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Abstract: Preferential public transport policies provide an important social welfare support for travel 
by the elderly. However, the travel problems faced by the elderly, such as traffic congestion during 
peak hours, have not attracted enough attention from transportation-related departments. This study 
proposes a passenger flow prediction model for the elderly taking public transport and validates it 
using bus smart card data. The study incorporates short time series clustering (STSC) to integrate the 
elements of the heterogeneity of bus trips taken by the elderly, and accurately identifies the needs of 
elderly passengers by analysing passenger flow spatiotemporal characteristics. According to the needs 
and characteristics of passenger flow, a short time series clustering Seasonal Autoregressive Integrated 
Moving Average (STSC-SARIMA) model was constructed to predict passenger flow. The analysis of 
spatiotemporal travel characteristics identified three peak periods for the elderly to travel every day. 
The number of people traveling in the morning peak was significantly larger compared to other periods. 
At the same time, compared with bus lines running through central urban areas, multi-community, and 
densely populated areas, the passenger flow of bus lines in other areas dropped significantly. The study 
model was applied to Lhasa, China. The prediction results verify that the model has high prediction 
accuracy and applicability. In addition to the initial application, this predictive model provides new 
directions for bus passenger flow forecasting to support better public transport policy-making and 
improve elderly mobility. 

Keywords: elderly travel; bus passenger flow; STSC-SARIMA model; spatiotemporal characteristics; 
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1. Introduction  

As people live longer, populations around the world are aging faster, impacting almost every 
aspect of society. Population aging is a continuing trend in societal development, especially in 
developing countries. Most developing countries are facing the pressures of aging including China, 
which has already become an aging society. In response to these problems, concessionary public 
transport schemes have been implemented around the world to improve the welfare of older people. 
For example, in London, in the United Kingdom (UK), older people aged 60 and over are entitled to 
free bus travel. In Beijing, China, local residents aged 65 and over take city buses for free throughout 
the year, which helps address peak travel pressure for the elderly [1]. Many studies have shown that 
preferential public transport policies can create public benefits for the elderly by improving their travel 
quality and increasing their mobility [2]. These benefits can also lessen the sense of social exclusion 
for recipients [3].  

However, when policymakers formulate preferential policies for public transportation for the 
elderly, they often do not pay enough attention to temporal and spatial relationships, such as passenger 
flow and routes and the pressures faced during peak travel periods. For this reason, this research 
focuses on methods that can be adapted to alleviate the stress of traveling for older people. There are 
significant differences in the spatial and temporal travel characteristics of different groups, with older 
people traveling less frequently, over shorter distances, and starting their journeys later compared to 
younger people [4]. The population distribution of young and old is geographically similar, and the 
lifestyles of the elderly tend to be fixed. Due to their poor physical condition, the travel time of the 
elderly is mostly concentrated in the morning and to activities in specific board districts. The mobility 
of the elderly has increased significantly since the 21st century [5]. Experiments have shown that 
mobility is closely related to the quality of life of older people and that travel opportunities are 
important in influencing their travel satisfaction, and inner satisfaction is directly related to the physical 
health of the elderly [6−9]. 

Like most developing countries, China is currently at an intermediate level of economic 
development. As people age, they are abandoning private cars and inexpensive public transport is 
becoming increasingly popular among the elderly [10]. Some scholars have analysed the demand for 
public transport for older people during peak travel times as a way of proposing policies that would 
benefit their mobility [11]. However, most of these studies have focused on peak seasonal long-term 
travel patterns, and few articles have examined the characteristics of older people’s public transport 
trips during short peak periods. It is, nonetheless, essential to analyse the characteristics of short-time 
trips and to locate the demand [12−14]. Given this background, this study focuses on the travel 
characteristics of elderly people aged 60 and above. A clustering method was used to classify peak 
hours, and the passenger load ratio was used as a metric to locate passenger demand. The seasonality 
of travel was also tested and eliminated, and ultimately a forecasting model was built using Seasonal 
Autoregressive Integrated Moving Average (SARIMA). The short time series clustering analysis in 
the study effectively extracts similarities within time periods and resolves irregular components in 
time series as a way of capturing the heterogeneity of the elderly population’s activity during travel 
periods. Travel behavior is different for each elderly person, but the travel pattern is similar for the 
overall category of the elderly, who generally have homogeneous characteristics in society overall. 
The travel characteristics of older people with similar characteristics are often studied in categories 
that more accurately model their travel characteristics [15]. This research can benefit policymakers 
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and planners in developing measures based on specific target groups and provide effective 
recommendations for transport planning and policies to address public transport congestion for older 
adults, improving their mobility. 

