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Abstract. This paper studies the well-posedness of the semilinear pseudo-

parabolic equations on manifolds with conical degeneration. By employing the

Galerkin method and performing energy estimates, we first establish the local-
in-time well-posedness of the solution. Moreover, to reveal the relationship

between the initial datum and the global-in-time well-posedness of the solution

we divide the initial datum into three classes by the potential well depth, i.e.,
the sub-critical initial energy level, the critical initial energy level and the sup-

critical initial energy level (included in the arbitrary high initial energy case),
and finally we give an affirmative answer to the question whether the solution

exists globally or not. For the sub-critical and critical initial energy, thanks to

the potential well theory, we not only obtain the invariant manifolds, global
existence and asymptotic behavior of solutions, but also prove the finite time

blow up of solutions and estimate the lower bound the of blowup time. For

the sup-critical case, we show the assumptions for initial datum which cause
the finite time blowup of the solution, realized by introducing a new auxiliary

function. Additionally, we also provide some results concerning the estimates

of the upper bound of the blowup time in the sup-critical initial energy.

1. Introduction. In this paper, we consider the following initial boundary value
problem of semilinear pseudo-parabolic equations with conical degeneration

ut −∆But −∆Bu = |u|p−1u, (xb, x̃) ∈ intB, t > 0, (1.1)

u(xb, x̃, 0) = u0, (xb, x̃) ∈ intB, (1.2)

u(0, x̃, t) = 0, (0, x̃) ∈ ∂B, t ≥ 0, (1.3)

where u0 ∈ H
1,n2
2,0 (B), 1 < p < n+2

n−2 and n = l + 1 ≥ 2 is the dimension of B, l ∈ N.

Here the domain B = [0, 1) × X is regarded as the local model near the conical
singularity on conical singular manifolds, where X ⊂ Rl is a closed compact C∞
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manifold. Denoting the interior of B by intB and the boundary of B by ∂B :=
{0} × X. We use the coordinates (xb, x̃) := (xb, x1, x2, ..., xl) ∈ B for 0 ≤ xb < 1,
x̃ ∈ X near ∂B. The conical Laplacian operator is defined as

∆B = ∇2
B = (xb∂xb)

2 + ∂2
x1

+ ...+ ∂2
xl
,

which is the totally characteristic degeneracy operators on a stretched conical man-
ifold, and ∇B = (xb∂xb , ∂x1 , ..., ∂xl) denotes the corresponding gradient operator
with conical degeneracy on the boundary ∂B. In particular, we intend to investi-

gate problem (1.1)-(1.3) in the weighted Mellin-Sobolev spaces H1,n2
2,0 (B), and the

definition of such distribution spaces will be introduced in Section 2.
The classical pseudo-parabolic equation

ut −∆ut −∆u = |u|p−1u, x ∈ Ω, t > 0, (1.4)

defined on a bounded domain Ω ⊂ Rn with smooth boundary appeared in various
physical and biological phenomena. For example, taking u as the flow velocity,
the homogeneous form of the model equation (1.4) was introduced to study the
incompressible simple fluids with fading memory and the non-steady flow with the
Rivlin-Ericksen tensors [47, 16]. One can also know more about other applications
by referring to [23, 24, 5].

It is well known that equation (1.4) in the domains contained in classical Eu-
clidean space with regular boundary has been well investigated. Cao et al. [9]
considered the Cauchy problem of following model

∂

∂t
u− k∂∆u

∂t
= ∆u+ up, x ∈ Rn, t > 0,

and obtained the critical global existence exponent and the critical Fujita exponent
by integral representation and contraction mapping principle. Subsequently, its
uniqueness was proved by Khomrutai in [27] for the case 0 < p < 1. Furthermore,
Li and Du [32] considered the Cauchy problem of

ut − k∆ut = ∆u+ |x|σup, x ∈ Rn, t > 0,

and achieved the global existence and blowup in finite time of solutions with the
critical Fujita exponent and the second critical exponent respectively. They also
showed that the inhomogeneous term |x|σ affects the decay asymptotic behavior
of solutions and accelerates the blowup of solutions. Khomrutai [28] studied the
Cauchy problem of sublinear pseudo-parabolic equation

∂tu−∆∂tu = ∆u+ V (x, t)up, x ∈ Rn, t > 0,

where V (x, t) ∼ λ(t)|x|σ is a non-autonomous and unbounded potential function
with 0 < p < 1, and established the global existence of solutions by approximation
and monotonicity argument. They also derived the precise grow-up rate of solutions
and critical growth exponent. In order to figure out the effects of small perturbation
on the dynamical of diffusion and reaction, Cao and Yin [8] considered the following
Cauchy problem

∂

∂t
u− k∂∆u

∂t
= ∆u+ up + f(x), x ∈ Rn, t > 0,

and revealed that small perturbation may develop large variation of solutions as
time evolves. We also recommend that the reader refer to [43] to learn more about
the effects of the power index of nonlinearity on the dynamical behavior of the so-
lution. Different from above studies that focus on the influence of the nonlinearities



SEMILINEAR PSEUDO-PARABOLIC EQUATIONS 3689

especially the power index on the global well-posedness of the solution, [50, 49, 36]
comprehensively studied equation (1.4) by considering the influences of the initial
data on the global well-posedness and corresponding properties of solution. De-
pending on the potential well depth, they classified the initial data to subcritical
initial energy level J(u0) < d, critical initial energy level J(u0) = d and supcritical
initial energy level J(u0) > d, and proved the global existence, finite time blow
up and asymptotic behavior of solutions with J(u0) ≤ d. Moreover, thanks to the
comparison principle, the global existence and nonexistence of solutions were also
obtained at supcritical initial energy level J(u0) > d. When the nonlinear effects are
dominated by the logarithmic term, Chen [14] investigated the following nonlinear
pseudo-parabolic equation, i.e.,

