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Abstract: This paper considers deriving new exact solutions of a nonlinear complex generalized
Zakharov dynamical system for two different definitions of derivative operators called conformable and
M− truncated. The system models the spread of the Langmuir waves in ionized plasma. The extended
rational sine − cosine and sinh − cosh methods are used to solve the considered system. The paper
also includes a comparison between the solutions of the models containing separately conformable and
M− truncated derivatives. The solutions are compared in the 2D and 3D graphics. All computations
and representations of the solutions are fulfilled with the help of Mathematica 12. The methods are
efficient and easily computable, so they can be applied to get exact solutions of non-linear PDEs (or
PDE systems) with the different types of derivatives.
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1. Introduction

Researchers make great efforts to better model real-world problems. Fractional calculus, one of
the important and fresh fields of mathematics, offers a better modeling opportunity. So, it has wide
applications in various areas such as physics, biology, and chemistry, etc. There is no unique defi-
nition of the fractional derivative or integral in the literature. Some of the popular definitions of the
fractional derivative are Riemann-Liouville [1, 2], Caputo [3], Caputo-Fabrizio [4], and Atangana-
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Baleanu [5]. Besides, some scientists have introduced new definitions of differential operators such
as conformable [6] and M− truncated derivatives [7] in the last decade. Some works about the con-
formable derivative are new properties of conformable derivative [8], the geometric meaning of con-
formable derivative [9], price adjustment in market equilibrium [10], financial system analysis and
hyperchaos detection [11], modeling neuron dynamics [12] and complex conformable derivative [13],
etc. Regarding the conformable PDEs, there are many studies in the literature such as optical so-
lution of Gerdjikov-Ivanov equation [14], numerical solution of Burgers’ equation [15], wave so-
lutions of Zakharov-Kuznetsov equation [16], exact solutions of space-time local fractal nonlinear
evolution equations [17], Pochhammer-Chree equation [18], optical solutions of space-time nonlinear
Schrodinger equation [19], modified KdV-Zakharov-Kuznetsov equation [20], Gardner equation [21],
space-time Fokas-Lenells equation [22], deterministic and stochastic solutions of Schrodinger equa-
tion [23].
M− truncated derivative, which can be thought of as generalizations of the conformable derivatives,
is introduced by Sousa and Oliveira [7] in 2018. Some articles about the M− truncated deriva-
tive can be listed as the longitudinal wave equation [24, 25], (2 + 1) dimensional Boussinesq dy-
namic model [26], Lakshmanan–Porsezian–Daniel equation [27], Gerdjikov-Ivanov equation [28],
Schrodinger-Hirota equation [29], Sturm-Liouville problem [30], Hirota-Maccari system [31], Rad-
hakrishnan–Kundu–Lakshmanan equation [31] and Biswas-Arsad model [32], comparative study on
complex Ginzburg-Landau equation [33], and clinical medicine applications [34].
In this work, the extended rational sine − cosine and sinh − cosh methods [35–37] will be used to
solve the non-linear complex generalized Zakharov dynamical system (NLCGZDS) [38]. The system
is a modeling of the spread of the Langmuir waves in ionized plasma [39]. In order to obtain better
modeling, the related system is discussed using different derivative operators called conformable and
M− truncated derivatives. We mainly aim to obtain novel exact solutions of the considered models to
help further works in the different disciplines. Besides, we compare the obtained solutions to explain
the behavior of the solutions.
The literature includes the studies on the classical NLCGZDS more. Some of them are Cauchy prob-
lem for the Zakharov system [40], quantum kinetics of Zakharov system [41], well-posedness of the
system [42], hyperchaos investigation in the quantum Zakharov system [43]. The Zakharov system
was solved by various methods such as time-splitting spectral method [44], extended trial equation
method [45], exp-function method [46], local discontinuous Galerkin method [47], extended wave
solutions of Klein-Gordon-Zakharov system [48] and also there is a comprehensive study on soliton
solutions of Zakharov system [34].
The format of this article is organized as: in Section 2, some preliminaries to be used in subsequent
parts are included. The mathematical analysis and the algorithm of the method are studied in Section 3.
The governing model of considered PDE systems is dealt with in Section 4. In Section 5, the applica-
tion of the method and the figures of the solutions of the considered equation are studied. The results
and discussion can be found in Section 6. A conclusion is given in the final section.
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2. Preliminaries

2.1. Conformable derivative

Definition 2.1. Let g : [0,∞) → R be a function. α order conformable derivative of g(t) is defined as
follows [6]:

Dα
t (g(t)) = lim

h→0

g(t + ht1−α) − g(t)
h

, (2.1)

where α ∈ (0, 1], t > 0.

Theorem 2.2. [6] Let g(t) and h(t) be α -differentiable functions for α ∈ (0, 1], t > 0. Then,

1) Dα
t
(
cg(t) + dh(t)

)
= cDα

t g(t) + dDα
t h(t), for c, d ∈ R,

2) Dα
t (tn) = ntn−α, n ∈ R,

3) If g(t) = c where c is a constant, thenDα
t (c) = 0,

4) Dα
t
(
h(t)g(t)

)
= h(t)Dα

t g(t) + g(t)Dα
t h(t),

5) Dα
t

(
g(t)
h(t)

)
=

h(t)Dα
t g(t)−g(t)Dα

l h(t)
h2(t) , h(t) , 0,

6) If the first derivative of g(t) exists, then
Dα

t (g(t)) = t1−α dg(t)
dt .

2.2. M− truncated derivative

Definition 2.3. The truncated Mittag-Leffler function is given as [7]:

iEβ(z) =

i∑
k=0

zk

Γ(βk + 1)
, (2.2)

in which β > 0 and z ∈ C.

Definition 2.4. Let f : [0,∞)→ R be a function, the M− truncated derivative of f of order α ∈ (0, 1),
w.r.t. t is defined by [7]

Dα,β
M,t g(t) = lim

ε→0

g
(
t + iEβ (εt−α)

)
− g(t)

ε
, (2.3)

where β, t > 0 and iEβ(·) is truncated Mittag-Leffler function.

Theorem 2.5. Let g(t) be α order differentiable function at t0 > 0 with α ∈ (0, 1] and β > 0. Then, g(t)
is continuous at t0 [7].

Theorem 2.6. [7] Let 0 < α ≤ 1, β > 0, p, q ∈ R and assume that g, h is α -differentiable at a point
t > 0. Then,

1) Dα,β
M,t (pg + qh)(t) = p Dα,β

M,t g(t) + q Dα,β
M,t h(t), where p, q are real constants,

2) Dα,β
M,t (gh)(t) = g(t) Dα,β

M,t h(t) + h(t) Dα,β
M,t g(t),
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3) Dα,β
M,t

(
g
h

)
(t) =

g(t) Dα,β
M,t h(t)−h(t) Dα,β

M,t g(t)

h(t)2 ,

4) Dα,β
M,t

(
g
h

)
(t) =

g(t) Dα,β
M,t h(t)−h(t) Dα,β

M,t g(t)

h(t)2 ,

5) If g is differentiable, then Dα,β
M,t (g)(t) = t1−α

Γ(β+1)
dg(t)

dt .

3. Analysis of the method

i) Let’s deal with the general form of the conformable PDE system and the wave transformation as
follows:

F
(
Dα

xΨ, Dα
t Ψ, Dα

xD
α
t Ψ, Dα

t χ,D
α
xχ, . . .

)
= 0, (3.1)

G
(
Dα

xΨ, Dα
t Ψ, Dα

xD
α
t Ψ, Dα

t χ,D
α
xχ, . . .

)
= 0, (3.2)

and
Ψ(x, t) = Y(ξ)eiφ, ξ =

c1xα + c2tα

α
, φ =

c3xα + c4tα

α
, χ(x, t) = Q(ξ). (3.3)

ii) Consider the general form of the local M− truncated PDE system and the wave transformation as
follows:

F
(
Dα,β

M,xΨ, Dα,β
M,tΨ, Dα,β

M,xD
α,β
M,tΨ, Dα,β

M,xχ,D
α,β
M,tχ, . . .