The paper is structured as follows. Section 2 presents a review of the relevant literature. Section 3 
presents the research methodology and associated models. Section 4 describes the data sources. Section 5 
presents the analysis results and validates the model with smart card data. Section 6 summarizes the 
study findings and proposes policies to improve bus travel among older adults. 

2. Literature review 

Passenger flow forecasting methods are mostly data-driven, using tools such as time series data. 
Forecasts can be divided into long-term forecasts and short-term forecasts based on the length of time. 
Long-term forecasts are mainly combined with data on land resources, demographics, and traffic 
surveys to forecast features of urban areas over long periods of time and are generally used for transport 
planning and construction [16]. By contrast, short-term passenger flow forecasting is more focused on 
people’s daily trips and traffic operations; is usually expressed in terms of minutes, hours, and days; 
and is based on historical passenger flow data, often recorded by smart card systems [17,18]. 

Short-term passenger flow forecasting research has focused on rail, air, road, and water transport, 
mainly by extracting the temporal relationships between different variables from historical data to 
reasonably forecast future demand [19]. The main methods for creating short-term passenger flow 
forecasts include linear forecasting, non-linear forecasting, and combined forecasting. Linear 
forecasting methods reflect the intrinsic characteristics of the data in the form of parameters and 
capture the heterogeneity of the information contained in the time series by changing the parameters. 
These methods include Kalman filter models, exponential smoothing models, and autoregressive 
moving average (ARIMA) models [20,21]. The methods have the advantages of fully revealing the 
trends and cyclical characteristics of passenger flow, but the disadvantages of being more sensitive 
to the steady state of the data. As such, the complexity of the conditions may lead to decreased 
accuracy [22−24]. Non-linear prediction methods are mainly based on machine learning and include 
support vector machines [25], neural networks [26,27], XGBoost [28], and fuzzy neural networks [29]. 
The combined prediction method is a hybrid model that combines the first two types, using a linear 
model for initial prediction and then a non-linear model for correction. This type of model has the 
advantage of having a high accuracy of fit, but the disadvantages of being highly complex and having 
a long computation time [30,31]. 

As computer hardware conditions have matured, changes in the complexity of neural network 
structures have accelerated, leading to the formation and rapid development of deep neural networks. Fu 
et al. proposed a neural network model for short-term metro passenger flow prediction, which incorporates 
spatio-temporal features and contains data inputs from multiple sources [32]. Tang et al. proposed a multi-
community spatio-temporal convolutional neural network framework for short-term passenger 
predictions for different communities in the same area to capture spatio-temporal correlation [16].  

Short-term passenger forecasting for conventional public transport, which is part of road transport, 
is mostly studied using combined algorithmic models. Bai et al. proposed a multi-modal fusivity 
prediction algorithm, which gives significantly better results than a single algorithmic model [19]. Liu 
et al. proposed a hybrid deep neural network model, in which temporal features such as days of the 
week, hours of the day, and holidays, as well as average passenger flow, are used as inputs to define 
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elements of passenger flow, followed by short-term prediction of passenger flow. This approach 
generates a more accurate prediction of different passenger flow scenarios [33]. Luo et al. used a hash 
convolutional network to address the dynamic spatio-temporal correlation of bus routes, with the 
results showing that bus stops, routes, and spatio-temporal correlation are important factors affecting 
the accuracy of the prediction results [34]. In the area of short-term bus passenger forecasting, the 
performance of the combined forecasting models with neural networks is high; however, the accuracy 
cannot be improved due to an insufficient number of valid samples. 

Bus smart card swipe data are widely used in travel studies to mitigate the shortage of valid samples 
and the difficulty of data collection. These data have been used for travel behaviour analysis and 
passenger demand forecasting [35−39]. In short-term passenger forecasting, combined linear forecasting 
methods do not require a large amount of training data, and the simplicity of the model and low 
computational complexity make it a promising approach for solving small sample forecasting problems. 
However, few practical studies have focused on models that consider a combination of spatio-temporal 
characteristics and combinatorial linear forecasting. Table 1 provides a descriptive summary of the most 
relevant and recent research on passenger flow forecasting using transit smart swipe card data. 

Table 1. Research on short-term passenger flow forecasting models. 

