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Abstract: We discuss the dynamics of a fractional order discrete neuron model with electromagnetic
flux coupling. The discussed neuron model is a simple one-dimensional map which is modified by
considering flux coupling. We consider a discrete fractional order memristor to mimic the effects of
electromagnetic flux on the neuron model. The bifurcation dynamics of the fractional order neuron
map show an inverse period-doubling route to chaos as a function of control parameters, namely the
fractional order of the map and the flux coupling coefficient. The bifurcation dynamics of the systems
are derived both in the time and frequency domains. We present a two-parameter phase diagram
using the Lyapunov exponent to categorize the various dynamics present in the system. In addition
to the Lyapunov exponent, we use the entropy of the model to distinguish the various dynamics of the
systems. To investigate the network behavior of the fractional order neuron map, a lattice array of N×N
nodes is constructed and external periodic stimuli are applied to the network. The formation of spiral
waves in the network and the impact of various parameters, like the fractional order, flux coupling
coefficient and the coupling strength on the wave propagation are also considered in our analysis.

Keywords: fractional order discrete neuron model; memristor; Lyapunov exponents; entropy; spiral
waves

1. Introduction

Fractional order systems can be found in a variety of disciplines, including physics, electronics,
biology, and engineering [1–5]. As compared to integer order systems, such non-integer-order systems
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are ubiquitous and used to describe a wide range of real-time dynamics. Surprisingly, non-integer-order
systems impersonate the dynamics of the real-time systems more precisely than integer order systems.
Due to this fact, a wide range of studies has been dedicated to understanding the dynamics of non-
integer-order systems in recent years. The researchers discovered that non-integer order models are the
best approach for describing processes with memory and genetic characteristics in neural networks, and
that they also facilitate information processing and stimulus anticipation [6,7]. Furthermore, fractional
order calculus with neural networks improves computation accuracy and flexibility and it takes part
in applications like computation optimization and control performance [8]. As a result, the fractional
order with neural networks has been taken into consideration systematically.

As a consequence, various studies have been performed using fractional order neural networks,
revealing a variety of intriguing phenomena such as synchronization, chimera, and clustering, among
others [9–11]. For example, synchronization behavior has been discovered in a non-integer order
delayed neural network [12]. Adaptive synchronization emergence in a memristor neural network
with different time delays has been demonstrated in [13]. Recently, synchronization and its transitions
were reported in a fractional Hindmarsh-Rose (HR) neuron model [14]. Furthermore, the emergence
of chimera states has also been observed in fractional order systems, such as fractional HR neurons
and the magnetic HR model with a fractional derivative [15–17]. It was also discovered that strong
coupling with decreasing derivative order reduces the level of synchronization with the emergence of
chimera [18]. Recently studies have been showing the quasi-synchronization multi-layer fractional
order networks with mismatched system parameters, as well as delay-dependent impulsive feedback
[19] and fractional neural networks with leakage and discrete delays [20]. Controlling the dynamics
of fractional order systems has been of interest in recent years, for example, the exponential stability
problem for fractional order networks with intermittent control [21, 22].

Among the various spatiotemporal patterns [23], spiral waves are an intriguing phenomenon re-
ported in many excitable chemical and biological systems [24–26]. Originally, it was reported in the
Belousov-Zhabotinsky reaction [26]. Later, the spiral wave pattern was discovered in various systems
including map lattices, neuronal systems, chaotic systems and so on. For instance, the occurrence of
diverse patterns such as spiral waves, periodic, domain patterns and banded spiral waves are observed
with different shapes such as polygonal shapes and domain patterns in a two-dimensional coupled map
lattice of a sine circle [27]. Different types of wave propagation in a heterogeneous 2d lattice of cou-
pled Nekorkin maps were investigated and similar phenomenon were observed in other systems such as
reaction-diffusion models, FitzHugh-Nagumo models, phase oscillators and chemical oscillators [28].
It was also discovered in multilayer networks, where the two-layer Fitzhugh-Nagumo neural network
exhibits high excitability in one layer and low excitability in the other layer because of the inter-layer
coupling interaction [29]. In [30], the authors have also shown that the coupling parameters, external
current, and amplitude of external stimuli are key parameters for the generation of spiral waves in the
fractional order memristive synapse HR model. Very recently, the existence and the suppression of
spiral waves were manifested through the 2d lattice of the fractional order neuron model.