∂tu−∆u−∆∂tu = u ln |u|, x ∈ Ω, t > 0

and proved the global existence and the finite time blow up of solutions under the
subcritical and critical initial energy case, respectively. Focusing on the high initial
energy level, Xu and Wang et al [51] studied the problem proposed in [50] and
gave a sufficient condition on initial data leading to blow up in finite time by the
potential well method, at the same time, they also estimated the upper bound of the
blowup time. As an important method to reveal the influence of initial data on the
dynamical behavior of solutions, the potential well theory can be applied not only to
the study of the problem of parabolic equations, but also to the study of the problem
for various types of nonlinear evolution equations or systems. Xu and Lian et al [48]
investigated the global well-posedness of solutions for coupled parabolic systems in
the variational framework, and the initial data leading to the global existence or
finite time blow up of the solution are divided. Chen and Xu [15] considered a
class of damped fourth-order nonlinear wave equations with logarithmic sources.
By examining the effect of weak nonlinear sources on the blow up of the solution,
they revealed the confrontation mechanism between the damping structure and the
nonlinear source and found the initial data that caused the solution to blow up
in infinite time. For related results of polynomial nonlinear sources, we refer to
[52]. Furthermore, we suggest the readers refer to [53] for the study of high order
nonlinear wave equations, [54, 34] for the study of damped nonlinear wave equation
problems using improved potential well methods at high initial energy levels, and
so on, which are representative recent results, of course we can not list all of the
results obtained by the potential well theory here due to the huge amount.

Actually, geometric singularities have attracted considerable interest and have
become the focus of extensive physical and mathematical research in recent years.
To find static solutions of Einstein’s equations coupled to brane sources, Michele
[39] studied the generalizations of the so-called “football” shaped extra dimensions
scenario to include two codimension branes, which can be transformed into the
mathematical problem of solving the Liouville equation with singularities, where the
function space he constructed can be described as a sphere with conical singularities
at the brane locations. After that some cone solitons (in the case of compact
surfaces) were found by Hamilton [25], where cone singularities also arise naturally
on the study of such kind of solitons. Not only being widely applied in cosmology
and physics, the cone singular manifold itself also brings a lot of interesting topics
to pure mathematics, such as the analytic proof of the cobordism theorem [31].
Conical singularities become a hotspot mainly for reasons of two aspects. Firstly, a
manifold with conical singularities is one of the most fundamental stratified spaces
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and the investigation on it is motivated by the desire of understanding the dynamic
behavior of the solution of nonlinear evolution equations on such stratified space.
Topologically these spaces are of iterated cone type, in which, due to the conical
singularity, the classical differential operator cannot be applied to such manifolds.
Secondly, the methods developed for the domains with smooth boundaries cannot
be directly applied to domains with singularities. It is a challenge and also an
interesting problem in the community to restitute the conclusions established on
the smooth domain for the problems defined on the conical space.

Inspired by above, it is natural to bring some ideas and develop techniques to
establish a comprehensive understanding of operator theory on the manifolds with
conical singularities, which was first explored by Kondrat’ev in [29] by introducing
the celebrated Mellin-Sobolev spaces Hs,γp (B) as the work space for the partial dif-
ferential equations, then the theory on the conically degenerate pseudo-differential
operator and the weighted Sobolev space on the conical manifolds were summarized
by Schulze and Egorov in [45] and [18]. With the development of the study related
to the singularity problem, including the study on the partial differential equation
on manifolds with conical singularities, there occurs a large number of related re-
sults about various kinds of initial boundary value problems for evolution equations.
For example, when using the porous medium equation to describe the flow of a sub-
stance in a porous medium material, the medium usually shows various irregular
shapes in different regions, among which the most essential case is that the bound-
ary of region includes the conical singularities. In order to discuss such situation for
the porous medium equation, Lian and Liu [33] studied the initial-boundary value
problem of the porous medium equation

ut = ∆um + V (x)up, x ∈ D, t > 0

in a cone D = (0,∞)× Sn−1, and they proved that if the nonlinear power index p
belongs to a suitable interval then the problem has no global non-negative solutions
for any non-negative initial datum u0 unless u0 ≡ 0. Beside that, they also showed
that this problem has global solutions for some u0 ≥ 0 when the nonlinear power
index p is out of that interval. Considering the following porous medium equation

ut −∆um = f(u, t), x ∈ D, t > 0 (1.5)

Roidos and Schrohe [44] obtained some results about the existence, uniqueness
and maximal Lp-regularity of a short time solution and showed the short time
asymptotic behavior of the solution near the conical point. In addition, the behavior
for large times of non-negative solutions to the linear Dirichlet problem of equation
(1.5) in cone-like domains was obtained by Andreucci [2]. For more related work, we
refer to Laptev [19, 30] for the high-order evolution inequalities in cone-like domains
and Mazzeo et al [38] for the Ricci flow on asymptotically conical surfaces.

As a differential operator reflecting the diffusion form on the conical singular
manifold, the emergence of the cone operator ∆B brings about the first problem that
needs to be solved urgently is the existence of solution of the differential equation.
Unlike the usual smooth domain, the appearance of cone singularities makes the
classical embedding theorem fail, which baffles the proof of the existence theorem.
Therefore, in order to overcome the difficulty and obtain the existence of the weak

solution by variational method in H1,n2
2,0 (B), Chen et al [12] considered the nonlinear

Dirichlet boundary value problems on manifolds with conical singularities

−∆Bu = |u|p−1u, x ∈ intB,
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and obtained the existence of non-trivial weak solution. Moreover, they also es-
tablished the well-known cone Sobolev inequality and Poincaré inequality in the
weighted Sobolev spaces. Subsequently, Chen et al [13] extended this result to the
nonlinear elliptic equations with a general nonlinear source and the critical Sobolev
exponents respectively. These works describe the mechanism by which cone dif-
ferential operators act on the regularity of solutions of differential equations. Of
course, differential operators do more than affect the regularity of solutions. The
influence of degenerate differential operators on the solutions of nonlinear elliptic
equations is also reflected in many other aspects such as the eigenvalue problems
and the existence of multiple solutions. Far from being complete, we refer the
readers to [22, 42, 40, 41, 3] and references therein. It is worth to mention here
that the change of the variational structure of equations caused by the non-classical
forms of differential operators can bring big challenges to the application of vari-
ational techniques [21, 7]. Further more, when utilizing the variational techniques
the geometrical feature needs to be taken into consideration [20]. In fact we need
to overcome the difficulties mentioned above in the application of variational tech-
niques to the parabolic version.

