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Abstract: In this paper, we mainly study the high-order numerical scheme of right Caputo time
fractional differential equations with uniform accuracy. Firstly, we construct the high-order finite
difference method for the right Caputo fractional ordinary differential equations (FODEs) based on
piecewise quadratic interpolation. The local truncation error of right Caputo FODE:s is given, and the
stability analysis of the right Caputo FODE:s is proved in detail. Secondly, the time fractional partial
differential equations (FPDEs) with right Caputo fractional derivative is studied by coupling the time-
dependent high-order finite difference method and the spatial central second-order difference scheme.
Finally, three numerical examples are used to verify that the convergence order of high-order numerical
scheme is 3 — A in time with uniform accuracy.

Keywords: right Caputo fractional; high order numerical scheme; optimal convergence order; local
truncation error; stability analysis

1. Introduction

It is known that fractional calculus is widely used, especially in engineering and science, and it is
mainly described and realized through fractional differential equations (FDEs). For example: finance,
biology, automatic control theory, mechanics, information theory and other fields have real applica-
tions. The Caputo-type fractional derivatives are divided into right Caputo derivative and left Caputo
derivative. According to the research [1], by means of piecewise quadratic interpolation, a FODE
high-order numerical scheme with consistent precision is given, and the unconditionally stable and
consistent sharp numerical order is strict. A general high order method was used to solve FODE based
on block-by-block method in [2]. In [3], by means of the L2 formula, a high-order compact finite
difference method with respect to time FPDE is constructed. The high-order finite-difference methods
with respect to time FPDE is introduced, moreover the first proof the stability of 3 — @ was presented
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in [4]. The finite-difference method introduced in [5] is a meshless generalized type and is applied to
deal with 3D variable-order time FPDE. In [6], the Caputo fractional derivative is approximated by
a fractional numerical differentiation method and uses a high-order numerical approach to deal with
time-dependent FPDEs. In [7], in order to obtain the fully discrete form of the spatial fractional diffu-
sion wave equation, the time-dependent second-order difference method and the spatial finite element
method are proposed. According to the study [8], the time fractional diffusion equation in regard to the
Mittag-Leffler matrix function is solved by the line method. In [9], a high-order numerical scheme is
introduced to infinitely approximate the Riemann-Liouville fractional derivative. In [10], some numer-
ical methods are proposed to solve fractional calculus, such as piecewise interpolation and Simpson’s
method. The paper [11] presented a fractional Taylor-type formula for the right Caputo fractional
derivative, meanwhile the derivative is characterized by a fractional differential formula and a frac-
tional integral remainder. In [12], the right Caputo fractional derivative is obtained by making use
of the singularity-preserving spectrum configuration approach of fractional differential equations, the
convergence analysis to obtain and the best error estimate is obtained. In [13], based on the derived op-
eration matrix, using the Gauss-Lobatto quadrature formula is not only effective for studying fractional
optimal control problems, but also for fractional order variational problems. At the same time, it is also
verified that the Lagrange multiplier method is still valid for them. Discuss two second-order numerical
differential equations of Caputo derivative operator, moreover, proving its unconditional convergence
and stability with the help of discrete energy approach in [14]. In [15], some numerical approaches to
fractional derivatives are constructed, which are Caputo-type derivatives with finite real-valued lower
bounds and Riemann-Liouville-type derivatives with infinite lower bounds. In [16], based on cubic La-
grangian interpolation polynomials, proposed a high-order numerical method to approximate Caputo
fractional derivatives. In [17], in order to determine the spatially related source terms in the opposite
problem of the time-fractional diffusion equation, the time finite difference method and the spatially
local discontinuous Galerkin method are used to construct a numerical scheme. A high-order form of
the Caputo-type fractional convection-diffusion equation is constructed under the Dirichlet boundary
condition in [18]. In [19], the numerical solution for the coupled nonlinear time-dependent FPDE with
Caputo derivatives was given by the implicit trapezoidal method. In [20], the high-order scheme of
Caputo fractional derivative approximation was developed and applied to solve the time-dependent
FPDEs. With smooth conditions on the solution, piecewise polynomials were popularly used to solve
fractional differential equations; refer to the literature [21-25] for details. For no-smooth solutions,
one should introduce the non-uniform meshes for the fractional differential equations, and readers can
refer to [26-28] for details.

In the current literature, we learn that there are limited high-order numerical schemes for studying
right Caputo FDEs with uniform accuracy. Therefore, based on the idea of [1], this paper constructs a
high-order numerical scheme with uniform precision convergence for right Caputo FDEs.

The main content of this paper is organized as follows: We adopt a high-order numerical scheme
to solve the right Caputo FODE, and Section 2 analyzes the local truncation error and stability of this
scheme in detail. In Section 3, we study time-dependent FPDE with right Caputo derivative, imple-
menting discrete-time FPDE by finite-difference methods in time, and second-order central-difference
methods in space. In Section 4, some numerical examples are given to verify efficient high-order nu-
merical methods and support our theoretical findings. Finally, some conclusions from this work are
drawn in Section 5.

Electronic Research Archive Volume 30, Issue 10, 3825-3854.



3827

2. The high-order numerical scheme of the right Caputo FODE
2.1. Construction of the high-order numerical scheme
Consider the following FODE
th,m(t) =g(t,m()), a<t<bh, 0<A<]1, 2.1

where the initial condition is m(b) = myg, and m, is a known constant, ,Dﬁm(t) in (2.1) defined as the
right Caputo fractional derivative of order A which is given by

thm(t) =

b
a . 3 f (0= y"'m'(p)dp, (2.2)
here I'(-) means Gamma function in [29].

Now, we will construct a high-order scheme of (2.1) and divide the interval [a, ] into W uniform
sub-intervals . Supposea =1 < ... <t,<...<ty=b,t,=qn,q=0,1,2,...,W,andn = b‘W“isthe
step size, m, is the numerical solution of (2.1) at #,, and g, = g(t,, m,).

In order to discretize the right Caputo fractional derivative of (2.2), one can firstly determine the
values of m(t) at ty_,, tw—1, tw, and employ quadratic Lagrange interpolation to m(¢) on [ty_;, tw] as

follows
2

M) % Vi MO = Y Kiw-2(Omy_24 (2.3)
i=0

where the quadratic Lagrangian interpolation basis function at points ty_,, tw_; and ty are k;w_z,1 =
0, 1,2, which are defined as follows

kowalt) = IW;;Z“ =) ety = tW‘_z;f —) iy at) = tw‘g);ﬁ —we) (4
Forg = W — 1, W — 2, substituting (2.3) into (2.2), we can obtain
-1 tw
Dymty_) Ta-n tW?l(,O — tw_1)"'m’ (p)dp
1 " -1 /
~ Ta-n tW?l(p = tw-1)" Wiy 2.eim(0)] dp
= E(v)t}()—lmW—2 + E‘la}o_lmw—l + E‘Z;[}O_lmw, (2.5)
Dym(ty_) = I“(l_i ) l:;(ﬂ — tw—2)"'m’(p)dp
1 " -2 /
~ Ta -1 tW_Z(P = tw-2) " [Viryw1m(p)]'dp
= Egt}()—sz—2 + Exleio_sz—l + E%}O_zmw, (2.6)
where the expression of Ei;f_l, Ei;[?_2 are as follows
: -1 tw
By, = T ftw (- tw-1) 'K _a(p)dp.i = 0,1,2, 2.7)
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. -1 W
EY = — tw_o) K dp,i=0,1,2. 2.8
w-2 (-1 IW_Z(P w-2) Kz,W—Z(p) Pl (2.8)
When g < W — 3, firstly in the interval of [7,_;, t;], the approximation solution of m(#) at points #,_1,
i1, i1 18