Author Title Main characteristics & results 

Okutani and 
Stephanedes [40] 

Dynamic prediction of traffic volume 
through Kalman filtering theory 

Forecasting method based on Kalman filter theory, 
with complex models and suitable for real-time 
dynamic short-time forecasting 

Min and Wynter 
[41] 

Real-time road traffic prediction with 
spatio-temporal correlations 

Smart transportation technologies have improved 
short-term passenger forecasting performance, but 
require large amounts of uninterrupted historical data

Chan et al. [42] 

Neural-network-based models for short-
term traffic flow forecasting using a 
hybrid exponential smoothing and 
Levenberg–Marquardt algorithm 

Adding a neural network to a regression model for 
prediction improves generalization but increases 
model complexity 

Xue et al. [43] 
Short-term bus passenger demand 
prediction based on time series model 
and interactive multiple model approach

The interactive multi-model filtering algorithm model 
is a hybrid model; the prediction results are affected 
by a single model, and an optimal model needs to be 
found 

Toqué et al. [44] 
Short & long term forecasting of 
multimodal transport passenger flows 
with machine learning methods 

Machine learning models have advantages in solving 
the problem of passenger flow forecasting in 
multimodal transport 

Li et al. [45] 
Forecasting bus passenger flows by 
using a clustering-based support vector 
regression approach 

Nonlinear models combined with clustering can 
improve prediction accuracy 

Jiao et al. [46] 
Multi-step Time Series Forecasting of 
Bus Passenger Flow with Deep Learning 
Methods 

The LSTM-GRU multi-step prediction model with 
reduced parameters can appropriately reduce the 
computational complexity 

Lv et al. [47] 
A Bus Passenger Flow Prediction Model 
Fused with Point-of-Interest Data Based 
on Extreme Gradient Boosting 

The XGBoost algorithm model, which has the 
advantage of being robust, efficient, and scalable 
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There remain opportunities to improve the prediction accuracy of existing passenger flow 
prediction models using bus smart card data, and to improve their transferability. Some scholars have 
used a single model for passenger flow forecasting, focusing on the fitting effect and not considering 
the spatial and temporal correlation characteristics of passenger flow. Based on significant historical 
data about elderly people’s public transport trips, this paper analyses elderly people’s trips in the 
time dimension, the spatial dimension based on bus routes, and seasonal influencing factors. The 
study applies a short time series to dynamically adjust parameters to capture the irregular part of the 
time series, and establishes a uniform sample and database for model use and validation, improving 
the applicability of the model. This method offers a new approach to identifying steps that may 
improve travel for older people, relieve traffic congestion during peak travel times, and support 
public transport operations. 

3. Methodology 

As traffic information technology has developed, smart card data have become increasingly used 
for traffic payments, and many scholars have used these data to replace traditional types of data to 
study public travel by the elderly [48,49]. Several researchers have used the temporal information 
contained in smart card data to analyse the temporal changes in residents’ public transport travel 
behaviour and the associated long-term effects of changes in environmental factors [50]. This paper 
proposes a method for forecasting the demand for short-term elderly public transport trips, using a 
seasonal differential autoregressive moving average model with short time series clustering. The 
method first uses basic travel characteristics to identify sources of demand and then removes seasonal 
effects through a moving average formula. Second, passenger load factors are combined with the 
spatial distribution of elements, such as population concentration, to comprehensively validate 
passenger demand. Finally, a SARIMA forecasting model is developed in conjunction with travel 
characteristics. The specific steps are as follows. 

Step 1: Database construction 
Step 1.1: Data cleansing. Data cleansing is mainly done to detect outliers. The Grubbs test is 

applied to detect outliers, with detected outliers treated as missing values [51]. In this paper, missing 
values are treated using the missing value substitution method as applied to time series. Missing values 
are filled in using a combination of the arithmetic mean and median, and the linear interpolation of the 
neighbourhood of missing values. 

Step 1.2: Process the data in steps of months, days, and minutes. The distance short time series 
(STS) clustering algorithm is incorporated when processing minute-level data [52]. The time series is 
treated as a segmented linear function and the slope is measured. The number of older people taking 
public transport in each time period is denoted 𝑥 = [𝑥଴, 𝑥ଵ,⋯ , 𝑥௡௧] , where 𝑥௡௧  is the cumulative 

number of people in that time period. Two consecutive time points 𝑡(௞) and 𝑡(௞ାଵ) are artificially set; 

between them is a linear function 𝑥(𝑡)  denoted 𝑥(𝑡) = 𝛼௞𝑡 + 𝑏௞ , where 𝑡(௞) ≤ 𝑡 ≤ 𝑡(௞ାଵ) . The 

parameters 𝛼௞ and 𝑏௞ are calculated using Eqs (1) and (2): 

