ELECTRONIC RESEARCH ARCHIVE doi:10.3934 /era.2021066
Volume 29, Number 6, December 2021 pp. 3867—3887

A CLASS OF FOURTH-ORDER HYPERBOLIC EQUATIONS
WITH STRONGLY DAMPED AND NONLINEAR
LOGARITHMIC TERMS

Y1 CHENG AND YING CHU*

School of Science,Changchun University of Science and Technology
Changchun 130022, China

(Communicated by Runzhang Xu)

ABSTRACT. In this paper, we study a class of hyperbolic equations of the fourth
order with strong damping and logarithmic source terms. Firstly, we prove the
local existence of the weak solution by using the contraction mapping principle.
Secondly, in the potential well framework, the global existence of weak solutions
and the energy decay estimate are obtained. Finally, we give the blow up result
of the solution at a finite time under the subcritical initial energy.

1. Introduction. In this paper, we study the following initial boundary value
problem:

wge + A%u — Auy = |ulP"2ulog [ul*, x € Q,t >0,
uz%zOoruzAu:O,xeaQ,tZO, (1)
u(x,0) = up(x), ut(x,0) = uy (), = € Q,
where ) C R" is a bound domain with smooth boundary 02, the vector n is the
unit outer normal to 92 and k is a positive real number. p satisfies

2(n—2) n>4
2<p< g vt ’ 2
b 400, n < 4. )

The differential equations studied by many researchers are significant [3, 8, 36],
especially the logarithmic nonlinear problem. The logarithmic nonlinear problem is
applied to many branches of physics, such as nuclear physics, optics, and geophysics
[5, 6, 18], and it appears naturally in inflation cosmology and supersymmetric filed
theories, quantum mechanics and nuclear physics [4, 15]. Fourth-order differential
equation with strong damping term has wide application in viscoelastic mechanics
and quantum mechanics [7, 10, 34]. The strong damping term Aw, indicates that
the stress is proportional not only to the strain in the Hook law, but also to the
strain rate in the linearized Kelvin-Voigt material.
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Goérka [18] studied the one-dimensional Klein-Gordon equation with logarithmic
source terms

Ut — Ugy = —U + euln \u|2,

by using Galerkin’s method, logarithmic Sobolev inequality and compactness theo-
rem, the existence of weak solutions is obtained. Gazenave and Haraux [9] consid-
ered the problem

wy — Au=uln [ul¥, (3)

they prove the existence and uniqueness of weak solutions in three dimensions.
Later, in the case of infinite dimension in reference [25], Lian et al. modified the
potential well method and combined with Sobolev inequality to obtain the global
existence of the solution and the blow up result under the condition of different ini-
tial energy(E(0) < d, E(0) = d, E(0) > d). When u1In |u|* in problem (3) becomes
|u|” In |u|, the problem is also considered by Lian et al.[26], and they establish the
global existence and finite time blow up of solutions at three different energy levels.
Hiramatus et al.[21] introduced the equation

U — A+ u + w4 [ul*u = uln |ul, (4)

to study the dynamics of Q-ball in theoretical physics. A numerical research was
mainly carried out, but there was no theoretical research in that paper. For problem
(4), Han [19] obtained the result of global existence of weak solution in three-
dimensional bounded domain, and Zhang et al.[42] proved the energy decay estimate
in infinite dimension case.

Al-Gharabli and Messaoudi [1] considered the Neumann problem of weakly
damped wave equations with logarithmic source term

ugt + A%u +u+ up = kuln |u| (5)

in two-dimensional bounded domain, they first obtained the existence of weak so-
lutions by Galerkin method. Secondly, under the framework of potential well, they
proved the global existence and exponential decay of weak solutions for all the con-
ditions where(ug, u1) € H3 x L? satisfy I(ug) > 0 and 0 < E(0) < d. In reference [2],
h(u¢) replaces u; in equation (5), Al-Gharabli and Messaoudi proved the existence
and energy decay of solutions in the two-dimensional case.

For hyperbolic equations with nonlinear damping terms, there have also been
extensive studies in recent years. Messaoudi [33] studied the following equation
with nonlinear damping terms and polynomial source terms

wy + A%u + alug|™ *up = blul’ ", (6)

where a,b > 0, m,p > 2. First, the author obtained the local existence of the
solution by the contraction mapping principle. In addition, the global existence of
the solution is proved under the condition of m > p, and the blow up results are
obtained under the condition of m < p and negative initial energy. After that, Wu
and Tsai [38] generalized the result of [33]. Chen and Zhou [13] further studied the
problem (6) and proved the global nonexistence of the solution with positive initial
energy. Moreover, in the case of linear damping (m = 2), they obtained blow up
result of the solution even if the initial energy disappears under certain conditions.
Liu [31] considered the equation

wee + A%+ fue| ™ g = [ufP " *ulog [ul*.
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When 2 < m < p and the initial energy F(0) < d, the author obtained the global
existence of weak solution and decay estimate. When the initial energy is negative,
the author proved the blow-up results at finite time.

Gazzola and Squassina [17] studied the following damped semilinear wave equa-
tion

Uy — Au — wAuy + puy = |u|p_2u.

For the initial energy F(0) < d, the authors obtained the global existence of the
weak solution. In addition, when w = 0, they obtained the finite time blow up
result at any arbitrarily high initial energy.

