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ABSTRACT. In this paper, we study the follwing important elliptic system
which arises from the Lotka-Volterra ecological model in RYY

—Au+ du = pu? + fuv, x RV,

—Av 4+ M = pgv? + Buv, x €RV,

u,v > 0,u,v € HYRN),
where N < 5, A\, u1, u2 are positive constants, 8 > 0 is a coupling constant.
Firstly, we prove the uniqueness of positive solutions under general conditions,
then we show the nondegeneracy of the positive solution and the degeneracy
of semi-trivial solutions. Finally, we give a complete classification of positive
solutions when p1 = pu2 = g.

1. Introduction. We study the following coupled elliptic system:

—Au+ I = pu? + Buv, xRV,
—Av 4+ A = pov? + Buv, x € RV, (1)
u,v > 0,u,v € HY(RY),

where N < 5, A\, p1, uo are positive constants, 8 > 0 is a coupling constant. This

system is related to the steady state of the following Lotka-Volterra ecological model
(please see [22, 8, 6, 5, 27, 18, 21, 17, 16, 11] and the references therein):

up — diAu = u(a — bu+ cv), (z,t) € 2 x (0,T),
vy — doAv =v(d + eu — fv), (z,t) € Qx(0,T), (2)
u,v >0, (z,t) € Q x (0,7),
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with Dirichlet (u = v =0, (x,t) € 9Q x (0,T)) or Neumann (u, = v, =0, (z,t) €
90 x(0,T)) boundary condition, and Q C RY is a C? domain (possibly unbounded),
u(x,t) and v(zx,t) represent the population densities of two species respectively, T €
(0,00}, dy,dy >0,
a,b,e,d,e, f € L (Q x (0,00)).

The coefficients a,d describe their intrinsic growth rates (positive or not), b, f > 0
represent self-limitation of each species, ¢, e are the interaction coefficients between
the species. In the case c¢,e > 0, the system is referred to as a cooperative model;
when ¢,e < 0, it is a competitive system; when ¢ < 0,e > 0, it is a predator-prey
model. In particular, as d; = do = 1, we have

uy — Au =ula —bu+ cev), (z,t) € Qx(0,T),
ve—Av=uv(d+eu— fv), (x,t)€Qx(0,T), (3)
u,v > 0, (x,t) € 2 x(0,T).

Dancer-Zhang in [8] and Dang-Wang-Zhang in [6] study the dynamics of the
competing system in a bounded domain and prove that the solution converges to
a stationary point under strong competition for two species and multiple species
respectively. Dancer-Wang-Zhang in [5, 27] and Zhang in [27] study the uniform
Holder continuity for competing species in a bounded domain. In [22] Quittner
provides Liouville theorems, universal estimates and periodic solutions for cooper-
ative systems. In [18] Julidn Lépez-Gdémez et al. describe the coexistence states
for the predator-prey model with periodic coefficients and analyzes the dynamics
of positive solutions of such models. The steady state system of (3) with Dirichlet
boundary condition is

—Au=ula —bu+cv), z€q,
—Av=v(d+eu— fv), ze€Q,
u,v > 0, T €€,
u=v=0, x € 0N.

By rescaling, we can readily assume b = f = 1, then

—Au=ula—u+cv), e,
—Av=v(d+eu—v), z€Q,
u,v >0, T €,
u=uv=0, x € 0fd.

(5)

When Q) is bounded, this system has been studied intensively in [4, 12, 9, 13, 20] and
the references therein. We state some results here. For all cases (¢, e € R), Korman
and Leung in [12] give the existence of steady state solutions. For the competing
case (c,e < 0), Cosner and Lazer in [4] investigate the existence, uniqueness, and
stability of coexistence states for competing species. In [9] Gui and Lou prove the
existence and uniqueness of positive solutions when M<a=d< (5\1- is the iz,
eigenvalue of —A in H}(Q2)). In [13] Korman and Leung give some nonexistence
results. For cooperative system (¢,e > 0), Korman and Leung in [13] give the
necessary and sufficient condition for the existence of a positive solution of (5) when
a > d > )1, and prove the solution is unique when c or e is small. Lou in [20] shows
the nonexistence results of positive solutions when a < A1, d < A;, ce <1 and the
existence when a < A1, d < A\;, N <5, ce > 1, and proves the nonexistence when
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a=d< (N—-6/N)\;, N>6,Qis astar-shaped domain and (e + 1)u = (c + 1)v
whenever a = d.