2
mt) ~ Yy gt = D @i Omi_ 1, (2.9)
i=0
where
t—1)t—t t—t_)(t—t t—t_)(t—t
wol(t) = (t—1)( : M),a)u(t) _ -1 1)(2 M),wz,z(f) _ -1 1)2( 1)‘ (2.10)
2n -1 2n
Substituting (2.3) and (2.9) into (2.2), we have
pl -1 v yl
Dim(ty) = —_ﬂ) f (0 -t (p)dp
— —t A7 d —t A7 d
e ﬁ) f (0= 1,"'m'(p) p+l;1f (0= 1,)"'m'(p)dp)
~ F(l —/l){f (p_ q)_ﬂ[’y[tw_z,twjm(p)],dp
+ Z f (0 = 1) i ()] dp)
I=q+1
= Egomw_z + Eq’ mwy-q + Eq’ my
w-1
+ O EY iy + EY'my+ EXmy,y), 2.11)
I=g+1
where
. -1 W
E;,o - I'ia-A4 f - tq)i/le/',W—z(P)dP’i =0,1,2,
) =D Jy (2.12)
E) = —t,) W ,(p)dp,i=0,1,2; [=W—1,...,q+ 1,
q F(l —/l) tlil(p q) wl,l(p) P>l q+

and k; w_2(?), w; () are in (2.4) and (2.10), respectively.
In summary, the linear combination of m; approximates the right Caputo derivative .Dm(z,). After
After sorting (2.5), (2.6) and (2.11), the

calculation, it is found that each E' is proportional to F(S "k

discrete Caputo derivative nLgmq be obtained as follows

-2
77 _ _ _
E o+ E a4+ FE , g=W-1,
F(3—/1)( 0Mw—2 1My my), q
-2
n
E o+ E 1+ E , qg=W-=2,
1_(3_/1)( 0Mw—2 1My my), ¢

i — 7G5 (2.13)
ntpty n
TG- /l)[ qu2+GmW1+HmW
w-1
+ Z (Flm,_l + Glm, + H1m1+1)], q< W — 3,

I=g+1
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where the values of all the coefficients “E, F, G, H” have been carefully calculated as follows

_ A - _ 31-4 A+2 4 34-2
EOZE,EI:2_2/1’E2:T,E0:7aE1:_ﬁsEzz X ;

Fy= —Z_T/l[(W )T+ W =g =D+ (W =g = (W —g - D"

G, =2Q2-D)W - =2W =gy ' +2(W - g - 1)

Ay = =200 - g+ AW - g 1) (W= g = W g - 1

F = —3(22_ /1)(1 —g-D'""+ Z_Tﬂ(l -+ (U-g T = (U-q -1 (2.14)
G =22-D(1-g-D)""=20l-g " +2(1-q-1)""

Hy= =2 2= + (=g = D'+ A=~ U= g = 1

With the observe of the above coefficients, we will find that all the coefficients only depend on the
constant of 4. With the help of (2.13), we have

Dim(t,) ~,Limg,q =W —1,...,1,0.

Therefore, this sufficiently shows that the high-order numerical scheme corresponding to the above
Eq (2.1)is
JLimg = g(t,,my), g=W-1,...,1,0. (2.15)

2.2. Error estimation

In order to analysis the local error of scheme (2.15), we bring in the following operator

-1

F(g_] A) [Eom(tw-2) + Eym(tw_1) + Exm(tw)], ¢ =W -1,
I“(g_ /l) [Eom(tW—Z) + Elm(lW_l) + Ezm([W)], q= W — 2’
bt =) iz ; ; (2.16)
=t 1"(;7_ D [qu(fw_z) + qu(tW—l) + qu(tW)
w-1
+ > (Fim(iy) + Gpm(@) + Hym(t,1)], q < W =3,
I=g+1

where the values of all the coefficients “E, F, G, H” are defined by (2.14), which is replace m, with
m(t,) in (2.13).

Theorem 2.1. Suppose m(t) € C3[a,b],0 < A < 1, let
Ri(n) =Dim(t,) —Lim(t,),q =W —1,...,1,0, (2.17)

we have
IR(m)| < Comp®™, (2.18)

where C,, is a positive constant independent of n.
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Proof. The following error estimates are estimated with the help of Taylor’s theorem,

3)

O~y @) = D o) o~ 0 ), 2.19)
3)

w0~y am® = "= 01y o1, (2.20)

where &y (p) € [tw-, tw], E(p) € [t1-1, ti1].
When g = W — 1, according to (2.19), we get the following

IRV ()| = |:Dim(tw_,) — Lim(ty_,)|

1 W
= ) tW?l(P — tw_1) "' d[m(P) = Viryr.1m ()]
A tw
- (- 2) jt;“ [m(0) = Yity2.mim(P)] (0 = tW—l)_/Hdp‘
A (" O )
B r(l - /l) L ) T(p - tW—Z)(p - tW)(p - tW—l) Adp'
m(Ew(p))

IA

A w
I'a-2 Lm

IA

4
6T (1 — A) relad)

(o = tw=2)(p — tw)(p — lW—l)_ﬂ‘dP

max |m (7)) f (o = tw-2)(tw = p)(p — tw-1)"dp

A
= ———— max|m (3)(t)| f (o —tw-1)""'Q2p — tw — tw- 2)dp]

6I'(1 -2 te[a b]

A
= ——— max|m (3)(t)|[—(tw—lw Dt — tw-2)

6I'(2 — /l) tela,b]
=il (p—tw_oHdp]

A
_ 3)
6I'2 - 1) te[u b] ax Im (t)l[

A 1

_ 34 3-4
TG -0 e ™ (13- A)"
A2 -2 Gyl id

= — t <C7

3T — 0 max [m>()In m

where C,, is a positive constant independent of 7.

When g = W -2, by (2.19), we have

Electronic Research Archive

2 i
3.1 f (o — tw-1 )z_ldp]
- tw-1

(2.21)
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IRV ()| = 1. Dymtw—2) — ,Lim(tw_o)|

= r(: D tv:i(p—tw-z)‘ﬂ{m’(p)— [V[zw,z,zmm(p)]’}dp‘

= gl [ e o) = i o)

S e G I e

- D f PG () 0 - 1)t~ )

< o max o) (0~ tw-p ~ tw)lp ~ tw—2) o
< max [m (7)) ! n-2n-(p—twa)dp

6I'(1 — Q) refa.b)

tw—2

A tw
= =T O (p)2n? Vg
6 (1 = 2) 2%22‘]'”1 (D27 L_Z(P w-2)"dp

A 1
S — 3) D2 2 - 2 1-4 < Cm 3_/1. 599
6r(1 — ) max lm= Ol y—C@m) " < Cant 02

When g < W — 3, according to (2.20), we obtain that

iDym(ty) — yLym(1,)|

-1 Tw
‘F(l —) f,q (o = 1) [m(P) = Yirymim(p)) dp

1

- I'(1- /l)‘ f (p - q)ild[m(p) - Y[lw—z,lw]m(p)]

IR ()l

W=l
* Z (p - lq)_/ld[m(p) - 7[t;71,t,]m(p)]
I=q+2 Y11
+ a (o — 1) d[m(p) - )’[tq,l,zq]m(p)]‘
A w N
- F(] — /1)‘ ~fl;v-1 [m(p) - Y[twfz,tw]m(p)](p - q) A ldp
W=l
* Z f [m(0) = Yit.cam(@)](p — 1) dp

I=g+2 ¥ 1I-1

e [ 1 = gt - 1) )

q

A
B : 22
1_,(1_)')|51+Sz+53| ( 3)
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Next, we estimate each item at the right hand side of (2.23). By using (2.19), S is calculated as

following

1S 4]

IA

IA

‘ m(p) Vgm0 — 1) dp

tw-1

‘ f " m(3)(§w(p))

(3)
— max [m’(t
6z[b]| ()If

1
- ® _ —-A-1
6 max b () Cnn 2 Gy -1 dp

(o — tw-1)(p — tw)(p — tw_2)(p — q)_/l_ldp‘

~ ) = tw)(p = tw2)(o — 1) |dp

tw-1

1 1 _
¢ max mPORy -7 W - @) < < max mP @)y
te 3 tefa,b]