On the basis of reference [17], Lian and Xu [28] studied the following semilinear
wave equation with logarithmic source term

uge — Au — wAuy + puy = ulnul,

the author studied the global existence, asymptotic behavior and the blow up re-
sults under the conditions of subcritical initial energy and critical initial energy
respectively. Under the condition of w = 0 and E(0) > 0, the author obtained the
blow up results at infinite time.

Recently, Yang et al.[40] investigated a class of fourth order strongly damped
nonlinear wave equations

gy — Au+ A%u — aAu; = f (u),

they comprehensively investigated the global existence, long-time behavior and fi-
nite time blow up of the solution at three different initial energy levels. Zeng and
Zhao [41] considered the Cauchy problem of a Keller-Segel type chemotaxis model
with logarithmic sensitivity and logistic growth, and obtain similar results. In [14],
Di considered the initial boundary value problem of the fourth order wave equa-
tion with an internal nonlinear source |u|”u, they proved the global existence and
uniqueness of the regular solution and the weak solution respectively, and studied
the explicit decay rate estimation of energy. Liu and Zhou [32] considered the local
well-posedness of solutions to the initial boundary value problem for fourth-order
plate equations with Hardy-Hénon potential and polynomial nonlinearity, and also
studied the global existence and finite time blow-up results of solutions.

After looking up these literatures on the dynamic behavior of logarithmic term,
it is not difficult to find that the estimates of power-type nonlinear term cannot
be directly generalized to logarithmic nonlinear term. When the logarithmic source
term is wln|u|, the logarithmic Sobolev inequality is usually used to deal with
such problem. In this paper, the non-linear logarithmic source term |u|” 72ulog |u|k
brings us some difficulties, here we cannot apply logarithmic Sobolev inequality.
In addition, the hyperbolic equation is different from the parabolic equation. The
parabolic equation with strong damping term has been extensively studied by many
authors, and a large number of results have been obtained [11, 20, 27, 29, 37, 39, 43].
Specially, Chen and Xu [12] studied the initial boundary value problem of infinitely
degenerate semilinear pseudo-parabolic equations with logarithmic nonlinear terms,
and obtained the global existence, blow up and the asymptotic behavior of the
solution. However, in this paper, for the fourth order hyperbolic equation, the
emergence of logarithmic term and strong damping term prevent us from obtaining
the blow up result of the solution. Here, we use the potential well method and some
new techniques to obtain the existence of solution, estimate of energy decay, and
blow up results.
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This paper is organized as follows: In Section 2, we introduce some mathematical
symbols, basic definitions and important lemmas needed for theorem proof. In
Section 3, we prove the local existence of the weak solution of the problem (1). In
Section 4, we give the global existence of the solution and energy decay. In the last
Section, we obtain the result of the blow up at a finite time.

2. Preliminaries and main results. In this section, we first introduce some of
the notation used in this paper. The norm of LP(f2) is denoted by || - ||,, where
1 < p < co. We define the following space for further discussion

) H3() for u =0 and g—Z:Oon 09,
| HY(Q) N H2(Q) for u =0 and Au = 0 on 9.
Naturally, by Poincaré’s inequality [30], ||A - ||z is the equivalent norm of || - ||u.

Besides, (-, ) represents the duality pairing between H~2(Q) and H.
Let us introduce some of the required functionals.

P R I S e ko
B ) =g lul}+ 51803 - 5 [ logpulde+ Sl (0
1 s 1 " k
7w = 5 180} = > [ oz ul*de + -5 full (8)
I(u) = || Aul3 - /Q [ul? log |u|*dz. (9)
By (8) and (9), we have
1 11 .k
. S A Z o u? 1
s =21+ (51 ) I8ulE + 2l (10)

We define the Nehari manifold
N={u e H\{0} : I (u) = 0}.
The depth of potential well is defined as

d:ulg/f\/‘](u)’ (11)

by Lemma 2.8, we know that d satisfies
-2
d>M = (p> r2, (12)
2p
where 7, is the positive constant defined in Lemma 2.7.
The potential well (stable set) W and the outer space of potential well (unstable
set) V are defined as follows:
W:={ueH|I(u) >0,J(u) <du{0},
Vi={ueH|I(u)<0,J(u)<d}.
Now, we give the definition of weak solution to problem(1).
Definition 2.1. The function u = u(z, t) is called a weak solution of the problem(1)
on Q2 x [0,T), if u e C([0,T],H)NC* ([0,T],L* () NC? ([0, T], H2(Q)), w €
L2(0,T; H}(Q)), and there holds

<utt,v>—|—/ AuAde—i—/VutVde:/ u|P~2ulog |u| vdz,
Q Q Q

for any v € H, t € [0,T), where u (z,0) = ug (x) in H, uy (z,0) = u; (x) in L*(Q).
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Next, we state our main results of this paper as follows:

Theorem 2.2. (Local ezistence) Suppose that ug € H, ui(z) € L3(2). Then
there exist a T > 0 such that problem(1) admits a unique weak solution u on [0,T]
satisfying

ue C([0,T],HNnC* ([0,T],L%(2)) N C* ([0,T], H2()) .

Theorem 2.3. (Global existence and decay estimate) Assume (2) holds, if ug € H,
up € L2(Q), E(0) < M and I(ug) > 0, then the problem(1) admits a global weak
solution u € L®(0,00; H) with u; € L? (0,00;H& (Q)) Furthermore, there exists
a positive constant Ko such that the energy functional E (t) satisfies the following
polynomial decay estimate:

Ko

Et) <
()—1+t’

for all t € [0,00). (13)
2
In particular, if E(0) < min{M, %@ci%) P+u2} and 0 < p < 2° — p, then

there exist positive constants K1 and Ko, such that the E (t) satisfies the exponential
decay estimate as follows:

E(t) < Kie ™2 for all t € [0,00), (14)
where M is the positive constant defined in (12).