)
= 0, (3.4)

G
(
Dα,β

M,xΨ, Dα,β
M,tΨ, Dα,β

M,xD
α,β
M,tΨ, Dα,β

M,xχ,D
α,β
M,tχ, . . .

)
= 0, (3.5)

and
Ψ(x, t) = Y(ξ)eiφ, χ(x, t) = Q(ξ) ,

ξ =
Γ(β + 1)

(
c1xα + c2tα

)
α

, φ =
Γ(β + 1)

(
c3xα + c4tα

)
α

,
(3.6)

where Ψ(x, t) and χ(x, t) are the unknown functions,Dα
∗ and Dα,β

M,∗ are the α order conformable and
M− truncated derivative operators with respect to ∗ (x or t), respectively.
Substituting the wave transformations to the PDE systems yields the following nonlinear ordinary
differential equation systems:

K
(
Y,Y ′,Y ′′, . . . ,Q,Q′,Q′′, . . .

)
= 0, (3.7)

L
(
Y,Y ′,Y ′′, . . . ,Q,Q′,Q′′, . . .

)
= 0, (3.8)

where Y and Q are the unknown functions of ξ and the superscript indicates the derivative of the
functions with respect to ξ.

3.1. Extended rational sine − cosine method

Step 1: Assume that the ODE system in Eq. (3.7) and Eq. (3.8) have the solutions as follows:

u(ψ) =
ω0 sin(µψ)

ω2 + ω1 cos(µψ)
, cos(µψ) , −

ω2

ω1
, (3.9)
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or
u(ψ) =

ω0 cos(µψ)
ω2 + ω1 sin(µψ)

, sin(µψ) , −
ω2

ω1
. (3.10)

where ω0, ω1, and ω2 are parameters to be found in the next step. µ is the wave number to be
also determined after substitution.

Step 2: Substitute the Eq. (3.9) or the Eq. (3.10) to the Eq. (3.7) and the Eq. (3.8). After collecting all
terms with the same powers of cosh(µψ) or sinh(µψ), we derive a set of algebraic equations
by equating all the coefficients of cosh(µψ) or sinh(µψ) to zero. In order to find the unknowns
(ω0, ω1, ω2 and µ), the system can be solved by Maple, Mathematica, etc.

Step 3: Substitute the values of ω0, ω1, ω2, ψ and µ into Eq. (3.9) or Eq. (3.10), the solutions of the
ODE system in Eq. (3.7) and Eq. (3.8) can be found.

3.2. Extended rational sinh − cosh method

Step 1: Suppose that the ODE system in Eq. (3.7) and Eq. (3.8) have the solutions as follows:

u(ψ) =
ω0 sinh(µψ)

ω2 + ω1 cosh(µψ)
, cosh(µψ) , −

ω2

ω1
, (3.11)

or
u(ψ) =

ω0 cosh(µψ)
ω2 + ω1 sinh(µψ)

, sinh(µψ) , −
ω2

ω1
, (3.12)

where ω0, ω1, and ω2 are parameters to be found in the next step. µ is the wave number to be
also determined after substitution.

Step 2: Substitute the Eq. (3.11) or the Eq. (3.12) to the Eq. (3.7) and the Eq. (3.8). After collecting
all terms with the same powers of cosh(µψ) or sinh(µψ), we derive a set of algebraic equations
by equating all the coefficients of cosh(µψ) or sinh(µψ) to zero. In order to find the unknowns
(ω0, ω1, ω2 and µ), the system can be solved by Maple, Mathematica, etc.

Step 3: Substitute the values of ω0, ω1, ω2, ψ and µ into Eq. (3.11) or Eq. (3.12), the solutions of the
ODE system in Eq. (3.7) and Eq. (3.8) can be found.

4. Governing models

In this section, we consider the NLCGZDS with respect to different definitions of derivatives [49]:

4.1. Model with conformable derivative

In conformable derivative, the considered equation might be written as [49]: i Dα
t Ψ + Ψxx − 2δ|Ψ|2Ψ + 2χΨ = 0,

D2α
t χ − χxx +

(
|Ψ|2

)
xx

= 0.
(4.1)

For conformable derivative, the following wave transformations are employed:

Ψ(x, t) = Y(ξ)eiφ, χ(x, t) = Q(ξ), ξ = x −
2ktα

α
, φ =

ctα

α
+ kx. (4.2)
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4.2. Model with M− truncated derivative

In M− truncated derivative, the considered equation might be written as [49]: i iD
α,β
M,tΨ + Ψxx − 2δ|Ψ|2Ψ + 2χΨ = 0,

iD
2α,β
M,t χ − χxx +

(
|Ψ|2

)
xx

= 0.
(4.3)

For M− truncated derivative, the following wave transformations are employed:

Ψ(x, t) = Y(ξ)eiφ, χ(x, t) = Q(ξ), ξ = x −
2kΓ(β + 1)tα

α
, φ =

cΓ(β + 1)tα

α
+ kx. (4.4)

4.3. Solutions of the governing models

Applying the wave transformations in Eq. (4.2) and Eq. (4.4) to the Eq. (4.1) and Eq. (4.3), re-
spectively, we obtain the following ODE system: Y ′′ −

(
c + k2

)
Y − 2δY3 + 2YQ = 0,(

4k2 − 1
)

Q′′ +
(
Y2

)′′
= 0.

(4.5)

Integrating two times the second equation in the Eq. (4.5) and supposing the integration constant is
zero, we get:

Q(ξ) =
Y2

1 − 4k2 . (4.6)

Substituting Q(ξ) to the first equation in the Eq. (4.5), we get:

Y ′′ −
(
c + k2

)
Y +

(
2

1 − 4k2 − 2δ
)

Y3 = 0. (4.7)

Balancing the highest order derivative term and the nonlinear term, we derive N + 2 = 3N ⇒ N = 1.

5. Application

5.1. Conformable Zakharov system

5.1.1. Application of the extended rational sine − cosine method to the conformable Zakharov system

Assume that the Eq. (4.7) has the solution in the form:

Y (ξ) =
ω0 sin

[
µ ξ

]
ω2 + ω1 cos

[
µ ξ

] . (5.1)

Substituting Eq. (5.1) into the Eq. (4.7) ODE to get the algebraic equations formed by collecting all
terms comprising the same powers of cos[µ ξ]m.

cos(µ ξ)2 : − 4ck2ω0ω
2
1 + cω0ω

2
1 − 2δω3

0 − 4k4ω0ω
2
1 + 8δk2ω3

0 + k2ω0ω
2
1 + 2ω3

0 = 0,
cos(µ ξ)1 : − 16ck2ω0ω1ω2 + 4cω0ω1ω2 − 16k4ω0ω1ω2 + 8k2µ2ω0ω1ω2 + 4k2ω0ω1ω2

− 2µ2ω0ω1ω2 = 0,
cos(µ ξ)0 : − 4ck2ω0ω

2
1 − 16ck2ω0ω

2
2 + cω0ω

2
1 + 4cω0ω

2
2 + 6δω3

0 − 4k4ω0ω
2
1

− 16k4ω0ω
2
2 − 24δk2ω3

0 + 32k2µ2ω0ω
2
1 − 16k2µ2ω0ω

2
2 + k2ω0ω

2
1 + 4k2ω0ω

2
2

− 8µ2ω0ω
2
1 + 4µ2ω0ω

2
2 − 6ω3

0 = 0.