 𝛼௞ = ௫(ೖశభ)ି௫ೖ௧(ೖశభ)ି௧(ೖ)          (1) 
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 𝑏௞ = ௧(ೖశభ)௫ೖି௧ೖ௫(ೖశభ)௧(ೖశభ)ି௧ೖ          (2) 

The STS distance is defined by calculating the square root of the sum of squares of the slope 
differences obtained from the linear function. The STS distance between the two time series 𝑥ଵ and 𝑥ଶ is defined using Eq (3): 

 𝑑ଶ(𝑥ଵ, 𝑥ଶ) = ൬௫మ(ೖశభ)ି௫మೖ௧(ೖశభ)ି௧ೖ − ௫భ(ೖశభ)ି௫భೖ௧(ೖశభ)ି௧ೖ ൰ଶ      (3) 

Next, 𝑛  days of data in the study months are randomly selected and the TST distance is 
calculated, where the value of 𝑛 depends on the periodic value (T) of the periodic changes in the data 
over several days, and the calculated TST distance is averaged. At the same time, the number of 
passengers must be limited, namely 𝑃 ≤ 𝑚. The calculations are expressed in Eqs (4) and (5): 

 𝑑ሜ௜ = ∑ ௗ೅ೄ೅೙భ ௡ , 𝑛 = 𝐶(𝑛, 2)        (4) 

 𝛼 = ௗሜ೔ேಾ , 𝑃 ≤ 𝑚         (5) 

In the formula, 𝑑ሜ௜ denotes the average of the TST distances for the same time period on any two 
different days of a randomly selected 𝑛  days in each month, 𝛼  denotes the parameter of the 
clustering module, 𝑁ெ is the total number of months selected, 𝑃 denotes the number of people who 
swiped cards during that time period, and 𝑚 denotes the number of people who set the maximum. 

Step 1.3: Line identification. The method first identifies the route labels contained in each 
piece of data, and then classifies bus routes by traversing all the data. A unified database is 
constructed in conjunction with clustering methods to profile the travel, predict passenger flow, and 
validate model accuracy. 

Step 2: Travel feature mining 
Step 2.1: The database is used to analyse travel time characteristics and seasonal factors; and trend 

elements and cyclical fluctuations in travel are extracted. This study selected HP (Hodrick and Prescott) 
filtering and BP (frequency filter) filtering methods to decompose trend and cyclic elements [53]. 

Step 2.2: Calculate the load factor of bus routes regarding elderly passenger flows, rank using 
principal component analysis, and validate the travel demand by combining spatial factors, such as 
population clusters. The load factor is calculated using Eq (6): 

 𝑃௝,௜ ∑ 𝑃௝,௜௡௝ୀଵ⁄          (6) 

In the formula, 𝑃௝,௜ denotes the total number of people on the bus route numbered 𝑗 in the 𝑖 time period and 𝑛 is the sum of the bus routes. The principal components are calculated as 
follows: the original variables are standardised, the correlation matrix between the variables is 
calculated, the eigenroots and eigenvectors of this matrix are calculated, and the principal 
components are determined by size ranking. The number of principal components is determined 
by the cumulative contribution rate. Generally, if the cumulative rate reaches or exceeds 70%, then 
the top 𝑛  components are retained. The variance contribution of the principal components is 
shown in Eq (7): 
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 𝜆௜ ∑ 𝑥௜௣௜ୀଵ⁄           (7) 

where 𝜆௜ represents the ratio of the variance of the principal component 𝑍௜ to the total variance. A 
larger ratio indicates that 𝑍௜ is better able to synthesise the original information. 

Step 3: Passenger flow forecast  
Step 3.1: The short time series clustering Seasonal Autoregressive Integrated Moving Average 

passenger flow forecasting model is built based on the results from Steps 1 and 2. Figure 1 shows the 
modeling process. 

 

Figure 1. General steps of STSC-SARIMA model passenger flow forecasting. 

The STSC-SARIMA modelling first uses STS clustering to process the irregular components of 
the time series. Seasonal adjustments are then applied to remove seasonal effects to obtain a standard 
dataset. Second, the data set is tested for smoothness. If the series does not satisfy the smoothing 
condition, the series is made to satisfy the smoothing condition using a d-order difference or other 
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methods. The p and q values of the ARIMA model are determined using statistics that describe the 
characteristics of the series, such as correlation coefficients (autocorrelation, deviation correlation). 
The process follows the principle of having few parameters. Finally, the unknown parameters of the 
model are estimated and tested for significance and reasonableness using p and q values. 

