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Abstract. In this paper, we consider the inviscid, incompressible planar flows

in a bounded domain with a hole and construct stationary classical solutions

with single vortex core, which is closed to the hole. This is carried out by
constructing solutions to the following semilinear elliptic problem

−∆ψ = λ(ψ − κ
4π

lnλ)p+, in Ω,

ψ = ρλ, on ∂O0,

ψ = 0, on ∂Ω0,

(1)

where p > 1, κ is a positive constant, ρλ is a constant, depending on λ,
Ω = Ω0 \ Ō0 and Ω0, O0 are two planar bounded simply-connected domains.

We show that under the assumption (lnλ)σ ≤ ρλ ≤ (lnλ)1−σ for some σ > 0
small, (1) has a solution ψλ, whose vorticity set {y ∈ Ω : ψ(y)−κ+ρλη(y) > 0}
shrinks to the boundary of the hole as λ→ +∞.

1. Introduction. In this paper, we consider a planar incompressible flow in a
bounded smooth domain

Ω = Ω0 \ Ō0,

where O0, Ω0 are two bounded simply-connected open subsets of R2, such that
Ō0 ⊂ Ω0. A simple model describing this flow is

∇⊥ψ · ∇ω = 0, in Ω,

−∆ψ = ω, in Ω,

ψ = constant, on ∂O0,

ψ = 0, on ∂Ω0,

(2)

where ψ and ω are the stream function and the vorticity of this flow, respectively,
and ∇⊥ψ := (∂2ψ,−∂1ψ). For a detailed presentation of this model, we refer the
readers to [9].
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An existence result obtained by Smets and Schaftingen [15] via a variational
method shows that (2) has a solution (ψλ, ωλ), such that ψλ = ρλ on ∂O0,∫

∂O0

∂ψλ
∂ν

= 0,

and ωλ = λ(ψλ − qλ)p+, where 1 < p < +∞, qλ = q + κ
4π lnλ with κ > 0 and q is a

harmonic function in Ω. Moreover, as λ→ +∞, the total vorticity∫
Ω

ωλ → κ,

and the vorticity set {y ∈ Ω|ωλ(y) > 0} shrinks to a point in Ω, which is a critical
point of the Kirchhoff-Routh function corresponding to κ and q. For flows past
obstacles, we refer the readers to [11, 12, 13, 14] for other results.

Note that in [15], the value ρλ of ψλ on ∂O0 is as a lagrangian multiplier, which
is unknown. In this paper, we assume that ρλ is a prescribed constant, and we
remove the condition ∫

∂O0

∂ψ

∂ν
= 0.

The first equation in (2) suggests that ψ and ω are functionally dependent. So, for
simplicity, we consider the following elliptic equation

−∆ψ = λ(ψ − κ
4π lnλ)p+, in Ω,

ψ = ρλ, on ∂O0,

ψ = 0, on ∂Ω0,

(3)

where 1 < p < +∞, κ > 0 is a constant, and ρλ > 0 is a constant, depending on λ.
In this paper, we mainly focus on the solvability of (3), and the effect from the

constant ρλ on the location of the vorticity set Ωλ := {y ∈ Ω|ψ(y) > κ
4π lnλ}. We

expect that for large ρλ > 0, the vorticity set Ωλ concentrates near the boundary
of O0, as λ→ +∞.

Let η be the unique solution of the following problem

∆η = 0 in Ω, η = 1 on ∂O0, η = 0 on ∂Ω0. (4)

Making the change of ψ = lnλ
4π u+ ρλη, ε = λ−

1
2

(
lnλ
4π

) 1−p
2 and λε = 4π

lnλρλ, (3) can
be changed into {

−ε2∆u = (u− κ+ λεη)p+, in Ω,

u = 0, on ∂Ω.
(5)

Now we want to find a solution to (3) by constructing a solution for (5), whose
vorticity set is close to the boundary of O0. For this purpose, the following assump-
tion can be imposed on ρλ:

(Hλ) There is a small constant σ > 0, such that

(lnλ)σ ≤ ρλ ≤ (lnλ)1−σ.

