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Abstract. In this paper, we study the follwing important elliptic system

which arises from the Lotka-Volterra ecological model in RN
−∆u+ λu = µ1u2 + βuv, x ∈ RN ,

−∆v + λv = µ2v2 + βuv, x ∈ RN ,

u, v > 0, u, v ∈ H1(RN ),

where N ≤ 5, λ, µ1, µ2 are positive constants, β ≥ 0 is a coupling constant.

Firstly, we prove the uniqueness of positive solutions under general conditions,
then we show the nondegeneracy of the positive solution and the degeneracy

of semi-trivial solutions. Finally, we give a complete classification of positive

solutions when µ1 = µ2 = β.

1. Introduction. We study the following coupled elliptic system:
−∆u+ λu = µ1u

2 + βuv, x ∈ RN ,
−∆v + λv = µ2v

2 + βuv, x ∈ RN ,
u, v > 0, u, v ∈ H1(RN ),

(1)

where N ≤ 5, λ, µ1, µ2 are positive constants, β ≥ 0 is a coupling constant. This
system is related to the steady state of the following Lotka-Volterra ecological model
(please see [22, 8, 6, 5, 27, 18, 21, 17, 16, 11] and the references therein):

ut − d1∆u = u(a− bu+ cv), (x, t) ∈ Ω× (0, T ),

vt − d2∆v = v(d+ eu− fv), (x, t) ∈ Ω× (0, T ),

u, v > 0, (x, t) ∈ Ω× (0, T ),

(2)
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with Dirichlet (u = v = 0, (x, t) ∈ ∂Ω × (0, T )) or Neumann (uν = vν = 0, (x, t) ∈
∂Ω×(0, T )) boundary condition, and Ω ⊂ RN is a C2 domain (possibly unbounded),
u(x, t) and v(x, t) represent the population densities of two species respectively,T ∈
(0,∞], d1, d2 > 0,

a, b, c, d, e, f ∈ L∞ (Ω× (0,∞)) .

The coefficients a, d describe their intrinsic growth rates (positive or not), b, f ≥ 0
represent self-limitation of each species, c, e are the interaction coefficients between
the species. In the case c, e > 0, the system is referred to as a cooperative model;
when c, e < 0, it is a competitive system; when c < 0, e > 0, it is a predator-prey
model. In particular, as d1 = d2 = 1, we have

ut −∆u = u(a− bu+ cv), (x, t) ∈ Ω× (0, T ),

vt −∆v = v(d+ eu− fv), (x, t) ∈ Ω× (0, T ),

u, v > 0, (x, t) ∈ Ω× (0, T ).

(3)

Dancer-Zhang in [8] and Dang-Wang-Zhang in [6] study the dynamics of the
competing system in a bounded domain and prove that the solution converges to
a stationary point under strong competition for two species and multiple species
respectively. Dancer-Wang-Zhang in [5, 27] and Zhang in [27] study the uniform
Hölder continuity for competing species in a bounded domain. In [22] Quittner
provides Liouville theorems, universal estimates and periodic solutions for cooper-
ative systems. In [18] Julián López-Gómez et al. describe the coexistence states
for the predator-prey model with periodic coefficients and analyzes the dynamics
of positive solutions of such models. The steady state system of (3) with Dirichlet
boundary condition is 

−∆u = u(a− bu+ cv), x ∈ Ω,

−∆v = v(d+ eu− fv), x ∈ Ω,

u, v > 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(4)

By rescaling, we can readily assume b = f = 1, then
−∆u = u(a− u+ cv), x ∈ Ω,

−∆v = v(d+ eu− v), x ∈ Ω,

u, v > 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(5)

When Ω is bounded, this system has been studied intensively in [4, 12, 9, 13, 20] and
the references therein. We state some results here. For all cases (c, e ∈ R), Korman
and Leung in [12] give the existence of steady state solutions. For the competing
case (c, e < 0), Cosner and Lazer in [4] investigate the existence, uniqueness, and
stability of coexistence states for competing species. In [9] Gui and Lou prove the
existence and uniqueness of positive solutions when λ̄1 < a = d < λ̄2 (λ̄i is the ith
eigenvalue of −∆ in H1

0 (Ω)). In [13] Korman and Leung give some nonexistence
results. For cooperative system (c, e > 0), Korman and Leung in [13] give the
necessary and sufficient condition for the existence of a positive solution of (5) when
a > d > λ̄1, and prove the solution is unique when c or e is small. Lou in [20] shows
the nonexistence results of positive solutions when a < λ̄1, d < λ̄1, ce ≤ 1 and the
existence when a < λ̄1, d < λ̄1, N ≤ 5, ce > 1, and proves the nonexistence when
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a = d < (N − 6/N)λ̄1, N ≥ 6, Ω is a star-shaped domain and (e + 1)u = (c + 1)v
whenever a = d.