Theorem 2.4. (Blow up) Assume ug € H\{0}, w1 € L*(Q) satisfy E(0) < d,
I (ug) < 0, then the solution u of problem (1) blows up in finite time.

To prove our main results, we need to introduce some lemmas.
Let (2) holds, by Sobolev’s embedding theorem [16], we know that [lul[, <
Cpl|Aul|y, where Cp is the optimal embedding constant of H < LP(Q), i.e. Cp =

sup Hlfjﬁ . We define
u€H\{0} :

* % -p,n> 4)
o =
00, n <4,
for any « € [0, *), then H < LPT*(Q). And we denote Cp44 by C..
Lemma 2.5. Let uw € H\ {0}, then
(1) lim J(Au) =0, lim J(Au)= —oo;
A—0t A—r+o0

(2) There exists a unique A\, > 0 such that ‘& J(\u
increasing on X € (0, \,), decreasing on X € (A, +00);
> 0,1 € (0,))

< 0,A € (A, +0)

)’A:)\* = 0, and J (Au) is

(3) I(Au) and I(Asu) = 0.

Proof. The proof of this lemma can refer to [24]. Here, we omit it. O

From Lemma 2.5, it is easy to see that Nehari manifold is not empty and the
definition of d is meaningful.

Lemma 2.6. Assume (2) holds. Let u € H\ {0}, a € (0,a*) and

o ﬁ
0= ()
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then we have
(i) if 0 < ||Aully < r (), then I (u) > 0.
(i) if I (u) <0, then ||Aull, > 7 ().

Proof. For any constant y > 0, we have logy < y. Combined with Sobolev embed-
ding inequality, through a direct calculation, we obtain

I(u) = || Aufl? - / ful? log [ul* dz

k
2 +
> | Aully = = fullpiq

° pto (15)
> [|Aull; — —CTH (| Aully™
k _ _
= Zortaul} (r(@)” "7 — Aulgt?).
a
By the above inequality, it is easy to know that (i) and (ii) hold. O

Lemma 2.7. Combined with the notation in Lamma 2.6, we have

0 () (s )
<ry:= sup r(a)= sup —_—
ae(0,a*) a€(0,a*) kinJra
1
(e pta—2 PR - S
<r*:= sup ( ) |Q|7rFa=D
a€(0,a*) kBpto
< 00,

where, || is the measure of Q, and B = C,, is the optimal embedding constant.

Proof. Obviously, if r, exists, we have r. > 0. So we just have to prove r(a) < p(a),
7. exists and r, < oo, where

1
o) = (ra) T

For any u € H\ {0}, using the Holder inequality, we have

o

[[ull, < Q@ [|u]

pta’

Noticing that Cy, = Cptq, B = C)p, we get

u
C* _ sup || ||p+o¢
wer\{o} [lAull,
—o u
s o s Ml
weH\{0} ||Au||2
> |Q|Ta(;%a>3.

Hence,

1

(07 pra=2 o p+c1172 o
(W) < (ore) 1T,
*

that is, r (a) < p(a).
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Next,we prove r, exists and r, < oo, the proof is divided into two cases.

Casel. If n > 4, then a € (0,0%) = (O, o —p), Since p(«) is continuous on
[O, % - p}, we have r, exists and

rt = sup pla) <  max p(a) < oo.
wc(om " acporin ]

Case2. If n < 4, then a € (0,4+00). We define

h(a) :=log[p(a)] = (19_~_Cly_2> [log o —logk — (p + ) log B]
Egi%ijﬁnghaé(Q+m%
thus,
W () = p? + pa — 2p + palog k —paloga+2palgg3 + palog [Q] — 2alog|§2|.
pa(p+ o —2)
Let

g () = p* + pa — 2p + palog k — palog o 4 2palog B 4 palog || — 2alog |,
then,
g (a) =p+plogk —ploga — p+ 2plog B + plog Q2] — 2log ||
kB2Q| ¢
=plog ——,
«

which shows that g(a) is strictly increasing on (0, kBQ|Q|1_%), and strictly de-

. 2 1-2
creasing on (k:B €2 P,oo).

On the one hand, it is easy to see that
lim g(a)=p*>—2p>0.
Jim g(a)=p"-2p

On the other hand, we can get that

lim g(a)=p*—2p+pa (1 +long2|Q|1_% - loga) = —00.

oo
Given the monotonicity of g(«), it is easy to see that there is a unique a, €
(kBQ\Q|1_%,oo> such that g (a.) = 0. Hence, g (o) > 0 for a € (0, ), g(a) <0
for a € (o, 00), h(a) attains its maximum at o = «,. Therefore,
= sup  pla)=eM") < oo
a€(0,+00)

O

From Lemma 2.6 and Lemma 2.7, it is not difficult to get the following corollary.

Corollary 1. Assume (2) holds. Let u € H\ {0}, we have
(i) if 0 < ||Aully < 7y, then I (u) > 0;
(ii) if I (u) <0, then ||Aull, > 7,

where r, is defined in Lemma 2.7.
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Lemma 2.8. Assume (2) holds, we have
p—2 2
d>M := | — | r.”%, 16
B ( 2p )T 16)

where r, is defined in Lemma 2.7.