With the knowledge of the above works, this work investigates the spatiotemporal pattern in frac-
tional order flux coupled discrete neuron map (FDN) lattices. We believe that the present system is
the simplest one-dimensional neuron model which shows all of the neuronal activities like spiking and
bursting. The present model also has the merits of fractional order which has the memory function
and flux coupling. To the best of our knowledge, no other model has shown a low-dimensional neuron
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map with memristive function and flux couplings. Primarily, the dynamical transitions are examined
through a bifurcation analysis. Further, the observed bifurcation transitions are validated through the
Lyapunov spectrum and entropy analysis. Followed by single system analysis, the spatiotemporal dy-
namics are investigated for the network of map lattices. In particular, we investigate the spatiotemporal
behavior by fixing the different values of flux coupling (k), fractional order (q) and coupling strength
(D). We discover that increasing the flux coupling strength k leads to multiple spiral wave zones as
well as the spiral wave becomes highly turbulent at higher flux coupling values. When the fractional
order q is increased, the entire network loses its excitability and becomes turbulent, which results in
distributed spiral waves. Similarly, spiral waves appear in the entire network only when the coupling
strength D increases to a sufficient range, and after that it becomes unstable.

The structure of the article is as follows: In Section 2, we introduce our considered model of
FDN. The corresponding dynamical transitions are investigated through bifurcation analysis, Lyapunov
spectrum analysis, and entropy analysis in Section 3. The existence of spiral waves is demonstrated for
the N × N lattice network via spatiotemporal analysis in Section 4. Finally, we present our summary
of the work and conclusions in Section 5.

2. The Model

In [31], a simple modified Nagumo-Sato neuron model [31, 32] was discussed the mathematical
model is defined by a one-dimensional discrete map

wn+1 = awn + b + c(1 + e−wn)−1. (2.1)

The parameters a, b and c are the dissipation, weight and bias values, respectively. The value of the
parameter b is calculated by combining the initial bias current and the external stimuli current. The
model in (2.1) exhibits rich dynamics as discussed in [31] and it is designed such that the discontinuity
caused by the Heaviside function in the original model is now eliminated. Recently in [33] the authors
have discussed the fractional order model of (2.1) and the modified mathematical model is defined as

wn+1 = awn + b + c(1 + e−wn)−1 + kM(ϕn)wn,

ϕn+1 = ϕn + k1wn, (2.2)

where the function M(ϕn) is the memductance of the discrete memristor [34, 35] and it represents the
internal electric charge of the discrete memristor, which can be expressed as

ϕn+1 = ϕn + k1In. (2.3)

Further expanding the above equation using the backward difference method, we end up with the
following equations:

ϕ1 = ϕ0 + k1I1,

ϕ2 = ϕ1 + k1I2 = ϕ0 + k1(I1 + I2),
ϕn+1 = ϕ0 + k1(I1 + I2 + · · · + In),

= ϕ0 + k1

n∑
J=1

In. (2.4)
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The memductance function can be defined as M(ϕn) = α+βϕ2
n where α and β are the memristor internal

parameters. The fractional order model of (2.2) can be mathematically expressed as

∆q
cwn+1 = awn + b + c(1 + e−wn)−1 + kM(ϕn)wn,

∆q
cϕn+1 = ϕn + k1wn. (2.5)

Here, the ∆ represents the fractional order operator, q refers to the order of the fractional derivative
and c is for the Caputo method. The initial value problem of the model (2.5) is solved using the Caputo
delta difference method which can be expressed as