In [26] Wei and Yao discuss some results about the corresponding Schrodinger
equations in R¥, in [28] Zhang and Wang study the structure of positive solutions
to the corresponding Schrodinger system in bounded domains. The main difference
between system (1) and the Schrédinger system is that (1) does not have a varia-
tional structure. We are going to discuss the uniqueness and the nondegeneracy for
positive solutions of (1) in RY. When €2 is bounded, people are able to make use of
the eigenvalues of —A in H} (). However, there is only essential spectrum for —A
in RV so there are more difficulties for (1) in RY.

In this paper, we first prove the uniqueness of positive solutions for (1), then we
show the nondegeneracy of the positive solution and the degeneracy of semi-trivial
solutions. We also give a complete classification of positive solutions as 1 = ps = S.
By [3], we know any positive solution of (1) is radial and decreases with respect to
a point in RY. With the help of classical bootstrap argument, the solution (u,v) of
(1) is in C2(RY) x C%(RY) and tends to 0 as |z| — oo.

From now on, we assume the solutions of (1) are radial with respect to the origin.
We denote the subspace of radial functions of H!(RY) by H!(RY).

Our results are dependent on the solution of the following basic equation

—Aw +w = w?, meRN,1§N§5,
w(0) = rfl%%xw(x), w >0, w(z) — 0 as |z| — oo. (6)

By [14], we know (6) has a unique positive solution w. Besides, w is radial, decreas-
ing and with the decay rate
w'(y)

lim w(y)e”! e =qp>0, lim =1, 7
m (y)e ly| 0 W) (7)

for some constant oy > 0 (see [10]). We note that the restriction 1 < N < 5
guarantees the power 2 in (6) is subcritical.

Then for 0 < S ¢ [min{p, uo}, max{ui, u2}], the system admits a positive
solution of the form

o= (A () 8).

If g1 = po =: p, this simplifies to
A
Uy =V) = ——W (\f)\m) )

B+u
In fact, for N = 1, the unique positive solution of (6) is explicitly of the form
6e”
w(x) = (9)

(1+er)*

Our first result is the following uniqueness property of (ug,vp) in R
Theorem 1.1. Assume N =1, 0 < 8 ¢ [min{py, po}, max{ui, u2}], then (ug,vo)
in (8) with the exact following form

vz Vx
(uo,v0) = | (B — p2) 6Ac 5 (8 — p1) Gre 3
(B2 — ppa) (1 + Cﬁx> (B2 — ppa) (1 + Cﬁx>
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is the unique positive solution to system (1). Furthermore, both ug and vy decay
like e~ VA7l g5 |2 = 0.
Remark 1. In fact, if min{ui, e} < B < max{ui, s}, there is no nontrivial

solution for system (1). In fact, we multiply the first equation by v and multiply
the second equation by u respectively, then integrate over R,

— Jan V- Vo — [orn Auv + [on puv + [on Buv® =0,
— Jan Vu- Vo — [on Auv + [on pouv?® + [pn fu?o = 0.

Taking the difference, we have

[ wolln = Byut (5= il = 0.

Then if min{pg, po} < 8 < max{p1, o}, there is no nontrivial solution to system
(1).

The second result is the uniqueness of (ug,vo) when 8 > max{ui, us} in higher
dimension.
Theorem 1.2. Assume 8 > max{pui, 2}, 2 < N < 5, then (ug,vo) in (8) is
the unique positive solution to system (1). In addition, both ug and vy decay like

1-N

e~ Vel |z| 2 as |z| = oo by (7).
Remark 2. By [3, Theorem 1], we know any positive solution of (1) is radial and
decreases with respect to a point in RV (N < 5). What is more, the condition of

N <5 is presumed to guarantee the positive solution of (6) exists and is unique by
[14]. In fact, the expression in (8) relies on the positive solution of (6).