In [26] Wei and Yao discuss some results about the corresponding Schrödinger
equations in RN , in [28] Zhang and Wang study the structure of positive solutions
to the corresponding Schrödinger system in bounded domains. The main difference
between system (1) and the Schrödinger system is that (1) does not have a varia-
tional structure. We are going to discuss the uniqueness and the nondegeneracy for
positive solutions of (1) in RN . When Ω is bounded, people are able to make use of
the eigenvalues of −∆ in H1

0 (Ω). However, there is only essential spectrum for −∆
in RN , so there are more difficulties for (1) in RN .

In this paper, we first prove the uniqueness of positive solutions for (1), then we
show the nondegeneracy of the positive solution and the degeneracy of semi-trivial
solutions. We also give a complete classification of positive solutions as µ1 = µ2 = β.
By [3], we know any positive solution of (1) is radial and decreases with respect to
a point in RN . With the help of classical bootstrap argument, the solution (u, v) of
(1) is in C2(RN )× C2(RN ) and tends to 0 as |x| → ∞.

From now on, we assume the solutions of (1) are radial with respect to the origin.
We denote the subspace of radial functions of H1(RN ) by H1

r (RN ).
Our results are dependent on the solution of the following basic equation{

−∆w + w = w2, x ∈ RN , 1 ≤ N ≤ 5,
w(0) = max

RN
w(x), w > 0, w(x)→ 0 as |x| → ∞. (6)

By [14], we know (6) has a unique positive solution w. Besides, w is radial, decreas-
ing and with the decay rate

lim
|y|→∞

w(y)e|y| |y|
N−1

2 = α0 > 0, lim
|y|→∞

w′(y)

w(y)
= −1, (7)

for some constant α0 > 0 (see [10]). We note that the restriction 1 ≤ N ≤ 5
guarantees the power 2 in (6) is subcritical.

Then for 0 ≤ β /∈ [min{µ1, µ2},max{µ1, µ2}] , the system admits a positive
solution of the form

(u0, v0) =

(
λ(β − µ2)

β2 − µ1µ2
w
(√

λx
)
,
λ(β − µ1)

β2 − µ1µ2
w
(√

λx
))

. (8)

If µ1 = µ2 =: µ, this simplifies to

u0 = v0 =
λ

β + µ
w
(√

λx
)
.

In fact, for N = 1, the unique positive solution of (6) is explicitly of the form

w(x) =
6ex

(1 + ex)
2 . (9)

Our first result is the following uniqueness property of (u0, v0) in R1.

Theorem 1.1. Assume N = 1, 0 ≤ β /∈ [min{µ1, µ2},max{µ1, µ2}] , then (u0, v0)
in (8) with the exact following form

(u0, v0) =

(β − µ2)
6λe
√
λx

(β2 − µ1µ2)
(

1 + e
√
λx
)2 , (β − µ1)

6λe
√
λx

(β2 − µ1µ2)
(

1 + e
√
λx
)2


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is the unique positive solution to system (1). Furthermore, both u0 and v0 decay

like e−
√
λ|x| as |x| → ∞.

Remark 1. In fact, if min{µ1, µ2} < β < max{µ1, µ2}, there is no nontrivial
solution for system (1). In fact, we multiply the first equation by v and multiply
the second equation by u respectively, then integrate over RN ,{

−
∫
RN ∇u · ∇v −

∫
RN λuv +

∫
RN µ1u

2v +
∫
RN βuv

2 = 0,

−
∫
RN ∇u · ∇v −

∫
RN λuv +

∫
RN µ2uv

2 +
∫
RN βu

2v = 0.

Taking the difference, we have∫
RN

uv [(µ1 − β)u+ (β − µ2)v] = 0.

Then if min{µ1, µ2} < β < max{µ1, µ2}, there is no nontrivial solution to system
(1).