S, and S5 are calculated as follows

1So] =
<
<
<
1S3l =

IA

Electronic Research Archive

w-1

' Z f [m(p) - 7[f171,t1]m(p)](p - q)_/l_ldp
I=g+2 Y 1I-1
W=l (3
' Z f m (§1(P))(p — 1) = 1)(p — ti1)(p — q)_/l_ldp'
I=g+2 Y 1-1

1
~ max |m" (1) Z f (0 = 1P = (o = 1) — 1) |dp

6 ielabl I=g+2

Tw-1

3
m 3) -1
t - d
3 Max Im™(1)] (o—1t,)" dp

tq+1

% max MO [1 =W = 1-g)7]

1
o max im0~ (2.24)

fﬁ [m(p) — Y[tq,l,tq]m(p)](p - q)_/l_ldp‘

q

lgr1 337(3)
f T 0t~ 1) ]

q
1 Tg+1
= max |m® (1)

6 relab] ty

1 g+1 B
¢ max Im(S)(t)If (p = t4-1)tgr1 = P)p = 1) "dp
a, y

Iq+1

| D) (0 = tg-D)tge1 = p)(p — 1) ™

Iq

(0 = 140 — tge)p = 1) |dp

1
6(1— ) e

1
G = max ) f (0= 1) Q0 = ty-1 = 1n)dp
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1 1 _
= max [ (0 5= Uger = 1" tger = 11)

6(1 — Q) tefa.b]
2 ol 2-2
-— —1,)"d
7oa ), ]
= 2 max |m®(t)|[n* " - L(t a =1
6(1 — (2 = Q) relab] 3-a1 1
1
= max [m® @) (2.25)

3(1 = )3 = Q) telab)
Bringing (2.24) and (2.25) into (2.23), we can get

A
[RY(m)| = m|51 +8,+83 < Cm773_/l- (2.26)

Combining (2.21), (2.22) with (2.26), Theorem 2.1 has been proved.

2.3. Stability analysis

We will now analyze the stability of the scheme (2.15), analogous to integer order differential equa-
tions, considering the problem

g(t, m(t)) = —Om(1), (2.27)
where 6 > 0 is a real number, first introducing the symbol,
4-2
n =TG-, a0 = Fgu = — (2.28)

Now rewrite the scheme (2.15) as follows, for g < W — 3,
mgy + 0617709mq = _a'(_)l[(GqH + Fq+2)mq+1 + (Hq+1 + Gq+2 + Fq+3)mq+2
w-3
+ ) (Hor + Gy + Fo)my + (Fy + Hys + Gy + Fy-)m2 (2.29)
s=q+3
+(Hw_2 + Gw_1 + Gy)my_1 + (Hw_; + Hy)my].

Wheng =W - 1,W — 2, we have

Mmy_1 + 1o Omy_ = — (Eomw_a + Eymy),
2(21[ A 212 (2.30)

o 29mw—2 = _m(ElmW—l + Eymy).

Equations (2.29) and (2.30) are solved together, and to further simplify the representation, the co-
efficients are introduced, when g < W — 3,

dq+1 = _(Gq+l + Fq+2)a(;l, dq = _(Hq+l + Gq+2 + Fq+3)aala

My + Mo

q q+
dl = —(Hi 1+ G+ Foey', s=q+3,q+4,...,W=3,
sz—Z = —(Fq + Hy 3+ Gy + FW_l)CZal, (231)
d3V—1 =—(Hy_, +Gw_1 + Gq)a/al,

dgV = _(HW—I + I:Iq)a/al.
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Therefore, (2.29) is re-expressed as follows

W
m, + ag'nobm, = Z dimg, q<W-3. (2.32)
s=q+1
Before analyzing the stability of (2.32), two auxiliary lemmas are given.
Lemma 2.2. Forall0 < A < 1,q < W =3, the coefficients in the problem (2.32) satisfy:
W
1) Z d?=1;
s=q+1
2)dl>0, s=WW-1,...,g+4,9+3;
4
3) 0< dg 0 < 5;
4) The symbol for dZ ., can not be determined;
1
5) Z(dZ+l)2 +d!,>0.
Proof. For a detailed proof, see Appendix A.
In Lemma 2.2, we find that the value of dZ ., can be positive or negative. In order to prove that the

high order scheme is absolutely stability for 4 € (0, 1), let

1
7==d! (2.33)

- 5. q+1°
then the Eq (2.32) can be re-expressed as follows

My — Ty, + @, lnoemq
= T(mq+l - qu+2) + (7'2 + dZ+2)(mq+2 - qu+3)
@+ 1d], + d ) mges = Tg)
o @ R rd), + d )y — Ty )

W-1- W3-
+(" T qu+2 +..o+Tdl, , +dY myoy — Tmy)

W—q W-2-q 19 q q
+@"+ T dyyy+ ... +7dy | +dy)my.

Now we denote

&= e Y ML s = WW =1, q+2, (2.34)
k=q+2
my = Mg—TMg,s=W-1,W-2...,¢q (2.35)
The equivalent form of (2.29) is
w-1
i, + ay'nobm, = Ting., + Z diing + di,my. (2.36)
s=q+2

Electronic Research Archive Volume 30, Issue 10, 3825-3854.
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Lemma 2.3. Forall0 < A < 1,q < W =3, the coefficients of (2.36) satisfy

2
1) O<T<§;
2) J?>O,S:W,W—1,...,q+2;
w-1
3) T+ Z d! +dj, < 1.
s=q+2

Proof. 1) According to 3) in Lemma 2.2 and (2.33), it is obviously provable.
2) When s = g + 2,

- 1
dl,=7+dl, =5l ) +dl,

q+2 — 4

According to 5) in Lemma 2.2, we have JZ . > 0, thus

1 =d t+dl,s=W,W-1,...,q+3,

and by 2) in Lemma 2.2, 7 > 0, we have

cf§?>0,s:W,W—1,...,q+2.

W-1
3) Assume Q, =T + Z d? +d}, for (2.34), we have
s=q+2
W—-q W—q-2 1
Qq:ZT"'+d;’+2 TS+...+dqW_IZTS+d€V
s=1 s=0 s=0
| 1 — W4l 1-7 1-72
_ q q q q
=T T +dq+2 - +"'+dW*21—T+dW*11—T+dW'

Further available,
(1-1Q, =71 =" +d! ,A ="+ . +dj_ (-7 +d}(1-7).

According to 1), 2), 5) in Lemma 2.2 and (2.33), we get

IA

w
(1 ="+ dl (1 -7+ Y

s=q+3

(1 - T)Qq

W
(t+ Z df -Vl + d;’+2)

s=q+2
(-0 -t +dl,) <1 -1).

w-l _
Therefore, Q, = 7+ ), di +d;, < 1. The proof of Lemma 2.3 is then completed.
s=q+2

Lemma 2.4. Forall 0 < A1 < 1, there is

ﬁ131+a611709m§Smﬁv,qu—l,...,l,O.

(2.37)
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Proof. For a detailed proof, see Appendix B.

Theorem 2.5. When g is defined by (2.27), the high-order numerical scheme to (2.1) is stable, and
have

Imy| < 3lmwl,g =W-1,...,1,0.

Proof. According to Lemma 2.4, we get

Im,| < |mwl,g=W-1,...,1,0. (2.38)
From (2.35) and m, = iy + Thigey = ... = My + Ty + .. + 70 imw_y + 77 my, bying using
(2.38) and 1) in Lemma 2.3, we have
Img| = |mg+timg, +...+ ™m0+ ™V my|
- - W-1-q| = W-
< gl + Tlimga| + .o+ T Umw_1| + 7" my|

IA

1
(L7t 47 7Dy | < c—lmwl < 3jmwl

To sum up, Theorem 2.5 certificate is completed.