(5.2)
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After solving the system of equations in the Eq. (5.2) via Mathematica, the following cases are
derived:
Case 1:

µ = ±

√
c + k2

√
2

, ω0 = ±
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

ω1, ω1 = ω1, ω2 = 0. (5.3)

Substituting the parameters in Case 1 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y1(ξ) = ±
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

tan
ξ√c + k2

√
2

. (5.4)

Considering the Eq. (5.4) and the Eq. (4.2), the following solutions of the conformable Zakharov
system are obtained:

Ψ11(x, t) =
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

tan


(
x − 2ktα

α

) √
c + k2

√
2

 ei
(

ctα
α +kx

)
, (5.5)

Ψ12(x, t) = −
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

tan


(
x − 2ktα

α

) √
c + k2

√
2

 ei
(

ctα
α +kx

)
, (5.6)

χ11(x, t) = χ12(x, t) = −

(
4k2 − 1

) (
c + k2

)(
1 − 4k2) (δ (2 − 8k2) − 2

) tan2


√

c + k2
(
x − 2ktα

α

)
√

2

 . (5.7)

These solutions are corresponding to trigonometric soliton solutions in the literature and valid for(
c + k2

)
> 0.

Case 2:

µ = ±
√

2
√

c + k2, ω0 = ±
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

ω1, ω2 = ω2, ω1 = ±ω2. (5.8)

Substituting the parameters in Case 2 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y2(ξ) = ±
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

sin
[√

2ξ
√

c + k2
][

ω2 cos
(√

2ξ
√

c + k2
)

+ ω1

] . (5.9)

Considering the Eq. (5.9) and the Eq. (4.2), the following solutions of the conformable Zakharov
system are obtained:

Ψ21(x, t) =
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

sin
[√

2
√

c + k2
(
x − 2ktα

α

)]
ei

(
ctα
α +kx

)
[
1 + cos

(√
2
√

c + k2
(
x − 2ktα

α

))] , (5.10)

Ψ22(x, t) = −
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

sin
[√

2
√

c + k2
(
x − 2ktα

α

)]
ei

(
ctα
α +kx

)
[
1 + cos

(√
2
√

c + k2
(
x − 2ktα

α

))] , (5.11)
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Ψ23(x, t) = −
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

sin
[√

2
√

c + k2
(
x − 2ktα

α

)]
ei

(
ctα
α +kx

)
[
1 − cos

(√
2
√

c + k2
(
x − 2ktα

α

))] , (5.12)

Ψ24(x, t) =
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

sin
[√

2
√

c + k2
(
x − 2ktα

α

)]
ei

(
ctα
α +kx

)
[
1 − cos

(√
2
√

c + k2
(
x − 2ktα

α

))] , (5.13)

χ21(x, t) = χ22(x, t) = −

(
4k2 − 1

) (
c + k2

)(
1 − 4k2) (δ (2 − 8k2) − 2

) sin2
[√

2
√

c + k2
(
x − 2ktα

α

)]
[
1 + cos

(√
2
√

c + k2
(
x − 2ktα

α

))]2 , (5.14)

χ23(x, t) = χ24(x, t) = −

(
4k2 − 1

) (
c + k2

)(
1 − 4k2) (δ (2 − 8k2) − 2

) sin2
[√

2
√

c + k2
(
x − 2ktα

α

)]
[
1 − cos

(√
2
√

c + k2
(
x − 2ktα

α

))]2 . (5.15)

These solutions are valid for (c + k2) > 0.
Suppose that solutions of the Eq. (4.7) is in the form:

Y (ξ) =
ω0 cos

[
µ ξ

]
ω2 + ω1 sin

[
µ ξ

] . (5.16)

Substituting the Eq. (5.16) into the Eq. (4.7) to get the algebraic equations formed by collecting all
terms comprising the same powers of sin[µ ξ]m.

sin(µ ξ)2 : 2ω0ω
2
1ck2 −

1
2
ω0ω

2
1c + ω3

0δ + 2ω0ω
2
1k4 − 4ω3

0δk
2 −

1
2
ω0ω

2
1k2 − ω3

0 = 0,

sin(µ ξ)1 : − 8ω0ω1ω2ck2 + 2ω0ω1ω2c − 8ω0ω1ω2k4 + 4ω0ω1ω2k2µ2 + 2ω0ω1ω2k2

− ω0ω1ω2µ
2 = 0,

sin(µ ξ)0 : − 2ω0ω
2
1ck2 − 8ω0ω

2
2ck2 +

1
2
ω0ω

2
1c + 2ω0ω

2
2c + 3ω3

0δ − 2ω0ω
2
1k4

− 8ω0ω
2
2k4 − 12ω3

0δk
2 + 16ω0ω

2
1k2µ2 − 8ω0ω

2
2k2µ2 +

1
2
ω0ω

2
1k2

+ 2ω0ω
2
2k2 − 4ω0ω

2
1µ

2 + 2ω0ω
2
2µ

2 − 3ω3
0 = 0.

(5.17)

After solving the system of equations in the Eq. (5.17) via Mathematica, the following cases are
derived:
Case 3:

µ = ±

√
c + k2

√
2

, ω0 = ±
iω1

√
4k2 − 1

√
c + k2√

δ
(
2 − 8k2) − 2

, ω1 = ω1, ω2 = 0. (5.18)

Substituting the parameters in Case 3 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y3(ξ) = ±
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

cot
ξ√c + k2

√
2

 . (5.19)
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Considering the Eq. (5.19) and the Eq. (4.2), the following solutions of the conformable Zakharov
system are obtained:

Ψ31(x, t) =
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

cot

 (x − 2ktα
α

)
√

c + k2

√
2

 ei
(

ctα
α +kx

)
, (5.20)

Ψ32(x, t) = −
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

cot

 (x − 2ktα
α

)
√

c + k2

√
2

 ei
(

ctα
α +kx

)
, (5.21)

χ31(x, t) = χ32(x, t) =

(
4k2 − 1

) (
c + k2

)(
1 − 4k2) (δ (2 − 8k2) − 2

) cot2


√

c + k2
(
x − 2ktα

α

)
√

2

 . (5.22)

These solutions are corresponding to trigonometric soliton solutions in the literature and valid for
(c + k2) > 0.
Case 4:

µ = ±
√

2
√

c + k2, ω0 = ±
iω1

√
4k2 − 1

√
c + k2√

δ
(
2 − 8k2) − 2

, ω2 = ω2, ω1 = ±ω2. (5.23)

Substituting the parameters in Case 4 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y4(ξ) = ±
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

cos
[√

2ξ
√

c + k2
]

ω2 ± ω1 sin
[√

2ξ
√

c + k2
] . (5.24)

Considering the Eq. (5.24) and the Eq. (4.2), the following solutions of the conformable Zakharov
system are obtained:

Ψ41(x, t) =
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

cos
[(

x − 2ktα
α

) √
2
√

c + k2
]

ei
(

ctα
α +kx

)
1 + sin

[(
x − 2ktα

α

) √
2
√

c + k2
] , (5.25)

Ψ42(x, t) = −
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

cos
[(

x − 2ktα
α

) √
2
√

c + k2
]

ei
(

ctα
α +kx

)
1 + sin

[(
x − 2ktα

α

) √
2
√

c + k2
] , (5.26)

Ψ43(x, t) = −
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

cos
[(

x − 2ktα
α

) √
2
√

c + k2
]

ei
(

ctα
α +kx

)
1 − sin

[(
x − 2ktα

α

) √
2
√

c + k2
] , (5.27)

Ψ44(x, t) =
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

cos
[(

x − 2ktα
α

) √
2
√

c + k2
]

ei
(

ctα
α +kx

)
1 − sin

[(
x − 2ktα

α

) √
2
√

c + k2
] , (5.28)

χ41(x, t) = χ42(x, t) = −

(
4k2 − 1

) (
c + k2

)(
1 − 4k2) (δ (2 − 8k2) − 2

) cos2
[√

2
√

c + k2
(
x − 2ktα

α

)]
[
1 + sin

(√
2
√

c + k2
(
x − 2ktα

α

))]2 , (5.29)

χ43(x, t) = χ44(x, t) = −

(
4k2 − 1

) (
c + k2

)(
1 − 4k2) (δ (2 − 8k2) − 2

) cos2
[√

2
√

c + k2
(
x − 2ktα

α

)]
[
1 − sin

(√
2
√

c + k2
(
x − 2ktα

α

))]2 . (5.30)

These solutions are valid for (c + k2) > 0.
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5.1.2. Application of the extended rational sinh − cosh method to the conformable Zakharov system

