wheat RGB images 3D-CNN, 
ConvLSTM 
and CNN+ 

LSTM 

0.2895 0.2189 0.96 Three deep learning models were 
investigated for crop yield estimation 
where 3D-CNN outperforms all other 
methods. 

[99] Barley RGB images VGG+ 
MLP 

- - 0.63 Three pre-trained models (ALexNet, 
VGG and VGG-19) were used as feature 
extractors and then extracted features 
were fed to machine learning regression 
models where MLP outperforms all 
other ML models such as SVR, GP, RF, 
LR, and KNN. 

[100] Wheat 
and 

barley 

RGB and 
NDVI images 

CNN - 0.4843 - A CNN with six convolutional layers 
was implemented for each of RGB and 
NDVI image where the CNN trained 
with RGB images showed better 
performance over the NDVI images in 
yield prediction. 

+Note that the RMSE and MAE are expressed in t.ha−1 to make the comparison on the level ground. 

Besides, the deep learning model has recently progressed well for yield estimation using UAV 
imagery [22,97,98]. The convolutions neural network [97,98] has been used mostly in existing works for 
yield estimation within a deep learning framework. This might be because of the maturity and success 
gained by the convolutional neural network in remote sensing applications [15]. The majority of these 
works used RGB images [98,99] while complementing them with multispectral features in some 
studies [97]. The performance of the deep learning-based yield estimation methods is comparatively 
higher than those based on machine learning methods in general. For instance, the 3D-CNN model for 
wheat yield estimation provided the highest coefficient of determination (R2) of 0.96, and the minimum 
errors (0.2895 t.ha−1 for RMSE and 0.2189 t.ha−1 for MAE) using RGB images. 

In summary, we notice that recent studies in yield prediction using UAV images had been 
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effectively used at the plot level [21], while most of the previous remote sensing techniques using 
satellite images were implemented at the national or regional level. This is because of the high spatial, 
temporal, and spectral resolution images acquired with the UAV platforms. Overall, the basic idea 
behind each yield prediction method is to model the crop features with ground truth using various 
regression strategies. Both UAV-based remote sensing and machine learning technique have been 
exploited for crop yield prediction. Remote sensing methods mainly depend upon extracting vegetation 
indices from RGB, multispectral or hyperspectral images. For instance, a yield map for rice and wheat 
crops has been developed using NDVI from multispectral images [50]. Furthermore, RGBs combined 
with multispectral images have been proved more accurate than individual feature methods [55] for 
grain yield prediction. Moreover, the multi-model data fusion-based machine learning method which 
combines various features such as thermal, spectral, structures and texture has shown promising results 
in yield prediction [21]. However, data fusion is challenging with such models. The data received from 
multiple sensors have different spatial, spectral, and temporal scales which demands a specific data 
fusion procedure for a particular application. Similarly, deep learning-based methods have shown the 
highest performance on yield estimation for some crops such as wheat [22], and soybean [97], 
nevertheless deep learning methods are more like a black box, and are prone to over-fitting, preventing 
them from generalization over time [98]. Also, they need a large number of high-resolution training 
images and have high computational costs in comparison to traditional machine learning methods 
which further hinders their uses in light-weight UAV-based remote sensing [22]. The comparative 
study of machine learning and deep learning-based yield prediction model for various crops along with 
the UAV image features used is reported in Tables 4 and 5 respectively. 

9.2. Crop disease detection 

Plants are subjected to various stresses from environments, which decrease plant productivity. 
Stress is caused by either abiotic or biotic factors. Abiotic stress is due to drought, floods, extreme 
temperatures, etc., whereas biotic stress is caused by pathogens, pests and weeds [101]. Early 
detection and identification of such stresses are beneficial for farmers as they will get proper time to 
manage these stresses and prevent possible epidemics and crop productivity and quality losses [102]. 
There are mainly two approaches used for crop disease estimation using UAV imagery a) vegetation 
index-based approaches and b) machine learning (deep learning)-based approaches. 