In order to understand the effect of different initial data belonging to H1,n2
2,0 (B)

on the well-posedness of the solution, Chen and Liu [11] investigated the following
conical degenerate parabolic equation on the conical manifold

ut −∆Bu = |u|p−1u, x ∈ intB, t > 0,

and obtained not only the existence of global solutions with exponential decay, but
also the blow up in finite time under low initial energy level and critical initial energy
level. Recently, Mohsen and Morteza [1] studied the semilinear conical-degenerate
parabolic equation

∂tu−∆Bu+ V (x)u = g(x)|u|p−1u, x ∈ intB, t > 0,

where V (x) ∈ L∞(intB) ∩ C(intB) is the positive potential function and g ∈
L∞(intB) ∩ C(intB) is a non-negative weighted function. Then they got the re-
sults of global solutions with exponential decay and showed the finite time blow up
of solutions on manifolds with conical singularities under subcritical initial energy
level J(u0) < d.

Our goal is to obtian local and global well-posedness of solutions to problem
(1.1)-(1.3). In details, by the potential well method, we classify the initial datum
and give a threshold condition, which tells us that as long as the initial datum falls
into the specified invariant set and the initial energy satisfies J(u0) ≤ d, the solution
exists as a global one or blow up in a finite time. Moreover, for global solutions,
we give an estimation of the asymptotic behavior of them. For the solution that
blows up in finite time, we estimate the lower bound of the blowup time. Different
from previous proofs in the potential well framework, we integrate the proofs of the
sub-critical and critical initial energy cases as a whole part, which makes the results
much more concise. Last but not least, we also investigate the finite time blow up of
solutions to problem (1.1)-(1.3) at high initial energy levels. By giving a sufficient

condition tied to the initial data in weighted Sobolev space H1,n2
2,0 (B), the theorem

can not only explain what kind of initial data cause the solution to blow up in finite
time, but also get the corresponding upper bound estimate of the blowup time.

The content of this paper is arranged as follows. In Section 2, we give the
geometric description of conical singularities, the definitions of the weighted Sobolev
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spaces and several propositions of the manifold with conical singularities. Then we
introduce the potential well structure for problem (1.1)-(1.3) and prove a series of
corresponding properties in Section 3. Section 4 is concerned with the local existence
and uniqueness theory. In Section 5, we not only prove the invariant manifolds,
global existence and decay of solutions to describe the corresponding asymptotic
behavior, but also prove the finite time blow up of solutions and estimate the lower
bound of blowup time in Theorem 5.2. In Section 6, we give a sufficient condition
to obtain the finite time blow up of the solution in Theorem 6.4. In particular, we
also estimate the upper bound of the blowup time of the solution. Finally, some
remarks and acknowledgements about this paper are given.

2. Manifolds with conical singularities. In this section, main definitions of the
manifold with conical singularities together with a brief description of its properties
are given, for more details we refer to [45, 18] and the references therein. Fur-
thermore, we introduce some functional inequalities on the manifold with conical
singularity, for more applications of these inequalities one can refer to [12, 13].

2.1. Geometric description of conical singularities. For l ≥ 2, let X ⊂ Sl be
a bounded open set in a unit sphere of R1+l

x̂ , and define the straight cone X∆ by

X∆ =

{
x̂ ∈ R1+l

∣∣∣∣ x̂ = 0 or
x̂

|x̂|
∈ X

}
.

The polar coordinates (ρ, θ) gives us a description of X∆\{0} in the form X∧ =
R+ ×X, which is called the open stretched cone with the base X, and {0} ×X is
the boundary of X∧.

Now we extend it to a more general situation by describing the singular space
associated with a manifold with conical singularities. A finite dimensional mani-
fold B with finite conical singularities B0 = {b1, b2, ..., bN} has the following two
properties:

a) B − B0 is a C∞ manifold.
b) Any bi ∈ B0 (i = 1, 2, ..., N) has an open neighborhood G in B, such that

there is a homeomorphism χ : G→ X∆ for some closed compact C∞ manifold
X = X(bi), and ϕ restricts a diffeomorphism ϕ′ : G\{0} → X∧.

By above assumptions we can define the stretched manifold associated with B.
Let B be a C∞ manifold with compact C∞ boundary ∂B ∼= ∪bi∈B0

X = X(bi) for
which there exists a diffeomorphism

B − B0
∼= B− ∂B := intB.

Furthermore, the restriction of this diffeomorphism to Gi − bi is also a diffeomor-
phism Gi − bi ∼= Ui − X(bi), where Gi ⊂ B is an open neighborhood near bi, and
Ui ⊂ B is a collar neiborhood with Ui ∼= [0, 1)×X(bi).

2.2. Cone Sobolev spaces H1,n2
2,0 (B). The typical differential operators on a man-

ifold with conical singularities, i.e., the so-called Fuchsian type operators in a neigh-
borhood of xb = 0, have the following form

A := x−µb

µ∑
k=0

ak(xb)

(
−xb

∂

∂xb

)k
with (xb, x̃) ∈ X∧ and ak(xb) ∈ C∞(R+,Diffµ−k(X))[45, 18]. For such singular
operators, we introduce the following cone weighted Sobolev space.
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Definition 2.1 (The space Hm,γp (Rn+)). For (xb, x̃) ∈ R+×Rl := Rn+, m ∈ N, γ ∈ R
and 1 < p < ∞, assume u(xb, x̃) ∈ D′(Rn+), where the dual (C∞0 (Rn+))′ = D′(Rn+)
is the space of all distributions in Rn+. We denote the spaces

Hm,γp (Rn+) :=

{
u ∈ D′(Rn+)

∣∣∣∣ xNp −γb (xb∂xb)
k∂αx̃ u ∈ Lp(Rn+)

}
for any k ∈ N, multi-index α ∈ Nn with k + |α| ≤ m.

Therefore, Hm,γp (Rn+) is a Banach space with the following norm

‖u‖Hm,γp (Rn+) =
∑

k+|α|≤m

(∫
R+

∫
RN

xNb |x
−γ
b (xb∂xb)

k∂αx̃ u(xb, x̃)|p dxb
xb

dx̃

) 1
p

.