Proof. By the definition of d, we know u € N, then I(u) = 0. Combined with (10)
and (ii) of Corollary 1, we get

1 k p—2 9
s = (53 ) Iaull + iy > (252 ) 2
thus, (16) holds. O

From the previous definition of E(t), we have the following energy equation

/ | Va2 dr = E (0). (17)

Lemma 2.9. Ifug € H, u; € L*(Q), p > 2, E(0) < d and u is a weak solution of
problem(1) on [0,T), then

(1) if I (ug) > 0, then u € W;

(i) if I (up) <O, thenu € V.

Proof. By the definition of E(t), J(u) with (17), we have
1 1
5 luells + 7 () < 5 llua 3 + 7 (wo) < d. (18)
(i) By contradiction, we assume that there exists tg € [0,7'), such that u(t) € W on
[0,tp)and u (tg) ¢ W. By the continuity of J(u) and I(u), we have
J (u(to)) =d or I (u(tg)) =0.

Obviously, J (u(tg)) = d is impossible. If I (u(tg)) = 0 holds, by the definition
of d, then J (u(tog)) > d, which is contradictive with (18). Thus, u € W. (ii) The
proof is similar to (i), which we omit here. O

3. Local existence of weak solution. In this part, we prove the local existence
and uniqueness of weak solution. To prove the local existence of weak solution,
firstly, we need to introduce the following lemmas.

Lemma 3.1. [22] For any € > 0, there exists a constant A > 0, such that the
function

j(s) = |s|""*logs|, p>2
satisfies
()] < A+ [s]" 2",
Here, for every T' > 0, we consider the space
H=C([0,T,HnC" ([0,T],L*()
endowed with the norm

lulf = mas (8wl + flucl )
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Lemma 3.2. For every T >0, u € H and every initial data (ug,u;) € H x L*(),
there exists a unique solution v € C ([0,T],H)nC* ([0,T], L*(Q) nC? ([0, T], H*(2))
with v, € L? ([0, T, Hg(2)), which solves the linear problem
vy + A20 — Ay = [uPPulog |ul®, 2 € Q,t >0,
v:g—:’l:()orv:Av:Oajeaﬂ,tZO, (19)
v (z,0) =g (z),v: (,0) = uq (), €.

Proof. Applying Garlerkin’s method, for every h > 1, let W}, = span {w1, w2, ,wn},
where {w;} is the orthonormal complete system of eigenfunctions of —A in H such
that ||wj|l2 = 1 for all j. According to their multiplicity of

ij + )\jwj =0,
we denote the related eigenvalues repeated by A;. Let

h h

ug = Z (/Q uowjda:> wy, ul = Z (/Q uledx> wy,

j=1 j=1

so that ul € Wy, ul € Wy, ult — ug in H and u? — u; in L?(Q) as h — co. For all
h > 1, we seek h functions 47, - - ,’y,’} € C%10,T] such that

h
on (8) =D 9 () w; (20)
j=1
solves the problem

{fg [i.(0) + 220, = Ay~ [ululog |ul*] n = 0,

vr(0) = ult, 0p(0) = ul. (21)

where n € W), and t > 0. Taking n = w, for j = 1,--- ,h in (21), we obtain the

following Cauchy problem for a linear ordinary differential equation with unknown

g

. (22)
’y;»l(()) = [o ugwjdz,'yjh(()) = [ uiw;de.

where 1; (t) = [, [u[’"ulog|u[*w;dz € C'[0,T]. For all j, the above Cauchy prob-

lem has a unique local solution 7]}»’ € 020, T], which implies a unique vy, defined by

(20) satisfying (21).

Let n = vp(t) in (21), integrating over [0,¢] C [0, 7], we get

{W) A2 () + A = o (1),

t
lon(OIZ + [ Ao (0)2 + 2 / Vi ()| 2dr
0 (23)

¢
:Hu{LHE—&-HAuSHz—I—Q/ / u|P~2ulog |u|* o, dadr,
0 Jo

for every h > 1. We estimate the last term in the right-hand side of (23). Using
Holder’s inequality, we have

t ¢
2/ / lulP~2ulog |ul|*opdedr < 2/ / ‘|u|p_2ulog |u|k‘ |op| dzdT
0 Ja 0 Jo

t (24)
<2 [ |l ulog ul'
0

 llonll,dr.
p—1
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Using the fact |2P"'logz| < (e (p—1))"" for 0 < 2 < 1, while 2 #logz <
(ep)”! for z > 1, p > 0. Choosing x> 0 such that w < 2o = 2
by a direct calculation and Sobolev inequality, we have

[ [ utog
Q

:/ ‘|u|p_2ulog\u|k
{zeQ:|u|<1}

pl
=
dxr

P

pfldm—&-/ ‘|u|p_2ulog|u|k "y
{zeQ:|u|>1}

_p_ __p_ _p_ __p_ p(p—1+p) (25)
<k7T (e (p — 1)) 72T | + k7T (ep) T / ) 5
{zxeQ:|u|>1}
p(p—1+p)
<C+C|Aul,

<C,

here, it is needs to be noted that C in the text is a general constant, and the C' in
each row and even in the same row is differemt.