The vegetation index-based techniques mainly estimate the diseases or stress score by 
processing pixel-level information in RGB, multispectral, hyperspectral [103] or thermal infrared 
images [104]. For example, RGB images acquired with UAV in a time-series fashion were used to 
estimate light blight disease on potatoes [105]. The disease severity index derived from the image 
processing method was highly correlated (R2 = 0.73) with a manual assessment of diseases using the 
area under the disease progress curves (AUDPC). Furthermore, Patrick et al. [106] used multispectral 
vegetation indices such as NDRE and NDVI to estimate wilt disease in peanuts using regression 
analysis. They deployed a threshold value for each vegetation index which segments the image pixels 
into healthy and disease classes. The number of pixels above the threshold which were classified as 
healthy pixels was taken as an independent variable to regress it with the wilt disease score. They 
found the highest coefficient of determination (R2) of 0.82 with the NDRE index. A lightweight 
UAV-based remote sensing was investigated for pest and disease detection on two crops: thrips in 
onion cultures and potato blight. The NDVI index map showed the visually distinguishable region 



4301 

Electronic Research Archive  Volume 30, Issue 12, 4277-4317. 

affected by the disease for both crops while comparing the index maps generated within an interval of a 
week [20]. Similarly, three UAV-derived multispectral vegetation indices: normalized difference index 
(NDI), green index (GI), and green leaf index (GLI) were investigated for wheat foliar disease severity 
estimation in [24], where GI was found highly correlated with disease infection coefficient. 

Similarly, other vegetation indices (VIs) such as Normalized Difference Vegetation Index 
(NDVI), Crop Water Stress Index (CSWI), Photochemical Reflectance Index (PRI), Green 
Normalized Vegetation Index (GNDVI), Water Deficit Index (WDI) [103,104,107,108] were used to 
assess water deficit stress or drought in the plant. These indices are particularly important in 
semi-arid areas where the irrigation supply needs to be constantly monitored. These indices are 
calibrated with ground truth and used for the estimation of water stress using regression 
analysis [109]. The calibration with ground truth is a major source of error, especially when ground 
truth data is of large uncertainty. 

The alternative approaches to vegetation index for disease detection are based on data-driven 
machine learning and deep learning algorithms. Traditional machine learning techniques such as 
support vector machine [110], artificial neural network [23], and random forest [69] have been used 
to classify the stress in the plant with multispectral and hyperspectral imagery [51]. To train and learn 
from these methods, labelling of pixels such as which pixels belong to disease and which belong to 
healthy plants [111] is essential. A hyperspectral-based remote sensing technique was implemented 
by Abdulridha et al. [23] for tomato disease detection such as bacterial spot, target spot and yellow 
leaf curl in field conditions. They classified the diseased tomato plants using multiple vegetation 
indices and machine learning methods such as artificial neural networks with radial bias function 
(RBF) and stepwise discriminant analysis. The re-normalized difference vegetation index and 
modified triangular vegetation index were the best-performing indices to identify the diseases. A 
wheat yellow rust detection with multispectral UAV imagery was proposed in [69]. The random 
forest classifier at the pixel level was trained where image pixels were classified into healthy, 
moderate, and severe with an accuracy of 89.3%. 