The second result is the uniqueness of (u0, v0) when β > max{µ1, µ2} in higher
dimension.

Theorem 1.2. Assume β > max{µ1, µ2}, 2 ≤ N ≤ 5, then (u0, v0) in (8) is
the unique positive solution to system (1). In addition, both u0 and v0 decay like

e−
√
λ|x| |x|

1−N
2 as |x| → ∞ by (7).

Remark 2. By [3, Theorem 1], we know any positive solution of (1) is radial and
decreases with respect to a point in RN (N ≤ 5). What is more, the condition of
N ≤ 5 is presumed to guarantee the positive solution of (6) exists and is unique by
[14]. In fact, the expression in (8) relies on the positive solution of (6).

Definition 1.3. We say that (U, V ) is a nondegenerate solution of system (1) if
the solution set of the linearized system{

∆φ1 − λφ1 + 2µ1Uφ1 + βφ1V + βUφ2 = 0,

∆φ2 − λφ2 + 2µ2V φ2 + βφ1V + βUφ2 = 0.
(10)

is exactly N-dimensional, specifically,(
φ1

φ2

)
=

N∑
j=1

aj

(
∂U
∂xj
∂V
∂xj

)
for some constants aj . If there are other solutions to system (10), we say (U, V ) is
degenerate.

From the mathematical point of view, the nondegeneracy of positive solutions is
an important property for constructing concentrating solutions, that is, we usually
use the nondegeneracy to construct single or multiple spike solutions (see [10, 26]).

The following theorem is the nondegeneracy property of (u0, v0) for system (1).

Theorem 1.4. Assume β /∈ [min{µ1, µ2},max{µ1, µ2}] , then the solution (u0, v0)
of system (1) in (8) is nondegenerate.

Now we consider the degeneracy of semi-trivial solutions. System (1) has semi-

trivial solutions (ū, 0), (0, v̄), where ū = w1 :=
λ

µ1
w(
√
λx), v̄ = w2 :=

λ

µ2
w(
√
λx),

w is the unique positive solution of (6) and ū, v̄ satisfy

−∆ū+ λū = µ1ū
2, x ∈ RN ,
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−∆v̄ + λv̄ = µ2v̄
2, x ∈ RN .

Define

a0 := inf
φ∈H1(RN )

∫
RN

(
|∇φ|2 + λφ2

)∫
RN w1φ2

, b0 := inf
φ∈H1(RN )

∫
RN

(
|∇φ|2 + λφ2

)∫
RN w2φ2

.

Proposition 1. For the solution (u, v) = (ū, 0) as β = a0, or (u, v) = (0, v̄) as
β = b0, then the linearized problem of (1) has exactly an one-dimensional set of
solutions in H1

r (RN ).

The next result brings about the complete classification of all positive solutions
of system (1) when µ1 = µ2 = β.

Theorem 1.5. Suppose that N ≤ 5 and µ1 = µ2 = β > 0, then all positive solutions
of system (1) have the following form

(u(x), v(x)) =

(
C

1 + C

λ

β
w
(√

λx
)
,

1

1 + C

λ

β
w
(√

λx
))

, C > 0, (11)

where w is the unique positive solution of equation (6). Moreover, all positive

solutions (u, v) decay like e−
√
λ|x| |x|

1−N
2 as |x| → ∞ by (7). In particular, for

λ = µ1 = µ2 = β = 1, system (1) has infinitely many positive solutions

(u(x), v(x)) =

(
C

1 + C
w (x) ,

1

1 + C
w (x)

)
, C > 0.

2. Proof of Theorem 1.1. We prove the uniqueness of positive solution for system
(1) in one dimension.

Proof of Theorem 1.1. When N = 1, wo only need to consider the interval [0,+∞)
due to the symmetry. The system can be simplified as

u′′ − λu+ µ1u
2 + βuv = 0,

v′′ − λv + µ2v
2 + βuv = 0,

u(r), v(r) > 0,

u′(0) = v′(0) = 0, u(r), v(r)→ 0 as r →∞.

With the help of variable substitution (u, v) →
(
u

(
x√
λ

)
, v

(
x√
λ

))
, we assume

λ = 1. Suppose (u, v̄) is a positive solution, then
u′′ − u+ µ1u

2 + βuv̄ = 0,

v̄′′ − v̄ + µ2v̄
2 + βuv̄ = 0,

u(r), v̄(r) > 0,

u′(0) = v̄′(0) = 0, u(r), v̄(r)→ 0 as r →∞.