Definition 2.2 ([45] The space Hm,γp,0 (B)). We give the definition of Hm,γp,0 (B) as
follows

(i) Let X be a closed compact C∞ manifold covered by open neighborhoods
O = {O1, ..., ON} of the coordinate. Let the subordinate partition of unity
{ψ1, ..., ψN} be fixed and charts χj : Oj → Rn, j = 1, ..., N . Then we say that
u ∈ Hm,γp (X∧) if and only if u ∈ D′(X∧), whose norm is defined as follows

‖u‖Hm,γp (X∧) =

 N∑
j=1

‖(1× χ∗j )−1ψju‖pHm,γp (Rn+)

 1
p

,

where 1× χ∗j : C∞0 (R+ ×Rn)→ C∞0 (R+ ×Oj) is the pull-back function with
respect to 1 × χj : R+ × Oj → R+ × Rn. And the closure of C∞0 (X∧) in
Hm,γp (X∧) is denoted as Hm,γp,0 (X∧).

(ii) Let B be the stretched cone manifolds. Then Hm,γp (B) denotes the subspace

of all u ∈Wm,p
loc (intB) such that

Hm,γp (B) =

{
u ∈Wm,p

loc (intB)

∣∣∣∣ ωu ∈ Hm,γp,0 (X∧)

}
for any cut-off function ω(xb) supported by a collar neighborhood of xb ∈
(0, 1). Moreover, the subspace Hm,γp,0 (B) of Hm,γp (B) is defined as follows

Hm,γp,0 (B) = [ω]Hm,γp,0 (X∧) + [1− ω]Wm,p
0 (intB),

where the classical Sobolev space Wm,p
0 (intB) denotes the closure of C∞0 (intB)

in Wm,p(B̃) for B̃ as a closed compact C∞ manifold of dimension n containing
B as a submanifold with boundary.

2.3. Some inequalities on cone Sobolev spaces.

Proposition 1 (Cone Sobolev inequality [12]). Assuming 1 ≤ p < n, 1
p∗ = 1

p −
1
n

then for all u(xb, x̃) ∈ C∞0 (Rn+) the following estimate

‖u‖
Lγ
∗
p∗ (Rn+)

≤c1‖(xb∂xb)u‖Lγp(Rn+) + (c1 + c2)

n∑
i=1

‖∂xiu‖Lγp(Rn+) +
c2
c3
‖u‖Lγp(Rn+)

(2.1)

holds, where γ, γ∗ ∈ R are constants with γ∗ = γ − 1, and

c1 =
(n− 1)p

n(n− p)
,
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c2 =
(n− 1)p

∣∣∣(n− 1)− (γ−1)(n−1)p
n−p

∣∣∣ 1n
n(n− p)

and

c3 =
(n− 1)p

n− p
.

Moreover, for u(xb, x̃) ∈ H1,γ
p,0(Rn+), there holds

‖u‖
Lγ
∗
p∗ (Rn+)

≤ C∗‖u‖H1,γ
p,0(Rn+),

where C∗ = c1 + c2.

Proposition 2 (Cone Poincaré inequality [12]). Let B = [0, 1)×X ⊂ Rn+ is bounded

and 1 < p <∞, γ is a constant. If u(xb, x̃) ∈ H1,γ
p,0(B) then

‖u(xb, x̃)‖Lγp(B) ≤ c‖∇Bu(xb, x̃)‖Lγp(B),

where the optimal constant c depends only on B and p.

Proposition 3 (Cone Hölder inequality [13]). If u ∈ L
n
p
p (B), v ∈ L

n
p′

p′ (B) with

p, p′ ∈ (1,∞) and 1
p + 1

p′ = 1, then we have the following cone type Hölder inequality∫
B
|uv|dxb

xb
dx̃ ≤

(∫
B
|u|p dxb

xb
dx̃

) 1
p
(∫

B
|v|p

′ dxb
xb

dx̃

) 1
p′

.

Proposition 4 (Eigenvalue problem [13]). There exist 0 < λ1 < λ2 ≤ λ3 ≤ ... ≤
λk ≤ ...→∞, such that for each k ≥ 1, the following Dirichlet problem{

−∆Bψk = λkψk, (xb, x̃) ∈ intB,
ψk = 0, (xb, x̃) ∈ ∂B,

admits a non-trivial solution in H1,n2
2,0 (B). Moreover, {ψk}k≥1 constitute an or-

thonormal basis of the Hilbert space H1,n2
2,0 (B).

3. Preliminaries.

3.1. Some assumptions, functionals and manifolds. In order to state our
main results, we shall introduce some definitions and notations as follows. In the
sequel, for convenience we denote

(u, v)B =

∫
B
uv

dxb
xb

dx̃ and ‖u‖
L
n
p
p (B)

=

(∫
B
|u|p dxb

xb
dx̃

) 1
p

.

Furthermore, we denote ‖ ·‖
H

1, n
2

2,0 (B)
:= ((∇B·,∇B·)B + (·, ·)B)

1
2 . Of course, the norm

‖ · ‖
H

1, n
2

2,0 (B)
is equivalent to the norm ‖∇ · ‖

L
n
2
2 (B)

, which can be stemmed from

Proposition 2.
Throughout the paper, C will be used to denote various positive constants, whose

value may change from line to line, and its dependence on other variables will be
emphasised only if needed.

Definition 3.1. (Weak solution). A function u is called a weak solution to problem
(1.1)-(1.3) on [0, T ]× B, if it satisfies

(i) u ∈ L∞(0, T ;H1,n2
2,0 (B)) and ut ∈ L2(0, T ;H1,n2

2,0 (B));

(ii) u(0) = u0;
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(iii) for any η ∈ H1,n2
2,0 (B), the identity∫

B
ut(t)η

dxb
xb

dx̃+

∫
B
∇But(t)∇Bη

dxb
xb

dx̃+

∫
B
∇Bu(t)∇Bη

dxb
xb

dx̃

=

∫
B
|u(t)|p−1u(t)η

dxb
xb

dx̃

holds for a.e. t ∈ [0, T ].