3. High-order numerical schemes of FPDEs

3.1. High-order numerical schemes of 1D time FPDEs

Consider the following time FPDEs
0’ m(y, t)
0y?
my.b) =mo(y).  Vyelc.dl, G-

m(c,t) =m(d,t) =0, VtE€ [a,b],

Dim(y, 1) - =gnn, a<t<bh, 0<A<1, yelcd],

where A represents the order of a fractional derivative in regard to time #, my(y) is a known function,
and the relevant definition of thm(y, t) is shown below

b
,Dﬁm(y, ) = F(l_i D j: (o — t)‘*a%);p)dp, 0<A< 1. (3.2)

To construct a time-dependent high-order numerical scheme, [a, b] is divided into W equal parts.
Marking n = b;W“,tq = gqn,q = 0,1,2,..., W, the interval [c,d] is divided into M equal parts, set
Ay = %,yi =c+iAy,i =0,1,..., M. And let the numerical solution of (3.1) at (y;, #,) as m,,. Next,
construct the discrete scheme of (3.1) at time ¢, the derivation process is similar to the derivation of

(2.13), then we have
-1

1—*(3 _/l/l) [Eom(y, tW—Z) + Elm(y’ tW_]) + Ezm(y, tW)], q= W _ 1’
r‘(;]_ /1) [Eom(y, ZLW—2) + Elm(y, tW—l) + Ezm(y, tW)]’ q= W — 2’
Lim(y,t) =1 g4 . ) ) (33)
npMYs U n
G- {Fym(y. ty—2) + Gym(y. tw—1) + Hym(y. tw)
W-1
* Z [Fim(y, ti-1) + Gim(y, 1) + Him(y, f1+1)]}, g<W-3,
I=q+1
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where the values of the coeflicients “E, F, G, H” are defined by (2.14).
Therefore, the semi-discrete scheme of (3.1) is

O’ m(y, tw_1) n
——2 WU 4 ey, two) =
92 80, tw-1) rG-0
+ Eym(y, tw-1) + Eam(y,tw)], ¢ =W —1,

azm(y’ tW—Z) 77_/1
_ 4+ Tw_ =
ayz g(y’ w 2) F(S — /l)
+ Eym(y, tw-1) + Exm(y, tw)], g =W =2,

Fm(y, 1,) 74
_— ,[ = —
PR vy

[Eom(y, tw—2)

[Eom(y, tw—2)

{Fm(y. tw_) + Gym(y. tw_1) + Hym(y, tw)

W-1

+ ) IFm(y, ) + Gy, 1) + Hm(y, 1)1}, g < W =3, (3:4)

I=q+1

First analyze the truncation error of the above scheme, similar to Theorem 2.1, we have the follow-
ing lemma.

Lemma 3.1. Suppose that m(y, t) is the solution of (3.1), and it has fourth-order continuous partial
derivative in regard to time variable t, then

R 1g) = [iDym(y, 1) = yLym(y,1)| < Coy’™, g =W —1,...,1,0, (3.5)

where C,, is a constant independent of n.
&> m(y, 1)
0y?
scheme to discretize, and the method is as follows

On the discretization of , for the fixed ,, use the idea of the central second-order difference

Fm(y;, ty) N m(yi-1,ty) = 2m(y;, 1;) + m(yis1, t,)
0y? - Ay? ’

g=Ww-1,...,1,0. (3.6)

*m(y,t)
ayZ ’

Lemma 3.2. For a fixed time t, use the second-order central difference method to discretize the

scheme (3.6) is known that it has the second-order accuracy under suitable conditions.
Proof. Its detail proof can be found in reference [30].

We make use of the finite difference scheme (3.4) in the discretization of time and (3.6) in the
discretization of space, and the high-order numerical scheme of the FPDE (3.1) is as follows

M w-1 — 2Mmiw-1 + Mg w- - = = =
. . . iwo1 = ———(Eom;w_o + Exm; w_1 + Eom; w),
Ay? 8iw-1 Y€ _/1)( 01, w-2 1M, w-1 M)
mi_1w-2 = 2miw_a + Mg w2 n!
- - - + 8w =———(Emiw_no+ Emw_1 + Em;w),
Ay giw-2 I _/1)( omiw-2 + Eymiw-1 + Exmiw)
mi_14 —2mig + M1 4 n A — =
+,~:—Fm,~_+Gm,~_ 3.7
A2 8iq F(S—/l)[ qMMi,w-2 qMi,w-1 (3.7)
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w-1
+H,m;w + Z (Fmi_y + Gymy; + Hzmi,l+1)],
I=q+1
where m; , represents the numerical solution of m(y;, t,), g;, represents g(y;, t,),andi = 1,2,..., M —1.
The error of the discrete scheme is given below, here, we first bring in two defined the operators

Pm is 1, -
IO e T € fa,bl,

m(yi-1,ty) — 2m(y;, ty) + m(yis1,1,)
Ay? '

L(m(yi’ tq)) = tD;glm(yi» tq) -
(3.8)

LAle(m(yi’ tq)) = nL;}m(yi’ tq) -

Theorem 3.3. Assume m(y,t) is the solution of the Eq (3.1) and regarding the time variable t and space
variable y both have 4th-order continuous partial derivatives, so

| L(m(yis 1)) = LY "m(yi, 1)) < Co7 ™ + AY?), (3.9)

where C,, is a constant independent of n and Ay.

Proof. According to Lemmas 3.1, 3.2 and (3.8), we have already proved above, we are able to imme-
diately gain

| L(m(yi, 1,)) = LY"m(y;, 1,)]

Fm(yi 1,) m(yi-1,ty) = 2m(y;, ) + m(yiz1, 1,)
= |[Dim(yi t,) — ————= — ,Lim(yi, t,) + ! d d
[ it dy? ”"( ") . (Ay2 Vs ’) (3.10)
myi—l,t - myiat +m)’i lat m ivt
< |1D?,m()’i, tq) - nLgm(yia tq)‘ + ‘ ! B ! Ak L B ! ‘
Ay dy
< G ™ + AY).
Theorem 3.3 is then proved.
3.2. High-order numerical schemes of 2D FPDEs
Consider the following FPDEs
Pm@y,z,1)  Pm(y,z,t
Dim(y.z.1) - LEBD _TMOSD ) e (a,b). (v.2) € [e. TP,
oy 0z 3.11)

m(y,z,b) =mo(y,2),  Y(,2) € [c,d],
m(c,z,t) = m(d,z,t) = m(y,c,t) = m(y,d,t) = 0,Vt € [a,b],Vy, z € [c,d],

where A represents the order of the fractional derivative in regard to time ¢z, my(y, z) is a known function,
and the relevant definition of thm(y, z, 1) is shown below

-1 ¢ om(y, z, p)
D/l ’ at = —t A nkLate d N
Dym(y,z,1) T -2 [ (o-1 p P

0<a<l. (3.12)

Similar to (3.7), let Ay = Az = d—;,zl =c+IAz,l=0,1,..., M, we have
-1

T] — — —
I (Eomiyws + Evmigwy + Esmipw),
e —/l)( oM w—2 1M w-1 2Mi 1 w)

2 2 _
O My w-1 + 0;miw-1 + &itw-1 =
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-1

T
rG3-2a)

2 2 _
O miw—2 + O;Mi w2 + &irw-2 = (Eomigw-2 + Evmiw-1 + Exmiw),

-

T [z _
r3-2 [Fimian-a + G- (3.13)

2 2
OyMipg + 0 Mg+ &itg =

W-1
+Hym;,; w + Z (Fsmjj_1 4+ Gamig g, + Hsmi,z+1,q)],

s=l+1
where m; ; , represents the numerical solution of m(y;, z;, t,), g1, represents g(v;, z;, t,),
»bq q sbq q

Mi_1 14— 2Migq + Mgy 14
Ay?

Mig_1q = 2Migq + M4
) _ Mi-14 ilg il+l,gq
s 5Zmi,l,q - AZ2 ’ (314)

2 —
5ym,-,1,q =

where i,/ =1,2,..., M — 1. The error of the scheme is given below, we first define the two operators

Pmyi,z,t,)  Pm(yi, 2, t,)
. _ 1 . _ ir<ls tg _ 140 bg
L(m(yi, z1,15)) = Dym(yi, 21, 1) 9y? 072 ’ (3.15)

LYY m(y;, z1,1,)) = nLim(yi,z,15) — 5§m(}’i, s ty) — Som(yi, 215 1),

where 63, 67 are defined as following for i,/ =1,2,...,M -1,

m(Yi» 21> tg) = 2m(Qis 21, tg) + mQiv1, 25 4
53’"(%‘—1,&, ty) = O 21 1y) (yAyIZ 2) i1, q)’

3.16
M(is 21-1 tg) = 2mi, 21, 1) + MG, 211, 1) (3.16)
AZ? :

The proof is given below that similar to Theorem 3.3.