Suppose that solutions of the Eq. (4.7) is in the form:

Y (ξ) =
ω0 sinh

[
µ ξ

]
ω2 + ω1 cosh

[
µ ξ

] . (5.31)

Substituting the Eq. (5.31) into the Eq. (4.7) to get the algebraic equations formed by collecting all
terms comprising the same powers of cosh[µ ξ]m.

cosh(µ ξ)2 : − 4ω0ω
2
1ck2 + ω0ω

2
1c + 2ω3

0δ − 4ω0ω
2
1k4 − 8ω3

0δk
2 + ω0ω

2
1k2 − 2ω3

0,

cosh(µ ξ)1 : − 16ω0ω1ω2ck2 + 4ω0ω1ω2c − 16ω0ω1ω2k4 − 8ω0ω1ω2k2µ2 + 4ω0ω1ω2k2

+ 2ω0ω1ω2µ
2 = 0,

cosh(µ ξ)0 : − 4ω0ω
2
1ck2 − 16ω0ω

2
2ck2 + ω0ω

2
1c + 4ω0ω

2
2c − 6ω3

0δ − 4ω0ω
2
1k4 − 16ω0ω

2
2k4

+ 24ω3
0δk

2 − 32ω0ω
2
1k2µ2 + 16ω0ω

2
2k2µ2 + ω0ω

2
1k2 + 4ω0ω

2
2k2 + 8ω0ω

2
1µ

2

− 4ω0ω
2
2µ

2 + 6ω3
0 = 0.

(5.32)

After solving the system of equations in the Eq. (5.32) via Mathematica, the following cases are
derived:
Case 5:

µ = ±

√
−c − k2

√
2

, ω0 = ±
iω1

√
4k2 − 1

√
c + k2√

δ
(
8k2 − 2

)
+ 2

, ω1 = ω1, ω2 = 0. (5.33)

Substituting the parameters in Case 5 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y5(ξ) = ±
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

tanh
ξ√−c − k2

√
2

 . (5.34)

Considering the Eq. (5.34) and the Eq. (4.2), the following solutions of the conformable Zakharov
system are obtained:

Ψ51(x, t) =
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

tanh

 (x − 2ktα
α

)
√
−c − k2

√
2

 ei
(

ctα
α +kx

)
, (5.35)

Ψ52(x, t) = −
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

tanh

 (x − 2ktα
α

)
√
−c − k2

√
2

 ei
(

ctα
α +kx

)
, (5.36)

χ51(x, t) = χ52(x, t) = −

(
4k2 − 1

) (
c + k2

)(
1 − 4k2) (δ (8k2 − 2

)
+ 2

) tanh2


√
−c − k2

(
x − 2ktα

α

)
√

2

 . (5.37)

These solutions are corresponding to dark soliton solutions in the literature and valid for (−c − k2) > 0
and(
4k2 − 1

) (
c + k2

) (
δ
(
8k2 − 2

)
+ 2

)
< 0.
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Case 6:

µ = ±
√

2
√
−c − k2, ω0 = ±

iω1

√
4k2 − 1

√
c + k2√

δ
(
8k2 − 2

)
+ 2

, ω2 = ω2, ω1 = ±ω2. (5.38)

Substituting the parameters in Case 6 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y6(ξ) = ±
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

sinh
[√

2ξ
√
−c − k2

]
ω2 ± ω1 cosh

[√
2ξ
√
−c − k2

] . (5.39)

Considering the Eq. (5.39) and the Eq. (4.2), the following solutions of the conformable Zakharov
system are obtained:

Ψ61(x, t) =
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

sinh
[
(x − 2ktα

α
)
√

2
√
−c − k2

]
ei

(
ctα
α +kx

)
1 + cosh

[
(x − 2ktα

α
)
√

2
√
−c − k2

] , (5.40)

Ψ62(x, t) = −
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

sinh
[
(x − 2ktα

α
)
√

2
√
−c − k2

]
ei

(
ctα
α +kx

)
1 + cosh

[
(x − 2ktα

α
)
√

2
√
−c − k2

] , (5.41)

Ψ63(x, t) = −
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

sinh
[
(x − 2ktα

α
)
√

2
√
−c − k2

]
ei

(
ctα
α +kx

)
1 − cosh

[
(x − 2ktα

α
)
√

2
√
−c − k2

] , (5.42)

Ψ64(x, t) =
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

sinh
[
(x − 2ktα

α
)
√

2
√
−c − k2

]
ei

(
ctα
α +kx

)
1 − cosh

[
(x − 2ktα

α
)
√

2
√
−c − k2

] , (5.43)

χ61(x, t) = χ62(x, t) = −

(
4k2 − 1

) (
c + k2

)(
1 − 4k2) (δ (8k2 − 2

)
+ 2

) sinh2
[√

2
√
−c − k2

(
x − 2ktα

α

)]
[
1 + cosh

[√
2
√
−c − k2

(
x − 2ktα

α

)]]2 , (5.44)

χ63(x, t) = χ64(x, t) = −

(
4k2 − 1

) (
c + k2

)(
1 − 4k2) (δ (8k2 − 2

)
+ 2

) sinh2
[√

2
√
−c − k2

(
x − 2ktα

α

)]
[
1 − cosh

[√
2
√
−c − k2

(
x − 2ktα

α

)]]2 . (5.45)

These solutions are valid for
(
−c − k2

)
> 0.

Suppose that solutions of the Eq. (4.7) is in the form:

Y (ξ) =
ω0 cosh

[
µ ξ

]
ω2 + ω1 sinh

[
µ ξ

] . (5.46)

Substituting the Eq. (5.46) into the Eq. (4.7) to get the algebraic equations formed by collecting all
terms comprising the same powers of sinh[µ ξ]m.

sinh(µ ξ)2 : − 4ω0ω
2
1ck2 + ω0ω

2
1c + 2ω3

0δ − 4ω0ω
2
1k4 − 8ω3

0δk
2 + ω0ω

2
1k2 − 2ω3

0,

sinh(µ ξ)1 : − 16ω0ω1ω2ck2 + 4ω0ω1ω2c − 16ω0ω1ω2k4 − 8ω0ω1ω2k2µ2 + 4ω0ω1ω2k2 + 2ω0ω1ω2µ
2 = 0,

sinh(µ ξ)0 : − 4ω0ω
2
1ck2 − 16ω0ω

2
2ck2 + ω0ω

2
1c + 4ω0ω

2
2c − 6ω3

0δ − 4ω0ω
2
1k4 − 16ω0ω

2
2k4 + 24ω3

0δk
2

− 32ω0ω
2
1k2µ2 + 16ω0ω

2
2k2µ2 + ω0ω

2
1k2 + 4ω0ω

2
2k2 + 8ω0ω

2
1µ

2 − 4ω0ω
2
2µ

2 + 6ω3
0 = 0.