Definition 1.3. We say that (U, V) is a nondegenerate solution of system (1) if
the solution set of the linearized system

A1 — Ap1 + 21 Udr + BV + U2 = 0, (10)
Aga = Ap2 + 202V d2 + BV + BU 2 = 0.
is exactly N-dimensional, specifically,
o\ _x~, (55
1
(%) -2 (‘}>
j=1 Oz
for some constants a;. If there are other solutions to system (10), we say (U, V) is
degenerate.

From the mathematical point of view, the nondegeneracy of positive solutions is
an important property for constructing concentrating solutions, that is, we usually
use the nondegeneracy to construct single or multiple spike solutions (see [10, 26]).

The following theorem is the nondegeneracy property of (ug,vo) for system (1).

Theorem 1.4. Assume ¢ [min{puq, p2}, max{ui, u2}], then the solution (ug,vo)
of system (1) in (8) is nondegenerate.

Now we consider the degeneracy of semi-trivial solutions. System (1) has semi-
A A
trivial solutions (@,0), (0,7), where @ = w1 := —w(VAz), 1 = wy := —w(VAz),
M1 H2
w is the unique positive solution of (6) and @, v satisfy

—AT+ \a = a2, z e RY,
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— AT+ X0 = pov?, x € RV,
Define
\Y% 2 A 2 \V4 2 )\ 2
ag = lIlf f]RN (‘ (b‘ + ¢ )7 bO = fRN (| ¢| + (b )

PEH (RN) fRN w1 ¢? pEH! (RY) IRN wa?

Proposition 1. For the solution (u,v) = (4,0) as 8 = ag, or (u,v) = (0,9) as
B = by, then the linearized problem of (1) has exactly an one-dimensional set of
solutions in H}(RN).

The next result brings about the complete classification of all positive solutions
of system (1) when 1 = ps = f.

Theorem 1.5. Suppose that N <5 and py = pe = 5 > 0, then all positive solutions
of system (1) have the following form

c A 1 A
(u(z),v(z)) = (1+05“’ (\/Xx) i (ﬁx)> ,C>0, (11
where w is the unique positive solution of equation (6). Moreover, all positive

1—-N
solutions (u,v) decay like eVl |z|™2 as |z| — oo by (7). In particular, for
A=p1 = pe2 = =1, system (1) has infinitely many positive solutions

C 1
(u(o) o) = (15 gv @) g ). €0

2. Proof of Theorem 1.1. We prove the uniqueness of positive solution for system
(1) in one dimension.

Proof of Theorem 1.1. When N = 1, wo only need to consider the interval [0, +00)
due to the symmetry. The system can be simplified as

u’ — M+ pyu? + Buv = 0,

V" — v+ pgv? + fuv = 0,

u(r),v(r) >0,

u’'(0) = v'(0) = 0, u(r),v(r) = 0 as r — 0.

x x
With the help of variable substitution (u,v) = (u| — |,v| —= | |, we assume
’ (1:0) < (ﬁ > <ﬁ )>

A = 1. Suppose (u,v) is a positive solution, then

w’ —u 4 pu? + Buv =0,

" — 04 v + puv =0,

u(r),v(r) >0,

uw'(0) =7'(0) =0, u(r),v(r) — 0 as r — oco.
M
— H2

Setazﬂ

and let v = v/a. Then (u,v) solves

' —u+ pu? + afuv =0,

v — v 4 peav? + fuv =0,

u(r),v(r) >0,

u'(0) = v'(0) = 0, u(r),v(r) = 0 as r — co.
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Step 1. We multiply the equation of u by v, then
(W'v) = u'v' — uwv + puv + afuv? = 0. (12)
In a similar way, we multiply the equation of v by u,
(v'u) — u'v' — uv 4 poauv® + puv = 0. (13)
Take the difference (12)-(13),
(u'v — v'u) + uo(pu + afv — psav — Bu) = 0.

— M1
- M2

Since a = , the above identity can be reduced to

(u'v —v'u) 4+ uv(py — B)(u—v) = 0. (14)
Integrate (14) over [0, +00) and make use of u'(0) = 0 = v'(0) = u(+00) = v(+00),
we have
—+oo
(u1 — B)/ wo(u —v)dr = 0.
0
When pp # 3, from the above identity, we know that if u > v or u < v, then u = v.