2
6zm(yia ap tq) =

Theorem 3.4. Assume m(y, z,t) is the solution of the Eq (3.11) and has 4th-order continuous partial
derivatives with respect to t,y, z, then

| LM (i, 21, 1,)) = LY 2Tm(y;, 21, )] < Co(pP™ + AV + AZ), (3.17)

where C,, is a constant independent of 1, Ay, Az.
4. Numerical results

In this section, three computational examples will be used to verify our conclusions and methods in
the previous section.

Example 4.1. Case (1). the exact solution is smooth. For the problem (2.1), let the initial value m, = 0,
and

(1-0""+1-0*—m@), 4.1)

. 24
R TEE

g(t,m) = (1 =1+ 1 -0 - Q. 4.2)

24
rG-4)

It can be verified that the exact solutions of the above two cases are all m(f) = (1 — 1)*. We take
a=0,b =1, the step size is p = %, W = 2", where i = 4,...,10. The following two cases for (4.1)
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and (4.2) use several different values of A, and we will calculate the convergence order with the help of
In(ey,/e,)/ In2, where e, = max |m(t,) — m,|.
q

Firstly, when the function g is defined by (4.1) which g is a linear case of m, it can be seen from Table
1 that when A takes 0.3,0.5 and 0.7, their convergence orders tend to be 2.7,2.5 and 2.3, respectively.
In Table 2, we take 4 — O or 1, thatis 4 = 0.01 and 0.99, we find convergence orders close to 2.99 and
2.01, respectively. Therefore, from Tables 1 and 2, when A take different values, even when it tends to
0 or 1, the convergence rate is still 3 — A4, 1 € (0, 1), and this is basically consistent with our theoretical
expected results.

Secondly, when g is defined by (4.2) which g is the nonlinear case of m, it can be seen from Table
3 that when A takes 0.2,0.5, and 0.8, the convergence order tends to 2.8,2.5, and 2.2, respectively.
Similar to the above Table 2, 4 = 0.01 and 0.99 are also taken in Table 4, and the convergence order
tends to 2.99 and 2.01, respectively. In short, the results in Tables 3 and 4 still verify that our order
of convergence is 3 — A. Therefore, in case (1) of the Example 4.1, when 0 < A < 1, by taking
different values of A, we find that the obtained convergence orders are all 3 — A, which again confirms
the theoretical prediction in Theorem 2.1.

Table 1. Maximum errors and convergence rates for the right hand side (4.1) with 4 = 0.3,
0.5 and 0.7.

n 1=03 Rate 1=0.5 Rate A1=0.7 Rate
1—16 4.0865E-04 - 1.2178E-03 - 3.0797E-03 -

é 6.8093E-05 2.5853 2.2836E-04 24148 6.5760E-04 2.2275
é 1.1060E-05 2.6222 4.1759E-05 24512 1.3692E-04 2.2639
ﬁ 1.7693E-06 2.6441 7.5362E-06 2.4702 2.8174E-05 2.2809
ﬁ 2.8029E-07 2.6582 1.3498E-06 24811 5.7624E-06 2.2896
ﬁ 4.4100E-08 2.6681 2.4068E-07 2.4876 1.1748E-06 2.2942

i

6.8703E-09 2.6823 4.2780E-08 24921 2.3914E-07 2.2965

1024

Table 2. Maximum errors and convergence rates for the right hand side (4.1) with 4 = 0.01,
0.99.

n A1=0.01 Rate A =0.99 Rate
1—16 7.5976E-05 - 1.0084E-02 -

é 4.6806E-06 4.0208 2.6311E-03 1.9384
é 2.8833E-07 4.0209 6.6795E-04 1.9778
% 1.7759E-08 4.0211 1.6760E-04 1.9947
ﬁ 2.4453E-09 2.8604 4.1826E-05 2.0025
Slﬁ 3.3004E-10 2.8893 1.0411E-05 2.0063
1 4.2900E-11 2.9436 2.5881E-06 2.0082

—
S
R
=
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Table 3. Maximum errors and convergence rates for the right hand side (4.2) with 4 = 0.2,
0.5 and 0.8.

n 1=0.2 Rate A1=0.5 Rate A1=0.8 Rate
1—16 1.8078E-04 - 1.1076E-03 - 4.5826E-03 -

é 2.9134E-05 2.6334 2.1050E-04 2.3956 1.0574E-03 2.1157
é 4.5379E-06 2.6826 3.8742E-05 24418 2.3634E-04 2.1616
l—ég 6.9296E-07 2.7112 7.0178E-06 2.4648 5.2111E-05 2.1812
ﬁ 1.0446E-07 2.7298 1.2597E-06 24779 1.1417E-05 2.1904
513 1.5603E-08 2.7430 2.2491E-07 2.4857 2.4934E-06 2.1950

2.3102E-09 2.7557 4.0018E-08 2.4906 5.4365E-07 2.1974

—
S
I\s)
=

Table 4. Maximum errors and convergence rates for the right hand side (4.2) with 4 = 0.01
and 0.99.

n A1=0.01 Rate A =0.99 Rate
1—16 5.3448E-06 - 1.0113E-02 -

é 7.9246E-07 2.7537 2.6799E-03 1.9160
6—14 1.1367E-07 2.8015 6.8385E-04 1.9704
Els 1.5986E-08 2.8230 1.7191E-04 1.9921
213 2.2170E-09 2.8501 4.2933E-05 2.0015
51@ 3.0407E-10 2.8661 1.0690E-05 2.0058
— 3.9733E-11 2.9360 2.6578E-06 2.0079

._.
S
0o
=

Case (2). The exact solution is non-smooth. Consider the problem (2.1), and my = 0 with an exact
analytical solution:

m(t) = (1 —ty. (4.3)
It can be checked that the corresponding right hand side
gt,m) =T(1 + ) + t' — m(?). (4.4)

The choices of the fractional order are now also taken as 4 = 0.3,0.5 and 0.7. Other settings are the
same as previous case (1) in the Example 4.1.

The results are given in Table 5, from which we can obtain that when 0 < A < 1, the convergence
order is close to A. The reason lies that the exact solution function has singularity at » = 1 and is
non-smooth on [0, 1].
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Table 5. Maximum errors and convergence rates for the right hand side (4.4) with 4 = 0.3,
0.5 and 0.7.

n 1=03 Rate A1=0.5 Rate A=0.7 Rate

% 9.0233E-02 - 1.2294E-01 0.1750 1.0782E-01 0.5092

% 9.2055E-02 -0.0288 9.9332E-02 0.3076 7.1437E-02 0.5940

6]—4 9.1231E-02 0.0129 7.6437E-02 0.3779 4.5892E-02 0.6384
i

= 8.4961E-02 0.1027 5.7148E-02 0.4195 2.8976E-02 0.6633
ﬁ 7.6174E-02 0.1575 4.1959E-02 0.4457 1.8112E-02 0.6779
6.6599E-02 0.1937 3.0444E-02 0.4628 1.1253E-02 0.6865
7 5.7213E-02 0.2191 2.1915E-02 0.4742 6.9671E-03 0.6917

Case (3). We consider an exact analytical solution and the corresponding right hand side are (4.3)
and (4.4), respectively.

In this case, we choose graded mesh is t; = 1 — (1 — i/W)? with a grading parameter 8 > 1 based
on the idea of [27] fori = 0,1,2,..., W. The choices of the fractional order are now also taken as
1=0.3,0.5,0.7and W = 8, 16, 32,64, 128,256,512 and 8 = 3.

The results are given in Table 6, from which we can obtain that when 0 < A4 < 1, the convergence
order is close to min(54,3 — A) which is result of the Lemma 8 in [27].