By the Sobolev embedding theorem, we have |9y ||, < C||Viy||,. Combined with
Young’s inequality, (24) yields

¢ t
2/ / lu|P~2ulog |ul*opdadr < 2/ ‘
0 Ja 0

t
<20 / Vil (26)
0

p—2 k .
|ul ubﬂw‘pﬂ%MW
=1

t
< CT+/ Vo3 dr.
0
Recalling the convergence of ul! and u”, by (23) and (26), we obtain

t
lon ()12 + | Avn ()2 + / IVon()|2dr < C, (27)

for every h > 1, where C is independent of h. By this uniform estimate, we have

{vn} is bounded in L> ({0,177, H);

{in} is bounded in L (0,77, L* (2)) N L2 ([0,T], H} (2));

{in} is bounded in L? ([0,7], H%()).

Thus, up to a subsequence, we could pass to the limit in (21) satisfying above
regularity. Then a weak local solution of problem (19) can be obtained.

Uniqueness follows arguing for contradiction, if v and w were two solutions of
(19) which have the same initial date, by subtracting the equations and testing with
v — wy, we could get

t
o — w2 + [ Av — Awl2 + 2/ / Vs — Vo [2dadr = 0,
0o Ja
which yields w = v. The proof of the lemma is complete. O

Now, we begin to prove Theorem 2.2.
Proof of Theorem 2.2. For any u € H, ug € H, u; € L?(Q), let

2= 2 (Jlunll + 1 Auo 3)

For any T' > 0, we consider
Ur={u € H : u(0) = uo, us(0) = uy, |lull,, < R}.
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By Lemma 3.2, for any u € Uy we could define v = ®(u), where v is the unique
solution of problem (19). We claim that, for a suitable 7' > 0, ® is a contractive
map satisfying ®(Ur) C Ur. Given u € Ur, the corresponding solution v = ®(u)
satisfies the energy identity for all ¢ € (0,7 as follows

1 t

- k

Joul+aol3+2 [ IVeldr < fual+laul32 [ [lu?~ togul|
0 0

el ar
p—1

(28)
Now we estimate the last term of (28), we get
¢
2 [l gl e ar
0 =1
t 2 t
<¢ [l ogtut |, ar+2 [ 1vviiien
0 o1 0
2(p—1) (29)

t
KT (e(p — 1))"7T |0 + C [ Auy 7 dr+2 [ [Tuldr
0

t
<[
0

t
<CT(1 + R20-14) 4 2/ V| 2dr.
0

p(p—1+4p) ‘

Substituting (29) into (28), we obtain
R2
”UtH; + ||AU||§ < o + CT(1 + R*P=1+1)),

Choosing T' > 0 small enough, such that CT(1 + R*P~1+1) < %2. Hence,
|®(w)|l,; < R, that is ®(Ur) C Ur.

Next, we show that ® is contractive in Up. Namely, For any w1, us € Up, there
exists 0 < d < 1, such that

[@(u1) — @(uz)ll2 < 0llur — uz|ls-

Let uy,us € U, v1 = P(uy), va = P(uz) and z = vy — vg, then z is the unique
solution to the following problem

{ztt + A%z — Az = |u1|p72u1 log |u1|k — |uz|p72u2 log |uz|k, (30)

z(x,0) =0, z¢(x,0) = 0.

Multiplying both sides of (30) by z;, and integrating over (0,t) x €, we get

t
2 2 2
lall2 + 1Az + 2 / IV 2] 2

t
:2/ / (|u1|p72 Uy log|u1|k . |u2|p72u2 10g|u2|k)ztdxdr.
0 Jo

Using Lagrange Theorem, for 0 < § < 1, combined with Lemma 3.1, we have

‘|ul|p_2 u log |u1|k - |u2|p_2U2 log |u2|k
=k |1+ (p— 1)log |fus + (1 — O)uz|| |Bus + (1 — O)ual”™? Juy — usg
<k|Ou; + (1 — 9)u2|p72 lug — ug| + k(p — 1) A |ug — us|

+k(p—1)|0ur + (1 — O)ua|”>1 Juy — ug

<klug + ua|P 7% ug — uz| + k(p — 1) A |ug — ua| + k(p — 1)|uy + ug[P~**°

|U1 — Uu2| .



3878 YI CHENG AND YING CHU

Since w1, us € Up, utilizing Holder’s inequality and Sobolev embedding theorem,
we have

2
/ ‘\ul +uQ\p_2 |uq _'U/2|‘ dz
Q

r=2 _1
p—1 p—1
< </ lug + u2|2(p_1)dx> </ lug — u22(p_1)dx)
Q Q
2 1 2 1 =T 2
< C(hull3 3 + lualz=3) ||u1 wsll30, 1)

1 2 1)
<€ (Il + el ™) s -
< CR*P™ ) ||uy — uslf3,.

Choosing € > 0 small enough, such that p = 2(p — 1) + % < %, by a
calculation similar to (31), we obtain

2
/ ’|u1 Jru2|p_2+s lug — u2|‘ dx
Q

p=2 1
2p=2+e)(p=1) p—1 _ p-1
< (/ |ug + us| p=2 dm) (/ lug — U2|2(p 1)dac>
Q Q

_ 2e(p—1) (32)
<cC /\U1+U2|2(p R Hul_u2||§(p—l)

p=2
< C(Jluallh + usl2) " s = ol .y

p(p—2)

<CR 7 |luy — us||%,.

From the above calculation, we can deduce

_ _ 2 p(p—2)
H|U1|p 2wy log [uy |* — |ug | us 1og\uz|’“H2 <CO(R*P=2 £ 14+ R v |lug — uall3,.

