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ABSTRACT. A celebrated result in bifurcation theory is that, when the op-
erators involved are compact, global connected sets of non-trivial solutions
bifurcate from trivial solutions at non-zero eigenvalues of odd algebraic mul-
tiplicity of the linearized problem. This paper presents a simple example in
which the hypotheses of the global bifurcation theorem are satisfied, yet all the
path-connected components of the connected sets that bifurcate are singletons.
Another example shows that even when the operators are everywhere infinitely
differentiable and classical bifurcation occurs locally at a simple eigenvalue, the
global continua may not be path-connected away from the bifurcation point. A
third example shows that the non-trivial solutions which bifurcate at non-zero
eigenvalues, irrespective of multiplicity when the problem has gradient struc-
ture, may not be connected and may not contain any paths except singletons.

1. Introduction. Krasnosel’skii [17] considered non-linear eigenvalues in the form

Ax=Lz+ R(\zx), AeR, z€X, (1.1a)

where X is a real Banach space, the linear operator L : X — X is compact, and
the non-linear R : R x X — X is continuous, compact, and satisfies
R(A
”|(|’”x)” — 0 as 0 # ||z]| = 0 uniformly for X\ in bounded sets. (1.1b)
x
Since R is continuous, (1.1b) implies that R(\,0) = 0, and hence 2z = 0 is a solution
of (1.1a), for all A € R. Let 7 = {(},0) : A € R} denote the set of trivial solutions of
(1.1a) and S the set of solutions that are not trivial. In all that follows, L is linear
and compact and R is nonlinear, continuous and compact. The first observation is
that under these hypotheses S may be empty.

Example 1.1. Let X = R?, L(z,y) = (v + y,y) and R(x,y) = (0,—2%). Then L
is linear, (1.1b) holds, and equation (1.1a) is satisfied if and only if

A=Dz=yand (\— 1)y = -z,
which implies that z((A — 1)2 + 2?) = 0. Hence # = 0 and, by the first equation,
y = 0, which shows & = {). O
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According to Krasnosel’skii [17, Ch. IV, p. 181], a point A\ € R is a bifurcation
point for (1.1a) if there exists a sequence {(An,2,)} C S such that

An = A inR  and 0 # |lz,]| = 0 as n — oo.

In this definition there is no mention of curves, paths or connected sets in S,
bifurcating from T at (A\g,0). (A path in S is a set {v(t) : t € [0,1]} where
v:10,1] = S C R x X is continuous and a path is non-trivial if - is not constant.
A curve is a smooth 1-dimensional manifold.)

In this paper it is shown by example that even when the operators in (1.1)
are smooth, if they are not real-analytic the non-trivial solution sets predicted by
classical theories may not be path-connected, and indeed may contain no paths at
all.

1.1. Bifurcation theory background.

A necessary condition for bifurcation. The following necessary criterion for Ay to
be a bifurcation point, when L is compact and R satisfies (1.1b) in a Banach space
X, is well known [17, Ch.IV,§2, Lem. 2.1]. A real number \g # 0 is a bifurcation
point only if Ag is an eigenvalue of L. If X is finite-dimensional and Ag = 0 is a
bifurcation point, then 0 is an eigenvalue of L. From Example 1.1 a real eigenvalue
of L need not be a be bifurcation point. O

Multiplicities. The geometric multiplicity of an eigenvalue Ay of L is the dimension
of the eigenspace ker(Agl — L), and its algebraic multiplicity is the dimension of
Uren ker(A\oI — L)*. When the algebraic multiplicity is one, and either Ao # 0 or
X is finite-dimensional, \g is called simple. Both the multiplicities of all non-zero
eigenvalues of compact operators are finite. O

Bifurcation results by classical analysis. Many seemingly different bifurcation phe-
nomena were studied in ad hoc situations before being recognised by Crandall &
Rabinowitz [6] as special cases of the following overarching result, which is a corol-
lary of the Implicit Function Theorem.

Theorem 1.2. Bifurcation from a simple eigenvalue [6] Suppose that Ao is
a simple eigenvalue of L, that R : R x X — X is continuously differentiable, and
that Oy R exists and is continuous in a neighbourhood of (Ao,0). Then there is an
injective, continuous function v : (=1,1) = R x X such that v(0) = (X\o,0) and a
neighbourhood U of (X, 0) such that UNS = {v(s): s € (=1,0)U (0, 1)}. If 0. R
is also continuous in the neighbourhood of (\o,0), then v is Ct.