Let us introduce the following functionals on the cone Sobolev space H1,n2
2,0 (B) as

the potential energy functional

J(u) =
1

2

∫
B
|∇Bu|2

dxb
xb

dx̃− 1

p+ 1

∫
B
|u|p+1 dxb

xb
dx̃ (3.1)

and the so-called Nehari functional

I(u) =

∫
B
|∇Bu|2

dxb
xb

dx̃−
∫
B
|u|p+1 dxb

xb
dx̃. (3.2)

Then J(u) and I(u) are well-defined and belong to C1(H1,N2
2,0 (B),R).

The weak solution u(t) in Definition 3.1 satisfies the conservation of energy, i.e.,∫ t

0

‖ut(τ)‖2
H

1, n
2

2,0 (B)
dτ + J(u(t)) = J(u0), 0 ≤ t < T. (3.3)

By making use of the functionals above, we define the potential well depth d as
follows

d = inf
u∈N

J(u) > 0, (3.4)

where the Nehari manifold

N =

{
u ∈ H1,n2

2,0 (B)
∣∣∣ I(u(t)) = 0,

∫
B
|∇Bu(t)|2 dxb

xb
dx̃ 6= 0

}
(3.5)

separates the whole space H1,n2
2,0 (B) into the following two unbounded manifolds

N+ =
{
u ∈ H1,n2

2,0 (B)
∣∣∣ I(u(t)) > 0

}
(3.6)

and

N− =
{
u ∈ H1,n2

2,0 (B)
∣∣∣ I(u(t)) < 0

}
. (3.7)

Furthermore, we introduce the following potential well

W := N+ ∪ {0} (3.8)

and the outside of the corresponding potential well

V := N−. (3.9)
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3.2. Some lemmas and properties of potential well. Now, we give some cor-
responding properties of the potential well as follows.

Lemma 3.2 (The properties of the energy functional J(u)). Assume that u ∈
H1,n2

2,0 (B) and ‖∇Bu‖
L
n
2
2 (B)

6= 0, we have

(i) limλ→0 j(λ) = 0 and limλ→+∞ j(λ) = −∞, where j(λ) := J(λu);
(ii) there exist a unique λ∗ = λ∗(u) > 0, such that j′(λ∗) = 0;

(iii) j(λ) is strictly increasing on 0 ≤ λ < λ∗, strictly decreasing on λ > λ∗ and
takes the maximum at λ = λ∗;

(iv) i(λ) > 0 for 0 ≤ λ < λ∗, i(λ) < 0 for λ > λ∗ and i(λ∗) = 0, where i(λ) :=
I(λu).

Proof. (i) From the definition of J(u), we know that

j(λ) = J(λu) =
λ2

2

∫
B
|∇Bu|2

dxb
xb

dx̃− λp+1

p+ 1

∫
B
|u|p+1 dxb

xb
dx̃,

which gives limλ→0 j(λ) = 0 and limλ→+∞ j(λ) = −∞.
(ii) An easy calculation shows that

j′(λ) = λ

(∫
B
|∇Bu|2

dxb
xb

dx̃− λp−1

∫
B
|u|p+1 dxb

xb
dx̃

)
. (3.10)

Then taking j′(λ) = 0 we obtain that

λ∗ =

(∫
B |∇Bu|2 dxb

xb
dx̃∫

B |u|p+1 dxb
xb

dx̃

) 1
p−1

> 0.

(iii) By a direct calculation, (3.10) gives j′(λ) > 0, for 0 < λ < λ∗, j′(λ) < 0 for
λ∗ < λ <∞. Hence, the conclusion of (iii) holds.

(iv) The conclusion follows from

i(λ) = I(λu) = λ2

∫
B
|∇Bu|2

dxb
xb

dx̃− λp+1

∫
B
|u|p+1 dxb

xb
dx̃ = λj′(λ).

Next we give the relationship between ‖u‖
H

1, n
2

2,0 (B)
and I(u) in the following

lemma.

Lemma 3.3 (The properties of the Nehari functional I(u)). Suppose that u ∈

H1,n2
2,0 (B) and r =

(
1

(c2+1)Cp+1
∗

) 1
p−1

, where c and C∗ are the optimal constants of the

cone Poincaré inequality and cone Sobolev inequality respectively.

(i) If 0 < ‖u‖
H

1, n
2

2,0 (B)
< r, then I(u) > 0.

(ii) If I(u) < 0, then ‖u‖
H

1, n
2

2,0 (B)
> r.

(iii) If I(u) = 0, then ‖u‖
H

1, n
2

2,0 (B)
≥ r or ‖u‖

H
1, n

2
2,0 (B)

= 0.

Proof. (i) From 0 < ‖u‖
H

1, n
2

2,0 (B)
< r, we have∫

B
|u|p+1 dxb

xb
dx̃ ≤ Cp+1

∗ ‖u‖p+1

H
1, n

2
2,0 (B)

< Cp+1
∗ rp−1‖u‖2

H
1, n

2
2,0 (B)

=
1

c2 + 1
‖u‖2
H

1, n
2

2,0 (B)
≤ ‖∇Bu‖2

L
n
2
2 (B)

.
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Then by the definitions of r and I(u) we obtain that I(u) > 0.
(ii) It is easy to see that ‖u‖

H
1, n

2
2,0 (B)

6= 0 by I(u) < 0. Combining cone Poincaré

inequality and cone Sobolev inequality, it follows that

‖u‖2
H

1, n
2

2,0 (B)
=

∫
B
|∇Bu|2

dxb
xb

dx̃+

∫
B
|u|2 dxb

xb
dx̃

≤ (c2 + 1)

∫
B
|∇Bu|2

dxb
xb

dx̃

< (c2 + 1)

∫
B
|u|p+1 dxb

xb
dx̃

≤ (c2 + 1)Cp+1
∗ ‖u‖p+1

H
1, n

2
2,0 (B)

,

then we get

‖u‖
H

1, n
2

2,0 (B)
>

(
1

(c2 + 1)Cp+1
∗

) 1
p−1

= r.