∆q
cwn+1 = awn−1+q + b + c(1 + e−wn−1+q)−1 + kM(ϕn)wn−1+q,

∆q
cϕn+1 = ϕn−1+q + k1wn−1+q, (2.6)

where n ∈ N1−q. The following equation describes the discrete form of (2.6).

wn+1 = w0 +
1
Γ(q)

,

ϕn+1 = ϕ0 +
1
Γ(q)

( n−q∑
j=1−q

Γ(n − j)
Γ(n − j − q)

(ϕ j−1+q + k1w j−1+q)
)
, (2.7)

where Γ is the Euler-gamma function. After several steps, we may reduce (2.7) to

∆q
cwn+1 = w0 +

1
Γ(q)

,

∆q
cϕn+1 = ϕ0 +

1
Γ(q)

( n−q∑
j=1−q

Γ(n + q − j)
Γ(n + 1 − j)

(ϕ j−1+q + k1w j−1+q)
)
. (2.8)

The fractional order discrete neuron model with flux coupling (2.8) is henceforth called as the FDN.
We use the method used in (2.3) and (2.4) to solve the discontinuity issue by replacing

Γ(n + q − j)
Γ(n + 1 − j)

= eln(Γ(n+q− j))−ln(Γ(n+1− j)). (2.9)

3. Dynamical analysis of fractional order flux coupled discrete neuron map

3.1. Bifurcation and frequency spectrum analysis as a function of the order q and parameter k

The dynamical behavior of the FDN can be investigated by using bifurcation plots using the local
maxima and frequency, and via two-parameter bifurcations using Lyapunov exponents. We also use
sample entropy and permutation entropy to analyze the complexity of the FDN model. We fixed the
system parameters to a = 0.8, b = 4, c = −16, α = 0.8 and β = 0.01. First, we investigate the
dynamics of the FDN for various q values by fixing k = 0.1. The bifurcation plot for q is shown
in Figure 1 and we can see two larger distinct regions showing chaos. The chaotic dynamics in the
system disappear through the period by using the halving bifurcation (also known as inverse period
route) route. We have also used the frequency bifurcation plot (Figure 1 (b)) to show the existence of
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chaotic and periodic regimes. The dominant frequencies (which are the Dirac-delta peaks or discrete
peaks present in the power spectrum) in the periodic domains are identifiable compared to the periodic
oscillations in their respective time-domain bifurcation plot (Figure 1(a)). The time series bifurcation
is drawn by collecting the local peaks of the time series at every parameter on the x axis. While the
chaotic dynamics of the system can be inferred from the continuous spectra (broad band spectra) from
the fast Fourier transform (FFT) bifurcation diagram. In Figure 2, we have provided the bifurcation plot

Figure 1. (a) Bifurcation of the discrete model (2.8) with fractional order; (b) frequency
bifurcation of the discrete neuron model (2.8) with fractional order.

for the FDN with the control parameter of the flux coupling constant k with the fixed value of the order
of the fractional derivative q = 0.01. The dynamics show two regions of chaos and take an inverse
period doubling to route from a chaotic state to periodic dynamics. The FFT bifurcation shown in
Figure 2 (b) agrees with the corresponding time series bifurcation plot. Lyapunov exponents have been

Figure 2. (a) Bifurcation of the discrete model with k; (b) frequency bifurcation of the
discrete neuron model with k.

used to investigate the chaos diagram of FDN and which is shown in Figure 3. We can see the existence
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of positive Lyapunov exponents in two regions say the first region for 0.0001 ≤ q ≤ 0.3, 0 ≤ k ≤ 0.4
and the second region for 0.4 ≤ q ≤ 1, 0.2 ≤ k ≤ 1. The exact combination of q and k for chaotic
regions can be seen in Figure 3. The color bar in the plot shows the value of the maximal Lyapunov
exponent. The positive value in the figure corresponds to the chaotic dynamics of the FDN system.
The stable oscillation of the system can be identified from the Figures 1 and 2, where we have discrete
periodic oscillations. Similarly, from Figure 3, we can see that the value of the Lyapunov exponent to
distinguish the periodic and chaotic dynamics, where the dark blue color shows the regular behavior.