Step 2. We intend to prove u — v does not change sign.
If not, then w — v changes sign. Set f = u — v, then f satisfies

0=f"—f+ mu® — prav? + afuv — Puv
=f" — f+ mulu —v) + pruv — poav(v — u) — pzauv + aBuv — Buv
= f" = f+ flmu + poav) + wo(pr — ppa + aff = B)
= "=+ fpu+ ppav).
That is, f satisfies
"+ flpau + poav — 1) = 0,
which is a linear equation for f. By the isolated properties of the zeroes for nontrivial
solutions of linear ordinary differential equations, © — v cannot equal to 0 in any
nonempty interval. Therefore, if u — v changes sign infinitely many times, the zeros
of f should tend to co (set as +0o up to a variable change). Assume zg > 0 is a
zero for a nontrivial solution which is large enough , f satisfies
[+ fpu+ ppav — 1) =0,z € (20, +00),
f(xo) =0,
f(z) — 0 as r — +oo.
Since u(r),v(r) — 0 as r — +oo and z is large, we have pju+ pgav —1 < 0, Vo €
(z9,400). Hence by strong maximum principle, f is equal to 0 in (zg, +00), which

is a contradiction with the isolated property of the zeroes. Consequently u — v
changes sign only finite times. Thus there exists r; large enough such that

u(ry) —o(r1) =0, wu(r)—o(r) >0, Vr > ry. (15)
As a result,
u'(ry) —v'(r1) > 0. (16)
Integrating (14) over (r1,+00), we get
+oo
— (v —v'u) (r)) + (11 — B) / wv(u — v)dr = 0. (17)

1
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+oo
When 8 > uq, by (15) and (16), we obtain (u; — ﬂ)/ wo(u —v) < 0 and
T1

— (v'v —v'u) (r1) <0, which contradicts with (17). Hence the assumption fails and
u — v does not change sign.

+oo
When 3 < p1, we have (uq —,6’)/ uv(u—v) > 0, and thus (v'v — v'u) (r1) > 0.

We claim: there exists 7o > r1 such that
(v'v —2"u) (rg) = 0.
If the claim holds, then integrate (14) over (rq, +00) we obtain
+oo
0= (u — ﬂ)/ wo(u —v)dr > 0,
1

which is a contradiction. Hence the assumption fails, and u — v does not change
sign.

Step 3. We prove the above claim.
If not, since (u'v —v'u) (r1) > 0 and v'v — v'u is continuous, we have

(v —2"u)(r) >0, Vr € (r1,+00). (18)
By multiplying the equation of u by v/, we get
' — v+ puu’ + Bauvu'v = 0,

thus

1 no1’ 1 9 M1 Ba / BCL
L) — g () + B ) 4 B ) 4

Similarly, multiply the equation of v by v/,

u(u'v—2'u)=0. (19)

V" — 0" + peav?y’ + fuv’v = 0,

thus
1 "2 ’_1 2\/ | H2@ 37 é 2\/ é Y SN
2[(1})] 2(v)+ 3 (v)—|—3(uv)—|—3v(vu u'v) =0 (20)
Take the difference (19)-(20), then
S LW = ] = 3 (2 =)+ B ()~ 2 (o)
Ba , o\ B o/, Ba ’ ’ B, ’ @)
+?(u v) —g(uv ) +?u(uv—vu)—§v(vu—uv)20.
Integrate (21) over (rq, +00), we have
_% [(u/)2 — (v')Q] (:2} + % (u2 — 112) (r) — %us(ﬁ) + %UB(TQ — % (’LLQU) (r1)
+§ (uvz) (r1) + /T1 {%u(u/v —v'u) — gv(v'u —v'v)|dr=0.