(iii) If I(u) = 0 and ‖u‖
H

1, n
2

2,0 (B)
6= 0, then by

‖u‖2
H

1, n
2

2,0 (B)
=

∫
B
|∇Bu|2

dxb
xb

dx̃+

∫
B
|u|2 dxb

xb
dx̃

≤ (c2 + 1)

∫
B
|∇Bu|2

dxb
xb

dx̃

= (c2 + 1)

∫
B
|u|p+1 dxb

xb
dx̃

≤ (c2 + 1)Cp+1
∗ ‖u‖p+1

H
1, n

2
2,0 (B)

,

we get ‖u‖
H

1, n
2

2,0 (B)
≥
(

1

(c2+1)Cp+1
∗

) 1
p−1

= r.

The depth d can be estimated as follows.

Lemma 3.4 (The potential well depth). Suppose that 1 < p < n+2
n−2 and d is defined

as (3.4). Then we have

d = inf
u∈N

J(u) =
p− 1

2(p+ 1)

(
1

(c2 + 1)
p+1
2 Cp+1

∗

) 2
p−1

, (3.11)

where c is the best coefficient of the cone Poincaré inequality.

Proof. Suppose that u ∈ N , then ‖u‖
H

1, n
2

2,0 (B)
≥ r from Lemma 3.3. Thus according

to the definition of J(u), I(u) and cone Poincaré inequality, we arrive at

J(u) =

(
1

2
− 1

p+ 1

)∫
B
|∇Bu|2

dxb
xb

dx̃+
1

p+ 1
I(u)

≥
(

1

2
− 1

p+ 1

)
1

c2 + 1
‖u‖2
H

1, n
2

2,0 (B)

≥ p− 1

2(p+ 1)(c2 + 1)
r2,

which gives (3.11).



3698 YITIAN WANG, XIAOPING LIU AND YUXUAN CHEN

Lemma 3.5 (Osgood Lemma,[10]). Let ρ : [t0, T ]→ [0, α] be a measurable function,
γ is a locally integrable, positive function defined on [t0, T ], µ : [0, α] → [0,+∞) is
a nondecreasing, continuous function and µ(0) = 0, a ≥ 0 is a constant. If

ρ(t) ≤ a+

∫ t

t0

γ(s)µ(ρ(s))ds,

holds almost everywhere for t ∈ [t0, T ], then

−M(ρ(t)) +M(a) ≤
∫ t

t0

γ(s)ds,

is true almost everywhere for t ∈ [t0, T ] when a > 0, where M(x) =
∫ α
x

ds
µ(s) .

In addition, when a = 0 and M(0) = ∞, ρ(t) = 0 holds almost everywhere for
t ∈ [t0, T ].

4. Local existence. In this section, we prove the local existence of the solution of
problem (1.1)-(1.3). The local existence theorem is given as follows,

Theorem 4.1 (Local existence). Suppose that u0 ∈ H
1,n2
2,0 (B). Then there exist

T > 0 and a unique weak solution u ∈ C([0, T ],H1,n2
2,0 (B)) of problem (1.1)-(1.3) on

[0, T ]× B. Moreover, if

Tmax = sup{T > 0 : u = u(t) exists on [0, T ]} <∞,

then

lim
t→Tmax

‖u(t)‖
H

1, n
2

2,0 (B)
=∞.

Proof. We divide the proof into 2 steps.

Step 1. Local exisence. We prove the local existence of the solution to problem
(1.1)-(1.3) by virtue of the Galerkin method and the compactness property [35].

For the initial data u0 ∈ H
1,n2
2,0 (B), let R2 := 2‖∇Bu0‖2

L
n
2
2 (B)

. For every m ≥ 1,

let Ψm = Span{ψ1, ψ2, ..., ψm}, where {ψj} is the orthonormal complete system of

eigenfuctions of −∆B in H1,n2
2,0 (B) such that ‖ψj‖

L
n
2
2 (B)

= 1 for all j. Then, {ψj} is

orthonormal and complete in L
n
2
2 (B) and H1,n2

2,0 (B) by Proposition 4, and we denote

by {λj} the corresponding eigenvalues. Let

um0 =

m∑
j=1

(∇Bu0,∇Bψj)Bψj , m ∈ N+ (4.1)

such that um0 ∈ Ψm and

um0 → u0 in H1,n2
2,0 (B) as m→∞. (4.2)

For all m ≥ 1, we seek C1-continuous functions gm1(t), ..., gmm(t) to form an ap-
proximate solution to problem (1.1)-(1.3) of the form

um(t, xb, x̃) =

m∑
j=1

gmj(t)ψj(xb, x̃), (4.3)
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which solves the problem{
(umt(t), ψj)B + (∇Bumt(t),∇Bψj)B + (∇Bum(t),∇Bψj)B = (|um(t)|p−1um(t), ψj)B,

um(0, xb, x̃) = um0,

(4.4)

for j = 1, 2, ...,m and t ≥ 0. Problem (4.4) is equivalent to the following systems of
ODEs {

(1 + λj)gmjt(t) + λjgmj(t) = (|um(t)|p−1um(t), ψj)B,

gmj(0) = (∇Bu0,∇Bψj)B, j = 1, 2, ...,m.
(4.5)

One can deduce that for any fixed m there exists a tm > 0 and a unique solution
gmj ∈ C1[0, tm] of the Cauchy problem (4.5) by the Cauchy-Peano theorem since
f(t) := (|um(t)|p−1um(t), ψj)B is continuous with respect to t. Multiplying (4.4) by
gmjt(t) and summing for j, we have

(umt(t), umt(t))B + (∇Bumt(t),∇Bumt(t))B + (∇Bum(t),∇Bumt(t))B

= (|um(t)|p−1um(t), umt(t))B,

which tells us that for all t ∈ [0, tm],

‖umt(t)‖2
L
n
2
2 (B)

+ ‖∇Bumt(t)‖2
L
n
2
2 (B)

+
1

2

d

dt
‖∇Bum(t)‖2

L
n
2
2 (B)

=

∫
B
|um(t)|p−1um(t)umt(t)

dxb
xb

dx̃. (4.6)

For the last term in equation (4.6), by using the cone Hölder inequality (Proposition
1), cone Sobolev inequality (Proposition 3) and Young’s inequality, we deduce∫

B
|um(t)|p−1um(t)umt(t)

dxb
xb

dx̃ ≤
∫
B
|um(t)|p|umt(t)|

dxb
xb

dx̃

≤‖umt(t)‖
L

n
p+1
p+1 (B)

‖um(t)‖p
L

n
p+1
p+1 (B)

(4.7)

≤Cp+1
∗ ‖∇Bumt(t)‖

L
n
2
2 (B)
‖∇Bum(t)‖p

L
n
2
2 (B)

≤1

2
‖∇Bumt(t)‖2

L
n
2
2 (B)

+
C

2(p+1)
∗

2
‖∇Bum(t)‖2p

L
n
2
2 (B)

,

which together with (4.6) gives,

‖umt(t)‖2
H

1, n
2

2,0 (B)
+

d

dt
‖∇Bum(t)‖2

L
n
2
2 (B)

≤ C2(p+1)
∗ ‖∇Bum(t)‖2p

L
n
2
2 (B)

, t ∈ [0, tm].