Deep learning methods such as CNNs were used to detect disease at the object as well as the 
pixel level in various kinds of images such as RGB, multispectral and hyperspectral. Kerkech et 
al. [7] implemented a CNN for RGB image at block or patch level that classifies sliding windows of 
image (object) into four designated classes: ground, healthy, partially diseased, and diseased. Then, 
each image patch was post-processed to generate the disease map. They reported an accuracy of 
95.8% while classifying the tiles into four classes. Since the expert annotated data has a limited size, 
there is always a risk of overfitting the model which needs to be validated further. Another study by 
Wu et al. [112] proposed a two-stage CNN for lesion detection on maize with high-resolution RGB 
UAV imagery captured by flying a drone at 6m above the ground. In the first stage, they trained a 
backbone CNN by randomly cropping sub-images of size 500 × 500. Next, the disease heat map was 
generated with the output of previously trained CNN while feeding the patch generated with sliding 
windows over the original UAV images. A similar patch-based method using a deep convolution 
neural network (DCNN) for yellow rust disease detection on wheat was implemented with very 
high-resolution hyperspectral imagery by Zhang et al. [51]. The DCNN outperformed the traditional 
classifier such as random forest (RF) by 7% of overall accuracy. Furthermore, early water deficit stress 
identification using cloud-based artificial intelligence or CNN with a multispectral dataset having three 
classes: high water stress, low water stress, and no water stress was investigated by Freeman et 
al. [113]. They trained the machine learning model on a small sample size of 36 plants and 150 images. 
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The four-fold cross validation of their model resulted in an area under the curve (AUC) of 0.98.  
Performance comparison of crop disease detection methods based on machine learning and deep 

learning approaches is listed in Table 6. 

Table 6. Performance comparison of crop disease detection using machine learning (ML) 
and deep learning (DL) with UAV imagery*. 

Ref. Crop Disease Inputs Methods Acc. 
(%) 

Remarks 

[23] Tomato leaf spot HS 
images 

STDA and 
RBF 

95.00 Two classification algorithms: STDA & radial 
bias function (RBF) were compared for tomato 
leaf spot disease classification where the STDA is 
more accurate (95%) than RBF. 

[69] Wheat yellow 
rust 

MS 
images 

RF 89.30 Multiple vegetation indices derived with MS 
images were investigated for better 
discrimination of diseased and healthy crop 
pixels where RVI, NDVI and OSAVI were the 
top three VI. 

[7] Grape vine 
diseases 

RGB 
images 

CNN 95.80 A CNN was trained with both colour space and 
vegetation index images as input features and the 
highest accuracy of 95.8% was achieved with the 
combination of ExG, ExR and ExGR vegetation 
indices 

[112] Maize Northern 
leaf blight 

RGB 
images 

CNN 95.10 A two-stage CNN for leaf blight detection on 
maize with high-resolution RGB UAV imagery 
captured by a flying UAV at 6m above the ground 
was trained with transfer learning with the 
ResNet-34 model pre-trained on ImageNet. 

[51] Wheat yellow 
rust 

HS 
images 

Deep 
CNN 

85.00 The performance of DCNN which considers both 
spatial and spectral information to detect yellow 
rust was 7% higher than the traditional 
approaches such as random forest classifier 
which uses only spectral information. 

[111] Wheat Yellow 
rust 

HS 
images 

SVM 92.90 The SVM with data normalization (SVM SNV) 
achieved the highest accuracy in comparison to 
other approaches such as SVM -indices, 
SVM-Raw and SAM. 

*Note that “Acc.” denotes the detection accuracy. 

9.3. Crop classification 

Crop classification is one of the fundamental steps in precision agriculture because it helps the 
policy-makers and stake-holders to retrieve useful information about types of crops and their status, 
which, in turn, is very useful to monitor the crop. Machine learning and deep learning methods have 
been extensively used for crop classifications [114–118]. These approaches first train the models 
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with manually annotated data and later these models are tested on new field images. The data 
annotation can be carried out at the patch (object) level or pixel level. Accordingly, these approaches 
can be further categorised into patch-based approaches [119] and pixel-based approaches [114,118]. 

Table 7. Performance comparison of various models (ML and DL) on crop classifications*. 

Ref. Crop Inputs Methods F1-Score Acc. 
(%) 

Remarks 

[114] Rice RGB 
images 

FCN-AlexNet 
and SegNet 

79.00 94.43 Two semantic segmentation methods: 
FCN-AlexNet and SegNet, were simulated 
with RGB image and vegetation indices as 
input and FCN-AlexNet outperforms the 
SegNet during the rice lodging 
classification. 