Hence, for some ¢ < 1 as long as T is sufficiently small, we have

Jzel3 + 18205 < CT(+ RO 4 RES2) Juy = walfy, < dller — uallf
That is,
1@ (1) — @(uz)|3, = o1 — v2ll3; < 6llur — a3
So by the contraction mapping principle, we can conclude that problem (1) ad-
mits a unique solution. O

4. Global existence and energy decay estimate. In this section, we prove
Theorem 2.3, which is divided into 4 steps.

Proof of Theorem 2.3. Step 1. Global existence for the case of E(0) < M
and I(ug) > 0.

By the definition of E(t) and (10), we know that 0 < J(ug) < E(0) < M, and
combine with Lemma 2.8, then we have respectively

(i) If E(0) = 0 and I (ug) > 0, then this implies that (ug,u1) = (0,0), which is
a trivial case;

(ii) f 0 < E(0) < M < d and I (ug) = 0, then it contradicts with the definition
of potential depth d.
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Hence, we only need to consider the case of 0 < E (0) < M < d and I (ug) > 0.
Let {w;(z)} be a system of base functions in H. We construct the following
approximate solutions to problem (1)

m
= Zgjm (t)wj (x),m=1,2,...,
j=1

satisfying
(umtt, w;) + (A, Aw;) + (Vime, Vwj) = / \um|p_2um log |um|k wjdz, (33)
Q
i=1,2,...m
Uom = Um, (2, 0) Zg]m ) — ug strongly in H, (34)
Ut = Ume (2,0) Zngt ) — uy strongly in L? (). (35)

Now, multiplying (33) by g]mt (t), summing for j, and integrating over [0, ¢], we
can compute

t
E, (t) +/ ||Vumt||§ dr = En,(0), 0 <t < 400, (36)
0

for sufficiently large m. Since E(0) < M < d and I(ug) > 0, by (34) and (35), for
sufficiently large m, we conclude that E,,(0) < M < d and I(ugm) > 0. By the
argument in the proof of Lemma 2.9, for sufficiently large m and 0 < t < oo, we
have wu,,(t) € W. Hence, combined with (10), we have

1 k
42 M > Bnl)> T ) > (5= 3 ) 8wl + 5 .
for sufficiently large m and 0 <t < co. So it follows that
2 2pM » _DP*M
[Aumll; < Pt lmlly < == (37)
t
/ |Vttt ||5 dr < M. (38)
0

By (37), (38), there exist functions u and a subsequence of {u,,},._, which we
still denote it by {um, },._; such that

Uy, — u weakly star in L™ (0, 00; H) , (39)

Uy — uy weakly in L? (0, 00; H (€)), (40)
By Aubin-Lions-Simon Lemma (see [35], Corollary 4), we get
Uy, — u strongly in C' (0, oo; Hy (Q)) ,
SO, U, — w a.e. (z,t) € Q x [0,00), m — +oo. This implies
[t [P 2t 10g [t |* — [ulP2ulog |ul®, ae. (x,t) € Qx[0,+00).  (41)

On the other hand, from (41), (25) and Lions Lemma (see [30], Lemma 1.3, p.12),
we have

|t |” 2t 10g [t |* — |l 2ulog [u|” weakly star in L™ (O, 0oy L7 1 (Q)) . (42)
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Integrating (33) with respect to ¢ we obtain

t

(U, ;) —l—/ (AU, Aw;)dT + (Vity,, Vw,)

0 . (43)

= (U1m7 ’LUj) + (Vu()m, VU}]) —+ / (|um|p_2um IOg |um|k ,wj> dT,
0

therefore, up to a subsequence, by (39)-(42), we could pass to the limit in (43).
Moreover, from(34) and (35), we get u(z,0) = ug in H and u,(x,0) = uy in L*(Q).
Then we have a global weak solution u(z,t) to problem(1).

Step 2. Global existence for the case of E(0) = M and I(ugp) > 0.

By Lemma 2.8, we know d > M. If E(0) = M < d, then the problem (1) has a
global weak solution, which is similar to the proof of step 1. If E(0) = M = d, we
consider two cases I(ug) = 0 and I(ug) > 0.

W)E0)=M =d, I(ug) =0

From the definition of d, we have J(up) > d. However, %Hu1||§ + J(ug) =
E (0) = d, it follows that J (ug) < d. So case (1) is impossible.

(i) E(0) = M = d, I(ug) >0

In order to prove the global existence result of problem (1), we first choose a
sequence {7V, }.o_; C (0,1) such that mlgnoo Ym = 1. Then we considering the

following problem

uge + A%u — Auy = |ulP~2ulog [ul*, (z,t) € Q x (0,7),
u= 294 =0,(z,t) €00 x (0,T), (44)
u(z,0) = Uom, ut(x,0) = U1y, = € Q,

where Ugm = YmUo, Utm = Ymu1. Since I (ug) > 0, it follows from Lemma 2.5 that
A > 1.
Hence, we get

I (uom) = I (Ymuo) > 0,
J (uom) = J (Ymuo) < J (ug) ,
and

1 1
0< B (0) = 5 Nt + 7 (wom) < 5 l[ur[3 + 7 (wo) = B (0) = M = d.