It is easy to see that if ρλ satisfies the condition (Hλ), then λε satisfies the condition:
(Hε) There are constants γ1 and γ2 with 0 < γ1 < γ2 < 1, such that

1

| ln ε|γ2
≤ λε ≤

1

| ln ε|γ1
.

Before we state the main result, we give the following definition.
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Definition 1.1. Let f : R 7→ R be a continuous function. We call I = [a.b], a ≤ b
a minimum interval of f , if f(t1) = f(t2) for any t1, t2 ∈ I, and there is σ0 > 0 such
that for 0 < σ < σ0, f(a− σ) > f(a) and f(b+ σ) > f(b).

Our main result of this paper can be stated as follows.

Theorem 1.2. Let κ be a given positive number. Suppose that ρλ satisfies (Hλ).
Then there is a constant C0 > 0, such that for any λ > C0, (3) has a solution ψλ,
such that {

y ∈ Ω|ψλ(y) >
κ

4π
lnλ
}
⊂ B L√

λ
(xλ),

where xλ ∈ Ω and L > 0 is a constant independent of λ.
Moreover, as λ→ +∞,

dist(xλ, ∂Ω)→ 0,

λ

∫
Ω

(ψλ −
κ

4π
lnλ)p+ → κ.

In particular, if I is a minimum interval of ∂η(x(s))
∂ν defined for x(s) ∈ ∂Ω, then

as λ→ +∞,
dist(xλ, x(I))→ 0.

As a result of Theorem 1.2, we obtain a flow in Ω with single non-vanishing
anti-clockwise vortex, which concentrates on the boundary of O0. Let us point out
that we can also construct a planar Euler flow with single clockwise vortex, which
nears the boundary of Ω0. This is carried out by considering the problem (3) with
nonlinearity λ(ψ − κ

4π lnλ)p+ replaced by −λ(−ψ − κ
4π lnλ)p+.

Theorem 1.2 is proved via the following theorem.

Theorem 1.3. Let κ be a given positive number. Suppose that λε satisfies (Hε).
Then there is a constant ε0 > 0, such that for any 0 < ε < ε0, (5) has a solution
uε, such that {

y ∈ Ω|uε(y)− κ+ λεη(y) > 0
}
⊂ B

Lε| ln ε|
p−1
2

(xε),

where xε ∈ Ω and L > 0 is a constant independent of ε. Moreover, as ε→ 0,

dist(xε, ∂Ω)→ 0.

In particular, if there is a minimum interval I of ∂η(x(s))
∂ν defined for x(x) ∈ ∂Ω,

then as ε→ 0,
dist(xε, x(I))→ 0.

To prove Theorem 1.3, we will use a finite reduction argument as in [6, 7, 8, 9].
Since we consider the vortex nears the boundary, it turns out that more delicate
estimates are needed in the proof of Theorem 1.3 than those estimates in [6, 7, 8, 9].
In particular, we need the estimates of the functions η and G near the boundary,
where G is the Green’s function for −∆ in Ω with zero boundary condition, written
as

G(y, x) =
1

2π
ln

1

|y − x|
−H(y, x), x, y ∈ Ω, (6)

and H(y, x) is the regular part of the Green’s function. Recall that the Robin’s
function is defined by ϕ(x) = H(x, x).

The stationary incompressible Euler equations have been studied by many au-
thors, see for instance [1, 4, 5, 6, 7, 8, 9, 10, 3, 15, 16, 17] and references therein.
Roughly speaking, there are two commonly used methods to study the existence
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of the stationary incompressible Euler equations: the vorticity method and the
stream-function method. The vorticity method was first established by Arnold [2]
and further developed by Burton [4, 5] and Tukington [16]. This argument roughly
consists in maximizing the kinetic energy under a constrained sublevel set of ω. In
this paper, we will use the stream-function method.

This paper is organized as follows. In section 2, we construct approximate solu-
tions for (5). We will carry out a reduction procedure in section 3 and the results
of existence will be proved in section 4. In appendix A, we give the estimates for
the radius of vortex core.