Table 6. Maximum errors and convergence rates for the right hand side (4.4) with 4 = 0.3,
0.5,0.7 and g = 3.

W 1=03 Rate A=05 Rate 1=0.7 Rate

8 2.1258E-01 - 1.1954E-01 - 8.9002E-02 -

16 1.1304E-01 09111 4.4942E-02 14114 2.2005E-02 2.0160
32 6.0616E-02 0.8990 1.6266E-02 1.4661 5.2992E-03 2.0539
64 3.2545E-02 0.8972 5.8004E-03 1.4876 1.2454E-03 2.0891

128 1.7466E-02 0.8978 2.0570E-03 1.4956 2.9101E-04 2.0974
256 9.3689E-03 0.8986 7.2805E-04 1.4984 6.7909E-05 2.0994
512 5.0234E-03 0.8992 2.5750E-04 1.4994 1.5841E-05 2.0998

Example 4.2. To demonstrate the validity of the algorithm and observe the approximation of the nu-
merical solution to the exact solution, we solve the Eq (3.1) by means of the scheme (3.7), and the
corresponding right-hand member as following

8.0 =| (1= *" +4n°(1 - 1)*| sin 27y,

G5 - 1)

The analytic solution was verified as m(y, r) = (1 — £)* sin 27y.
We take a = 0,b = 1, the interval of the space be [0, 1], and set e, », = max|m;, — m(y;, t,)|. We
l’q

start by looking at spatial accuracy. To prevent the effect of time-dependent error on spatial accuracy,
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we need to fix the time step to be small enough. Let W = 10, 000 in Table 7, by comparing the error
of A4, Ay under different values and the order of convergence. When 0 < A < 1, the spatial accuracy is
second-order convergence, this result is accord with the theoretical analysis obtained in Theorem 3.3.

Table 7. Maximum error and spatial convergence rates with 4 = 0.4, 0.6 and 0.8.

Ay 1=04 Rate 1=0.6 Rate 1=0.8 Rate
i 2.2127E-01 - 2.1751E-01 - 2.1283E-01 -
% 5.0604E-02 2.1285 4.9863E-02 2.1250 4.8940E-02 2.1206

1.2380E-02 2.0312 1.2205E-02 2.0305 1.1988E-02 2.0295
iz 3.0784E-03 2.0078 3.0354E-03 2.0076 2.9817E-03 2.0073
7.6857E-04 2.0019 7.5786E-04 2.0019 7.4449E-04 2.0018
% 1.9208E-04 2.0005 1.8940E-04 2.0005 1.8606E-04 2.0005
= 4.8016E-05 2.0001 4.7347E-05 2.0001 4.6512E-05 2.0001
= 1.2004E-05 2.0000 1.1837E-05 2.0000 1.1628E-05 2.0000

Next, we check the time-dependent convergence rate. In Table 8, we also list the value of e, o, and
the corresponding order, when A, 1 takes a series of different values, where Ay = 0(773_7’1) is taken.
When A takes 0.4, 0.6, and 0.8, the convergence order tends to 2.6,2.4, and 2.2, respectively, this can
show that the convergence order in the time is 3 — A.

Table 8. Maximum error and time convergence rates with 4 = 0.4, 0.6 and 0.8.

n 1=04 Rate 1=0.6 Rate 1=0.8 Rate

}T 2.3612E-02 - 3.3816E-02 - 3.7639E-02 -

% 3.7052E-03 2.6719 5.9787E-03 2.4998 8.9774E-03 2.0679
1—16 6.1432E-04 2.5925 1.1055E-03 2.4351 2.0248E-03 2.1485
% 1.0199E-04 2.5905 2.1213E-04 2.3817 4.4334E-04 2.1913
é 1.7019E-05 2.5833 4.0298E-05 2.3962 9.5825E-05 2.2100

|

2.8131E-06 2.5969 7.6348E-06 2.4001 2.0869E-05 2.1990
4.6507E-07 2.5966 1.4495E-06 2.3971 4.5424E-06 2.1999
7.6865E-08 2.5971 2.7470E-07 2.3996 9.9072E-07 2.1969

S
Juty [Sityq NS
ol & o

Example 4.3. In order to further test the feasibility of the algorithm, we use the scheme (3.13) to solve
the Eq (3.11), the maximum error is e, aya; = mlax Im;;, — m(yi, 21, t,)|, and take the right side of the
l’ 7q

equation as follows

gz =

G- /1)(1 - t)4_/l + 871'2(1 - t)4] sin 27Ty sin 27z,

and its exact solution is m(y, z, f) = (1 — t)* sin 27y sin 2nz.
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To study the convergence rate of the space, in Table 9, let W = 6000, the domain of space be
[0,1] x [0, 1]. By observing the error and convergence order with 4 and Ay = Az choosing different
values, we find that its spatial accuracy is second-order convergence.

Table 9. Maximum error and spatial convergence rates with 4 = 0.3, 0.5 and 0.8.

Ay = Az 1=03 Rate A1=0.5 Rate 1=0.8 Rate

% 3.9558E-02 - 3.9298E-02 - 3.8777E-02 -

1—16 1.1142E-02 1.8279 1.1071E-02 1.8277 1.0928E-02 1.8271
5 2.9611E-03 1.9118 2.9424E-03 1.9117 2.9048E-03 1.9116
é 7.6352E-04 1.9554 7.5870E-04 1.9554 7.4902E-04 1.9553
ﬁ 1.9387E-04 1.9776 1.9265E-04 1.9776 1.9019E-04 1.9776
552 4.8847E-05 1.9888 4.8539E-05 1.9888 4.7920E-05 1.9887
= 1.2259E-05 1.9944 1.2182E-05 1.9944 1.2027E-05 1.9943

In Table 10, where Ay = Az = 0(77¥) is taken, studying the convergence order in time. When
A takes 0.3, 0.5, and 0.8, the convergence order tends to 2.7,2.5, and 2.2, respectively, the numerical

results reveal the theoretical analysis is accord with the numerical results, the convergence order is
3-A

Table 10. Maximum error and time convergence rates with 4 = 0.3, 0.5 and 0.8.

1=03 Rate A1=0.5 Rate 1=0.8 Rate

2.6952E-03 - 4.5754E-03 - 7.8296E-03 -

4.5757E-04 2.5583 7.9379E-04 2.5271 1.8635E-03 2.0709
7.0351E-05 2.7014 1.4346E-04 2.4681 4.1626E-04 2.1625
1.1002E-05 2.6768 2.5513E-05 24913 9.0761E-05 2.1973
1.6959E-06 2.6976 4.5175E-06 2.4976 1.9852E-05 2.1928

R e

—_
o
oo

5. Conclusions

In this paper, the high-order numerical scheme of the right Caputo FODE is constructed, and the lo-
cal truncation error and stability are analyzed in detail based on the idea and methods of [1]. Secondly,
the high-order scheme is used to solve the time FPDEs. Thirdly, three numerical examples are used to
verify the validity of our conclusions that the optimal convergence rate of time is 3 — 4,4 € (0, 1) with
uniform accuracy. Due to the length limitation of the paper, we only give the local error estimate for
FPDEs. The convergence analysis can be directly obtained by using the method of stability of FODE
in this paper and the ideas of [4]. In the future, We will study higher order numerical schemes with low
smoothness based on the good idea of [26-28] by using the non-uniform mesh and we expect that the
constructed efficient high-order scheme can be applied to the fractional order optimal control problem
and topology optimization nonlocal problem of composites plate based on the idea of [31-33].
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Appendix

A. The proof of Lemma 2.2

Proof. 1) can also be checked by a direct calculation using the definition of d! and summing them for

all

s=q+1,...,W. For example, for g = W — 3, by using (2.14) and (2.28), we have

dy > +dy) +dy3 = —[(Hw-s + Hy-1) + (Gw_3 + Hy_, + Gy-1)

+(Fw-3 + Gy + Fy_Dleg' = 1.