Remark. In Example 1.1 the nonlinearity R satisfies the hypotheses in Theorem
1.2, and the only eigenvalue of L is A\g = 1 which has geometric multiplicity 1, but
Ao = 0 is not a bifurcation point. However Theorem 1.2 does not apply because the
algebraic multiplicity of Ay is 2. Henceforth the word multiplicity always refers to
algebraic multiplicity. O

Bifurcation results by topological methods. In his D.Sc thesis (Kiev 1950 [16]), Kras-
nosel’skii used Leray-Schauder degree theory to prove, under the hypotheses of (1.1),
that every non-zero eigenvalue of L with odd multiplicity is a bifurcation point [15,
Thm. 2], [17, Ch.IV, Thm.2.1]. Then, in 1971, Rabinowitz reached the ground-
breaking conclusion that this bifurcation is not local: indeed, under Krasnosel’skii’s
hypotheses, he showed a global connected set of non-trivial solutions bifurcates in
R x X from 7T at an eigenvalue of odd multiplicity.
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Theorem 1.3. Global bifurcation at eigenvalues of odd multiplicity. [18,
Thm. 1.3]. Suppose L and R are as in (1.1) and Ao is a non-zero eigenvalue of
L of odd multiplicity. Then Xy is a bifurcation point and there exists a connected
subset C of S such that (\o,0) € C and either C is unbounded in R x X or there
exists (A\1,0) € C where \; # Xo is also an eigenvalue of odd multiplicity of L.
(If X is finite-dimensional, the result holds when \g = 0 is an eigenvalue of odd
multiplicity.)

Related Results. Dancer [9] used topological obstruction arguments to ex-
tend the topological account of bifurcation at simple eigenvalues and eigenvalues of
geometric multiplicity one. Krasnosel’skii [17, Ch.IV.5,p.232ff.] also studied bifur-
cation at eigenvalues of even multiplicity, when the nonlinearity R is non-degenerate
in a certain sense. Under his hypotheses, the methods introduced by Rabinowitz
[18] lead easily to global bifurcation at eigenvalues of even multiplicity for certain
nonlinearities [21]. The methods of Section 2 are relevant in that context also. O

Bifurcation results by variational methods. To justify linearisation without refer-
ence to multiplicity of eigenvalues, Krasnoselskii [17, §VI] developed a variational
approach to bifurcation theory in Hilbert space. (For an up-to-date account in
Banach spaces, see [19].) Let X be a real Hilbert space with inner product (:,-)
and let h : X — R be differentiable with derivative Dhlz] : X — R at z € X.
Then Dh[z] is a bounded linear operator on X and, by the Riesz Representation
Theorem, there exists a unique z* € X such Dh[z]y = (z*,y) for all y € X. Hence
Vh(z) = z* defines an operator Vh : X — X called the gradient of h, and an oper-
ator H : X — X is said to have gradient structure if H = Vh for some differentiable
h: X —R.

It is easily seen that a bounded linear operator L : X — X has gradient structure
if and only if (Lx,y) = (x, Ly) for all 2,y € X. In other words L is a gradient if and
only if it is self adjoint, in which case Lx = V{(z) where ¢(x) = 1(Lz,z), x € X.
Note that when L is self-adjoint, (L — AI)?z = 0 implies

(L = ADz|?> = (L — M)z, (L — XI)x) = (L — \)*z,z) = 0,

and hence algebraic multiplicity and geometric multiplicity of eigenvalues coincide
for self-adjoint operators. Obviously the identity operator I on X has gradient
structure I = Vi where «(z) = 1| z||?>. Finally, a function g : X — R is weakly
continuous if g(zx) — g(xo) in R for every weakly convergent sequence zx — xg in
X. Vainberg proved [22, Thm. 8.2] that g is weakly continuous when its gradient
is a compact operator. In this setting, a special case of (1.1a) is

A =Lx+ R(z), MAeR, zeX, (1.2a)

where X is a real Hilbert space, L : X — X is self-adjoint, and R satisfies (1.1b)
with gradient structure independent of A:

R(z) = Vr(x), where r is weakly continuous. (1.2b)

Krasnosel’skii proved [17, Ch. VI, §6, Thm. 2.2, p.332] that for this class of prob-
lems bifurcation occurs at all non-zero eigenvalues of L, independent of multiplicity.
The following version of his theorem replaces his hypothesis that “R is uniform dif-
ferentiable” near 0 with Vainberg’s characterisation [22, Thm. 4.2, p. 45] of uniform
differentiability in terms of the bounded uniform continuity of its Fréchet derivative.
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Theorem 1.4. Variational theory of bifurcation at any eigenvalue. If R
n (1.2) has Fréchet derivative x — dR[x] bounded and uniformly continuous in a
neighbourhood of 0 in X, all eigenvalues Ao # 0 of L are bifurcation points. (When
X is finite-dimensional, the condition Aoy # 0 is not needed.)