2. Approximate solutions. In this section, following [10], we will construct an
approximate solution for (5).

For p > 1, there is a unique solution φ for the following problem:

−∆φ = φp, φ > 0, φ ∈ H1
0

(
B1(0)

)
. (7)

Moreover, φ is a radial function and satisfies∫
B1(0)

φp+1 =
π(p+ 1)

2
|φ′(1)|2,

∫
B1(0)

φp = 2π|φ′(1)|.

Let R > 0 be a large constant, such that for any x ∈ Ω, Ω ⊂⊂ BR(x). Now we
consider {

−ε2∆u = (u− a)p+, y ∈ BR(0),

u = 0, y ∈ ∂BR(0),
(8)

where a > 0 is a constant. Then, (8) has a solution Uε,a, which can be represented
by

Uε,a(y) =

a+
(
ε
sε

) 2
p−1

φ
( |y|
sε

)
, |y| ≤ sε,

a ln |y|R / ln sε
R , sε ≤ |y| ≤ R,

(9)

where and φ(y) is a radial solution of (7), and sε is a constant, such that Uε,a ∈
C1(BR(0)). So, sε is determined by(

ε

sε

) 2
p−1

φ′(1) =
a

ln sε
R

, (10)

which gives an expansion for sε as follows

sε =

(
|φ′(1)|
a

) p−1
2

ε| ln ε|
p−1
2

(
1 +O(

ln | ln ε|
| ln ε|

)

)
. (11)

For any x ∈ Ω, define Uε,x,a(y) = Uε,a(y− x). Because Uε,x,a does not vanish on
∂Ω, we need to make a projection. Let PUε,x,a be the solution of{

−ε2∆u = (Uε,x,a − a)p+, y ∈ Ω,

u = 0, y ∈ ∂Ω.

Then
PUε,x,a(y) = Uε,x,a(y)− a

ln R
sε

g(y, x), (12)

where g(y, x) = lnR + 2πH(y, x) and H(y, x) is the regular part of the Green’s
function G defined by (6).

Take
d1 =

r1

| ln ε|λε
, d2 =

r2

| ln ε|λε
, (13)
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where 0 < r1 < r2 are two fixed constants, which will be determined later, and set

S =: (∂O0)d2 \ (∂O0)d1 , (14)

where (∂O0)di = {y ∈ Ω| dist(y, ∂O0) < di} is the neighborhood of ∂O0. Denote
d(x) = dist(x, ∂O0) and take x̂ ∈ ∂O0 such that d(x) = |x− x̂|. Define

r(x) = | ln ε|λεd(x). (15)

Then we can rewrite S as follows

S = {x ∈ Ω : r1 < r(x) < r2}. (16)

In the rest of this paper, we assume that x ∈ S. We want to construct solutions
for (5) of the form

u = PUε,x,aε + ωε, (17)

where ωε is a perturbation term. To make PUε,x,aε a good approximate solution,
we need to require that aε and sε satisfy(

ε

sε

) 2
p−1

φ′(1) =
aε

ln sε
R

, aε = κ− λεη(x) +
aε

ln R
sε

g(x, x). (18)

Let us now show that (18) is solvable for ε > 0 small. From the Taylor expansion
we have

η(x) = η(x̂)− ∂η(x̂)

∂ν
d(x) +O(d2(x)) = 1− ∂η(x̂)

∂ν
d(x) +O(d2(x)),

where ν is the outward unit normal of ∂Ω. On the other hand, the following
expansion for Robin’s function is proved in [15] Appendix B:

ϕ(x) =
1

2π
ln

1

2d(x)
+O(d(x)).