[115] Sunflower RGB and 
MS images 

SVM, SegNet, 
FCN 

- 89.80 Three segmentation methods: SVM, FCN 
and SegNet for sunflower lodging 
identification were implemented with and 
without using image fusion where SegNet 
outperform all other methods with a 
highest accuracy of 89.80%. 

[120] Corn RGB 
images 

U-Net - 99.40 The U-Net was used to distinguish the corn 
pixel from the background pixel which was 
later used to count the corn plant contained 
in the image. 

[117] Suger 
beet 

MS images U-Net - 95.00 The pixel level classification of 
multispectral UAV images for weed, soil 
and sugar beet was performed using a 
modified U-Net which showed the highest 
accuracy of 95.00% on combined input 
(RED+NIR+NDVI) 

[119] Corn RGB and 
MS Images 

LeNet - 86.80 A patch-based LeNet was implemented for 
corn vs non-corn classification which 
achieved an accuracy of 86.80% while 
using a dataset acquired at 180 m altitude 

[121] Multiple 
crops 

RGB 
images 

VGG +DNN 86.00 86.00 The pre-trained VGG-16 on ImageNet was 
used for feature extraction, known as 
transfer learning. The extracted features 
were used for crop classification with a 
shallow feed-forward neural network. 

[118] Multiple 
crops 

GLCM 
texture 

RF, SVM - 90.85 SVM and random forest were compared 
for crop classification using texture and 
spectral features where SVM imparts the 
best performance. 

*Note that “Acc.” denotes the classification accuracy. 
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A patch-based convolutional neural network for corn classification was proposed in [119]. The 
multispectral UAV images were cropped into patches of size 28 × 28 pixels for each corn and 
non-corn class. These patches were used for training the deep learning model- LeNet. Their results 
showed that the altitude of UAV flight affects the classification accuracy of CNN as the best 
accuracy of 86.8% was obtained using the model trained with a dataset acquired at an altitude of 180 
m. Another study conducted on the identification of corn from the background on RGB UAV images 
using U-Net was implemented in [120]. They used a blob detector to count the corn plants after 
segmenting the RGB UAV images into the corn or the background. Similarly, a crop and weed 
distribution estimation using a modified U-Net was designed by Fawakherji et al. [117]. They 
experimented with multiple combinations of inputs (RED+NIR+NDVI) and achieved an accuracy of 
95% while classifying the pixel into soil, weed and sugar beets. UAV image-based segmentation 
methods such as FCN-AlexNet and SegNet [114] distinguished the rice lodging from other objects 
such as road, ridge, and background with an overall F1 score of 83.56% and an accuracy of 94.43%.  

A multiple crop classification such as bananas, maize and legumes with drone-based RGB 
images was developed using deep learning methods [121]. The pre-trained VGG-16 on ImageNet 
was used for feature extraction, known as transfer learning. The extracted features were used for crop 
classification with a shallow feed-forward neural network which achieved an overall f1-score of 
86.00%. An effect of the GLCM texture feature on crop classification using UAV imagery was 
investigated by Kwak et al. [118]. They combined the texture features with spectral features to 
effectively classify the multiple crops such as cabbage, potato, and fallow. The texture feature derived 
with a larger kernel size improved the performance of the support vector machine (SVM) by 7.72%. 

A binary classification that classifies the image pixels into crop and other pixels (background or 
other crops or weeds) was also investigated in the past. For instance, the performance comparison of 
three methods: SVM, FCN and SegNet for sunflower lodging identification (lodging vs 
non-lodging) [115] showed the superiority of SegNet with the highest accuracy of 89.80%. They also 
compared the effect of image fusion on the performance of the segmentation model which 
demonstrated that image fusion increases the segmentation performance by 5.4% in accuracy. The 
performance comparison of various machine learning and deep learning models for crop classification 
is presented in Table 7. 

10. Discussion 

In this section, first, we summarize the existing works under various themes based on the 
questions listed in Table 1. These themes of discussion include UAV platforms, sensors, image 
features and modelling methods. Second, we narrate the recent research progress using the BibTex 
analysis and list out the issues and challenges of UAV-based remote sensing for PA. Finally, we 
suggest some future avenues of machine learning and deep learning methods for drone-based 
precision agriculture. 