(5.47)
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After solving the system of equations in the Eq. (5.47) via Mathematica, the following cases are
derived:
Case 7:

µ = ±

√
−c − k2

√
2

, ω0 = ±
iω1

√
4k2 − 1

√
c + k2√

δ
(
8k2 − 2

)
+ 2

, ω1 = ω1, ω2 = 0. (5.48)

Considering the Eq. (5.49) and the Eq. (4.2), the following solutions of the conformable Zakharov
system are obtained:

Y7(ξ) = ±
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

coth
ξ√−c − k2

√
2

. (5.49)

Substituting the parameters in the Case 7 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Ψ71(x, t) =
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

coth

 (x − 2ktα
α

)
√
−c − k2

√
2

ei
(

ctα
α +kx

)
, (5.50)

Ψ72(x, t) = −
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

coth

 (x − 2ktα
α

)
√
−c − k2

√
2

ei
(

ctα
α +kx

)
, (5.51)

χ71(x, t) = χ72(x, t) = −

(
4k2 − 1

) (
c + k2

)(
1 − 4k2) (δ (8k2 − 2

)
+ 2

) coth2


√
−c − k2

(
x − 2ktα

α

)
√

2

 . (5.52)

These solutions are corresponding to singular soliton solutions in the literature and valid for
(−c − k2) > 0.
Case 8:

µ = ±
√

2
√
−c − k2, ω0 = ±

iω1

√
4k2 − 1

√
c + k2√

δ
(
8k2 − 2

)
+ 2

, ω2 = ω2, ω1 = ±ω2i. (5.53)

Substituting the parameters in Case 8 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y8(ξ) = ±
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

cosh
[√

2ξ
√
−c − k2

]
ω2 ± ω1i sinh

[√
2ξ
√
−c − k2

] . (5.54)

Considering the Eq. (5.54) and the Eq. (4.2), the following solutions of the conformable Zakharov
system are obtained:

Ψ81(x, t) =
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

cosh
[
(x − 2ktα

α
)
√

2
√
−c − k2

]
ei

(
ctα
α +kx

)
1 + i sinh

[
(x − 2ktα

α
)
√

2
√
−c − k2

] , (5.55)

Ψ82(x, t) = −
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

cosh
[
(x − 2ktα

α
)
√

2
√
−c − k2

]
ei

(
ctα
α +kx

)
1 + i sinh

[
(x − 2ktα

α
)
√

2
√
−c − k2

] , (5.56)
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Ψ83(x, t) = −
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

cosh
[
(x − 2ktα

α
)
√

2
√
−c − k2

]
ei

(
ctα
α +kx

)
1 − i sinh

[
(x − 2ktα

α
)
√

2
√
−c − k2

] , (5.57)

Ψ84(x, t) =
i
√

4k2 − 1
√

c + k2√
δ
(
8k2 − 2

)
+ 2

cosh
[
(x − 2ktα

α
)
√

2
√
−c − k2

]
ei

(
ctα
α +kx

)
1 − i sinh

[
(x − 2ktα

α
)
√

2
√
−c − k2

] , (5.58)

χ81(x, t) = χ82(x, t) = −

(
4k2 − 1

) (
c + k2

)(
1 − 4k2) (δ (8k2 − 2

)
+ 2

) cosh2
[√

2
√
−c − k2

(
x − 2ktα

α

)]
[
1 + i sinh

[√
2
√
−c − k2

(
x − 2ktα

α

)]]2 , (5.59)

χ83(x, t) = χ84(x, t) = −

(
4k2 − 1

) (
c + k2

)(
1 − 4k2) (δ (8k2 − 2

)
+ 2

) cosh2
[√

2
√
−c − k2

(
x − 2ktα

α

)]
[
1 − i sinh

[√
2
√
−c − k2

(
x − 2ktα

α

)]]2 . (5.60)

These solutions are valid for (−c − k2) > 0.

5.2. M− truncated Zakharov system

5.2.1. Application of the extended rational sine − cosine method to the M− truncated Zakharov
system

Suppose that solutions of the Eq. (4.7) is in the form:

Y (ξ) =
ω0 sin

[
µ ξ

]
ω2 + ω1 cos

[
µ ξ

] . (5.61)

Substituting Eq. (5.61) into the Eq. (4.7) ODE to get the algebraic equations formed by collecting all
terms comprising the same powers of cos[µ ξ]m.

cos(µ ξ)2 : − 4ω0ω
2
1ck2 + ω0ω

2
1c − 2ω3

0δ + 8ω3
0δk

2 − 4ω0ω
2
1k4 + ω0ω

2
1k2 + 2ω3

0 = 0,
cos(µ ξ)1 : − 16ω0ω1ω2ck2 + 4ω0ω1ω2c + 8ω0ω1ω2k2µ2 − 16ω0ω1ω2k4 + 4ω0ω1ω2k2

− 2ω0ω1ω2µ
2 = 0,

cos(µ ξ)0 : − 4ω0ω
2
1ck2 − 16ω0ω

2
2ck2 + ω0ω

2
1c + 4ω0ω

2
2c + 6ω3

0δ − 24ω3
0δk

2 + 32ω0ω
2
1k2µ2

− 16ω0ω
2
2k2µ2 − 4ω0ω

2
1k4 − 16ω0ω

2
2k4 + ω0ω

2
1k2 + 4ω0ω

2
2k2 − 8ω0ω

2
1µ

2

+ 4ω0ω
2
2µ

2 − 6ω3
0 = 0.

(5.62)

After solving the system of equations in the Eq. (5.62) via Mathematica, the following cases are
derived:
Case 1:

µ = ±

√
c + k2

√
2

, ω0 = ±
iω1

√
4k2 − 1

√
c + k2√

δ
(
2 − 8k2) − 2

, ω1 = ω1, ω2 = 0. (5.63)

Substituting the parameters in Case 1 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y1(ξ) = ±

i
√

4k2 − 1
√

c + k2 tan
 √c+k2

(
x− 2kΓ(β+1)tα

α

)
√

2

√
δ
(
2 − 8k2) − 2

. (5.64)
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(a) Graph of the Eq. (5.37) (conformable) (b) Graph of the Eq. (5.97) (M− truncated)

(c) Both conformable and M− truncated

α=0.5 Conformable

α=0.5, β=0.3
M- Truncated
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(d) Comparison between conformable and M− truncated

Figure 1. Solution comparison for the Eq. (5.37) and the Eq. (5.97) when c = −3, k = 1, δ = 2, β = 0.3, and
α = 0.5.
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(a) 3D Comparison between conformable and M− trun-
cated for α = 0.5
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α=0.4 Conformable
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(b) Graph of the Eq. (5.41) for different α values and β =

0.3.
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(c) Graph of Eq. (5.101) for different α values and β = 0.3.
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(d) 2D comparison for different α values and β = 0.3.

Figure 2. Solution comparison for the Eq. (5.41) and the Eq. (5.101) when c = −3, k = 1, δ = 2, and β = 0.3.
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(a) 2D comparison between the Eq. (5.50) and the
Eq. (5.110)
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(b) Comparison of the graph of the Eq. (5.110) for α = 0.5
and various β.

Figure 3. Solution comparison for c = −3, k = 1, and δ = 2.

Considering the Eq. (5.64) and the Eq. (4.4), the following solutions of the M− truncated Zakharov
system are obtained:

Ψ11(x, t) =

i
√

4k2 − 1
√

c + k2 tan
 √c+k2

(
x− 2kΓ(β+1)tα

α

)
√

2

√
δ
(
2 − 8k2) − 2

ei
(

cΓ(β+1)tα
α +kx

)
, (5.65)

Ψ12(x, t) = −

i
√

4k2 − 1
√

c + k2 tan
 √c+k2

(
x− 2kΓ(β+1)tα

α

)
√

2

√
δ
(
2 − 8k2) − 2

ei
(

cΓ(β+1)tα
α +kx

)
, (5.66)

χ11(x, t) = χ12(x, t) = −

(
4k2 − 1

) (
c + k2

)
tan2

 √c+k2
(
x− 2kΓ(β+1)tα

α

)
√

2

(
1 − 4k2) (δ (2 − 8k2) − 2

) . (5.67)

These solutions are corresponding to trigonometric soliton solutions in the literature and valid for(
c + k2

)
> 0.