Set a =
β − µ1

β − µ2
and let v = v̄/a. Then (u, v) solves

u′′ − u+ µ1u
2 + aβuv = 0,

v′′ − v + µ2av
2 + βuv = 0,

u(r), v(r) > 0,

u′(0) = v′(0) = 0, u(r), v(r)→ 0 as r →∞.
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Step 1. We multiply the equation of u by v, then

(u′v)
′ − u′v′ − uv + µ1u

2v + aβuv2 = 0. (12)

In a similar way, we multiply the equation of v by u,

(v′u)
′ − u′v′ − uv + µ2auv

2 + βu2v = 0. (13)

Take the difference (12)-(13),

(u′v − v′u)
′
+ uv(µ1u+ aβv − µ2av − βu) = 0.

Since a =
β − µ1

β − µ2
, the above identity can be reduced to

(u′v − v′u)
′
+ uv(µ1 − β)(u− v) = 0. (14)

Integrate (14) over [0,+∞) and make use of u′(0) = 0 = v′(0) = u(+∞) = v(+∞),
we have

(µ1 − β)

∫ +∞

0

uv(u− v)dr = 0.

When µ1 6= β, from the above identity, we know that if u ≥ v or u ≤ v, then u ≡ v.
Step 2. We intend to prove u− v does not change sign.

If not, then u− v changes sign. Set f = u− v, then f satisfies

0 = f ′′ − f + µ1u
2 − µ2av

2 + aβuv − βuv
= f ′′ − f + µ1u(u− v) + µ1uv − µ2av(v − u)− µ2auv + aβuv − βuv
= f ′′ − f + f(µ1u+ µ2av) + uv(µ1 − µ2a+ aβ − β)

= f ′′ − f + f(µ1u+ µ2av).

That is, f satisfies

f ′′ + f(µ1u+ µ2av − 1) = 0,

which is a linear equation for f . By the isolated properties of the zeroes for nontrivial
solutions of linear ordinary differential equations, u − v cannot equal to 0 in any
nonempty interval. Therefore, if u− v changes sign infinitely many times, the zeros
of f should tend to ∞ (set as +∞ up to a variable change). Assume x0 > 0 is a
zero for a nontrivial solution which is large enough , f satisfies

f ′′ + f(µ1u+ µ2av − 1) = 0, x ∈ (x0,+∞),

f(x0) = 0,

f(x)→ 0 as r → +∞.

Since u(r), v(r)→ 0 as r → +∞ and x0 is large, we have µ1u+µ2av− 1 < 0, ∀x ∈
(x0,+∞). Hence by strong maximum principle, f is equal to 0 in (x0,+∞), which
is a contradiction with the isolated property of the zeroes. Consequently u − v
changes sign only finite times. Thus there exists r1 large enough such that

u(r1)− v(r1) = 0, u(r)− v(r) > 0, ∀r > r1. (15)

As a result,

u′(r1)− v′(r1) ≥ 0. (16)

Integrating (14) over (r1,+∞), we get

− (u′v − v′u) (r1) + (µ1 − β)

∫ +∞

r1

uv(u− v)dr = 0. (17)
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When β > µ1, by (15) and (16), we obtain (µ1 − β)

∫ +∞

r1

uv(u − v) < 0 and

− (u′v − v′u) (r1) ≤ 0, which contradicts with (17). Hence the assumption fails and
u− v does not change sign.

When β < µ1, we have (µ1−β)

∫ +∞

r1

uv(u−v) > 0, and thus (u′v − v′u) (r1) > 0.

We claim: there exists r2 > r1 such that

(u′v − v′u) (r2) = 0.

If the claim holds, then integrate (14) over (r2,+∞) we obtain

0 = (µ1 − β)

∫ +∞

r1

uv(u− v)dr > 0,

which is a contradiction. Hence the assumption fails, and u − v does not change
sign.