(4.8)

Integrating (4.8) over [0, t], we obtain

‖∇Bum(t)‖2
L
n
2
2 (B)

+

∫ t

0

‖umt(s)‖2
H

1, n
2

2,0 (B)
ds

≤ ‖∇Bum(0)‖2
L
n
2
2 (B)

+ C
2(p+1)
∗

∫ t

0

‖∇Bum(s)‖2p
L
n
2
2 (B)

ds,
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which combining the formula (4.2) and the fact R2 := 2‖∇Bu0‖2
L
n
2
2 (B)

shows that

there exists some m0 ∈ N+ such that

‖∇Bum(t)‖2
L
n
2
2 (B)

+

∫ t

0

‖umt(s)‖2
H

1, n
2

2,0 (B)
ds ≤ R2 + C

2(p+1)
∗

∫ t

0

‖∇Bum(s)‖2p
L
n
2
2 (B)

ds,

(4.9)

for t ∈ [0, tm] and m ≥ m0. In order to estimate the first term in (4.9), one can
apply the Osgood lemma [10, Lemma 5.2.1] as follows.

For any fixed m ≥ m0, let ρ(t) := ‖∇Bum(t)‖2
L
n
2
2 (B)

, t ∈ [0, tm], since gmj ∈

C1[0, tm], we deduce that max
t∈[0,tm]

|gmj(t)| is bounded, j = 1, ...,m, then

ρ(t) =
m∑
j=1

λj |gmj(t)|2 ≤ m max
1≤j≤m

(
λj max

t∈[0,tm]
|gmj(t)|2

)
:= αm < +∞,

which implies that ρ : [0, tm]→ [0, αm] is a measurable function. Now we pick

γ(s) ≡ C2(p+1)
∗ : [0, tm]→ R is a locally integrable, positive function,

µ(s) = sp : [0, αm]→ [0,+∞) is a continuous, non-decreasing function,

which satisfies µ(0) = 0, and a = R2, then,

M(ν) =

∫ αm

ν

ds

µ(s)
=

1

p− 1

(
ν−(p−1) − α−(p−1)

m

)
.

Therefore, we have

−M(ρ(t)) +M(a) ≤
∫ t

0

γ(s)ds = C
2(p+1)
∗ t,

that is,

1

p− 1

(
α−(p−1)
m − ‖∇Bum(t)‖−2(p−1)

L
n
2
2 (B)

)
+

1

p− 1

(
R−2(p−1) − α−(p−1)

m

)
≤ C2(p+1)

∗ t.

By a simple calculation, we obtain

‖∇Bum(t)‖2
L
n
2
2 (B)

≤
[
R2(1−p) − (p− 1)C

2(p+1)
∗ t

]− 1
p−1

, t ∈ [0, tm]. (4.10)

Taking

T = T (R) :=
R2(1−p)

2(p− 1)C
2(p+1)
∗

, (4.11)

it follows from estimates (4.9)-(4.11) that

‖∇Bum(t)‖2
L
n
2
2 (B)

+

∫ t

0

‖umt(s)‖2
H

1, n
2

2,0 (B)
ds ≤ C(R), t ∈ [0, T ], m ≥ m0, (4.12)

where

C(R) = R2

(
1 +

2
1
p−1

p− 1

)
.

Then combining with (4.12) and Proposition 1 we obtain

‖|um(t)|p−1um(t)‖
L

np
p+1
p+1
p

(B)
= ‖um(t)‖p

L

n
p+1
p+1 (B)

≤ Cp
∗‖∇Bum(t)‖p

L
n
2
2 (B)

≤
(
C∗
√
C(R)

)p
(4.13)
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for all t ∈ [0, T ] and m ≥ m0, which means

{um} is bounded in L∞(0, T ;H1,n2
2,0 (B)),

{umt} is bounded in L2(0, T ;H1,n2
2,0 (B)),

{|um|p−1um} is bounded in L∞(0, T ;L
np
p+1
p+1
p

(B)).

Hence, by the Aubin-Lions-Simon Lemma [46] and the weak compactness there

exist a u ∈ C([0, T ];H1,n2
2,0 (B)) and a subsequence of {um}, which is still denoted by

{um}, such that

um → u in L∞(0, T ;H1,n2
2,0 (B)) weakly star,

um → u in C([0, T ];L
n
2
2 (B)) and a.e. in [0, T ]× intB,

umt → ut in L2(0, T ;H1,n2
2,0 (B)) weakly,

|um|p−1um → χ in L∞(0, T ;L
np
p+1
p+1
p

(B)) weakly star,

(4.14)

which together with the Lions Lemma [35, Chap. 1, p12] deduce that

χ = |u|p−1u.

Then for each j fixed, let m→∞ in (4.4), we have∫
B
ut(t)ψj

dxb
xb

dx̃+

∫
B
∇Bu(t)∇Bψj

dxb
xb

dx̃+

∫
B
∇But(t)∇Bψj

dxb
xb

dx̃

=

∫
B
|u(t)|p−1u(t)ψj

dxb
xb

dx̃

for a.e. t ∈ [0, T ] and every j = 1, 2, · · · . By the fact that {ψj} is the complete

orthonormal basis in H1,n2
2,0 (B), we have

(ut(t), η)B + (∇Bu(t),∇Bη)B + (∇But(t),∇Bη)B =

∫
B
|u(t)|p−1u(t)η

dxb
xb

dx̃

for a.e. t ∈ [0, T ] and every η ∈ H1,n2
2,0 (B). By the convergence (4.14) and formula

(4.12), we have

‖∇Bu(t)‖2
L
n
2
2 (B)

+

∫ t

0

‖ut(s)‖2
H

1, n
2

2,0 (B)
ds ≤ C(R), t ∈ [0, T ]. (4.15)

Moreover, it follows from the fact um → u in C([0, T ];L
n
2
2 (B)) that

um0 = um(0)→ u(0) in L
n
2
2 (B),

which combining with (4.2) implies that

u(0) = u0 in H1,n2
2,0 (B).