Then by our assumption on λε, as in Lemma 2.1 in [6], we can solve (18) to obtain
aε(x) and sε(x). For simplicity, we use aε and sε instead of aε(x) and sε(x),
respectively. Then for y ∈ BLsε(x), where L > 0 is any fixed constant, we have

PUε,x,aε(y)− κ+ λεη(y) =Uε,x,aε(y)− κ+ λεη(y)− aε

ln R
sε

g(y, x)

=Uε,x,aε(y)− aε + λε〈∇η(x), y − x〉

− aε

ln R
sε

〈∇g(x, x), y − x〉+O(s1+σ
ε ),

(19)

where 0 < σ < 1 is a small constant.

Remark 1. It is not difficult to get the following expansions:

1

ln R
sε

=
1

Aε
+O

(
λε
| ln ε|2

)
,

aε =

(
1 +

lnR

| ln ε|

)
κ− λε + λε

∂η(x̂)

∂ν
d(x) +

κ

| ln ε|
ln

1

2d(x)
+O

(
1

| ln ε|1+σ

)
,

(20)

where σ > 0 is a small constant and

Aε = | ln ε| − p− 1

2
ln | ln ε|+ lnR+

p− 1

2
ln

κ

|φ′(1)|
.
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Moreover, in view of ∂ϕ(x)
∂xi

= O( 1
d(x) ), we can prove that

∂aε
∂xi

= O (λε) ,
∂sε
∂xi

= O (λεsε) , i = 1, 2. (21)

By (9) and (21), we have the following expansion, which will be used in the rest
of this paper,

∂Uε,x,aε(y)

∂xi
=


aε
|φ′(1)|

1

ln R
sε

φ′(
|y − x|
sε

)
xi − yi
|y − x|

1

sε
+O

(
λε
| ln ε|

)
,

y ∈ Bsε(x),
aε

ln R
sε

xi − yi
|y − x|2

+O

(
λε ln |y − x|
| ln ε|

)
, y ∈ Ω \Bsε(x).

(22)

3. The reduction. In this section, we reduce the problem of finding a solution for
(5) of the form (17) to a finite dimension problem.

Define

Eε,x =
{
u : u ∈W 2,p(Ω) ∩H1

0 (Ω),

∫
Ω

u∆
∂PUε,x,aε

∂xi
dy = 0, i = 1, 2

}
,

and

Fε,x =
{
u : u ∈ Lp(Ω),

∫
Ω

u
∂PUε,x,aε

∂xi
dy = 0, i = 1, 2

}
.

For any u ∈ Lp(Ω), define the following projection

Qεu =: u+

2∑
j=1

bjε
2∆

∂PUε,x,aε
∂xj

,

where b1 and b2 are the constants such that Qεu ∈ Fε,x. Thus b1 and b2 should
satisfy

2∑
j=1

bjε
2

∫
Ω

∇∂PUε,x,aε
∂xj

∇∂PUε,x,aε
∂xi

=

∫
Ω

u
∂PUε,x,aε

∂xi
. (23)

The existence of b1 and b2 can be obtained by the following estimate

ε2

∫
Ω

∇∂PUε,x,aε
∂xj

∇∂PUε,x,aε
∂xi

=p

∫
Ω

(Uε,x,aε − aε)
p−1
+

(
∂Uε,x,aε
∂xj

− ∂aε
∂xj

)
∂PUε,x,aε

∂xi

=c(δij + o(1))
1

| ln ε|p+1
,

(24)

where c > 0 is a constant, δij = 1, if i = j and δij = 0, if i 6= j.
Set

Lεu = −ε2∆u− p (PUε,x,aε − κ+ λεη)
p−1
+ u. (25)

We have the following result for the operator QεLε.

Proposition 1. There are constants ε0 > 0 and σ0 > 0, such that for any ε ∈
(0, ε0), x ∈ S, u ∈ Eε,x with QεLεu = 0 in Ω \BLsε(x) for some large L > 0, then

s
2− 2

p
ε

ε2
‖QεLεu‖Lp(BLsε (x)) ≥ σ0‖u‖L∞(Ω).