Remark 1.5. While Rabinowitz’s theory of global bifurcation yields connected sets
C C S bifurcating from T at eigenvalues of odd multiplicity, Bohme’s example [3,
§6] showed that no such connectedness is guaranteed by Theorem 1.4. O

Bifurcation results by real-analyticity. So far in this summary of bifurcation theory,
Theorem 1.2 is the only result which guarantees the existence of a path of non-trivial
solutions of equation (1.1), and even then it is localized to a neighbourhood (A, 0),
where \g is the bifurcation point. However, in his Ph.D thesis (Cambridge 1972)
Dancer [7, 8] showed, among many other things, that when the operators in (1.1a)
are real-analytic (infinitely differentiable and equal to the sum of the Taylor series in
a neighbourhood of every point), there bifurcates from a simple eigenvalue a global
path of solutions which, at every point, has a local real-analytic re-parametrization.
More precisely, Dancer showed that the global continuum, which by Theorem 1.3
bifurcates from the trivial solutions at a simple eigenvalue, contains a path K =
{(A(s),k(s)) : s €]0,00)} C R x X with the following properties.
(i) A(0) = X € R, k(0) =0 € X and K\ {(Xo,0)} is a real-analytic curve in a
neighbourhood of (A, 0) [4, Thm. 8.3.1].
(ii) K is either unbounded or forms a closed loop in R x X.
(iii) For each s* € (0,00) there exists p* : (—1,1) — R (a re-parametrisation)
which is continuous, injective, and

p*(0) =s* and t+— (A(p*(t)),x(p"(t))) is analytic on ¢t € (—1,1).

This does not imply that X is locally a smooth curve. (The map o : (—1,1) —
R? given by o(t) = (t2,t®) is real-analytic and its image is two curves forming
a cusp.) Nor does it preclude the possibility of secondary bifurcation points on
K. In particular, since (A, k) : [0,00) — R x X is not required to be globally
injective; self-intersection of K (as in a figure eight) is not ruled out.

(iv) Secondary bifurcation points and points where the bifurcating branch is not
smooth, if any, are isolated.

Under these hypotheses the real-analytic implicit function theorem [4, §4.5] can
be used as in the proof of Theorem 1.2 to obtain a real-analytic curve of solutions
which intersects the trivial solutions at (Ag,0). Dancer used the theory of real-
analytic varieties to show that this observation has a global extension: when the
operators are real-analytic there bifurcates from a simple eigenvalue a global path
of solutions which is a real-analytic curve except possibly at a discrete set of points.
This path is unique in the sense that it has a pre-determined continuation through
secondary bifurcation points, or even through points where it intersects higher-
dimensional manifolds of solutions. See [4] for an introductory account. O

2. Lack of path-connectedness - three examples. The following three exam-
ples are designed to illustrate how the situation may differ from Dancer’s theory
when the hypotheses of Theorems 1.2, 1.3 and 1.4 are satisfied by operators that
are infinitely differentiable but not real-analytic. The main conclusion is that the
non-trivial solution set & may contain global connected sets while having no path-
connected components except singletons. Since no two non-trivial solutions in such
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a connected set can be joined by a path in S, this possibility has serious implica-
tions for applications. The paper ends with a simple criterion for a connected set
to contain a path joining two of its points. Thus Theorem 6.5 gives an insight into
the lack of path-connectedness in connected sets.

In the first two examples of (1.1), X =R, L =0, A\¢g = 0 is the only eigenvalue of
L and is simple, and R = r : R? — R, where r is at least continuously differentiable
and satisfies (1.1b). Under these hypotheses (1.1a) has the form

Az =r(\ ), (A, z) € R2. (2.1)

The first example concerns the global connected sets of solutions of (2.1) that, by
Theorem 1.3, bifurcate at the simple eigenvalue A\g = 0, although Theorem 1.2 does
not apply because 0,7 is not continuous at (0, 0).

Example A. There is a C'-function 7 : R? — R which is infinitely differentiable on
R%\ {(0,0)} for which the non-trivial solution set S of (2.1) has no path-connected
components except singletons. However by Theorem 1.3 it has an unbounded global
connected set of non-trivial solutions which bifurcates at Ao = 0. O

The second example illustrates the possible behaviour of solutions which bifurcate
at A\g = 0 when simultaneously Theorem 1.2 yields the local bifurcation of a smooth
curve, and Theorem 1.3 yields global bifurcation of an unbounded connected set, of
non-trivial solutions of (2.1).

Example B. For an infinitely differentiable function » : R? — R let C denote the
closure of the connected sets of non-trivial solutions of (2.1) which by Theorems
1.2 and 1.3 bifurcate at A = 0. In this example C is the union LUCt UC~ of
three disjoint connected sets: £ is the smooth curve {0} x (—1,1) and C* are
closed, unbounded, connected sets in the first and third quadrants, respectively,
(£1,0) € C* and all path-connected components of C* UC~ are singletons. (The

only non-trivial paths in C are subsets of the closure of L.) O

Although Béhme [3] showed the non-trivial solution set of (1.2) given by Theorem
1.4 when R has gradient structure need not be connected, he did not exclude the
possibility of it having non-trivial connected components. The next example shows
that in any case all the path-connected components may be singletons.

Example C. In this example of problem (1.2), X = R?, R = Vr where r : R? — R
is infinitely differentiable, and L is the zero operator which has only one eigenvalue,
namely 0 with multiplicity 2. Then (1.2a) has the form

Mz, y) = Vr(z,y), (z,y) €R* NER, (2.2)

and the existence of non-trivial solutions with (X, (z,y)) near (0, (0,0)) is given by
Theorem 1.4. Example C shows, in addition to not forming a connected set, that all
path-connected components of the non-trivial solution set may be singletons. [

3. Preliminaries. The construction of these examples depends crucially on clas-
sical results of Whitney in analysis and Knaster in point-set topology.