10.1. UAV and sensors 

Over the past decades, the development of UAV platforms has progressed well which enhanced 
the capability of UAV-based remote sensing in various aspects. We notice that lightweight 
rotatory-wing and fixed-wing UAVs are the first choices among precision agriculture researchers. 
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Among the rotatory-wing UAVs, quadcopter and octocopter are mostly used drones in yield 
estimation and disease detection (refer to Table 2). The increased flexibility, manoeuvrability and 
cost affordability of multi-rotor UAVs attracted people to deploy them in precision agriculture 
applications. However, the limited endurance and speed may make them unsuitable for large-scale 
field mapping. The fixed-wing UAVs have the ability to cover longer distances but come with higher 
costs and less manoeuvrability. 

The sensors attached to UAVs are the essential component of UAV-based data acquisitions. 
Low-cost sensors such as RGB [19] and custom design multispectral sensors such as RGB with 
NIR [47] are extensively deployed in recent works, especially when machine learning and deep 
learning methods are used for crop model building. Since deep learning methods such as CNN and 
DNN require large numbers of high-resolution training images, which can be achieved with RGB 
sensors mostly, they have been largely exploited by existing works to build the Artificial intelligence 
(AI) model for weed detection [14], yield estimation [16], plant counting [19], etc. The RGB images 
are also the source of structural crop information such as canopy height, canopy cover and canopy 
density [55]. Besides, RGB and multispectral sensors, the hyperspectral sensors are mostly used to 
capture the crop information at high spectral resolutions which help to identify the finer spectral 
signature of crops such as disease stress [111], and nitrogen status [61] in crops rather than the 
applications such as yield estimation and crop classifications. 

10.2. Crop features and methods 

Among the crop features extracted from multiple UAV imagery, spectral features derived from 
RGB, multispectral, and hyperspectral images are found to be widely used in precision agriculture 
applications. This is because the spectral features include the spectral signature of the crops which 
can help to distinguish them from other objects such as soil and weeds. However, the other image 
features such as texture and structure are complementary information while combining them with 
spectral features. The combination of such features has proved to be effective in several applications 
such as yield estimation, disease detection and crop classifications. 

While synthesizing the recent works from model-building perspectives, two kinds of models 
have been implemented to address precision agriculture applications: correlation and regression 
analysis-based (or statistical analysis) methods and data-driven (or machine) learning methods. The 
former methods use either spectral information (vegetation index) or structural information (crop 
height, volume, etc.) calculated from UAV images as an independent variable and crop trait of 
interest as a dependent variable. However, the data-driven learning models use the concept of 
training with sample data and building the crop model for either regression or classification tasks 
using various learning algorithms. Here, the data-driven algorithms include both traditional machine 
learning and deep learning methods. Compared to the performances of these models for various crop 
trait estimation and prediction, learning-based methods have produced the most promising results 
over the statistical analysis methods. Nevertheless, the machine learning methods are data-intensive 
and require a large amount of manually annotated data as well as more computation time to train the 
model which is one of the recurring issues in this field. 
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10.3. Research trend 

To observe the recent research trend on the applications of UAVs for precision agriculture, we 
present the word-cloud and word dynamics analysis in Figures 10 and 11, where the authors’ 
keywords were extracted from published research works in this field. The most popular words that 
describe the popular keywords among the researchers are machine learning, deep learning and 
remote sensing which is expected because the nature of UAV data resembles the Big-data which 
further demands large-scale data processing algorithms, whereas data-driven methods such as 
machine learning and deep learning become the first choice for researchers. 

 

Figure 10. Word dynamics of main keywords used in precision agriculture research 
using UAV. 