Case 2:

µ = ±
√

2
√

c + k2, ω0 = ±
iω1

√
4k2 − 1

√
c + k2√

δ
(
2 − 8k2) − 2

, ω2 = ω2, ω1 = ±ω2. (5.68)

Substituting the parameters in Case 2 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y2(ξ) = ±
i
√

4k2 − 1
√

c + k2√
δ
(
2 − 8k2) − 2

sin
[√

2ξ
√

c + k2
][

ω1 + ω2 cos
(√

2ξ
√

c + k2
)] . (5.69)
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Considering the Eq. (5.69) and the Eq. (4.4), the following solutions of the M− truncated Zakharov
system are obtained:

Ψ21(x, t) =
i
√

4k2 − 1
√

c + k2 sin
[√

2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
2 − 8k2) − 2

[
1 + cos

(√
2
√

c + k2
(
x − 2kΓ(β+1)tα

α

))] , (5.70)

Ψ22(x, t) = −
i
√

4k2 − 1
√

c + k2 sin
[√

2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
2 − 8k2) − 2

[
1 + cos

(√
2
√

c + k2
(
x − 2kΓ(β+1)tα

α

))] , (5.71)

Ψ23(x, t) = −
i
√

4k2 − 1
√

c + k2 sin
[√

2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
2 − 8k2) − 2

[
1 − cos

(√
2
√

c + k2
(
x − 2kΓ(β+1)tα

α

))] , (5.72)

Ψ24(x, t) =
i
√

4k2 − 1
√

c + k2 sin
[√

2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
2 − 8k2) − 2

[
1 − cos

(√
2
√

c + k2
(
x − 2kΓ(β+1)tα

α

))] , (5.73)

χ21(x, t) = χ22(x, t) = −

(
4k2 − 1

) (
c + k2

)(
1 − 4k2) (δ (2 − 8k2) − 2

) sin2
[√

2
√

c + k2
(
x − 2ktα

α

)]
[
1 + cos

[√
2
√

c + k2
(
x − 2ktα

α

)]]2 , (5.74)

χ23(x, t) = χ24(x, t) = −

(
4k2 − 1

) (
c + k2

)
sin2

[√
2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]
(
1 − 4k2) (δ (2 − 8k2) − 2

) (
1 − cos

[√
2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)])2 . (5.75)

These solutions are valid for (c + k2) > 0.
Suppose that solutions of the Eq. (4.7) is in the form:

Y (ξ) =
ω0 cos

[
µ ξ

]
ω2 + ω1 sin

[
µ ξ

] . (5.76)

Substituting the Eq. (5.76) into the Eq. (4.7) to get the algebraic equations formed by collecting all
terms comprising the same powers of sin[µ ξ]m.

sin(µ ξ)2 : 2ω0ω
2
1ck2 −

1
2
ω0ω

2
1c + ω3

0δ − 4ω3
0δk

2 + 2ω0ω
2
1k4 −

1
2
ω0ω

2
1k2 − ω3

0 = 0,

sin(µ ξ)1 : − 8ω0ω1ω2ck2 + 2ω0ω1ω2c + 4ω0ω1ω2k2µ2 − 8ω0ω1ω2k4 + 2ω0ω1ω2k2

− ω0ω1ω2µ
2 = 0,

sin(µ ξ)0 : − 2ω0ω
2
1ck2 − 8ω0ω

2
2ck2 +

1
2
ω0ω

2
1c + 2ω0ω

2
2c + 3ω3

0δ − 12ω3
0δk

2 + 16ω0ω
2
1k2µ2

− 8ω0ω
2
2k2µ2 − 2ω0ω

2
1k4 − 8ω0ω

2
2k4 +

1
2
ω0ω

2
1k2 + 2ω0ω

2
2k2 − 4ω0ω

2
1µ

2

+ 2ω0ω
2
2µ

2 − 3ω3
0 = 0.

(5.77)

After solving the system of equations in the Eq. (5.77) via Mathematica, the following cases are
derived:
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Case 3:

µ = ±

√
c + k2

√
2

, ω0 = ±
iω1

√
4k2 − 1

√
c + k2√

δ
(
2 − 8k2) − 2

, ω1 = ω1, ω2 = 0. (5.78)

Substituting the parameters in Case 3 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y3(ξ) = ±

i
√

4k2 − 1
√

c + k2 cot
 √c+k2

(
x− 2kΓ(β+1)tα

α

)
√

2

√
δ
(
2 − 8k2) − 2

. (5.79)

Considering the Eq. (5.79) and the Eq. (4.4), the following solutions of the M− truncated Zakharov
system are obtained:

Ψ31(x, t) =

i
√

4k2 − 1
√

c + k2 cot
 √c+k2

(
x− 2kΓ(β+1)tα

α

)
√

2

√
δ
(
2 − 8k2) − 2

ei
(

cΓ(β+1)tα
α +kx

)
, (5.80)

Ψ32(x, t) = −

i
√

4k2 − 1
√

c + k2 cot
 √c+k2

(
x− 2kΓ(β+1)tα

α

)
√

2

√
δ
(
2 − 8k2) − 2

ei
(

cΓ(β+1)tα
α +kx

)
, (5.81)

χ31(x, t) = χ32(x, t) = −

(
4k2 − 1

) (
c + k2

)
cot2

 √c+k2
(
x− 2kΓ(β+1)tα

α

)
√

2

(
1 − 4k2) (δ (2 − 8k2) − 2

) . (5.82)

These solutions are corresponding to trigonometric soliton solutions in the literature and valid for
(c + k2) > 0.
Case 4:

µ = ±
√

2
√

c + k2, ω0 = ±
iω1

√
4k2 − 1

√
c + k2√

δ
(
2 − 8k2) − 2

, ω2 = ω2, ω1 = ±ω2. (5.83)

Substituting the parameters in Case 4 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y4(ξ) = ±
i
√

4k2 − 1
√

c + k2 cos
[√

2ξ
√

c + k2
]

√
δ
(
2 − 8k2) − 2

(
ω1 + ω2 sin

[√
2ξ
√

c + k2
]) . (5.84)

Considering the Eq. (5.84) and the Eq. (4.4), the following solutions of the M− truncated Zakharov
system are obtained:

Ψ41(x, t) =
i
√

4k2 − 1
√

c + k2 cos
[√

2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
2 − 8k2) − 2

(
sin

[
1 +
√

2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]) , (5.85)

Ψ42(x, t) = −
i
√

4k2 − 1
√

c + k2 cos
[√

2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
2 − 8k2) − 2

(
sin

[
1 +
√

2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]) , (5.86)
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Ψ43(x, t) = −
i
√

4k2 − 1
√

c + k2 cos
[√

2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
2 − 8k2) − 2

(
sin

[
1 −
√

2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]) , (5.87)

Ψ44(x, t) =
i
√

4k2 − 1
√

c + k2 cos
[√

2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
2 − 8k2) − 2

(
sin

[
1 −
√

2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]) , (5.88)

χ41(x, t) = χ42(x, t) = −

(
4k2 − 1

) (
c + k2

)
cos2

[√
2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]
(
1 − 4k2) (δ (2 − 8k2) − 2

) (
1 + sin

[√
2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)])2 , (5.89)

χ43(x, t) = χ44(x, t) = −

(
4k2 − 1

) (
c + k2

)
cos2

[√
2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)]
(
1 − 4k2) (δ (2 − 8k2) − 2

) (
1 − sin

[√
2
√

c + k2
(
x − 2kΓ(β+1)tα

α

)])2 . (5.90)

These solutions are valid for (c + k2) > 0.

5.2.2. Application of the extended rational sinh − cosh method to the M− truncated Zakharov system

Suppose that solutions of the Eq. (4.7) is in the form:

Y (ξ) =
ω0 sinh

[
µ ξ

]
ω2 + ω1 cosh

[
µ ξ

] . (5.91)

Substituting the Eq. (5.91) into the Eq. (4.7) to get the algebraic equations formed by collecting all
terms comprising the same powers of cosh[µ ξ]m.

cosh(µ ξ)2 : − 4ω0ω
2
1ck2 + ω0ω

2
1c + 2ω3

0δ − 8ω3
0δk

2 − 4ω0ω
2
1k4 + ω0ω

2
1k2 − 2ω3

0 = 0,
cosh(µ ξ)1 : − 16ω0ω1ω2ck2 + 4ω0ω1ω2c − 8ω0ω1ω2k2µ2 − 16ω0ω1ω2k4 + 4ω0ω1ω2k2

+ 2ω0ω1ω2µ
2 = 0,

cosh(µ ξ)0 : − 4ω0ω
2
1ck2 − 16ω0ω

2
2ck2 + ω0ω

2
1c + 4ω0ω

2
2c − 6ω3

0δ + 24ω3
0δk

2 − 32ω0ω
2
1k2µ2

+ 16ω0ω
2
2k2µ2 − 4ω0ω

2
1k4 − 16ω0ω

2
2k4 + ω0ω

2
1k2 + 4ω0ω

2
2k2 + 8ω0ω

2
1µ

2

− 4ω0ω
2
2µ

2 + 6ω3
0 = 0.