Theorem. (Whitney) For any closed set G C R™ there is an infinitely differen-
tiable, globally Lipschitz continuous function h such that G = {x € R™ : h(z) = 0},
and all the derivatives of h are zero at every point of G.
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Proof. Let u : [0,00) — [0, 1] be a C*°-function with
u(t)=1, t€[0,1/2]; wu(t) € (0,1), t€(1/2,1); wu(t)=0,te[l,00).

For a closed set G, let the open set R™ \ G be the union of a countable collection of
open balls {B,,(a;) : j € N}, with radius r; € (0,1) centred at a; € R", and put
uj(xz) =u (|x—a]> , xeR"
Tj

Then u; is infinitely differentiable on R™ and positive on B, (a;) . Now, see [10,
§2.7], let Lin*(R™,R) denote the linear space of all k-linear maps from (R")¥ — R
and let ||Al|;, denote the norm of A € Lin*(R",R). Then D*u;(x) € Lin*(R",R)
where D*u;(z) is the k™" derivative of u; at x € R", and D*u;(x) =0 for z € G
and j € N. Moreover, since u; is supported on B, (a;),

v; = max{||D*u;(z)|[x : 0 < k < j, € R"} < oo for all j €N,

Therefore, since both series are convergent, uniformly in x, in their respective spaces,

DFu;(x) u;(x)

k _ J sk (mn _ J n

Dh(x)—z oY ELm(R,R)whenh(w)—Z%yER, z € R,
JEN jJEN

and h: R" — [0,00) is C®, G = {x € R" : h(x) = 0}, and D¥h(z) =0 forall k € N

and z € G. O

A deep result in point-set topology due to Knaster (1922) concerns the possible
structure of compact connected sets in metric spaces.

Definition. A continuum, which is a compact, connected set in a metric space,
is indecomposable if it is not a union of two proper sub-continua, and hereditarily
indecomposable if every sub-continuum is indecomposable. (See [2, 5, 12, 13].)

Theorem. (Knaster) [14] In R? there exists a hereditarily indecomposable Q. O

Remark 3.1. Since a non-trivial path in () would be a decomposable sub-continuum,
there are no non-trivial paths in Q). In other words, although @ is compact and
connected in R?, all its path-connected components are singletons. O

A hereditarily indecomposable continuum which is snake-like (Definition 6.4) is
called a pseudo-arc and all pseudo-arcs are homeomorphic [1, Thm.1]. Since, by
construction, Knaster’s @) is snake-like, it is in this sense the unique pseudo-arc.
But all that is important here is that @) is compact, connected and has no paths.

Preliminaries. Let @ be a pseudo-arc and without loss of generality suppose
Q C [Oaﬂ] X [_%7 i]v Qm ({O} X [_%a i]) 7& @ and Q N ({W} X [_%a i]) 7& @
Now let P = {(\,zsin\) € R? : (\,z) € Q}. Then P C [0, 7] x [—1, 1],
Pn ({0} x [-4,3]) ={(0,0)}, Pn({r} x[-4,4]) = {(m,0)},
and P is a connected set (being the continuous image of a connected set) which
contains no non-constant paths (since @ is hereditarily indecomposable).

Since P is connected, by Proposition 6.1 and Corollary 6.3, for any € > 0 there
exists an ordered set, {p§:1 <i <mn.} C P such that

pi = (0,0), pf, = (7,0), and ||pf — pS <eforalll1 <i<me-—1,
1 Ne 7 1+1
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and the union L€, of the straight line segments which join the points in order, is a
continuous, piecewise-linear, non-self-intersecting path joining (0,0) to (m,0). Now
define subsets of R? by

Py = P+ (kr,0), %=L+ (km,0),
P=J~, Le = L;. (3.1)
keZ keZ

and note that L€ is an unbounded, piecewise linear, connected set which separates
the plane, and each point of L€ is within distance € of a point of P.

Now let Pci denote the connected components of R? \ P which contain the half
spaces {(A,z) : A € R, +x > 1}, respectively.

Lemma 3.2. In the plane, PCRx [—1,1] is an unbounded, connected subset of
a double cone centred on the horizontal axis with opening angle § < w/6. Moreover
P contains no non-trivial paths, (0,0) € P, and P NP = (.

Proof. From the definition, (0,0) € P and P C R x [—1,1] is unbounded. Since
P={(\xzsin)) € R2: (\,z) € Q} and |z| < 1, P lies in a cone with opening angle
less than 2 arctan(1) < 7/6. Moreover P is connected because Py, is connected and
PN Py ={((k+1)m,0)} for all k. Since each Pj, contains no paths, a non-trivial
path in P must contain points (\;, ;) with ); in the open intervals (k;m, (k; + 1)),
i = 1,2, where k1 # ko. However, this implies that these Py, contain non-trivial
paths, which is false. Hence P contains no non-trivial paths.