Step 3.2: Validation of the accuracy of the model fit. The validation method introduces both Mean 
Absolute Error (MAE) and Root Mean Square Error (RMSE), expressed in Eqs (8) and (9), 
respectively. Larger values of these error measures are associated with a greater prediction error; 
smaller values indicate a higher accuracy [54]. In this paper, the mean absolute percentage error 
(MAPE), expressed in Eq (10), is used as the measurement standard. In general, a prediction accuracy 
of 80% or more meets the needs of passenger flow prediction; a prediction accuracy of over 90% 
indicates a highly accurate prediction [55]. 

 𝑀𝐴𝐸 = ଵே∑ ห𝑦௣(𝑑) − 𝑦௥(𝑑)ห௡௜ୀଵ       (8) 

𝑅𝑀𝑆𝐸 = ටଵே∑ ቀ𝑦௣(𝑑) − 𝑦௥(𝑑)ቁଶ௡௜ୀଵ       (9) 

𝑀𝐴𝑃𝐸 = ଵே∑ ቚ௬೛(ௗ)ି௬ೝ(ௗ)௬ೝ(ௗ) ቚ௡௜ୀଵ        (10) 

where 𝑦௣(𝑑) denotes the predicted value of the elderly passenger flow obtained from the model fit, 
respectively, and 𝑁  is the total number of days. 𝑦௥(𝑑)  is the real data obtained by bringing the 
parameters obtained by clustering into the bus trip data of the elderly. 

4. Experimental simulation 

4.1. Data sources 

This study analysed data on public transport trips taken by older people in Lhasa from October 
2018 to February 2020. Lhasa is a typical plateau city in Tibet with a long history and cultural heritage. 
It is subject to geographical constraints and cultural influences, and the situation created by having an 
aging population is becoming increasingly serious [56−58]. There are currently 73,700 elderly people 
over 60 years of age in Lhasa, accounting for approximately 24% of the city’s population. The 
topography and traffic pressures are exacerbated by the intensifying conflict between the supply and 
demand of public transport services, due to the city’s increasing aging. The predominance of 
conventional public transport for older people in Lhasa, with 38 bus routes operating in the city centre, 
provides data to support this choice of study population. 

4.2. Spatiotemporal features 

4.2.1. Seasonal characteristics 

An integer multiple of 5 minutes (parameter) was selected as the test time period. After setting 
the parameter, 7 days of data were randomly selected for data processing to determine the average 
slope for each day of the corresponding time period. Finally, the time period parameter and output 
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were determined in 15-minute intervals. The statistical time range for each day was set to 6:30 
am−22:30pm, and the output was averaged by month. The results show that between 6:30−7:30 am, 
the number of older people travelling was above the annual average in May-September and remained 
in a stable range for January-April and October-December. In contrast, the last hour of the day had a 
more stable number of people from January to April and October to December, with a cut-off time 
period of 21:30−21:45 pm. The cut-off time for older people travelling on the bus from May to 
September was delayed by half an hour, from 22:00−22:15 pm. In these months, the numbers levelled 
off and were generally higher than in other months. This is consistent with the pattern that older 
people’s bus travel is influenced by seasonal characteristics [59]. 

4.2.2. Temporal characteristics 

In this paper, data from October 2018 to January 2020 were selected for the HP filtering analysis. 
Figure 2 shows the HP filtering results, where the Roman value represents three consecutive months 
(individually expressed in January 2020); and S represents the original series. The trendline is shown 
in the top half of the figure and the periodicity is shown in the bottom half of the figure. 
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Figure 2. H-P filter analysis diagram. 

Figure 3 shows the overall upward trend and cyclical change in the number of older people 
travelling by public bus. This reflects the increasing aging of Lhasa and the overall increasing demand 
for public transport. To further determine the specific parameters of the cyclical variation 
characteristics, we performed BP filtering on the January to December 2019 data. The filtering method 
was the fixed length symmetric method (Baxter-King). Figure 3 shows the results. Figure 3(a) 
represents the original sequence, the acyclic sequence, and the cyclic sequence from top to bottom. 
Figure 3(b) provides the frequency response function with the interval of frequencies that depicts the 
results for the ideal case and the realistic case. The original sequence, the acyclic sequence, and the 
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cyclic sequence are represented from top to bottom in Figure 3(a), and the frequency response function 𝛺(𝜔) is given in Figure 3(b). The interval of the frequency 𝜔 is [0, 0.5], depicting the results for 
both ideal and realistic situations. The results show that the greatest weight is associated with days 6 
to 8. This indicates that the flow of elderly travelers in Lhasa fluctuates cyclically over a range of 6 to 8 
days. This largely coincides with the change in the 7-day cycle of travel for older people [60]. 
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Figure 3. BP filter decomposition diagram. 