Since u(r1) = v(r1), the identity is reduced to

[@)? = @2 ) + s 4 o — pat )

1
%W
3 ),

+ (au +v)(v'v — v'u)dr = 0,
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thus we have
“+oo
- % [(u)? = (V)] (r1) + g/ﬁ (au +v)(u'v —v'u)dr = 0. (22)
Because 0 > u/(r1) > v'(r1), we have —% [(v)* = (v")?] (r1) > 0, and by (18) we

—+o0
know g/ (au + v)(u'v — v'u)dr > 0, which contradicts with (22). Therefore,

the claim is true.
Finally, we obtain v = v. Then u satisfies

u" —u+ (p1 + Ba)u® = 0.
With the substitution w = (1 + Sa)u, then w solves
w” —w+w?=0.

Similarly, v solves
v — v+ (pea + B)v? = 0.
With the substitution w = (u2a + 8)v, then w satisfies

W' —w+w?=0.

Then by (9), we see w is unique and of the form w(x Hence the unique

) _ _ 6e”
T (14e)?”
positive solution of system (1) is

6AeVAw 6AeVAw
(B — n2) 5. (B — 1) 3
(82 = papiz) (1 + eﬁr) (8% = papiz) (1 + eﬁz)
and the decay rate is e~ VA2l a5 |z| goes to infinity. In this way, we have proved the
existence and uniqueness of positive solutions. O

3. Proof of Theorem 1.2.

Proof of Theorem 1.2. Firstly, by [3, Theorem 1], we know any positive solution of
(1) is radial and decreases with respect to a point in RY (N < 5). Moreover, the
condition of N < 5 is presumed to guarantee the positive solution of (6) exists and
is unique by [14]. In fact, the expression in (8) relies on the positive solution of (6).
Also it is straightforward to verify that the (ug,vo) in (8) is a positive solution to
system (1). From now on, we focus on the uniqueness of (ug, vo).
Let (uy,us) be a positive solution of system (1) and presume 8 > ps > py. Set
B—m

a= > 1 and 4y = ug/a, then (uq, uz) solves
B — p2

Aup — Aug + pyu? + Bauytip = 0,
Atiy — \ig + poati3 + Burtis = 0,
uy, Uy > 0, ug, Uz € Hl(RN)
Notice that pea — u1 = S(a — 1) > 0, then
A(ul - 1_1,2) - )\(’U,l - ’(_IJQ) = —,uluf + ,ugaﬂg - Baulﬂg + BUlﬂQ
= —puf + [ + Bla— 1)) a5 — Ba — 1uqti

= —,Ufl (u% — ﬂ%) — ,6((1 — 1)1_1,2(11,1 — ’(_LQ).
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That is,
Auy — tg) — Muy — tz) = —(u1 — U2) [pur + poatiz] .

Define Q; = {z € RN | uy(x) > tz(w)}, then Qy is a piece-wise C* domain. In
fact, since uq, 49 are radially non-increasing functions, u; — 49 is radial and with
isolated zeroes from the perspective of ODE.

Now multiplying the equation of u; by 42 and integrating over Q0 , we get

0
/ %EQ - Vu1 . Vﬂg — / )\’Lblﬂg +/ (Mlu%ﬂz + ﬂaulﬂg) =0. (23)
an, on Q4 Q4 Q4

Multiplying the equation of #s by u; and integrating over 2, we obtain

o
/ %ul — Vuy - Vg — / Auq s —‘r/ (ugaulﬂ% + ﬁu%ﬂg) =0. (24)
an, on Q4 Q4 Q4

With the calculation of (23)-(24),
ou ou
/ <1’L_L2 — 2U1> +/ U U2 (ulul + ﬂaﬁg — [2alz — Bul) =0.
a0y (977, 6” Qy
It can be furthermore reduced to

8U1 _ 8122 B B B
/am (571”2 a 8nu1> - /Q+ uitiz (1 — B) (ug — tg) = 0. (25)

On the one hand, Since uy(z) — @2(z) > 0 in Q4 and uy(x) — Ga(x) = 0 on 90,
we know

8(u1 — 122) ‘ <0

on a9, —

/ <5U1ﬂ2 - aﬂzul) <.
0, on on

On the other hand, because 1 < 8 and wuy(z) — 4z2(z) > 0 in Q, we have

/Q s (i — B) (ur — 1iz) < 0.

Therefore

Compared with (25), we see that Q. = 0.
Similarly, we can show Q_ = {2z € RY | uy(z) < @i2(z)} = 0. Therefore uy = u».
Then wu; satisfies
Auy — Mg + (pg + Ba)u? = 0.