Step 3. We prove the above claim.
If not, since (u′v − v′u) (r1) > 0 and u′v − v′u is continuous, we have

(u′v − v′u) (r) > 0, ∀r ∈ (r1,+∞). (18)

By multiplying the equation of u by u′, we get

u′′u′ − u′u+ µ1u
2u′ + βauu′v = 0,

thus

1

2

[
(u′)2

]′ − 1

2

(
u2
)′

+
µ1

3

(
u3
)′

+
βa

3

(
u2v
)′

+
βa

3
u(u′v − v′u) = 0. (19)

Similarly, multiply the equation of v by v′,

v′′v′ − v′v + µ2av
2v′ + βuv′v = 0,

thus
1

2

[
(v′)2

]′ − 1

2

(
v2
)′

+
µ2a

3

(
v3
)′

+
β

3

(
uv2
)′

+
β

3
v(v′u− u′v) = 0 (20)

Take the difference (19)-(20), then

1

2

[
(u′)2 − (v′)2

]′ − 1

2

(
u2 − v2

)′
+
µ1

3

(
u3
)′ − µ2a

3

(
v3
)′

+
βa

3

(
u2v
)′ − β

3

(
uv2
)′

+
βa

3
u(u′v − v′u)− β

3
v(v′u− u′v) = 0.

(21)

Integrate (21) over (r1,+∞), we have

−1

2

[
(u′)2 − (v′)2

]
(r1) +

1

2

(
u2 − v2

)
(r1)−

µ1

3
u3(r1) +

µ2a

3
v3(r1)−

βa

3

(
u2v
)
(r1)

+
β

3

(
uv2
)
(r1) +

∫ +∞

r1

[
βa

3
u(u′v − v′u)− β

3
v(v′u− u′v)

]
dr = 0.

Since u(r1) = v(r1), the identity is reduced to

−1

2

[
(u′)2 − (v′)2

]
(r1) +

u3(r1)

3
[−µ1 + µ2a− βa+ β]

+
β

3

∫ +∞

r1

(au+ v)(u′v − v′u)dr = 0,
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thus we have

− 1

2

[
(u′)2 − (v′)2

]
(r1) +

β

3

∫ +∞

r1

(au+ v)(u′v − v′u)dr = 0. (22)

Because 0 > u′(r1) > v′(r1), we have −1

2

[
(u′)2 − (v′)2

]
(r1) > 0, and by (18) we

know
β

3

∫ +∞

r1

(au + v)(u′v − v′u)dr > 0, which contradicts with (22). Therefore,

the claim is true.
Finally, we obtain u = v. Then u satisfies

u′′ − u+ (µ1 + βa)u2 = 0.

With the substitution w = (µ1 + βa)u, then w solves

w′′ − w + w2 = 0.

Similarly, v solves

v′′ − v + (µ2a+ β)v2 = 0.

With the substitution w = (µ2a+ β)v, then w satisfies

w′′ − w + w2 = 0.

Then by (9), we see w is unique and of the form w(x) = 6ex

(1+ex)2
. Hence the unique

positive solution of system (1) is(β − µ2)
6λe
√
λx

(β2 − µ1µ2)
(

1 + e
√
λx
)2 , (β − µ1)

6λe
√
λx

(β2 − µ1µ2)
(

1 + e
√
λx
)2


and the decay rate is e−

√
λ|x| as |x| goes to infinity. In this way, we have proved the

existence and uniqueness of positive solutions.

3. Proof of Theorem 1.2.

Proof of Theorem 1.2. Firstly, by [3, Theorem 1], we know any positive solution of
(1) is radial and decreases with respect to a point in RN (N ≤ 5). Moreover, the
condition of N ≤ 5 is presumed to guarantee the positive solution of (6) exists and
is unique by [14]. In fact, the expression in (8) relies on the positive solution of (6).
Also it is straightforward to verify that the (u0, v0) in (8) is a positive solution to
system (1). From now on, we focus on the uniqueness of (u0, v0).

Let (u1, u2) be a positive solution of system (1) and presume β > µ2 ≥ µ1. Set

a =
β − µ1

β − µ2
≥ 1 and ū2 = u2/a, then (u1, ū2) solves

∆u1 − λu1 + µ1u
2
1 + βau1ū2 = 0,

∆ū2 − λū2 + µ2aū
2
2 + βu1ū2 = 0,

u1, ū2 > 0, u1, ū2 ∈ H1(RN )

Notice that µ2a− µ1 = β(a− 1) > 0, then

∆(u1 − ū2)− λ(u1 − ū2) = −µ1u
2
1 + µ2aū

2
2 − βau1ū2 + βu1ū2

= −µ1u
2
1 + [µ1 + β(a− 1)] ū2

2 − β(a− 1)u1ū2

= −µ1

(
u2

1 − ū2
2

)
− β(a− 1)ū2(u1 − ū2).
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That is,

∆(u1 − ū2)− λ(u1 − ū2) = −(u1 − ū2) [µ1u1 + µ2aū2] .