As a consequence, QεLε is one to one and onto from Eε,x to Fε,x.
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Proof. Suppose to the contrary that there are εn → 0, xn ∈ Sn, un ∈ Eεn,xn with
QεnLεnun = 0 in Ω \BLsεn (xn), and ‖un‖L∞(Ω) = 1, such that

s
2− 2

p
εn

ε2
n

‖QεnLεnun‖Lp(BLsεn (xn)) ≤
1

n
. (26)

First of all, we estimate b1,n and b2,n in the following formula:

QεnLεnun = Lεnun +

2∑
j=1

bj,nε
2
n∆

∂PUεn,xn,aεn
∂xj

, (27)

where b1,n and b2,n satisfy

2∑
j=1

bj,nε
2
n

∫
Ω

∇
∂PUεn,xn,aεn

∂xj
∇
∂PUεn,xn,aεn

∂xi
=

∫
Ω

∂PUεn,xn,aεn
∂xi

Lεnun. (28)

From (19), (21) and Lemma A.1, we have∫
Ω

∂PUεn,xn,aεn
∂xi

Lεnun =

∫
Ω

unLεn
∂PUεn,xn,aεn

∂xi

=p

∫
Ω

[ (
Uεn,xn,aεn − aεn

)p−1

+

(
∂Uεn,xn,aεn

∂xi
− ∂aεn

∂xi

)
−
(
PUεn,xn,aεn − κ+ λεnη

)p−1

+

∂PUεn,xn,aεn
∂xi

]
un

=p

∫
Ω

[ (
Uεn,xn,aεn − aεn

)p−1

+

∂Uεn,xn,aεn
∂xi

−
(
Uεn,xn,aεn − aεn +O(λεnsεn)

)p−1

+

∂PUεn,xn,aεn
∂xi

]
un +O

(
λεns

2
εn

| ln εn|p−1

)
=O

(
λεns

2
εn

| ln εn|p−1

)
.

(29)

Then by (24), (28) and (29), we obtain

bj,n = O
(
λεns

2
εn | ln εn|

2
)
. (30)

Write

−ε2
n∆un = p

(
PUεn,xn,aεn − κ+ λεnη

)p−1

+
un + fn, (31)

where

fn = QεnLεnun −
2∑
j=1

bj,nε
2
n∆

∂PUεn,xn,aεn
∂xj

,

Define

ũn(y) = un(sεny + xn), f̃n(y) = fn(sεny + xn).

Then we have

−∆ũn =p
s2
εn

ε2
n

(
P̃Uεn,xn,aεn − κ+ λεn η̃

)p−1

+
ũn +

s2
εn

ε2
n

f̃2,n. (32)

From (26), (30) and Lemma A.1, we find

s2
εn

ε2
n

‖f̃n‖Lploc(R2) = on(1) +O
(
s

2− 2
p

εn

∥∥∥ 2∑
j=1

bj,n∆
∂PUεn,xn,aεn

∂xj

∥∥∥
Lp(Ω)

)
= on(1). (33)
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Since the right hand side of (32) is bounded in Lploc(R2), ũn is bounded in

W 2,p
loc (R2). By the Sobolev embedding, ũn is bounded in Cαloc(R2) for some α > 0.

So, we can assume that ũn converges uniformly in any compact set of R2 to
ũ ∈ L∞(R2) ∩ C(R2). It is easy to check that ũ satisfies

−∆ũ− pwp−1
+ ũ = 0, in R2, (34)

where

w(y) =

{
φ(|y|), |y| ≤ 1,

φ′(1) ln |y|, |y| > 1.

So there exist constants b1 and b2 (see [10]), such that

ũ = b1
∂w

∂y1
+ b2

∂w

∂y2
. (35)

From un ∈ Eεn,xn , we see that∫
B1(0)

φp−1 ∂φ

∂yj
ũ = 0, j = 1, 2.

So we get b1 = b2 = 0. That is, ũ ≡ 0. Then we find

un = on(1), in C(BLsεn (xn)). (36)

By our assumption,

QεnLεnun = 0, in Ω \BLsεn (xn).

We find that
∆un = 0, in Ω \BLsεn (xn).

However, un = 0 on ∂Ω and un = on(1) on ∂BLsεn (xn). By the maximum
principle,

un = on(1), in Ω \BLsεn (xn).