Figure 3. Two-parameter bifurcation derived using the maximum Lyapunov exponent.

3.2. Entropy analysis

3.2.1. Permutation entropy

Many works of literature [36–38] have shown that entropy analysis of time series is one of the best
tools for investigating nonlinear system properties. Hence, we use permutation entropy [24, 25] and
sample entropy (SampEn) [36] as tools to discuss the complexity measure of the FDN model. We have
subdivided the ways to calculate the permutation entropy from a time series data into several steps as
below.
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∗ Step 1: Phase space reconstruction for a given time series wi, i = 1, 2, · · · ,N,

W(1) = w(1),w(1 + τ), · · · ,w(1 + (m − 1)τ),
...

W(i) = w(1),w(i + τ), · · · ,w(i + (m − 1)τ),
...

W(N − (m − 1)τ) = w(N − (m − 1)τ),w(N − (m − 2)τ), · · · ,w(N), (3.1)

where time delay and embedded dimensions are given by τ and m respectively.
∗ Step 2: Arrange the real values in each W(i) in ascending order is

{w(i + (k1 − 1)τ) ≤ w(i + (k2 − 1)τ) ≤ · · · ≤ w(i + (km − 1)τ)} (3.2)

∗ Step 3: Group the values in W(i) as the symbols S (l) = (k1, k2, . . . , km) and for example if w(i +
(k1 − 1)τ) = w(i + (k2 − 1)τ), then the sorting of these values can be in the order of k1 ≤ k2,w(i +
(k1 − 1)τ) ≤ w(i + (k2 − 1)τ). The term l = 1, 2, . . . , k where k ≤ m! with m! being the substantial
number of distinct symbols. S (l) is one of the ml symbol permutations and it is mapped onto the
m number symbols (k1, k2, . . . , km) in m-dimensional embedding space.
∗ Step 4: Denote the probability distribution function (PDF) of each symbol sequence as

P1, P2, · · · , Pk such that
∑k

(l=1) Pl = 1, and the Shannon entropy for k symbol sequences as

Hp(m) = −
k∑
l

Pl ln Pl (3.3)

∗ Step 5: Using the maximum value of Hp(m) by calculating ln(ml) such that all those symbol
sequences have the same PDF as Pl = 1/m!; the permutation entropy can be defined as

0 ≤ Hp = Hp/ ln(m!) ≤ 1. (3.4)

3.2.2. Sample entropy

Sample entropy has been used to categorize dynamics from a signal of a nonlinear time series. It is
a modification of the version of approximate entropy. It has been used because of its advantages over
the approximate entropy, which are (i) the data length independence compared with other methods
and (ii) it is a relatively trouble-free method of implementation. The interpretation of the outcome
of the method is very straightforward. Larger values denote higher complexity while smaller values
characterize more self-similar and regular signals. We used the time series analysis of the membrane
potential to calculate the SampEn. We propose the following steps for the calculation of SampEn.

∗ Step 1: Construction of phase space values from the time series of membrane potential

W(i) = [w(i),w(i + 1), · · · ,w(i + m − 1)]; m < N − 1/2, (3.5)

where i = 1, 2, · · · ,N − m + 1. The relation used to calculate the Euclidean distance is given by

D[W(i),W( j)] = max
k=0,··· ,m−1

{∨w(i + k) − w( j + k)∨}, (3.6)
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where i, j = 1, 2, · · · ,N − m + 1 and i , j. The complexity measure can be calculated from a
given threshold value T :

∅m
i (τ) =

1
N − m + 1

ψD[V(i),V( j)] < T (3.7)

where ψ denotes integer number that is i = 1, 2, . . . ,N − m + 1 given that i , j. The intermediate
coefficient is calculated as

γm(T ) =
1

N − m + 1

N−m+1∑
i=1

Cm
i (T ). (3.8)

Considering m = 1, we redo the above procedure presented as (2.8)–(3.2); the SampEn is given
by

SampEn(v,m,T) = − ln
γm+1(T )
γm(T )

. (3.9)

The parameter m represents the dimension and T represents its tolerance, respectively. The tol-
erance is calculated using Tt=T×SD where SD being the standard deviation of the given time
series.