Define Ω+ =
{
x ∈ RN | u1(x) > ū2(x)

}
, then Ω+ is a piece-wise C1 domain. In

fact, since u1, ū2 are radially non-increasing functions, u1 − ū2 is radial and with
isolated zeroes from the perspective of ODE.

Now multiplying the equation of u1 by ū2 and integrating over Ω+, we get∫
∂Ω+

∂u1

∂n
ū2 −

∫
Ω+

∇u1 · ∇ū2 −
∫

Ω+

λu1ū2 +

∫
Ω+

(
µ1u

2
1ū2 + βau1ū

2
2

)
= 0. (23)

Multiplying the equation of ū2 by u1 and integrating over Ω+ we obtain∫
∂Ω+

∂ū2

∂n
u1 −

∫
Ω+

∇u1 · ∇ū2 −
∫

Ω+

λu1ū2 +

∫
Ω+

(
µ2au1ū

2
2 + βu2

1ū2

)
= 0. (24)

With the calculation of (23)-(24),∫
∂Ω+

(
∂u1

∂n
ū2 −

∂ū2

∂n
u1

)
+

∫
Ω+

u1ū2 (µ1u1 + βaū2 − µ2aū2 − βu1) = 0.

It can be furthermore reduced to∫
∂Ω+

(
∂u1

∂n
ū2 −

∂ū2

∂n
u1

)
+

∫
Ω+

u1ū2 (µ1 − β) (u1 − ū2) = 0. (25)

On the one hand, Since u1(x) − ū2(x) > 0 in Ω+ and u1(x) − ū2(x) = 0 on ∂Ω+,
we know

∂(u1 − ū2)

∂n

∣∣∣
∂Ω+

≤ 0.

Therefore ∫
∂Ω+

(
∂u1

∂n
ū2 −

∂ū2

∂n
u1

)
≤ 0.

On the other hand, because µ1 < β and u1(x)− ū2(x) > 0 in Ω+, we have∫
Ω+

u1ū2 (µ1 − β) (u1 − ū2) ≤ 0.

Compared with (25), we see that Ω+ = ∅.
Similarly, we can show Ω− =

{
x ∈ RN | u1(x) < ū2(x)

}
= ∅. Therefore u1 = ū2.

Then u1 satisfies

∆u1 − λu1 + (µ1 + βa)u2
1 = 0.

Set ũ1 := u1

(
x√
λ

)
, then ũ1 solves

∆ũ1 − ũ1 +
µ1 + βa

λ
ũ2

1 = 0.

Then w := µ1+βa
λ ũ1 solves ∆w − w + w2 = 0, which is the unique solution of (6)

and decays like e−|x| |x|
1−N

2 by (7). Therefore

u1 =
λ

µ1 + βa
w
(√

λx
)

=
λ(β − µ2)

β2 − µ1µ2
w
(√

λx
)
,

u2 = aū2 = au1 =
aλ

µ1 + βa
w
(√

λx
)

=
λ(β − µ1)

β2 − µ1µ2
w
(√

λx
)
,
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which is the same as the (u0, v0) in (8). Furthermore, both u1 and u2 decay like

e−
√
λ|x| |x|

1−N
2 by the above expression and (7). Consequently we have proved the

(u0, v0) in (8) is the unique positive solution to system (1).

Remark 3. The conclusion does not hold for all β > 0 since there are the examples
when µ1 = µ2 = β (see Theorem 1.5).

4. Proof of Theorem 1.4 and Proposition 1. We shall prove the nondegeneracy
of the unique solution of system (1).

Proof of Theorem 1.4. The linearized system for system (1) is{
∆φ1 − λφ1 + 2µ1uφ1 + βvφ1 + βuφ2 = 0,

∆φ2 − λφ2 + 2µ2vφ2 + βvφ1 + βuφ2 = 0.