Using the similar arguments as previous step 1, we find that problem (44) admits
a global weak solution w,, which satisfies

Up, € L (0,00, H), Upyy € L? (0700§Hé (Q>)

and
<umttvv> + (Aumv AU) + (VUMtv VU) = / IUM‘pizum IOg |um|k 'Udl’, ,7 = ]-7 27 ceey T,
Q

for any v € H, and for a.e. 0 <t < co. The remainder of the proof can be processed
similarly as previous step 1. Hence, u is a global weak solution for problem (1).

Step 3. Polynomial decay estimate of energy for the case of F(0) < M
and I(ug) > 0.
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Firstly, by (10), (17) and I(u) > 0, we obtain

@+ [ Ivuliir

2 p—2 2 k /t 2
=— —I —||A — p d 45
2HutH2+p (u) + 2 " | ullﬁp2 [[ull, + ; [Vuellydr (45)

1 2 p— 2 2, k K 2
> fuelly + —— ||AU||2 + o [[ull; + ||VutH2dT~

A combination of ( and E (0) < M, we have

/ e < 5 [ vular < 3 (46)
where \; is the first eigenvalue of the followmg problem.

{ —A¢(z) = Ap(z), T € 0,
é(z) = 0,2 € A9,

for ¢(z) € H} (Q). Next, multiplying the first equation of problem (1) by u and
integrating over Q x (0,¢). Using Young inequality, we have

/Otf(u)dv/ot (utt,u)dT/Ot (Vug, Vu)dr

¢ 1 1
— / utudsc—i—/ uluodx—l—/ Hut||§dr+ - ||Vu0||§ - = HVUHE

1 2 1 2 ¢ 2 1 2 1 2
< ully + 5 ool + [l + 3l + 5 ool

Ct 2 1 2 i 2 1 2, 1 2
<Ll + 3 Dl + [ nlr + 3 sl + 5 ool

where C stand by the best constant in the embedding H < H{ (). Using (45),
(46) and w € L* (0,T;H), then (47) implies that

t
/ I(u)dr <C, for 0 <t < 4oc. (48)
0

From I (u) > 0, we know that there exists a A\, > 1 such that I (A,u) = 0. On
the other hand, we have

0 =1 (M) =A% || Au|? - )\{:/ [ul? log [u]* dz — kA2 log A, [Jul|?
Q
=NPT (u) — (A2 = A2) || Al — kA log A fJul?.

Hence, we obtain

1 2

1) = (1= ) 180l + klog A

Combining the above equation with (48), we obtain

¢

| 18ular < c. (49)
0

and

t
/O Julltdr < C. (50)
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Differentiating F (t) and using Eq.(1), we can compute

E'(t)=— /Q |V, [*dz < 0.

Since
O+ EW =+ 0+ B0 < B, (51)
then integrating (51) over (0,t), we have
(1+t)E(t)

<O+ [ E@dr

I S O 11\ [ ) (52)
=F(0)+ = U dT+/IudT+<>/ Aull5dr
O+ [ utiar+ 5 [ rar+ (5-2) [ a

Thus, applying E (0) < M, (46), (48), (49) and (50) to (52), we can derive that
there exists a positive constants Ky such that the energy functional E (¢) satisfies
the following polynomial decay estimation:

Ko
E(t) < ——, for all .
(t) 1o ora t € [0, +00)

Step 4. Exponential decay estimate of energy for the case of E (0) <

2
. p—2 ep pru—2
min {M, BT (kc2p+;b) }
We define

L(t):E(t)+e/

Q
for any 0 < t < oo, where € is a positive constant to be specified later. By the
Young inequality, we can easily know that there exist two positive constant o; and
a9 such that

uutder%/ \Vul*d, (53)
Q

B (t) < L(t) < asE(t), for all t e [0, +00). (54)

that is to say, L (t) and FE (t) are equivalent.
By taking the time derivative of the function L(t), using Eq.(1), we get

L' (t)=FE(t)+ 6/ ue|* da: + e/ uugrdr + 6/ VuVurdz
Q Q Q

:—/ \Vut|2dx—|—e/ |ut\2da:—e/ |Au|2dx+e/ ul? log |u|* dx
Q Q Q Q

€ € € ek
=~ BeB (1) + 5 Tl + 5 Nl = 2 [ juptogul do + 257

—/ \Aut|2dx+e/ |ut\2d$—e/ |Au|2dx+€/ ul? log |u|* da
Q Q Q Q

<= g o)+ (5 - ) ot (5 - ) hsul

k
# (= 50 [ tostut ao + 25 .
p Q p
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By virtue of the Sobolev embedding inequality and (45), we obtain

/ [ul” log |u|* da: S/ lul” log |u|* da:
) {ze:|u>1}

§k(eu)71/ |ulP T dx
{re|ul>1}

<k(ep) ™ lulot" (56)

<k(ep) ™' CoP T || Aull5 "

ptp—2
Sk@M‘%bW“<hﬁ“m) A,

p—2
and
2WE (0)\ T
P 2
Jull < cgaul < f (22 T i, 57)
where C, C3 are the Sobolev constant satisfying ||ull,,, < CaoflAully, [lull, <
Cs||Aul|,. Substituting (56) and (57) into (55), we get
’ pe 2
L'(t) <= BeB () + (5 +e= M ) fuelly +
KBCY (2pE (0)\ T kCoPHe (2pE (0)\ F
€{§+537p() + =2 PE(0) —1 (58
2 p* \p-2 ep p—2
ptpu—2
kBCoP M (2pE (0) 2
- - Hlaul;.
epp p—2
2
Since E (0) < pT;Q (kc?;ﬂ)pw *, we have
tp—2
KCoP T (2pE(0)  ®
2 ( pE (0) > -1<0.
ep p—2
Taking 5 > 0 small sufficiently such that
p—2 ptp—2
B kBCY (2pE(0)\ =  kCPTH (2pE(0)\ 2
g + ~1<0.
2 p* \ p—2 ep p—2
Now, choosing € > 0 small sufficiently such that
éf +e—A <O.
2
Thus, combining with (54), we have
’ —fe
() < BB ()< L), (59)
2

Be

Integrating (59) over (0, ¢), we can deduce that there exist Ky = %?) and Ko = =

such that
E(t) < Kie ™2t forall t € [0,4+00) .