So, we have proved that
‖un‖L∞(Ω) = on(1),

which contradicts ‖un‖L∞(Ω) = 1.
Using the same argument as in Proposition 3.2 in [6], it is not difficult to prove

that QεLε is one to one and onto from Eε,x to Fε,x. Therefore, we complete the
proof.

We now want to find a solution for (5) of the form PUε,x,aε + ω. Then ω should
satisfy

Lεω = lε +Rε(ω), (37)

where
lε = (PUε,x,aε − κ+ λεη)p+ − (Uε,x,aε − aε)

p
+, (38)

and

Rε(ω) = (PUε,x,aε+ω−κ+λεη)p+−(PUε,x,aε−κ+λεη)p+−p(PUε,x,aε−κ+λεη)p−1
+ ω.

(39)
From (37), we see

QεLεω = Qεlε + QεRε(ω). (40)

Fot ω ∈ Eε,x, using Proposition 1, (40) is equivalent to

ω = Gεω =: (QεLε)−1Qε(lε +Rε(ω)). (41)

We have the following estimates for lε and Rε(ω).



PLANAR VORTICES IN A BOUNDED DOMAIN WITH A HOLE 4237

Lemma 3.1. It holds

‖lε‖Lp(BLsε (x)) = O

 λεs
1+ 2

p
ε

| ln ε|p−1

 ,

and if ‖ω‖L∞(Ω) = O(sε), then

‖Rε(ω)‖Lp(BLsε (x)) = O

 s
2
p
ε

| ln ε|p−2
‖ω‖2L∞(Ω)

 .

Proof. For any y ∈ BLsε(x), from (19), we have

|lε| =|(PUε,x,aε − κ+ λεη)p+ − (Uε,x,aε − aε)
p
+|

=|(Uε,x,aε − aε +O(λεsε))
p
+ − (Uε,x,aε − aε)

p
+|

≤C
(
λεsε(Uε,x,aε − aε)

p−1
+ + (λεsε)

p
)

≤C λεsε
| ln ε|p−1

.

So we get

‖lε‖Lp(BLsε (x)) ≤ s
2
p
ε ‖lε‖L∞(BLsε (x)) ≤ C

λεs
1+ 2

p
ε

| ln ε|p−1
.

Similarly, using (19) and Lemma A.1, it ie east to see that

‖Rε(ω)‖Lp(BLsε (x)) ≤ C‖ω‖2L∞(Ω)‖(PUε,x,aε−κ+λεη)p−2
+ ‖Lp(BLsε (x)) ≤ C

s
2
p
ε

| ln ε|p−2
‖ω‖2L∞(Ω).

So we complete the proof.

Using Lemma 3.1, we can solve (41) in a standard way and obtain the following
proposition.

Proposition 2. There is ε0 > 0, such that for any ε ∈ (0, ε0) and x ∈ S, (40) has
a unique solution ωε,x ∈ Eε,x, with

‖ωε,x‖L∞(Ω) = O(λεsε).

Furthermore, ωε,x is a C1 map from x ∈ S to Eε,x.

4. Proof of main results. In this section, we will prove our main results.
Define

I(u) =
ε2

2

∫
Ω

|∇u|2 − 1

p+ 1

∫
Ω

(u− κ+ λεη)p+1
+ ,

and set

F (x) = I(PUε,x,aε + ωε,x),

where x ∈ S and ωε,x is found in Proposition 2. It is well-known that if x is a
critical point of F , then PUε,x,aε + ωε,x is a solution of (5).