Without loss of generality, we assume λ = 1, then (u0, v0) = (c1w, c2w) :=(
β − µ2

β2 − µ1µ2
w,

β − µ1

β2 − µ1µ2
w

)
. The linearized system at (u0, v0) is reduced to{

∆φ1 − φ1 + 2µ1c1wφ1 + βc2wφ1 + βc1wφ2 = 0,

∆φ2 − φ2 + 2µ2c2wφ2 + βc2wφ1 + βc1wφ2 = 0.
(26)

That is, {
∆φ1 − φ1 + [2µ1c1 + βc2]wφ1 + βc1wφ2 = 0,

∆φ2 − φ2 + [2µ2c2 + βc1]wφ2 + βc2wφ1 = 0.

With the orthogonal transformation:{
Φ1 = φ1 + φ2,

Φ2 = (β − µ1)φ1 + (µ2 − β)φ2,

then Φ1,Φ2 solve {
∆Φ1 − Φ1 + 2wΦ1 = 0,

∆Φ2 − Φ2 + (µ2c2 + µ1c1)wΦ2 = 0.

By [25, Lemma 4.1], the eigenvalues for

∆Φ− Φ + αwΦ = 0, Φ ∈ H1(RN )

are

α1 = 1, α2 = · · · = αN+1 = 2, αN+2 > 2,

with eigenspaces

V1 = span{w}, V2 = span

{
∂w

∂xj
, j = 1, · · · , N

}
.

From which we obtain Φ1 ∈ span
{
∂w

∂xj
, j = 1, · · · , N

}
, therefore

φ1 + φ2 ∈ span
{
∂w

∂xj
, j = 1, · · · , N

}
. (27)

Moreover, the condition β /∈ [min{µ1, µ2},max{µ1, µ2}] implies that

1 6= µ2c2 + µ1c1 =
µ2(β − µ1) + µ1(β − µ2)

β2 − µ1µ2
< 2,
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then Φ2 = 0, and consequently

(β − µ1)φ1 + (µ2 − β)φ2 = 0. (28)

Finally, we conclude from (27), (28) and the expression of (u0, v0) that the solution
set of linearized system (26) is exactly N -dimensional, namely,(

φ1

φ2

)
=

N∑
j=1

aj

(
∂u0

∂xj
∂v0
∂xj

)
(29)

for some constants aj . Then the positive solution (u0, v0) is nondegenerate by
Definition 1.3.

We begin to prove the degeneracy of semi-trivial solutions of system (1).

Proof of Proposition 1. 1) Assume β = a0, (u, v) = (ū, 0) = (w1, 0), the linearized
system is {

∆φ1 − λφ1 + 2µ1ūφ1 + a0ūφ2 = 0,

∆φ2 − λφ2 + a0ūφ2 = 0.
(30)

It is easily seen that a0 can be attained by a radial positive function ψ0 (we assume
ψ0(0) = 1). Then by the definition of a0, there exists a constant c such that
φ2 = cψ0. And via the equation for ū we know a0 ≤ µ1. With the substitution

Φ = (2µ1 − a0)φ1 + a0φ2,

then (Φ, φ2) solves {
∆Φ− λΦ + 2µ1ūΦ = 0,

∆φ2 − λφ2 + a0ūφ2 = 0.

Set Φ̃(x) = Φ

(
x√
λ

)
and make use of µ1ū = λw(

√
λx), then{

∆Φ̃− Φ̃ + 2wΦ̃ = 0,

∆φ2 − λφ2 + a0ūφ2 = 0.

Again by [25, Lemma 4.1], we know Φ̃ = 0, which means Φ = 0, i.e. φ1 =

− a0

2µ1 − a0
φ2. Finally we get the radial solution set of (30) is{(

− a0

2µ1 − a0
cψ0, cψ0

)
, c ∈ R

}
.

Which means the radial solution set of linearized system is one-dimensional. That is,
the solution set of the linearized system is at least N+1 dimensional. Consequently,
the semi-trivial solution (ū, 0) is degenerate by Definition 1.3.

2) Assume β = b0, (u, v) = (0, v̄) = (0, w2), the linearized system is{
∆φ1 − λφ1 + b0v̄φ1 = 0,

∆φ2 − λφ2 + 2µ2v̄φ2 + b0v̄φ1 = 0.
(31)

Similarly, we know b0 can be attained at a radial positive function φ0 (assume
φ0(0) = 1), and there exists a constant c such that φ1 = cφ0. Moreover via the
equation of v̄ we get b0 ≤ µ2. With the substitution

Φ = (2µ2 − b0)φ2 + b0φ1,
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then (φ1,Φ) solves {
∆φ1 − λφ1 + b0v̄φ1 = 0,

∆Φ− λΦ + 2µ2v̄Φ = 0.