This study also evaluated the temporal variation in the characteristics of daily bus travel among 
older adults. The data were averaged over three randomly selected days in the first, middle, and third 
part of each month. The monthly fluctuations were also found to be consistent, with the number of 
older people travelling at each time of day varying consistently from January to April, May to 
September, and October to December. Figure 4(a) shows the average data for these groupings (January-
April, May-September, and October-December), while Figure 4(b) shows the data for 8 randomly 
selected days from the full year of data. There were three daily peak times for public transport for older 
people in Lhasa: 7:00−7:30 am for the first peak, 9:00−11:30 am for the second peak, and 16:30−18:00 
pm for the third peak. The first peak phase (7:00−7:30 am) had the fastest growth in the number of 
trips; the second peak phase (9:00−11:30 am) had the maximum number of trips for the day; and the 
third peak phase (16:30−18:00 pm) was a small wave. These results were generally consistent those of 
Wang et al. [61]. The overall shift in the travel time curve for seniors from May to September, 
compared to other months, may have been due to the gradual warming of temperatures in the northern 
hemisphere during this period. 
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(a) 

 
(b) 

Figure 4. Daily bus trip data for the elderly. 

4.2.3. Bus route load factor 

The data for all bus routes were collated for nine days randomly selected from the monthly data 
for 2019. The average of the number of older people on all bus routes was first calculated for 108 days 
over 12 months; then, the proportion of passengers carried on each route was identified. The results show 
that the average daily number of senior citizen trips was significantly higher for bus lines 16 and 20 
compared to other bus routes, accounting for 8.8 and 9.6% of the total senior trips, respectively. The load 
factor of all bus lines was roughly divided into three levels: a lower level with a load factor of 0 to 1.2%; 
a moderate level with a load factor of 1.2 to 2.4%; and a high level with a load factor of 2.4 to 9.6%. 

Routes with high levels of load factor were randomly selected for principal component analysis. 
KMO and Bartlett’s test calculated the KMO statistic as 0.77, which was greater than the minimum 
standard of 0.5. The Bartlett’s spherical test showed that the original hypothesis of the correlation 
matrix did not hold, p < 0.001. This indicated that it could be analysed using principal component 
analysis. In this analysis, the first three principal components had eigenvalues greater than 1 and a 
cumulative contribution of 91.169%. As such, the first three common factors were selected. The results 
of the common factor variance ratios found that the common method for each indicator variable was 
above 0.5 and most were close to 0.9. This indicated that the three common factors effectively reflected 
most of the information in the original data. Table 2 shows the rotated factor loadings, where the bus 
route numbers are denoted by 𝑋𝑛 . After rotation, each route had a larger loading on factor 1. 
Comparing this result with the load rate of each line revealed that the order of the load of the above 
line on factor 1 was consistent with the order of the passenger flow load. 
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Table 2. Factor loadings after rotation. 

 Original Rescale 
 Ingredient 1 Ingredient 2 Ingredient 1 Ingredient 2 
X24 275.829 -18.265 0.96 -0.064 
X18 260.362 8-48.046 0.95 -0.175 
X2 247.675 38.784 0.921 0.144 
X14 167.673 19.876 0.89 0.106 
X7 271.644 -102.998 0.882 -0.334 
X28 204.699 -23.821 0.828 -0.096 
X17 42.904 305.072 0.133 0.946 
X23 -60.055 224.74 -0.219 0.819 

To analyse whether the size of the passenger flow was related to the population centres and the 
main commercial centres and to verify travel demand, Figure 5 was generated using geographical 
elements and data for bus routes 1, 2, 16, 20, and 24, and the bus routes with high passenger load factors. 

 

Figure 5. Map of population distribution and bus routes. 