Lemma 4.1. There holds:

F (x) = I(PUε,x,aε) +O

(
λ2
εs

4
ε

| ln ε|p−1

)
.
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Proof. Since ωε,x ∈ Eε,x, then we have the following energy expansion

I(PUε,x,aε + ωε,x)

=I(PUε,x,aε) + 〈I ′(PUε,x,aε), ωε,x〉+
1

2
〈I ′′(PUε,x,aε)ωε,x, ωε,x〉+ R̃ε(ωε,x)

=I(PUε,x,aε)−
∫

Ω

lεωε,x +
1

2

∫
Ω

ωε,xLεωε,x + R̃ε(ωε,x)

=I(PUε,x,aε)−
∫

Ω

lεωε,x +
1

2

∫
Ω

(
lε +Rε(ωε,x)−

2∑
j=1

bjε
2∆

∂PUε,x,aε
∂xj

)
ωε,x + R̃ε(ωε,x)

=I(PUε,x,aε)−
1

2

∫
Ω

lεωε,x +
1

2

∫
Ω

Rε(ωε,x)ωε,x + R̃ε(ωε,x),

where

R̃ε(ωε,x) =− 1

p+ 1

∫
Ω

[
(PUε,x,aε + ωε,x − κ+ λεη)p+1

+ − (PUε,x,aε − κ+ λεη)p+1
+

− (p+ 1)(PUε,x,aε − κ+ λεη)p+ωε,x −
p(p+ 1)

2
(PUε,x,aε − κ+ λεη)p−1

+ ω2
ε,x

]
.

One sees

|R̃ε(ωε,x)| ≤ C
∫

Ω

(PUε,x,aε − κ+ λεη)p−2
+ ω3

ε,x ≤ C
λ3
εs

5
ε

| ln ε|p−2
.

Then by Lemma 3.1, we can easily check that

F (x) = I(PUε,x,aε) +O

(
λ2
εs

4
ε

| ln ε|p−1

)
.

Lemma 4.2. We have

I(PUε,x,aε) = Cε +
πκε2

Aε

(
2λε

∂η(x̂)

∂ν
d(x) +

κ

| ln ε|
ln

1

2d(x)

)
+O

(
ε2

| ln ε|2+σ

)
,

where σ > 0 is a small constant, Aε is given in Remark 1, and Cε is a constant,
depending on ε.

Proof. We have

ε2

∫
Ω

|∇PUε,x,aε |2

=

∫
Ω

(
− ε2∆PUε,x,aε

)
PUε,x,aε

=

∫
Ω

(
Uε,x,aε − aε

)p
+
PUε,x,aε

=

∫
Ω

(
Uε,x,aε − aε

)p+1

+
+ aε

∫
Ω

(
Uε,x,aε − aε

)p
+
− aε

ln R
sε

∫
Ω

g(y, x)
(
Uε,x,aε − aε

)p
+

=
π(p+ 1)

2
ε2

(
aε

ln R
sε

)2

+ 2πε2 aε

ln R
sε

(κ− λεη(x)) +O

(
λεs

3
ε

| ln ε|p

)
.
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On the other hand, by (19)∫
Ω

(
PUε,x,aε − κ+ λεη

)p+1

+
=

∫
Ω

(
Uε,x,aε − aε +O(λεsε)

)p+1

+

=

∫
Ω

(
Uε,x,aε − aε

)p+1

+
+O

(
λεs

3
ε

| ln ε|p

)

=
π(p+ 1)

2
ε2

(
aε

ln R
sε

)2

+O

(
λεs

3
ε

| ln ε|p

)
.

Then we get that

I(PUε,x,aε) =
π(p− 1)

4
ε2

(
aε

ln R
sε

)2

+ πε2 aε

ln R
sε

(κ− λεη(x)) +O

(
λεs

3
ε

| ln ε|p

)
.

Therefore, since λε satisfies (Hε), it is not difficult from Remark 1 to see that

I(PUε,x,aε) = Cε +
πκε2

Aε

(
2λε

∂η(x̂)

∂ν
d(x) +

κ

| ln ε|
ln

1

2d(x)

)
+O

(
ε2

| ln ε|2+σ

)
,

where σ > 0 is a small constant, Aε is given in Remark 1, and

Cε =
πε2

Aε

(
(p− 1)κ2

4Aε
+ (κ− λε)

(
(1 +

lnR

| ln ε|
)κ− λε

))
.