In Figure 4, we have presented the entropies of the FDN for different values of q and k. To calculate the
SampEn, we used the time series of the same variable and we used the same set of initial conditions.
Figure 4(a) is the plot of SampEn, of the time series w as a function of order of the fractional derivative
q and Figure 4(b) shows the SampEn, as a function of the parameter k. We can compare Figure 4 with
the plots shows in Figures 1 and 2. We could note that the regions showing chaos have larger entropies
while the periodic regions have lesser entropies.

Figure 4. Entropies of the FDN for different values of q and k. The conditions for simulation
are as used in Figures 1 and 2.

Next in Figure 5(a) we have calculated the permutation entropy of the FDN model and the larger
entropy values confirm the existence of chaotic regions. In Figure 5(b) we have shown the entropy cal-
culated using the SampEn and both Figure 5(b) and Figure 5(b) agree with each other; SampEn gives a
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clear view of the dynamical regions of the system. Comparing Figure 5 and Figure 3, we could observe
that the Lyapunov exponent chaos diagram cannot identify certain regions of complexity shown in blue
(Figure 5(a)) and cyan (Figure 5(b)). These regions may be the existence of strange nonchaotic attrac-
tors which have complexity more than periodic attractors and less than chaotic attractors and whose
Lyapunov exponent is negative.

Figure 5. Two-parameter bifurcation derived using the permutation type entropy (a) and
SampEn (b).

4. Spatio temporal dynamics of the FDN network

In this section, we present the spatio-temporal dynamics of the proposed neuron map with electro-
magnetic flux coupling. We consider the same parameters given in Section 3.1 for simulation. The
mathematical model of N × N lattice network is given by

∆q
cwn+1,i j = awn,i j + b + c(1 + e−wn,i j)−1 + kM(ϕn,i j)wn,i j + D(wn,i+1 j + wn,i−1 j + wn,i j+1 + wn,i j−1 − 4wn,i j)

+ ∅(n)θiθ1θ jθ2 ,

∆q
cϕn+1,i j = ϕn,i j + k1wn,i j. (4.1)

In the N × N network of neurons, we would like to investigate the spatiotemporal dynamics with
electromagnetic flux coupling. A N×N lattice array of the proposed neuron map is constant as in (4.1).
A periodic stimulus is applied to the network from the center of the network by fixing θ1 = θ2 = 50.

In the first case, the control parameter electromagnetic flux coupling coefficient k is used to capture
the spatiotemporal dynamics. The observed dynamics are plotted in Figure 6. When k = 0, the network
behaves like a one-dimensional neuron map and displays small regions of spiral waves which can be
seen in Figure 6(a). When k = 0.01 the spatiotemporal dynamics of the network display much stronger
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spiral waves as shown in Figure 6(b). Increasing the flux coupling to 0.05 creates many local pools
of highly excitable nodes and thus creates multiple spiral wave regions in the network. As we keep
increasing the flux coupling, the network becomes highly turbulent as seen in the case of k = 0.1.

Figure 6. Spatiotemporal structures of the lattice array for 5000 time units. A stimulus of
amplitude A = 0.1 and frequency f = 0.01 is applied to the network and no flux boundary
condition is considered for simulation. Here the control parameter is the flux coupling (k)
with different values such as (a) k = 0, (b) k = 0.01, (c) k = 0.05 and (d) k = 0.1. The
network’s size considered for simulation is 300 × 300.