 

Figure 11. Word-cloud representation of the Top fifty author's keywords using 
Bibliometric analysis [122] of articles retrieved from the Scopus database. Note that the 
size of each word in the word-cloud is proportional to the frequency of the keyword. Also, 
this word-cloud might contain some bias based on the keywords used to select the articles. 
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With the analysis of the keywords’ growth status over the last decade from 2013 to 2022, the 
keyword “precision agriculture” is constantly being popular throughout the period, as it is the main 
keyword that reflects the research on smart agriculture. Interestingly, the second and third dominant 
keywords are “machine learning” and “deep learning” which further supports the fact that machine 
learning and deep learning methods are being largely employed to analyze and build the crop models 
for various crop trait estimations. In summary, the researchers are more focused on these recent 
methods to leverage their large-scale data processing capability in precision agriculture with the aid 
of drones. However, we notice some bias may be contained in this word-cloud analysis given the fact 
of the keywords we used to select the articles. 

10.4. Summary of findings  

UAVs or drones are emerging technology, recently introduced to precision agriculture. However, 
the pace of development around this technology is so rapid that it has addressed some of the complex 
problems in agriculture such as disease detection, crop classification and yield estimation more 
accurately. There are still a few challenges while implementing a UAV-based precision agriculture 
pipeline regarding data acquisition (sensor and UAV platform), data processing (UAV image 
processing and feature extraction) and prediction models (machine learning and deep learning). Here, 
we summarize the findings of this survey into three groups: strength of existing well-developed 
works, current focus, and challenges.  

The data acquisition platforms such as sensors and UAV systems have made significant progress. 
Based on these platforms, it is possible to collect high-resolution data with multiple sensors 
simultaneously. The data pre-processing also becomes relatively easier at the moment. This is 
because of the availability of high-performance computers, Photogrammetry software (e.g., 
Pix4dmapper) tools and cloud technology. Recently, more researchers on precision agriculture are 
focused on the development of advanced data analysis techniques based on machine learning and deep 
learning algorithms. In summary, we detail the challenges and opportunities of UAVs in PA as follows: 

(i) Compliance with the drone operating regulations, necessary training for drone operation, and 
advanced knowledge required by data processing tools and software are the key challenges 
that need to be properly dealt with for the wider uses of drones in precision agriculture. 

(ii) The existing feature extraction methods are primarily focused on spectral information for 
crop trait estimation, but the multi-model feature fusion strategies look more efficient for 
various crop trait estimations. However, the feature fusion strategies are not straightforward 
to implement. Hence, more explorations are needed in these perspectives. 

(iii)  Advanced data analysis techniques such as machine learning and deep learning have shown 
very promising outcomes in some PA tasks such as crop classification, and yield estimation. 
However, they require a large amount of manually labelled data for training which is laborious 
and costly. Therefore, alternative approaches over the manual annotation for training data such as 
semi-supervised, weakly supervised or unsupervised techniques need to be explored. 

11. Conclusions 

We have provided a detailed analysis and synthesis of the applications of machine learning 
methods for precision agriculture tasks while using UAVs as data acquisition platforms. We notice 
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that the sensors and UAV platforms are cardinal while conducting drone-based remote sensing work. 
The overall pipeline of UAV-based remote sensing applications is critically dependent on the types of 
data acquired by sensors and the reliability of UAV platforms. We also unwrap the various crop 
features extracted while processing UAV image data for various crop traits estimation tasks, which 
reveals that the spectral features are the most important features for the better performance of such 
models while other features are only complementary. Hence, the multi-model feature fusion 
techniques have great potential to address the precision agriculture challenges such as accurate crop 
trait estimations. This paper presented a comparative analysis of various machine learning and deep 
learning methods used to address precision agriculture tasks such as yield estimation, disease 
detection and crop classification. It is seen that deep learning-based methods outperform the 
traditional crop estimation models for the majority of the tasks. 

To sum up, we have reviewed the various UAV platforms, the associated sensors, and the data 
processing pipeline complemented with recent analytical methods such as machine learning and deep 
learning in this work. The recent trend of using UAVs in smart agriculture shows the increasing 
success of deep learning methods in accurately addressing precision agriculture tasks.  
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