Set @71 := uq (%) , then 2, solves

Niiy — iy 4 120052

Then w := %ﬁaﬂl solves Aw — w + w? = 0, which is the unique solution of (6)
and decays like e~ 1®! |x|% by (7). Therefore

Uy = o iﬁaw (ﬁx) = Mw (\[\x) ,

Uy = AUy = QU] = " aj\ﬂaw (\F/\x) = Mw (\f)\x) s
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which is the same as the (ug,vg) in (8). Furthermore, both w; and wus decay like
1-N

eVl 2|72 by the above expression and (7). Consequently we have proved the

(up,vp) in (8) is the unique positive solution to system (1). O

Remark 3. The conclusion does not hold for all S > 0 since there are the examples
when py = ps = 8 (see Theorem 1.5).

4. Proof of Theorem 1.4 and Proposition 1. We shall prove the nondegeneracy
of the unique solution of system (1).

Proof of Theorem 1.4. The linearized system for system (1) is
Ady — Ad1 + 2pugy + fudy + Pugs =0,
Agy — A2 + 202092 + B + Pudz = 0.

Without loss of generality, we assume A = 1, then (ug,v9) = (crw,cow) :=
( B—p2 ~ B—m
B% —pipe B2 — ppe

w> The linearized system at (ug,vo) is reduced to

{A¢1 — ¢1 + 2ucrwer + Beowgr + Perwdy =0, (26)
Agy — ¢2 + 2p2cowes + Beawds + Berwedz = 0.
That is,
{A¢1 — ¢1+ [2p1e1 + Beawer + Berwedz =0,
Apa — ¢ + [2u2ca + Berwz + Beowey = 0.
With the orthogonal transformation:
Q1 = 91 + 92,
{‘1)2 = (8 = ) ¢1 + (p2 — B)d2,
then &1, ®5 solve
A®, — &) + 2wd, =0,
{A(I)Q — Dy + (e + prcp)wds = 0.
By [25, Lemma 4.1], the eigenvalues for
AD — &+ awd =0, ® € H'(RY)
are
a1 =1, ax=--=any1 =2, ant2 > 2,
with eigenspaces
Vi = span{w}, Vs :span{gmu;,j =1,--- ,N}.
From which we obtain ®; € span {g:,j =1, ,N} , therefore
j
¢1+¢>2€span{aw,j—l,~~,N}. (27)
Ox;

Moreover, the condition 8 ¢ [min{pu, pe}, max{pui, po}] implies that

1 £ jigcs + pacy = uz(ﬁ—u;)er(ﬁ—uz) <2,
B2 — pipz




UNIQUENESS AND NONDEGENERACY OF POSITIVE SOLUTIONS 3771

then ®5 = 0, and consequently

(B = p)d1 + (p2 — B)p2 = 0. (28)

Finally, we conclude from (27), (28) and the expression of (ug, vg) that the solution
set of linearized system (26) is exactly N-dimensional, namely,

¢ N 8714)

1 dx;

(2) =2 <8ié> 2
j=1 9z,

for some constants a;. Then the positive solution (ug,vo) is nondegenerate by

Definition 1.3. O

We begin to prove the degeneracy of semi-trivial solutions of system (1).

Proof of Proposition 1. 1) Assume 8 = ag, (u,v) = (4,0) = (w1,0), the linearized
system is

Apy — A1 + 2p1u¢1 + agligy = 0, (30)
Agy — A2 + aptipe = 0.
It is easily seen that ag can be attained by a radial positive function ¥y (we assume
1%o(0) = 1). Then by the definition of ag, there exists a constant ¢ such that
@2 = cipp. And via the equation for u we know ag < puyp. With the substitution
® = (2p1 — ag)¢1 + aodo,
then (®, ¢3) solves

AD — A + 210 = 0,
Ay — A2 + aptipz = 0.