In the second case, the control parameter is the order of the fractional derivative q and the captured
structure of the network is shown in Figure 7. For q = 0.001, the lattice array shows a spiral wave
in the network with a symmetric pair formed around the corner of the lattice. The excitability of the
network is heterogeneous which can be seen by the formation of spiral waves with different colors
confirming different levels of excitability. Increasing the fractional order value from 0.001 to 0.01,
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the spiral waves increase in count whereas the radii of the spiral waves decrease. For q > 0.01, the
entire network loses its excitability and exhibits turbulent and distributed spiral waves confirming that
the nodes are having very close excitability voltages. This is due to the nodes extending their periodic
oscillation and having unsynchronized behavior in the network. This can be due to the emergence of
chimeras in the network with few nodes in synchronized states and this is highly excitable while the
remaining in the unsynchronized state have low excitability.

Figure 7. Dynamics of the network for different values of fractional order (q) with an
applied stimulus of amplitude A = 0.1 and frequency f = 0.01; no flux boundary condition
is considered for simulation. The size of the network considered for simulation is 300× 300.
The snapshots were captured after removing enough transient dynamics and for the end of
5000 time units.

Finally, we vary the coupling strength D and the observed snapshots of the lattice array are given
in Figure 8. The nodes are so weakly coupled for the coupling strength D < 0.5, making the entire
media dissipate the applied stimuli because of the different excitabilities of the nodes. Hence, we made
an effort to enhance the stimuli strength to explore whether the wave can travel to the boundaries but
it was in vain-as shown in Figure 8(a) and (b). The wave irrespective of the stimuli amplitude cannot
travel to the boundaries of the lattice network. Rising the coupling to D = 0.5, we could note the
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formation of multiple smaller spiral arms (Figure 8(c)) which consolidate large rotating spirals when
increasing the coupling to D = 0.6 (Figure 8(c)). An increase in coupling strength further makes the
network unstable.

Figure 8. Behaviour of the considered network for various values of (D) such as (a) D =
0.1, (b) D = 0.3, (c) D = 0.5 and (d) D = 0.6, with an applied stimuli of amplitude A = 0.1
and frequency f = 0.01; no flux boundary condition is considered for simulation. The size
of the network considered for simulation is 300 × 300.

5. Conclusions

A fractional order discrete neuron map with electromagnetic flux coupling has been proposed. A
fractional order discrete memristor was modeled to mimic the flux effects on the neuron model. Both
the time domain and frequency domain bifurcation analysis were considered to study the dynamical
properties of the proposed FDN. When considering the fractional order and the flux coupling coeffi-
cients as the control parameters, the FDN takes an inverse period-doubling exit from chaos. To show
the different dynamical regions of the FDN in the k-q plane, we have used the Lyapunov spectrum
method. As an alternative, we have used the permutation and the sample entropy methods to derive the
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different dynamical regions in the same k-q plane, and interestingly, we could identify several regions
of complex behavior where the Lyapunov exponents are negative. Such regions confirm the existence
of strange nonchaotic attractors which will be investigated in detail in our next work on the same FDN.
To understand the wave propagation in the FDN network, we constructed a N×N lattice of FDN nodes
and applied a periodic external stimulus to the center of the network.

The network of the system shows a rich variety of dynamics. In order to study the network, we
considered the fractional order q, flux coupling coefficient k and the network coupling strength D
as the control parameters. When considering the flux coupling coefficient, we could show that for
lower values of k the network supports spiral waves as the nodes are in high excitability. Increasing
the k values makes the network turbulent and for k = 0.1, the network becomes unstable. For the
fractional order, the network supports spiral waves for q < 0.1 as because the nodes exhibit high
excitability and heterogeneity in these regions. Interestingly, neither a strong coupling (D > 0.7) nor
a weak coupling (D < 0.3) could trigger the formation of spiral waves in the network. This is one
of the notable observations in the present study. For the coupling 0.5 ≤ D ≤ 0.6 the nodes are in
high excitability confirming the formation of spiral waves. The present work gives a simple fractional
order neuron model which exhibits almost all the dynamical behaviors observed in real neurons. The
rich dynamics observed by the network of neurons show the excitability of the network with different
parameter choices. The proposed system and results can be used to understand various aspects of
network dynamics like chimera states, amplitude death, and short-time synchronizations.
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