(5.92)

After solving the system of equations in the Eq. (5.92) via Mathematica, the following cases are
derived:
Case 5:

µ = ±

√
−c − k2

√
2

, ω0 = ±
iω1

√
4k2 − 1

√
c + k2√

δ
(
8k2 − 2

)
+ 2

, ω1 = ω1, ω2 = 0. (5.93)

Substituting the parameters in Case 5 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y5(ξ) = ±

i
√

4k2 − 1
√

c + k2 tanh
 √−c−k2

(
x− 2kΓ(β+1)tα

α

)
√

2

√
δ
(
8k2 − 2

)
+ 2

. (5.94)
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Considering the Eq. (5.94) and the Eq. (4.4), the following solutions of the M− truncated Zakharov
system are obtained:

Ψ51(x, t) =

i
√

4k2 − 1
√

c + k2 tanh
 √−c−k2

(
x− 2kΓ(β+1)tα

α

)
√

2

√
δ
(
8k2 − 2

)
+ 2

ei
(

cΓ(β+1)tα
α +kx

)
, (5.95)

Ψ52(x, t) = −

i
√

4k2 − 1
√

c + k2 tanh
 √−c−k2

(
x− 2kΓ(β+1)tα

α

)
√

2

√
δ
(
8k2 − 2

)
+ 2

ei
(

cΓ(β+1)tα
α +kx

)
, (5.96)

χ51(x, t) = χ52(x, t) = −

(
4k2 − 1

) (
c + k2

)
tanh2

 √−c−k2
(
x− 2kΓ(β+1)tα

α

)
√

2

(
1 − 4k2) (δ (8k2 − 2

)
+ 2

) . (5.97)

These solutions are corresponding to dark soliton solutions in the literature and valid for (−c − k2) > 0
and(
4k2 − 1

) (
c + k2

) (
δ
(
8k2 − 2

)
+ 2

)
< 0.

Case 6:

µ = ±
√

2
√
−c − k2, ω0 = ±

iω1

√
4k2 − 1

√
c + k2√

δ
(
8k2 − 2

)
+ 2

, ω2 = ω2, ω1 = ±ω2. (5.98)

Substituting the parameters in Case 6 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y6(ξ) = ±
i
√

4k2 − 1
√

c + k2 sinh
[√

2ξ
√
−c − k2

]
√
δ
(
8k2 − 2

)
+ 2

(
ω1 + ω2 cosh

[√
2ξ
√
−c − k2

]) . (5.99)

Considering the Eq. (5.99) and the Eq. (4.4), the following solutions of the M− truncated Zakharov
system are obtained:

Ψ61(x, t) =
i
√

4k2 − 1
√

c + k2 sinh
[√

2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
8k2 − 2

)
+ 2

(
1 + cosh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]) , (5.100)

Ψ62(x, t) = −
i
√

4k2 − 1
√

c + k2 sinh
[√

2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
8k2 − 2

)
+ 2

(
1 + cosh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]) , (5.101)

Ψ63(x, t) = −
i
√

4k2 − 1
√

c + k2 sinh
[√

2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
8k2 − 2

)
+ 2

(
1 − cosh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]) , (5.102)

Ψ64(x, t) =
i
√

4k2 − 1
√

c + k2 sinh
[√

2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
8k2 − 2

)
+ 2

(
1 − cosh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]) , (5.103)
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χ61(x, t) = χ62(x, t) = −

(
4k2 − 1

) (
c + k2

)
sinh2

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]
(
1 − 4k2) (δ (8k2 − 2

)
+ 2

) (
1 + cosh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)])2 , (5.104)

χ63(x, t) = χ64(x, t) = −

(
4k2 − 1

) (
c + k2

)
sinh2

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]
(
1 − 4k2) (δ (8k2 − 2

)
+ 2

) (
1 − cosh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)])2 . (5.105)

These solutions are valid for
(
−c − k2

)
> 0.

Suppose that solutions of the Eq. (4.7) is in the form:

Y (ξ) =
ω0 cosh

[
µ ξ

]
ω2 + ω1 sinh

[
µ ξ

] . (5.106)

Substituting the Eq. (5.106) into the Eq. (4.7) to get the algebraic equations formed by collecting all
terms comprising the same powers of sinh[µ ξ]m.

sinh(µ ξ)2 : − 2ω0ω
2
1ck2 +

1
2
ω0ω

2
1c + ω3

0δ − 4ω3
0δk

2 − 2ω0ω
2
1k4 +

1
2
ω0ω

2
1k2 − ω3

0 = 0,

sinh(µ ξ)1 : − 8ω0ω1ω2ck2 + 2ω0ω1ω2c − 4ω0ω1ω2k2µ2 − 8ω0ω1ω2k4 + 2ω0ω1ω2k2 + ω0ω1ω2µ
2 = 0,

sinh(µ ξ)0 :2ω0ω
2
1ck2 − 8ω0ω

2
2ck2 −

1
2
ω0ω

2
1c + 2ω0ω

2
2c + 3ω3

0δ − 12ω3
0δk

2 + 16ω0ω
2
1k2µ2 + 8ω0ω

2
2k2µ2

+ 2ω0ω
2
1k4 − 8ω0ω

2
2k4 −

1
2
ω0ω

2
1k2 + 2ω0ω

2
2k2 − 4ω0ω

2
1µ

2 − 2ω0ω
2
2µ

2 − 3ω3
0 = 0.

(5.107)

After solving the system of equations in the Eq. (5.107) via Mathematica, the following cases are
derived:
Case 7:

µ = ±

√
−c − k2

√
2

, ω0 = ±
iω1

√
4k2 − 1

√
c + k2√

δ
(
8k2 − 2

)
+ 2

, ω1 = ω1, ω2 = 0. (5.108)

Substituting the parameters in Case 7 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y7(ξ) = ±

i
√

4k2 − 1
√

c + k2 coth
[
ξ
√
−c−k2
√

2

]
√
δ
(
8k2 − 2

)
+ 2

. (5.109)

Considering the Eq. (5.109) and the Eq. (4.4), the following solutions of the M− truncated Zakharov
system are obtained:

Ψ71(x, t) =

i
√

4k2 − 1
√

c + k2 coth
 √−c−k2

(
x− 2kΓ(β+1)tα

α

)
√

2

√
δ
(
8k2 − 2

)
+ 2

ei
(

cΓ(β+1)tα
α +kx

)
, (5.110)

Ψ72(x, t) = −

i
√

4k2 − 1
√

c + k2 coth
 √−c−k2

(
x− 2kΓ(β+1)tα

α

)
√

2

√
δ
(
8k2 − 2

)
+ 2

ei
(

cΓ(β+1)tα
α +kx

)
, (5.111)
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χ71(x, t) = χ72(x, t) = −

(
4k2 − 1

) (
c + k2

)
coth2

 √−c−k2
(
x− 2kΓ(β+1)tα

α

)
√

2

(
1 − 4k2) (δ (8k2 − 2

)
+ 2

) . (5.112)

These solutions are corresponding to singular soliton solutions in the literature and valid for
(−c − k2) > 0.
Case 8:

µ = ±
√

2
√
−c − k2, ω0 = ±

iω1

√
4k2 − 1

√
c + k2√

δ
(
8k2 − 2

)
+ 2

, ω2 = ω2, ω1 = ±ω2i. (5.113)

Substituting the parameters in Case 8 to the Eq. (5.1), the solutions of Eq. (4.7) can be derived:

Y8(ξ) = ±

√
4k2 − 1

√
c + k2 cosh

[√
2ξ
√
−c − k2

]
√
δ
(
8k2 − 2

)
+ 2

(
ω1 + iω2 sinh

[√
2ξ
√
−c − k2

]) . (5.114)

Considering the Eq. (5.114) and the Eq. (4.4), the following solutions of the M− truncated Zakharov
system are obtained:

Ψ81(x, t) = −

√
4k2 − 1

√
c + k2 cosh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
8k2 − 2

)
+ 2

(
1 + i sinh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]) , (5.115)

Ψ82(x, t) =

√
4k2 − 1

√
c + k2 cosh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]
ei

(
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α +kx
)

√
δ
(
8k2 − 2

)
+ 2

(
1 + i sinh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]) , (5.116)

Ψ83(x, t) =

√
4k2 − 1

√
c + k2 cosh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
8k2 − 2

)
+ 2

(
1 − i sinh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]) , (5.117)

Ψ84(x, t) −

√
4k2 − 1

√
c + k2 cosh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]
ei

(
cΓ(β+1)tα

α +kx
)

√
δ
(
8k2 − 2

)
+ 2

(
1 − i sinh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]) , (5.118)

χ81(x, t) = χ82(x, t) =

(
4k2 − 1

) (
c + k2

)
cosh2

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]
(
1 − 4k2) (δ (8k2 − 2

)
+ 2

) (
1 + i sinh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)])2 , (5.119)

χ83(x, t) = χ84(x, t) =

(
4k2 − 1

) (
c + k2

)
cosh2

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)]
(
1 − 4k2) (δ (8k2 − 2

)
+ 2

) (
1 − i sinh

[√
2
√
−c − k2

(
x − 2kΓ(β+1)tα

α

)])2 . (5.120)

These solutions are valid for (−c − k2) > 0.
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6. Results and discussion

In this work, exact solutions of NLCGZDS for two different definitions of derivatives, con-
formable and M− truncated derivatives, are studied by the extended rational sine − cosine and
sinh − cosh method.
In Fig. 1, some plots of the solution χ51(x, t) are demonstrated for c = −3, k = 1, δ = 2, β = 0.3, and
α = 0.5. For example, in Fig. 1a and Fig. 1b, we depict 3D plots of Eq. (5.37) and Eq. (5.97), that
are the solutions of the conformable and M− truncated Zakharov system, respectively. In Fig. 1c, the
solutions in Eq. (5.37) and Eq. (5.97) are compared on a single graph to show the difference between
the solutions of the conformable and M− truncated Zakharov system. In Fig. 1d, 2d comparison of
Eq. (5.37) and Eq. (5.97) are given for t = 1, α = 0.5 and β = 0.3. We take c = −3, k = 1, δ = 2, and
β = 0.3. in Fig. 2. In Fig. 2a, 3D plots of the Eq. (5.41) and the Eq. (5.101) which are some of the solu-
tions of Zakharov system with conformable and M− truncated derivatives, respectively, are compared.
In Fig. 2b, 2D plot of the Eq. (5.41) is depicted for different values of α. 2D plot of the Eq. (5.101) is
depicted for different values of α and fixed β in Fig. 2c. In Fig. 2d, we make a 2D comparison between
the Eq. (5.41) and the Eq. (5.101) for some α and β values. In Fig. 3, we assume c = −3, k = 1, and
δ = 2. In Fig. 3a, it is showed that the solutions of the M− truncated Zakharov system coincide with
the solutions of conformable Zakharov system for a fixed value of α and β = 1. In Fig. 3b, the 2D plots
of the Eq. (5.110), one of the solutions of the considered PDE with M− truncated derivative, is plotted
for fixed α = 0.3 and various values of the β.
We have demonstrated the 3D and 2D plots to grasp clearly and comprehensively the physical prop-
erties of the constructed topological, singular solitons, periodic wave and singular periodic wave so-
lutions, under the choice of the suitable values of parameters and different fractional values of α, the
3D and 2D are plotted. The perspective view of the topological soliton could be viewed in Fig. 1a and
Fig. 1c under α = 0.5 for solutions Eq. (5.37) and Eq. (5.97). The perspective view of the singular soli-
ton could be viewed in Fig. 1a under α = 0.2 for solutions Eq. (5.41) and Eq. (5.101). The propagation
patterns of the wave for the topological, singular solitons and periodic wave solution along the x-axis
for are depicted in the 2D plots through Fig. 1a,Fig. 1b and Fig. 1c with different labeled fractional
values of α.

Furthermore, these outcomes have physical implications, such as the hyperbolic tangent appearing
in the computation of magnetic moment and rapidity of special relativity, and the hyperbolic cotangent
appearing in the Langevin function for magnetic polarization [50].

7. Conclusions

This paper investigates the analytical solutions of the NLCGZDS models with two types of deriva-
tives called conformable and M− truncated via the extended rational sine − cosine and sinh − cosh.
Using appropriate wave transformations, the PDE system is turned into an ODE system. The solutions
of the ODE system are assumed in the forms of the extended rational sine− cosine and sinh− cosh. A
system of algebraic equations is derived by substituting the solutions to the ODE system, and by doing
some calculations. When the system is solved, one finds the unknown coefficients in the rational form,
and so, solutions of the PDE system. The novel solutions of NLCGZDS models including the different
types of derivatives are derived to our best knowledge. The obtained solutions of conformable and M−
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truncated system are compared in 2D and 3D figures to analyze the behavior of the two models. The
technique is powerful and easily adaptable for other non-linear problems as well. It is expected that
the new solutions of the considered system would be helpful for future papers in diverse science areas
that use nonlinear partial differential equations nonlinear problems.
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dell’Università di Ferrara, 41 (1995), 73–84. https://doi.org/10.1007/BF02826009

4. M. Caputo, M. Fabrizio, Progress in fractional differentiation and applications a new definition
of fractional derivative without singular kernel, Prog. Fractional Differ. Appl., 1 (2015), 73–85.
https://doi.org/10.12785/pfda/010201

5. A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular ker-
nel: Theory and application to heat transfer model, Ther. Sci., 20 (2016), 763–769.
https://doi.org/10.2298/TSCI160111018A

6. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J.
Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002

7. J. Sousa, E. V. De Oliviera, A new truncated m-fractional derivative type unifying some frac-
tional derivative types with classical properties, arXiv: Classical Anal. ODEs, 16 (2017), 83–96.
https://doi.org/10.28924/2291-8639-16-2018-83

8. A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math.,
13 (2015), 889–898. https://doi.org/10.1515/math-2015-0081

9. R. Khalil, M. A. Horani, M. A. Hammad, Geometric meaning of conformable derivative via frac-
tional cords, J. Math. Comput. Sci, 19 (2019), 241–245. https://doi.org/10.22436/jmcs.019.04.03

10. E. Bas, B. Acar, R. Ozarslan, The price adjustment equation with different types
of conformable derivatives in market equilibrium, AIMS Math., 4 (2019), 805–820.
https://doi.org/10.3934/math.2019.3.805

Electronic Research Archive Volume 30, Issue 1, 335–361.

http://dx.doi.org/https://doi.org/10.1007/978-1-4612-4342-7
http://dx.doi.org/https://doi.org/10.1007/BF02826009
http://dx.doi.org/https://doi.org/10.12785/pfda/010201
http://dx.doi.org/https://doi.org/10.2298/TSCI160111018A
http://dx.doi.org/https://doi.org/10.1016/j.cam.2014.01.002
http://dx.doi.org/https://doi.org/10.28924/2291-8639-16-2018-83
http://dx.doi.org/https://doi.org/10.1515/math-2015-0081
http://dx.doi.org/https://doi.org/10.22436/jmcs.019.04.03
http://dx.doi.org/https://doi.org/10.3934/math.2019.3.805


359

11. B. Xin, W. Peng, Y. Kwon, Y. Liu, Modeling, discretization, and hyperchaos detection of con-
formable derivative approach to a financial system with market confidence and ethics risk, Adv.
Differ. Equations, 2019 (2019), 138. https://doi.org/10.1186/s13662-019-2074-8

12. M. Yavuz, B. Yaskiran, Conformable derivative operator in modelling neuronal dynamics, Appl.
Appl. Math., 13 (2018), 803–817. https://doi.org/10.1186/s13662-019-2074-8
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