Figure 5 shows that the dense roads are mostly commercial areas. The main residential areas 
are marked with 11 numbers. Areas 1, 3, 4, and 6 each have populations between 2000 and 5754 
people. Area 8 has a population of around 70,000; the remaining areas each have populations of 
between 10,000 and 30,000 people. Figure 5 shows that, for the elderly, the routes with high 
passenger load factors mostly run through most commercial areas and populated areas. Most studies 
have found that older people’s activities are mainly located in large shopping malls, shopping centres, 
scenic areas, and near primary schools, where they shop, entertain themselves, and take children to 
and from school [62]. 
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4.3. Prediction model development and results 

This section focuses on a case study of three randomly selected bus routes with high load factors: 
routes 16, 20, and 24. The daily bus loads for the elderly were modeled at different times of the day 
(at 15 minute intervals) for May, June, and July 2019. The ratio of the test set to the validation set was 
set at 4:1. The data from May and June were used as the training set to predict the three peak hours of 
traffic for the first 14 days (two weeks) of July. First, four data sets from bus route 16 were selected 
for the comparative analysis of the model fit. Data sets 1 and 2 were for 8:30−9:00 am and 9:00−9:45 
am. The other two data sets (data sets 3 and 4) were for 10:45−11:15 am and 14:15−14:45 pm. The 
difference between the data sets was that the sizes of the slope values in the clustering module were 
similar for data sets 1, 2, and 4 when using 15 minute intervals; however, the slope values for data set 3 
differed. In the model optimisation stage, this experiment first identified three models. Then, the 
optimal model was determined by adjusting R2, AIC, SC, and the correlation of the residual series for 
comparison. Table 3 shows the fitting results for the data sets. 

Table 3. Estimated ARIMA models. 

Model AIC SC F-statistic R-squared 
ARIMA (4, 2, 2) 15.043 15.290 3.102 (0.254) 6.458 (0.239) 
ARIMA (1, 0, 1) 19.027 19.131 0.643 (0.530) 1.368 (0.504) 
ARIMA (1, 0, 2) 10.132 10.271 0.276 (0.759) 0.606 (0.739) 
ARIMA (2, 0, 1) 9.576 9.715 0.344 (0.710) 0.631 (0.729) 

Note: AIC and SC represent Akaike Info Criterion and Schwarz Criterion; respectively; the F-statistic and R-squared 
values were generated using the Breusch-Godfrey serial correlation linear model (LM) test (where the LM statistics all 
exceed 10%, indicating that the model residual series are not correlated). 

Once the model was built, the fitting order followed the model building order, starting with one 
data set and going to the fourth data set to obtain Figure 6(a)−(d). The results show that the MAE and 
RMSE values of the two model fits were closer when the slopes of the 15 minute time periods of the 
first and second data sets were similar, and when the fluctuation intervals of the passenger flow sizes 
were essentially the same. When the range of fluctuation in passenger flow across the third and fourth 
data sets was basically the same, the third data set had a larger slope difference compared with the 
fourth data set, when 15 minutes was used as the interval. The MAE was higher by 0.143 and RMSE 
was higher by 0.077. Therefore, splitting the time series at 15 minute intervals, when the slope values 
were close to each other, yielded better predictions. 

In fitting the model to elderly passenger flows on bus routes 16, 20, and 24, the time periods were 
chosen to minimize the fluctuation of the slope (15 minute intervals) based on the experimental results. 
The final three peak hours identified as good fits were 6:30−7:30 am, 8:30−11:30 am, and 16:30−18:00 
pm. These were determined using a combination of data from the three routes. Table 4 shows the 
modelling results, again using May and June as the training set and the first two weeks of July as the 
validation set for the fitted data. 
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Figure 6. Fitted data and real data for four periods of road vehicles. 

Table 4. Peak period modeling for three bus lines. 

Line Period Model AIC SC SC R-squared 

16 
6:30−7:30 ARIMA (2, 0, 0) 11.112 11.253 1.395 (0.257) 2.867 (0.239) 
8:00−11:30 ARIMA (2, 2, 1) 12.809 12.913 0.692 (0.505) 1.462 (0.481) 
16:30−18:00 ARIMA (1, 0, 2) 11.214 11.352 0.039 (0.969) 0.084 (0.959) 

20 
6:30−7:30 ARIMA (1, 1, 1) 9.538 9.642 0.794 (0.457) 1.683 (0.431) 
8:00−11:30 ARIMA (3, 0, 1) 13.165 13.338 0.916 (0.406) 1.976 (0.372) 
16:30−18:00 ARIMA (4, 2, 2) 15.043 15.290 3.102 (0.254) 6.458 (0.239) 

24 
6:30−7:30 ARIMA (1, 0, 1) 19.027 19.131 0.643 (0.530) 1.368 (0.504) 
8:00−11:30 ARIMA (1, 0, 2) 10.132 10.271 0.276 (0.759) 0.606 (0.739) 
16:30−18:00 ARIMA (2, 0, 1) 9.576 9.715 0.344 (0.710) 0.631 (0.729) 

The corresponding data were imported through the established model, and the MAE, RSME, and 
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MAPE were calculated as shown in Table 5. 