Set ®(z) = @ < ) and make use of p1% = Aw(v/Az), then

x
NG
AD — &+ 20d =0,
{A¢2 — APz + apugz = 0.
Again by [25, Lemma 4.1], we know ® = 0, which means ® = 0, ie. ¢ =
9 .. Finally we get the radial solution set of (30) is

241 — ag
{ <—GOC¢0,C¢0> ,CE R}
2p1 — ag

Which means the radial solution set of linearized system is one-dimensional. That is,
the solution set of the linearized system is at least N +1 dimensional. Consequently,
the semi-trivial solution (@, 0) is degenerate by Definition 1.3.

2) Assume 3 = by, (u,v) = (0,0) = (0, ws), the linearized system is

Adr — Ap1 + bovgp1 =0,
Agz — Ap2 + 2u20¢2 + bovig1 = 0.
Similarly, we know by can be attained at a radial positive function ¢ (assume

¢0(0) = 1), and there exists a constant ¢ such that ¢; = c¢py. Moreover via the
equation of v we get by < po. With the substitution

D = (212 — bo) P2 + oo,

(31)
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then (¢1, ®) solves

Apr — A1 + byt = 0,
AD — AD + 24150® = 0.

Set (z) = ( ) and recall p20 = Mw(v/Az), then

x

VA
Apr — A1 + byt =0,
AP — @+ 2wP = 0.

Use [25, Lemma 4.1] one more time we know b = 0, so ® = 0, which means
b
P2 = fﬁgbl. Finally we get the radial solution set of (31) is
M2 — Og

{ <C¢07 _2‘u2b0b00¢07> ,C € R}

Hence the radial solution set of linearized system is one-dimensional. Which means
the radial solution set of linearized system is one-dimensional. That is, the solution
set of the linearized system is at least N 4 1 dimensional. Consequently, the semi-
trivial solution (0,?) is degenerate by Definition 1.3. O

5. Proof of Theorem 1.5.

Proof of Theorem 1.5. Firstly, we recall that by [3, Theorem 1] any positive solution
of (1) is radial and decreases with respect to a point in R (N < 5). Moreover, the
condition of N <5 is presumed to guarantee the positive solution of (6) exists and
is unique by [14]. In fact, the expression in (11) relies on the positive solution of (6).
Also it is straightforward to verify that any (u,v) in (11) is a positive solution to
system (1) with the assumptions of Theorem 1.5. From now on, we concentrate on
proving that any positive solution to system (1) with the assumptions of Theorem
1.5 is of the form (11).
In this case, the solution (u,v) is a radial function and satisfies

Au — du+ pu? 4 Buv =0,

Av — v + pv? + puv =0,

u(r),v(r) >0,

u'(0) = v'(0) = 0,u(r),v(r) = 0 as r — oo.

Via the transformation

we know that (&, 9) solves
Al -G+ 4+ a0 =0,
AD— 0402+ a0 =0,
a(r),o(r) >0,
@'(0) = v'(0) = 0,a(r),v(r) — 0 as r — 0.

After multiplying the equation for @ by v, we obtain
VAT — D + @0 + v = 0. (32)
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Similarly, we have

WAD — 0l + 920 + 420 = 0. (33)
Take the difference (32) — (33), we get
VAT — aAv = 0.

Integrating over the ball B,., we see that

/ (BAT — GAT) = / div (3Vi — VD)

s s

0

- (v — av') = |0B |rN L (0@ — ad’) (r),
OB,

which implies @'9 — '@ = 0. It readily follows that

= Constant.

|

Then v satisfies
AD — 5+ (C 4 1)8* =0,
for some positive constant C. Consequently, w := (C'+1)¥ satisfies Aw—w+w? = 0,

which is the unique solution of (6) and decays like e~ 1®! |x|% by (7). Therefore

c A 1 A
which is of the form (11). Further, both u and v decay like e~ VIl \m|% by the
above expression and (7). Therefore we have finished the classification of all positive
solutions to system (1) with the assumptions of Theorem 1.5. O

Remark 4. One may study the following interesting coupled elliptic system

—Au+ Mu = pu? + puv, x € RV,
—Av + Av = pugv?® + Buv, z € RV, (34)
u,v > 0,u,v € HY(RY),

where A\; # Ao, the uniqueness and the nondegeneracy for positive solutions to
system (34) are still open, we will continue to do research on these problems.
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