Now suppose ﬁj N ﬁc_ # (). Then, since ﬁj‘ U ﬁc_ is open and connected, it is
path-connected. Therefore there exists a path v € Pt U P, joining (0, —2) to (0,2)
with, since v is continuous, ¥[0, 1] C [-K, K] x [-K, K] for some K > 0. Since, for
all € > 0, L€ in (3.1) separates the plane, there exists

ge € yNLC[-K,K] x [-K, K], and p. € P with [|p. — .| < e.
Therefore, by compactness, for a sequence 0 < €¢; — 0,
qe; = qo EYN P,

which is false since v C P U P;. Hence P N P = (. O

4. Construction of Examples A and B.

General considerations. For 0 < a < 8 < oo, let
Clo, B) ={(Az):0<ad <z <BAor 0>ar>z>BAU{(0,0)},

a double cone in the first and third quadrants. Then there exists w : R? — R with
the following properties:

(a) w(A, ) =0 if |z| > alA|/2, in particular, w = 0 on C(a, B);
(b) Aw(A,z) > 0 on R?;

() wN,0) =X, AeR;

(d) w is infinitely differentiable on R?\ {(0,0)};

(e) w is globally Lipschitz continuous R2.
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To see this, let @ : R — R be an infinitely differentiable even function which is
non-increasing on [0, 00) with @w(0) = 1 and w(r) = 0 for all » > «/2. Then, for
r €R, let

w(\,z) = \w G) CA£0, w(0,z)=0.

That w satisfies (a)-(d) follows immediately from the definition and the properties
of w. Moreover, the partial derivatives at (A, z) are

Bpw(N, z) = ' (;) . ow(\a) =w (;) - (%) o (;) JAA0,  (41a)
0, w(0,z) = O w(0,2) = 0 when A =0 and z # 0, (4.1b)
0,w(0,0) =0, 9 \w(0,0) =1, (4.1¢c)

since w(A, ) = 0 when |A| < |2|z|/a. For future reference note that

st ==(5) - (D(3) - (V=) ako i

Since @w'(r) = 0, |r| > «/2, the partial derivatives of w are uniformly bounded in
R2\ {(0,0)}, and property (e) follows.

Remark 4.1. It follows from (4.1b) and (4.1¢) that dyw is not continuous at (0, 0)
and from (4.1a) and (4.1¢) that d,w is not continuous at (0,0). However, (A, z) —
rw(A, z) is continuously differentiable on R2. Note also, from the intermediate value
theorem, that for any p € (0,1) there exists s € (0, «/2) such that w(s) — sw’'(s) —
52w’ (s) = p and hence, from (4.1d) with z = s\, X # 0, that

O (2w, ’ — O (zw (N, ‘ d (A, sA) — (0,0), as A — 0.
A(zw(X, ) o) e (zw(A, ) o) — pand (A, sA) = (0,0), as A —
Thus, although 9y, (zw)(0,0) = 9,x(2w)(0,0) = 0, the mixed partial derivatives
e (zw(N, z)) and 9y (zw(A,z)) are not continuous at (0,0). O

Let D' and D~ denote the two disjoint components of the complement of C'(c, 3)
which contain the positive and negative A-axes respectively.

Definition (H). A set G C C(w, ) satisfies hypothesis (H) if it is closed and
connected, its intersections with both half planes, {A > 0} and {\ < 0} are un-
bounded, and Ht N H~ = 0, where H* are the connected components of R? \ G
with D= C H*. O

Lemma 4.2. If G satisfies (H), then w >0 on H and w <0 on H™

Proof. This is immediate from properties (a) and (b) of w. O

Lemma 4.3. When G satisfies (H) there is a locally Lipschitz continuous function
g : R? — R which is infinitely differentiable on R? \ {(0,0)}, with the property that
g(A,0) =X for all A € R, and g(\,z) =0 if and only if (\,z) € G.

Proof. Since G is closed, by Whitney’s lemma there exists a non-negative, infinitely
differentiable function h : R? — [0, c0) such that h(\, z) = 0 if and only if (\, z) € G,
and every derivative of h is zero at every point of G. Let h : R? — R be defined by

- { —h(\x), (Aax)e H™

. . + . -
h(\ ) = h(\ z). otherwise } , with H* defined in Definition (#).
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In particular, H(A,x) = +h(\z), (\z) € HE, h is infinitely differentiable on R2,
and h(A,x) = 0 if and only if (A, z) € G. Now with w satisfying (a)-(e) above, let

g\ z) = 2? iL(A, x) + w(A, z).

It follows from (4.1) that g is infinitely differentiable on R?\ {(0,0)} and by Lemma
4.2 g satisfies the conclusions of the Lemma. O

Proposition 4.4. For G satisfying (H), there is a continuously differentiable func-
tion v : R*> — R with r € C*°(R%\ {(0,0)}), such that |r(\,z)|/|z| = 0 as 0 #
|z| = 0 uniformly for X in bounded intervals, and G\ {(0,0)} is the set of non-
trivial solutions of \x = r(\, x).