Table 5. Peak fitting results of three bus lines. 

Line Period Model MAE RMSE MAPE 

16 
6:30−7:30 ARIMA (2, 0, 0) 4.286 5.014 0.033 
8:00−11:30 ARIMA (2, 2, 1) 7.643 8.379 0.006 
16:30−18:00 ARIMA (1, 0, 2) 4.214 4.862 0.017 

20 
6:30−7:30 ARIMA (1, 1, 1) 4.357 5.339 0.041 
8:00−11:30 ARIMA (3, 0, 1) 7.429 8.168 0.005 
16:30−18:00 ARIMA (4, 2, 2) 4.387 5.119 0.015 

24 
6:30−7:30 ARIMA (1, 0, 1) 4.013 4.942 0.039 
8:00−11:30 ARIMA (1, 0, 2) 6.785 7.903 0.006 
16:30−18:00 ARIMA (2, 0, 1) 4.115 4.879 0.018 

Numerical experimental results show that the prediction model used in this study exceeds a 90% 
prediction accuracy. The average MAE and RMSE of the predicted and actual values remain 
between 5.25 and 6.07, demonstrating the applicability and reliability of the method. 

In addition, in order to verify the predictive performance of this model, a convolutional neural 
network was designed for this situation. The training set and test set were the same, with the addition 
of initial data normalization and de-normalization of prediction results. The deep convolutional neural 
network had a 6-layer structure, including a convolutional layer, pooling layer, fully connected layer, 
Flatten layer, and Dropout layer. The learning rate was set to 0.2, and the prediction effect was better 
when 0.05 was selected for the Dropout layer after many tests. The optimizer adopted the stochastic 
gradient descent (SGD) method, and the number of iterations was selected 300 times. 

The data results show that STSC-SARIMA reduces the average MAE by 0.23% and the average 
RMSE by 0.91% compared to the convolutional neural network model predictions. 

5. Conclusions 

Accurately analyzing the passenger flow characteristics of the elderly forms the basis for 
generating valid travel demand forecasts. Together, they provide a solid theoretical basis to develop 
new public transport travel strategies for older people. Based on the four principal components of the 
time series (trend, cycle, season, and an irregular component), this paper analyzed the spatiotemporal 
characteristics of elderly people who take buses, and proposed a passenger flow prediction method 
using the STSC-SARIMA model. The elderly passenger demand forecasting method proposed in this 
paper enables the efficient and accurate forecasting of elderly passenger demand, using seasonal 
moving autoregressive models incorporating clustering techniques and smart bus card data. The 
method has the following advantages.  

1) Using original data from bus smart cards of the elderly eliminates the problematic influence of 
personal data, enabling the construction of a unified and effective data set to analyse, predict, and 
validate passenger flow. The historical data span one year, and are stored by months, days, and minutes 
to support retrieval and analysis. 

2) This paper analyzed the temporal and spatial characteristics of buses and passenger flow. There 
are significant differences in the passenger flow of the elderly in different population areas and on 
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different bus lines. The bus routes with high load factors clearly run through major population and 
commercial centres. Analysing the spatial and temporal characteristics of passenger flows clearly 
reflects the travel needs of older people and is the focus of passenger flow forecasting. 

3) The short-time clustering method effectively addresses the irregular components contained in 
the time series. Combining this with the seasonal differential moving autoregressive model enables the 
method to effectively address the trend, cycle, and seasonal components of the time series. 

4) Compared to most experiments, where only cross-sectional data are fitted, the choice to include 
a spatio-temporal analysis of passenger flows to validate demand and forecast passenger flows is more 
practical and applicable for addressing travel pressures and providing travel security for older people. 

The research described in this paper highlights options for policymakers or operators wishing to 
facilitate the travel of groups of the elderly. This could also reduce operating costs or save operator 
funds. For example, the passenger load ratio of a bus route can be used to analyze time and space 
factors to determine elderly travel demands. This could inform the design of dedicated bus lines for 
the elderly or lead to more effective schedules. 

There remain opportunities for future research using the methods described in this study. For 
example, studies with too large a scope or too much data may require more time to generate predictions. 
As such, data processing should be further optimised. Combining the latest neural network model and 
forming a feature multi-label input on the basis of this experiment is a possible research direction to 
improve prediction performance. 
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