Set Φ̃(x) = Φ

(
x√
λ

)
and recall µ2v̄ = λw(

√
λx), then{

∆φ1 − λφ1 + b0v̄φ1 = 0,

∆Φ̃− Φ̃ + 2wΦ̃ = 0.

Use [25, Lemma 4.1] one more time we know Φ̃ = 0, so Φ = 0, which means

φ2 = − b0
2µ2 − b0

φ1. Finally we get the radial solution set of (31) is{(
cφ0,−

b0
2µ2 − b0

cφ0,

)
, c ∈ R

}
.

Hence the radial solution set of linearized system is one-dimensional. Which means
the radial solution set of linearized system is one-dimensional. That is, the solution
set of the linearized system is at least N + 1 dimensional. Consequently, the semi-
trivial solution (0, v̄) is degenerate by Definition 1.3.

5. Proof of Theorem 1.5.

Proof of Theorem 1.5. Firstly, we recall that by [3, Theorem 1] any positive solution
of (1) is radial and decreases with respect to a point in RN (N ≤ 5). Moreover, the
condition of N ≤ 5 is presumed to guarantee the positive solution of (6) exists and
is unique by [14]. In fact, the expression in (11) relies on the positive solution of (6).
Also it is straightforward to verify that any (u, v) in (11) is a positive solution to
system (1) with the assumptions of Theorem 1.5. From now on, we concentrate on
proving that any positive solution to system (1) with the assumptions of Theorem
1.5 is of the form (11).

In this case, the solution (u, v) is a radial function and satisfies
∆u− λu+ βu2 + βuv = 0,

∆v − λv + βv2 + βuv = 0,

u(r), v(r) > 0,

u′(0) = v′(0) = 0, u(r), v(r)→ 0 as r →∞.

Via the transformation

ũ(x) =
β

λ
u

(
x√
λ

)
, ṽ(x) =

β

λ
v

(
x√
λ

)
,

we know that (ũ, ṽ) solves
∆ũ− ũ+ ũ2 + ũṽ = 0,

∆ṽ − ṽ + ṽ2 + ũṽ = 0,

ũ(r), ṽ(r) > 0,

ũ′(0) = ṽ′(0) = 0, ũ(r), ṽ(r)→ 0 as r →∞.

After multiplying the equation for ũ by ṽ, we obtain

ṽ∆ũ− ũṽ + ũ2ṽ + ũṽ2 = 0. (32)
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Similarly, we have
ũ∆ṽ − ṽũ+ ṽ2ũ+ ũ2ṽ = 0. (33)

Take the difference (32)− (33), we get

ṽ∆ũ− ũ∆ṽ = 0.

Integrating over the ball Br, we see that

0 =

∫
Br

(ṽ∆ũ− ũ∆ṽ) =

∫
Br

div (ṽ∇ũ− ũ∇ṽ)

=

∫
∂Br

(ṽũ′ − ũṽ′) = |∂B1|rN−1 (ṽũ′ − ũṽ′) (r),

which implies ũ′ṽ − ṽ′ũ ≡ 0. It readily follows that

ũ

ṽ
≡ Constant.

Then ṽ satisfies
∆ṽ − ṽ + (C + 1)ṽ2 = 0,

for some positive constant C. Consequently, w := (C+1)ṽ satisfies ∆w−w+w2 = 0,

which is the unique solution of (6) and decays like e−|x| |x|
1−N

2 by (7). Therefore

u(x) =
C

1 + C

λ

β
w
(√

λx
)
, v(x) =

1

1 + C

λ

β
w
(√

λx
)
, C > 0,

which is of the form (11). Further, both u and v decay like e−
√
λ|x| |x|

1−N
2 by the

above expression and (7). Therefore we have finished the classification of all positive
solutions to system (1) with the assumptions of Theorem 1.5.

Remark 4. One may study the following interesting coupled elliptic system
−∆u+ λ1u = µ1u

2 + βuv, x ∈ RN ,
−∆v + λ2v = µ2v

2 + βuv, x ∈ RN ,
u, v > 0, u, v ∈ H1(RN ),

(34)

where λ1 6= λ2, the uniqueness and the nondegeneracy for positive solutions to
system (34) are still open, we will continue to do research on these problems.
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