Proof. For G satisfying (H) and the corresponding function g in Lemma 4.3, let
r(\z) =z(A—g(\z)), (\z)€R2

Then the smoothness of i and the properties of w in (4.1) imply that g is infinitely
differentiable on R? \ {(0,0)} and, by Remark 4.1, xg is continuously differentiable
on R? with |r(\,z)|/|z| — 0 as 0 # |z| — 0 uniformly for A in bounded intervals.
Moreover, by construction, non-trivial solutions of (2.1) are the zeros of g with = #
0. So, by Lemma 4.3, G\ {(0,0)} is the set of non-trivial solutions of Az = r(\, z)
in R2. This completes the proof. O

Remark. Since, from Remark 4.1, the mixed partial derivative Oy,r is not con-
tinuous at (0,0), Theorem 1.2 does not apply to equation Az = r(A,z) in this
situation. 0.
Construction of Example A of (2.1). Let P be the unbounded connected set
defined in (3.1) and let G denote P rotated counter-clockwise about the origin
through an angle 7/4. By Lemma 3.2, G is connected, contains no non-trivial
paths, and satisfies (H) with o = tan(7/6) and 8 = tan(w/3). With this choice of
G, Example A is a special case of Proposition 4.4. O

Construction of Example B of (2.1). This example shows that the global con-

nected set C given by Theorem 1.3 need not be path connected even when all the

operators involved are infinitely differentiable on R? and locally, by Theorem 1.2, a

smooth curve of solutions bifurcates from the trivial solutions at a simple eigenvalue.
With P defined in (3.1) let three disjoint connected sets be defined by

L={0} x (~1/2,1/2),
Ct =(0,1/2) + (PN ([0,00) x R)) C [0,00) x [1/4,3/4],
C™ =(0,-1/2) + (P N ((=00,0] X R)) C (—00,0] x [~3/4,—1/4].

Then £ is the smooth curve {0} x (-1, 1), and C* are closed, unbounded, connected
sets in the first and third quadrants respectively with (0,+31) € C* and all path-
connected components of C* UC™ are singletons. Let C be their union

C=Luctuc .

Now let E~ and E* denote the connected components of R? \ C which contains
(—00,0] x {0} and [0, 00) x {0}, respectively and note, from the argument for Lemma
3.2, that Et N £~ = (. By Whitney’s result there exists a non-negative, infinitely
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differentiable function h on R? which is zero only on the closed set C, and at each
point of C all the derivatives of h are zero. Let

= [ =h(\z), (MNzx)e E-

hr @) = { h(A\,z), otherwise ’
so that h >0 on E+.

Now let @ : R — R be an infinitely differentiable even function with &(0) =1, ©
decreasing on [0,1/4] and @(z) = 0 when |x| > 1/4, let §(\, x) = 22h(\, ) + A&(z).
Finally let r(\,2) = (A — g(A,z)). Then the set of non-trivial solutions of Az =
r(A,x) coincide with the non-trivial solution set of g(A,2) = 0 which is the set
C\ {(0,0)}. This completes the justification of Example B. O

5. Construction of Example C of (2.2). Example C is a simplified version of
Boéhme’s example [3] with added structure to ensure that all path-connected sets of
non-trivial solutions are singletons.

FIGURE 1. Schematic diagram of Q

According to Bing [1, Ex. 2, p. 48] there exists a hereditarily indecomposable con-
tinuum, H say, which separates the plane. Let 2 be a non-empty bounded compo-
nent of R\ H and 99 its boundary. Then dQ C H, since points which are not in
H (which is closed) are interior points of their connected component in R? \ H.

Without loss of generality, suppose that in the (g, 7)-plane

QC[—imin] X [-a,a] and QN [—im, i7] x {*a} #0, a>0. (5.1)
Denote by S the strip [—m, 7] x R and, with ¢ < p < 2a, consider two parallel
columns of copies of (2, arranged periodically with period 2p in the 7 direction,
centred on the lines ¢ = £7/2, and with height 2a, as illustrated in Figure 1. The
copies of  in the right column are translates through (7, p) of those on the left.
(Apart from being open, connected and satisfying (5.1), nothing is known about
the shape of €, so the diagram is for illustration only.) Let Q denote the union of
all the copies of ) in this arrangement. The key to what follows is the property of
Q that, for all 7 € R, the set {¢: (¢,7) € ﬁ} has strictly positive measure.

Now by Whitney’s result there exists 1 : R? — R which is infinitely differentiable,
¥ > 0 on R?\ 8@, and 1 and all its derivatives are zero on 98). There is no loss
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of generality in assuming that 1 is 2p-periodic in 7 and equals 1 in the two strips
[7m/8, 7] x R and [—7,—77/8] x R. Now, for (¢,7) € S, let

Y (¢,7) = —¢(s,7) when (¢,7) € Q, and ¥~ (s, 7) = 0 otherwise,
(s, 7) = (s, 7) when (¢,7) € S\ Q, and ¢*(s,7) = 0 otherwise.
Next define infinitely differentiable functions x* which are 2p-periodic in 7 € R by

kE(r)= [ vE(,7)ds, TER,

where k_(7) < 0 < k*(7), 7 € R, and let
o(c,7) = £ (M) (6,7) = K7 (T)YT (s, 7). (5.2)

Then (s, 7) = —«~ () > 0 when | — 7| < /8, ¢ is infinitely differentiable, d< is
the zero set of ¢, and by (5.2)

/ﬂ (e, ™) ds = 0 for all 7 € R. (5.3)
If ®:S — R is defined by i
O, 7) = /< o(s,7)ds, (s,7) €S, (5.4)
then by (5.3), for 7 € R,
&(—7,7) = ®(m,7) =0, %;P(QT) =—Kk" (1), [s —7| <@/8,
ok ok

and =0 for all £ > 2.