Proof of Theorem 1.3. By Lemma 4.1 and Lemma 4.2, we have that for x ∈ S,

F (x) = Cε +
πκε2

Aε

(
2λε

∂η(x̂)

∂ν
d(x) +

κ

| ln ε|
ln

1

2d(x)

)
+O

(
ε2

| ln ε|2+σ

)
. (42)

Consider the following minimization problem

min{F (x) : x ∈ S̄}. (43)

Let

ρ(x) = 2λε
∂η(x̂)

∂ν
d(x) +

κ

| ln ε|
ln

1

2d(x)
. (44)

The Hopf lemma shows that for any y ∈ ∂O0, ∂η(y)
∂ν > 0. Define

m1 =
κ

2
min
y∈∂Ω

{(∂η(y)

∂ν
)−1}, m2 =

κ

2
max
y∈∂Ω

{(∂η(y)

∂ν
)−1},

and choose r1, r2 ∈ R, such that 0 < r1 < m1 ≤ m2 < r2. Then there exists x0 ∈ S,
such that

r(x0) =
κ

2

(
∂η(x̂0)

∂ν

)−1

,

where r(x) is given in (15). So

ρ(x0) =2λε
∂η(x̂0)

∂ν
d(x0) +

κ

| ln ε|
ln

1

2d(x0)

=
κ

| ln ε|

(
1 + ln

1

2r(x0)
+ ln(λε| ln ε|)

)
.

. (45)
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For x ∈ ∂S, r(x) = r1, we have

ρ(x) =2λε
∂η(x̂)

∂ν
d(x) +

κ

| ln ε|
ln

1

2d(x)

=
2

| ln ε|
∂η(x̂)

∂ν
r1 +

κ

| ln ε|
ln

1

2r1
+

κ

| ln ε|
ln(λε| ln ε|)

≥ κ

| ln ε|

(
r1

m2
+ ln

1

2r1
+ ln(λε| ln ε|)

)
>h(x0),

(46)

if 0 < r1 < m1 small enough.
Similarly, for x ∈ ∂S, r(x) = r, we have

ρ(x) ≥ κ

| ln ε|

(
r2

m2
+ ln

1

2r2
+ ln(λε| ln ε|)

)
>h(x0),

(47)

if r2 ≥ m2 large enough.
Therefore, from (42), (46) and (47), for any x ∈ ∂S, we have

F (x0) < F (x).

Thus there is a minimum point xε ∈ S of F (x) in S, which is a critical point. As a
result, uε = PUε,xε,aε + ωε,xε is a solution of (5).

By our construction, we find

Bsε(1−Lsσε )(xε) ⊂ {y ∈ Ω : uε(y)− κ+ λεη(y) ≥ 0} ⊂ Bsε(1+Lsσε )(xε),

and as ε→ 0, dist(xε, ∂O0)→ 0.

We remark that if there is a minimum interval I of ∂η(x(s))
∂ν for x(s) ∈ ∂O0, then

we can find a critical point xε of F , which nears x(I).

Appendix A. The estimate for the radius of vortex core. In this appendix,
we give the estimates for the radius of vortex core. The proofs of such results can
be found in [6] Lemma A.1.

In the following, we assume that x ∈ S, where S is given in (14).

Lemma A.1. Let 0 < σ < 1 be a constant. Then there are ε0 > 0 and L > 0 large
enough, such that for any ε ∈ (0, ε0),

PUε,x,aε(y)− κ+ λεη(y) > 0, y ∈ Bsε(1−Lsσε )(x),

while

PUε,x,aε(y)− κ+ λεη(y) < 0, y ∈ Ω \Bsε(1+Lsσε )(x).

Lemma A.2. Suppose that ω satisfies

‖ω‖L∞(Ω) = O (sε) .

Then there is L > 0 large enough, such that

PUε,x,aε(y) + ω(y)− κ+ λεη(y) > 0, y ∈ Bsε(1−Lsσε )(x),

while

PUε,x,aε(y) + ω(y)− κ+ λεη(y) < 0, y ∈ Ω \Bsε(1+Lsσε )(x).
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