The case of other values of g can be verified similarly.
2) Because

3 1
-H, -Gy —Fy = —5(2 —D(s—g-D"+ 5(2 —D(s—qg-2)""

—%(2 —D(s—g+ D+ %(2 — (s — )"
“3s—qg- D" 4 (s—q-2"" 43— = (s—q+ 1),

when g < W — 3, using Taylor’s formula, we have
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- s—l_Gs_Fs+l

2

(A.1)

= l(2 ~D(s—q-— 2)1-4[1 ~-3(1 + ;Z)H +3(1 + ;)H

§s—q- s—q—2

—(1+ S_Z—_z)“”]+(s—q—2)2“’[1 ~3(1+ s—q;—Z)Q_l

+3(1 + s—%z)H —(1+ S_j—_z)H]
:%(2—/1)(s—q—2)1—ﬂ{1—3[1+(11_!@(s_611_2)+...]

+3[1+ ll_!ﬂ(s_j_zn (1_;?(_&)%—521—2)%”']

a TR |

+(s—q—2)2_ﬂ{1—3[1+21_!/1(S_;_2)

R EC M

+3[1 21_!/1(5—?1—2” (2—/1;(!1—1)(S_621_2)2+m]

BT e T R |

+00

1 e
= 52 -1 - D(-D(s - g -2 2> a

x=0

~Q2 =) = H(=D(s —g-2)"",

where

a, = l:)l(—/l— 1=

1

=3x =18+ (Bx 4+ 24)2%™ — (x + 10)33+*

)

q-2 (x+4)! ’

it is calculated that when r > 6, a, is a convergent alternating series with positive first term, so

+00
0< Zax <41+ 1),
x=0

when ¢ = W — 1, W — 2, using a method similar to (A.1), it can be shown that, d}, | > 0,dj, | >0,

In summary,

d? =

3) Calculated from (2.31)

Electronic Research Archive

s—1 _Gs_Fs+l

@y

dq

>0,s=qg+3,9g+4,...,W.

2722 -12)-32+12

q+1 —
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thus
g 4 _20-50+(3- 180"
a3 3(4-2) ’

let (1) = 20 — 51 + (31 — 18)2'4, by calculation we get

SOI(/I) =—-(31-18)- 21=1p2 — 5+3. 21—/1’
¢"(A) =(B21-18)2""(In2)* = 6In2-2""1 <0,

therefore ¢’(1) is monotonically decreasing and 0 < ¢’(1) < ¢’(1) < ¢’(0), so ¢(1) is monotonically
increasing and ¢(0) < ¢(1) < ¢(1) = 0, that is, there is

d? L—‘<0.

q+1_3

Let (1) = 27424 — 12) — 34 + 12, a tedious but routine calculation gives ¢(1) > 0, Therefore

dZ+1 > 0, in short, 0 < dZH < ‘3—‘.
4) Because
dg+2 = _(Hq+1 + Gq+2 + Fq+3)a'61
1 1
= — 218 -31) -3 8 - ) +31-12] = ),
4—/1[ ( ) ( )+ ] 4_/1¢1()

where 4 — 1> 0,4 € (0, 1), so the sign of dg ., 1s determined by ¢;(4). It can be known by calculation,
#1(0) > 0,¢7(1) < 0, ¢1(4) increase at first and then decrease, and ¢;(0) = 0,¢,(1) = -1 < 0.
Therefore, when A € (0, 1), dg ., have positive and negative values. Therefore, The symbol for d;’ ., can
not be determined.
5) Because

1 1

) + i = g,
where ¢(1) = (34— 12)(4 — 1) +3(A% — 104 + 24)227* + 4(124 — 2% = 32)311 + (6 — 1)?4!7*. According
to Lagrange’s mean value theorem, 4~ > - - 317, we get

$1 (1) > (BA=12)4 =) +3(22 = 104+ 24)2%1 + 4(122 — A% — 32)31

4
+(6 - /l)2 . m . 31_/1

= c1+t+cere 21_/l +cC3 21_/1(1 + %)l_/l

1-41 1-DD 1

= +(211‘”{/1c)2( +/lc)3([1/1+ 1%! 1 5 + ( 2?( )(5)2]

= |+ 21_/1{62 + c3c4 + C3(/l - /12) Zﬁ}’
n=0
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where

4
a1 =01-12)(@ -, ¢ =3-—l6- D%+ B+ (124 - 2% -32)],
1-21 A== 1
2 = 6(2% = 101 + 24), c41:11+ T §+( 2!)( )(5)2,
n:Hn_ 1-1- — _n+3’
! (/{_0(1)1 r)(nj’_?))!(Z)/l 2
_ A+ 1y w1 A+2+n
fo=—=—(G) >0 fn|_ =5 <b

so Y '%) fn is a convergent alternating series, that is, 0 < X' f, < fo. Thus

+00
S > o+ 2 e+ e+ es(= D) ) fi) 2 e+ 27 e + esea + (X - D) fo)

n=0
A+11
= g +2'"" e +ala + (- /12)%(5)3]} = ¢ +2'"Yex + caes) = (W),
where
A+1 1, 642 — 2% — 291 + 24
C5—C4+(1—/l)/lT(§) =1+ 43 .
It can be obtained by calculation
1
0(1) =1 + 2" Mer + cze5) = m{—%(/ﬁ —52%) +288(1 = 6) + 2"71(1° — 162° +972*
1
—2782%) + 23742227 + 1832 + 216)} = ————p3(A).
)+ 277 + +216)} 36+12/1(p3()

Because of A € (0, 1), so 23 < A%, 1° > 0, then

@3(A)

[=36(1% — 522) + 288(1 — 6) + 21740 — 1625 + 974 — 2782%) + 234222 + 1831 + 216)}
14422 + 24 — 12) + 2174 [=162° + 974* — 27883 + 4(22.% + 1831 + 216)]
1442 + 24 — 12) + 2171 - 04(D) = B3(A).

Vv

By Calculating, we get 9_0'3' (1) <0,so 52'3(/1) is monotonically decreasing, so @(1) < ¢5(1) < ¢5(0), a
similar method can be used to find the first derivative of ¢}(1), because ¢5(0) > 0, @;(1) < 0, thus @5(1)
changes from positive to negative, so {3(A) first increases and then decreases, and ¢3(0) = 0, &3(1) =
191 > 0, so @3(1) > 0, 91 (1) > @2(1) > p3(4) > 0. To sum up,

1
Z(df]+1)2 +d!,>0,1€(0,1).

The proof of Lemma 2.2 is completed.

B. The proof of Lemma 2.4
Proof. Bringing (2.27) into scheme (2.13), wheng =W - 1, W - 2,

-1

anmW—l = L (Eomy— + Eymy_y + Eymy) = —6my .,
n
Dimy_, = TG-0 (Eomw_y + Eymy_y + Eymy) = —60my_,,
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and By = 176 the relevant value of “E” is detailed in (2.14). It can be obtained by calculation,

Y, Y;
mwy-1 = My, mwy— = My,
Y, Y,

where

Y1 =1-TQ = DBoEs, Y3 =1-T3 - DBoEs;

= 4-24
Yo=B+TQ@-V)(E +Ey)Bo+1, [=——"—;
2 =B+ TG = )(Ei + Eo) By STTTERNE
- A+2
E1+E0:2—2/1+ 2/{ .
So, wheng =W — 1,
iy, + ag'nobmi, | = (my_; — tmy)* + Onoay ' m3,_,

2
ao +a;I'(3 — ﬂ)ﬂo + a,I'(3 — ﬂ)zﬂo +a3'(3 — ﬂ)%ﬁo + a3 -2) ﬁ4

~eg+eT(3 = DBy + el (3 — V2B + e3T(3 = D3B3 + eaT(3 — )2 iy

= ﬁm —Tm 2+a_1 Gﬁm 2
1% w w o Mo Y, w

After detailed calculation, it can be obtained,

ap = 4 = 122 + 5222 — 961 + 64) + 24724 (14 —16A% + 8812 — 1921 + 144)
_ 4 (44 — 1423 + 6822 — 1361 + 96) >0,
a, = 22 (344 — 3223 +1162% - 1604 + 64) 4 (/14 1223 + 3242 + 481 — 144)