This completes the proof of Theorem 2.3. O
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5. Finite time blow up. In this section, we prove Theorem 2.4, which implies that
the solution u of problem (1) blow up in finite time. Firstly, we need to introduce
the following lemma.

Lemma 5.1. [23] Let F(t) be a positive C? function satisfying the inequality
F)F"(t) — (1+ )[F ()] > 0,

F(0)
aF'(0)

for some a > 0. If F(0) > 0 and F'(0) > 0, then there exists a time T* <
such that lim F(t) = oo.
t—=T*—

Now, let us prove the theorem 2.4.

Proof of Theorem 2.4. By contradiction, we suppose that u is global. For any
T > 0, we consider the auxiliary function F : [0,T] — R defined by

t
F(t)ZIIU\Ing/0 IVullzdr + (T — ) [|Vuoll3 + b(t + To)?, (60)

where b > 0 and Tj > 0, which will be specified later.
Obviously, F (t) > 0 for any ¢t € [0,T]. Through a direct calculation, we obtain

t
F'(t) = 2/ uurdx + 2/ / VuVudzdr + 2b(t + Tp),
Q 0o Ja

F" (t) :2/ |ut\2dz+2/ uttudx—Z/ uAugdx + 2b
Q Q Q
:2/ |ut\2dx+2/ ul|ulP2ulog [ulf — A%u)dz + 2b
Q Q

:2/ |ut\2d:c+2/ |u\plog|u|kdx—2/ | Aul*dz + 2b
Q Q Q

— 2 ||| — 21 (u) + 2b.

Using Schwarz’s inequality and Young inequality, we have

(F/Elt))Q — (/Q uutdgg+/Ot/QVuVutdxdT-i-b(t+To)>

t t
< (u||§+ / ||Vu||§df+b<t+To>2) (||ut||§+ / |Vut||§d7+b)

t
< F(t) <||ut||§+/ ||Vut||§d7+b>.
0

2

Hence,

P F (1) - P22 o

t
2F @) (P70~ 6+ (lulp+ [ [Vulgar+b))
0
=F(t) (2/ |ut\2dx+2/ |u\plog|u|kdx—2/ |Auldz — (p+2) ||Ju3
Q Q Q

t
~0+2) [ [Vul3dr - pb)
0
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t
=F (t) (—put@—zmuiw /Q |u|” log [u|*dz — (p + 2) / |wt||§d7—pb).
0
(61)
Let

t
£(t) = —p lludll3 —2||AUI|§+2/ Jul” log [u|"dz — (p+2)/ IVue |3 dr — pb,
Q 0

by the definition of E(t) and (17), we have

2 ! 2 2k p
§(t) =(p—2)||Aull; —2pE () — (p+ 2)/ V|| dr + = |lull? — pb

t 2k
= (p—2)||Au|2 — 2pE (0) + (p — 2)/ [ Vue|f3 dr + " [[ull;, — pb.
0

From I(ug) < 0 and Lemma 2.9, we know u € V, which implies that I(u) < 0.
By Lemma 2.5, there exists a A, € (0,1) such that I (A\.u) = 0. Hence, we have

p—2 k
Combined with (63), we get

t 2%k
(1) = (- 2) |Aul2 — 2pE (0) + (p - 2) / Vel r + =7 full = b

2k 64
> (p - 2) [ Sul} ~ 29E(0) + 2 [ull; - pb (64)

> 2pd — 2pE(0) — pb.
Choosing b > 0 sufficiently small such that 0 < b < 2d —2FE/(0), we have £(t) > 0.
Thus, by the above discussion, we obtain
_pt2
4
By the definition of F(t), F(0) = |lug||3 + T||Vuol|3 + bT§ > 0, we choose Tp
sufficiently large, which satisfies
2 2 2
(0= 2) (Iluoll3 + leall3) +4 Vo 3
2(p—2)b ’
thus, F' (0) = 2bTp + 2 [, uourdz > 26Ty — ||uoll5 — [ju1 ][5 > 0.
According to Lemma 5.1, we conclude that

lim F(t) = oo, (66)

t—T*—

F(t)F" (t) [F' () > 0.

Ty >

for

oo AF(0) 210 4 2 fuoll; + 2T || Vuo 3
~ (p—2)F(0) (p—2) (bTp + [, uourdz)
Hence, we deduce that
_ 20702 + 2 |[uo 2
- (p — 2) (bTQ + fQ uoulda:) -2 ||V’U,0||§

*

(67)
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By (60), (66) and (67), we have

lim [Jull3 = oo,
t—T*—

which contradicts the assumption of u being global. Hence, the solution u of problem
(1) blow up in finite time. This completes the proof of Theorem 2.4. O
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