Tgk(—ﬂﬂ')zaigk(ﬁﬂ')

With this in mind, an infinitely differentiable function r : R?> — R can be defined
by putting r(0,0) = 0 and, for (x,y) = p(cos¥,sin¥) in polar coordinates, let

r(z,y) = #(p, 9) := exp (;j) o (19, ;) >0, de-ma.  (55)

Then, since (2.2) is of the form
1 2
VAl )l” = r(@,y) ) =0,

its non-trivial solutions satisfy

0 (1 0 (1

N2 )] = — (=X =#(p,9) | = V€ [—m, 7.
9 (2 p~ —7(p, )) 0, g <2 p” —7(p, )) 0 p>0,9€[~m7]
By (5.4) and (5.5), the second equation implies that

1 1 ~
© (19, p) =0, p>0, which means that (19, p) € 00. (5.6)

Therefore, from (5.6) and the construction of Q, it follows that in this example any
non-trivial solutions (), (z,y)) € R x R? of (2.2) has

1 ~
(z,y) = p(cosd, sind})) where (19, 7) c 090.
p
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Since 912 is the union of an infinite set of disjoint translates of 99, see (5.1), and
since 0€2 C H which is a hereditarily indecomposable continuum, all path-connected
components of the non-trivial solution set of (2.2) are singletons. However, non-
trivial solutions of (2.2) with ()\, (z, y)) near to (07 (0, O)) exist, by Theorem 1.4. [

6. Notes on connected sets.

Proposition 6.1. In a metric space (M,d) let G = {G, : « € A} be an open cover
of a connected set A. Then for x,y € A there is a set {Ga,, -+ ,Ga, } C G with

€ Gy, Y€ Gy, and Gy, NGy, # 0 if and only if |i— j| < 1. (6.1)

Proof. Fix x € A and let B C A be the set of y € A such that (6.1) holds for an
ordered finite subset of G. Then B # () because z € B, and if y € B then by (6.1)
z € Bforall z€ G,, NA. So B is open in A. Now suppose z is in the closure of B
in A. Then, since G covers A, there exists G € G such that z € G, and there exists
y € B with y € G. Since y € BN G, there exists {Ga,, - ,Ga,,} C G such that
(6.1) holds. Let k be the smallest element of {1,---,m} for which G5, NG # 0.
Then {G4,,1 < j <k} U{G} satisfies (6.1) with z instead of y. So z € B, whence
B is both closed and open in A. Hence B = A since A is connected and B # (. [

Corollary 6.2. Fore >0 and x,y € A, where A is connected in (M,d), there is a
set {x1, -+ ,xn} C A with

T1 =2, Tp =Y, Be(x;) N Be(xj) #0 if and only if |i — j| <1, 1 <4,5 <n, (6.2)
where Be(a) C M is the open ball with radius € centred at a.

Proof. For given € > 0 and z,y € A, by Proposition 6.1 with G = {Bc(a) : a € A},
there exist {a; : 1 < j <p} C A with

z € Be(a1), y € Be(ap) and Be(a;) N Be(a;) # 0 if and only if |i — j] < 1.
Let ¢ = max{j > 1: B.(z) N Be(a;) # 0} and put
Y1 =2, Y2 =0q, Yj=0jyq—2, for 2< 7 <r wherer =p—q+2.

Then Be(y;) N Be(y;) # 0 if and only |i — j| <1, y1 = 2 and y € Be(y,).
Now let n = m + 1 where m = min{j < r : Be(y) N Be(y;) # 0}, and put
=y, 1<i<n-1,x, =y, to achieve the required result. O

Corollary 6.3. When (M, d) is a normed linear space, let L; = {tx; + (1 —t)x;41 :
t€[0,1]}, 1 <i<n-—1, be straight line segments joining the centres of consecutive
balls in Corollary 6.2. Then

LinLiyi ={xit1}, 1<i<n—-1, LiNnL;=0,i+1<j<n-1,1<i<n-—2.

Consequently, L := U?;llLi s a continuous, piecewise-linear, non-self-intersecting
path joining x to y.