+ 271 (44% = 504° + 18807 — 1840 — 48) — 4(134* - 1442° + 508% - 57614 + 64) > 0,

@y = (92 — 8447 + 2440> — 2242 + 64) 4" - 2171 (214* - 1704° + 2961° + 6081 — 896)
+ (2 =827 = B> + 961 + 144) 4171 = 2271 (72* - 587 — 4% + 6481 - 288)
+612* = 4(13747 - 2214 - 4881 + 480) > 0,
= —41"1(947 — 6927 + 1521 - 80) + 2°7 (27 = 102” + 122 + 72)
+ 217 (270° - 2507 + 5921 — 96) — 4 (1047 — 1004 + 2161 + 144) > 0,
ay=9(A* - 81+ 16)4' —6(17 - 104 +24) 2" + 4(2* - 122+ 36) > 0,
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and

eo — ap = 12(A* = 1247 + 5207 = 961 + 64) — 427 (2* — 162° + 8847 — 1921 + 144)
+2471 (2% = 142° + 6847 - 136 + 96) > 0,

ey —ap =271 (50% = S60° + 2204% - 3524 + 192) + 4" (2% — 1227 + 320% + 481 — 144)
= 2471(42% = 5007 + 18817 — 1841 — 48) + 4(92* — 11227 + 4604 — 7041 + 320) > 0,

er— ay = 4" (72" = 7617 + 28447 — 416 + 192) + 2" (132* - 122° + 3284 — 2081 + 64)

— 41 (2 = 83 - 827 + 964 + 144) + 271 (72 - 587 — 407 + 6481 - 288)

= 572% +4(13347 - 23347 — 4561 + 544) > 0,

e3 —ay = 4" (507 = 3307 + 564 — 16) - 2% (1 - 104% + 124+ 72)

—2"71(2307 - 2267 + 5921 — 224) + 4 (104° - 1004 + 2161 + 144) > 0,

es—as==5(1 =81+ 16)4" + 3 (2 - 104 +24) 2> - 4(2* - 124 + 36) > 0.

With the above calculation, for all 1 € (0, 1), when g = W — 1, we have

a;>0,e,>0,a,<e,q=1,2,3,4.

Therefore, we obtain

sy, + agy'nebms, | < my,. (B.2)

When g = W — 2, it can be proved that

My + @' nobmy,_, < my, (B.3)

holds by a similar method as g = W — 1.
The following proves that when ¢ = W — 3, bring in (2.32) there is

-1 _ W-3 w-3 w-3
my_3 + ay Onomw_3 = dy,_smw_p + dy,_imwy_; +dy "my.

-1 1-2 .
Duetor = 1[3 - %6}”)], dp3=3- %’1;4), and T # 1d}) 73, according to (2.36) we get

- -1 FW-3 = FW-3 = FW-3
my_3 + ay nobmy_3 = dy, My + dy_jmy_1 +dy " my, (B.4)

TW-3 _ gW-3 _ _ JW-3 _ _IW-3 W-3 JW-3 _ _jW-3 w-3
where a’W_2 = dW_2 T, a’W_] = TdW_2 + dW—l’dW = TdW_] +dy .

Next, we will prove dj; 3 > 0,d}; 3 > 0,dy, > 0. By carefully calculation,

i ~ 6-21-3112+3)+27%6 - 1)
W= >0

4-1
1
Because d)) 3 = m31‘1(4/l +4) — 3, then
- 3 4 1 24 421 - A2 2
AV = D (——— )3l T gl g (4 T2y
Y B LA A w1 I+
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By a tedious but routine calculation gives d}, 3 > 0.
Because d}, = ﬁ(‘%ﬁ -4. 3_2‘/‘) >0,s0dy > =1d) 3 +dy > 0.
Next calculate dy, "3 + dy "3 + dyy > < 1. By carefully calculate, we have

Jw-3 Jw-3 gw-3 _ JW-3 gw-3 W-3 Jw-3 W-3
dys +dy +dy ™ =dys —Tt+7dyl; +dy ) +Tdy T+ dy
=dy 3 —T+7(dy3 - 7)+dyT +Tdy S - 1)+ Tdy S+ dy
=(@dy3-D(l+7+7)+dy3(1+1)+dy)~
w
w

1-73 2

1-71

e d _?1—7 1-71

+

— dW—3_
(dy 2= 7) -7 1-71

dy > = Qw-s.
According to 1) in Lemma 2.2, we get
(1 =DQw-3 = (dy5 — D1 =) +dy (1 - ) + dy (1 = 1)
= (dy3 +dy ) +dy” —1) = (dys — DT — Ty, — Tdyy_,
<(-7-7hdys - +dyl=(1-1)-7Tdy ) <1-7
In summary,
dp3+dh 3 +dh <1, (B.5)
When g = W — 3, multiply 2/ny_3 on both sides of (B.4) to have
ity 3 (iMw—3 + g ' oOmw-3)
= 2inw_3(dy Siw_a + dyy w1 + dy my)
S Y3 o 4 Y 0 @ B Y

For the left side of the above equation

. — -1 ) - -1
2my_3(Mw-3 + g Mobmw-3) = 2my,_5 + 2my_3aq nodmw-3

2

A=2 -1 2 _2 2
= 2y _5 + @y nob(my,_5 + my_5 — 7°my,_,).

By using (B.5), we have

Zrh%‘,_3 +a, 17709(m€1,_3 + mﬁm — sz%v_z)
(B.6)
TW-3 =2 W3 -2 W-3 2 =2
< dy ity + dy gy + dy my .
By carefully calculation, we have
- 311 2.3
a3 = 4+1-4 -2 <0, B.7
wa—T 4_/1[ ( 3)(2)] B.7)
It is easy to check as follows
T+dy S +dy <. (B.8)
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From conditions (B.2), (B.3), (B.8) and 3) in Lemma 2.3, (B.6) becomes following as

=2 -1 2 =2 -1 2 FW-3 (=2 -1 2 W-3 2
My,_s + @y nomy,_, < T(mW_2 + nOQmW_Z) +dy-; (mW_1 + a, noemw_l) +dy "my, (B.9)
< (T + civv“,/:? + civv“,/_3)m%‘, < m%v

Therefore, when g = W — 3, (2.37) holds.
When g = W — 4, there is

mW4+a0 nOQmW4—TmW3+d sz 2+d 1le+dW my. (B.10)
wol o _ _
According to Lemma 2.3, we have 7+ Y, dif +di, <1,d¥™* > 0,5 =W -2, W — 1, W, multiply
s=W-=-2

both sides of (B.10) by 2y _4 at the same time, we have

_ 9 -1 2 _2 )
2my,_y + gy nob(my,_y + my,_y — T°my,_5)

<ting, 5 +dy iy, + Ay iy, +dy tmy, + (T dy sy +dy )+ dyDmg,
Dueto0 <1< %, using (B.2), (B.3) and (B.9), then

) -1 ) -1 2 W4 =2 ~1g,.2
My_y +ay nobmw_s < T(My_5 + @y Mobmy,_3) + dy 5 (My,_, + noay Omy,_,)
W4 (=2 ~1g,.2 W42
+dy (mW—l + 1o 9mw-1) +dy, " my,
W4 W4 | TW-4) 2
< (T +dy 5 +dy | +dy, )mW < mi,.

When g < W -5, using a similar method above, multiply 27, on both sides of (2.36), and after
sorting, we can get,

2ﬁ1(21+a/617709(m§+n—1§—7 +1)<Tm g+ Z dim’ + dimy, + (t+ Z d? +dt)m
s=q+2 s=q+2

by mathematical induction, Lemma 2.3, we obtain,

wW-1

T(mqul + noemqﬂ) + Z a1 (m* + @, "06m?) + dWmW
s=q+2

IA

=2 -1 2
m, + a 106n,

IA

(T + Z d? + dt)ymy, < my,.

s=q+2

In summary, the proof of Lemma 2.4 is completed.
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