Proof. First suppose that z € L; N L;y; and z # x;41. Then
z2=(1=s8)xip1 + swipp = to; + (1 =)z, s, t€(0,1],
whence t(z; — 2;41) = $(i42 — Tiy1). So s # t because x; # z;40. If s <,
2¢ < [z — zivol = (1= (s/8)) [wiv2 — zia || < 2,
a contradiction, and if t < s,

2 < |l — xigall = (1= (t/9)) lzi — ziga || < 2,
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which is also false. This proves that L; N L;11 = {2;4+1} for all i.
Suppose z € L; N Lj fori >1and i +1 < j <n— 1. Then, by (6.2),

lzi — zivall < 2¢, ||z — zj51ll < 2€6 [Jwi —25]| > 2€, ||Tig1 — jp1]| > 26,
and

z=sz;+ (1 =8z =tx; + (1 —t)zjp1, s, te][0,1],
=(1-sYri+srip =0tz +t'rjq, s =1—s,t' =1-1t
Therefore ;41 + s(x; — xiy1) = zj41 + t(x; — xj+1), which implies
2¢ < |wirr — @il < sllws — wiall + tlz; — zjgal < 2e(s + 1),
and hence s+t > 1. Also z; — xj; = s'(x; — z;41) + t'(xj41 — x;) and hence
2¢ < |lz; — 25| < 8'llwi — ziga |l +]|zj00 — 25| < 2e(s" + 1),
from which it follows that s’4+¢' > 1, equivalently, s+t < 1, which is a contradiction.

Since different line segments L; joining centres of balls do not intersect, their union
L is a continuous, piecewise-linear, non-self-intersecting path joining z; to x,. O

Definition 6.4. In a metric space a linear chain G is an ordered, finite collection
of open sets with G; N G; # 0 if and only if |i — j| < 1. The G;, which may not
be connected, are the links of G and an e-linear chain is a linear chain with links
of diameter less that e. If, for all ¢ > 0, a set A can be covered by an e-linear
chain, A is said to be snake-like. A snake-like hereditarily indecomposable compact
connected set is called a pseudo-arc. O

A criterion for the existence of paths in connected sets in Banach spaces. Suppose
in Corollaries 6.2 and 6.3 that the metric space (M, d) is a Banach space (V|| - ||),
that A C V is closed and connected, and that closed bounded subsets of A are
compact. For fixed z # y € A and any € > 0 let

n—1
£° = inf {Z l¢ir1 — x;]|, where xq,--- ,z, satisfies (6.2)} > ||z =yl > 0.

i=1
Theorem 6.5. If (¢ is bounded as € — 0, there is a path in A joining x to y.

The proof depends on infinite-dimensional versions of two well-known theorems.

Theorem 6.6. [20, p. 179] (Ascoli-Arzeld) When X is a separable topological space,
Y is a metric space and {hy} is an equi-continuous sequence of functions from X
to Y with the property that the closure of {hx(x) : k € N} is compact in'Y for
each x € X, there is a subsequence {hy,} and a continuous function h such that

hi, (x) — h(z) pointwise, and uniformly on every compact subset of X. O
Theorem 6.7. [11, Ch.V §2.6] (Mazur) In a Banach space the closed convexr hull
o(K) of a compact set K is compact. O

Proof of Theorem 6.5. Let 0 < €, — 0 and for each k let L be a piecewise linear,
non-self-intersecting path in V joining z to y, as in Corollary 6.3, with length 4

where
n—1

gt —all S ye =D llafhy — ol <€ e, aft € A.
i=1
Since, for all k, the z;*s are in A which is closed, and since |z;* — || is bounded
independent of i and k, there is a closed bounded subset A* of A with z;* € A* for
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all 7 and k. By hypothesis, A* is compact. Therefore, since each L€ is a union of
straight-lines joining points of A*, the paths L¢ C ©o(A*), where to(A*) is compact
in the Banach space V by Mazur’s Theorem 6.7. Moreover, by hypothesis each L¢*
is rectifiable with length v, bounded above independent of k. Since L is piecewise
linear it can be parameterised by arc-length s, L% = {fi(s) : s € [0,7%]} say,
where f : [0,7%] — ©(A4*) C V, || fi.(s)]| = 1 almost everywhere, f;(0) = z and

() = y.

Now let hy(t) = fi(yit), t € [0,1], so that L* = {hy(t) : t € [0,1]} C co(A*)
and {hy : k € N} is uniformly bounded and equi-continuous on [0, 1], because
|75 (t)]] = & for almost all ¢ € [0,1] and 7y is bounded.

Since [0,1] C R and ¢o(A*) C V are both compact, it follows from the Ascoli-
Arzela Theorem 6.6, with X = [0,1] and Y = €0(A4*), that a subsequence {hg; }
converges uniformly on [0, 1] to a continuous A : [0, 1] — €6(A*). Since, for s € [0, 1]
and j € N, there exists x:k’ € A* with Hx:kJ —h; (8)|| < ex;s

dist (h(s), A*) < [|h(s) — hy,; (s)|| 4 dist (7, (s), A*) < [[h(s) — ha; (s)|
12— ha (8)]| < h(s) = R, ()]| + ex, — 0 as j — oc.

Since A* is closed, h : [0,1] — A* C A and h is continuous. Finally note that
x = hy,(0) = h(0), y = hg,;(1) — h(1). So h defines a path in A joining x to y. [
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