Thus, u ∈ C([0, T ];H1,n2
2,0 (B)) is a weak solution of problem (1.1)-(1.3) on [0, T ]×B.

Step 2. Uniqueness. Suppose that there are two solutions u and v to problem

(1.1)-(1.3) corresponding to the initial data u0 ∈ H
1,n2
2,0 (B). Then, w = v − v solves

the following problem

wt −∆Bwt −∆Bw = |u|p−1u− |v|p−1v, (xb, x̃) ∈ intB, t > 0, (4.16)

w(xb, x̃, 0) = 0, (xb, x̃) ∈ intB, (4.17)
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w(0, x̃, t) = 0, (0, x̃) ∈ ∂B, t ≥ 0. (4.18)

Since w ∈ C([0, T ];H1,n2
2,0 (B)), one can multiply both side of equation (4.16) by

w(t) and show that

d

dt

(
‖w‖2

L
n
2
2 (B)

+ ‖∇Bw‖2
L
n
2
2 (B)

)
+ 2‖∇Bw‖2

L
n
2
2 (B)

= 2

∫
B

(
|u|p−1u− |v|p−1v

)
w

dxb
xb

dx̃, t ∈ [0, T ],

(4.19)

For the last term in equation (4.19), by using the cone Hölder inequality (Proposition
1), cone Sobolev inequality (Proposition 3) and estimate (4.15), we deduce

2

∫
B

(
|u|p−1u− |v|p−1v

)
w

dxb
xb

dx̃

= 2p

∫
B

∫ 1

0

|θu+ (1− θ)v|p−1|w|2dθ
dxb
xb

dx̃

≤ 2p

∫
B

(
|u|p−1 + |v|p−1

)
|w|2 dxb

xb
dx̃

≤ 2p

(
‖u‖p−1

L
n
p+1
p+1 (B)

+ ‖v‖p−1

L
n
p+1
p+1 (B)

)
‖w‖2

L
n
p+1
p+1 (B)

≤ 2pCp+1
∗

(
‖∇Bu‖p−1

L
n
2
2 (B)

+ ‖∇Bv‖p−1

L
n
2
2 (B)

)
‖∇Bw‖2

L
n
2
2 (B)

≤ C1(R)‖∇Bw‖2
L
n
2
2 (B)

, t ∈ [0, T ],

with C1(R) = 4pCp+1
∗ (C(R))

p−1
2 , which together with (4.19) gives,

d

dt

(
‖w‖2

L
n
2
2 (B)

+ ‖∇Bw‖2
L
n
2
2 (B)

)
≤ C1(R)

(
‖w‖2

L
n
2
2 (B)

+ ‖∇Bw‖2
L
n
2
2 (B)

)
, t ∈ [0, T ].

(4.20)
Applying the Gronwall inequality to (4.20) and making use of (4.17), we have

‖w(t)‖2
H

1, n
2

2,0 (B)
≤ eC1(R)t‖w(0)‖2

H
1, n

2
2,0 (B)

= 0, ∀t ∈ [0, T ],

which leads to the uniqueness of weak solution.
Concerning formula (4.11) we observe that the local existence time T merely

depends on the norms of the initial data. Therefore, by using the similar idea as
shown in [4], the solution can be continued as long as ‖u‖2

H
1, n

2
2,0 (B)

remains bounded.

In details, taking u(·, T ) as the initial data and repeating above argument, we
know that the problem (1.1)-(1.3) has a unique weak solution on the interval [0, T1]
(T1 > T ). After an iteration process, we get a single increasing sequence {Tk}∞k=1

such that the problem (1.1)-(1.3) has a unique weak solution on [0, Tk], where Tk
has two possibilities for sequence {Tk}∞k=1, that either Tmax = lim

k→∞
Tk is finite, or

Tmax =∞. Moreover, if Tmax =∞, then the problem (1.1)-(1.3) possesses a unique
global solution. If Tmax < +∞, then

lim sup
t→Tmax

‖∇Bu(t)‖2
L
n
2
2 (B)

= +∞. (4.21)

In fact, if
sup

t∈[0,Tmax)

‖∇Bu(t)‖2
L
n
2
2 (B)

≤M(Tmax),
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then for any t0 ∈ (0, Tmax), by taking u(·, t0) as the initial data, we know from
the above argument that there exists a T ∗ > 0 dependent on M and independent
on t0 such that the problem (1.1)-(1.3) has a unique weak solution on the interval
[t0, t0 +T ∗]. Due to the arbitrariness of t0 ∈ (0, Tmax), the weak solution of problem
(1.1)-(1.3) can be extended to the interval [0, Tmax + ε] with arbitrary positive
ε > 0, which contradicts the maximal interval [0, Tmax). This contradiction shows
that (4.21) holds.

Moreover, we give the following corollary.

Corollary 1 (Blow-up of the weak solution). Suppose that u is a weak solution of
problem (1.1)-(1.3), which can be ensured by Theorem 4.1, if Tmax < ∞, then we
have

lim
t→Tmax

‖u(t)‖2
L
n
s
s (B)

=∞ for s ≥ max

{
1,
n(p− 1)

2

}
.

Proof. Recalling the definition of energy functional J(u) in (3.1) and the energy
relation (3.3), we get

1

2
‖∇Bu‖2

L
n
2
2 (B)

≤ 1

p+ 1
‖u‖p+1

L
n
p+1
p+1 (B)

+ J(u0) for all t ∈ [0, Tmax).

Combining with the following Gagliardo-Nirenberg interpolation inequality

‖u‖
L
n
B1
B1

(B)
≤ C‖∇Bu‖a

L
n
B2
B2

(B)
‖u‖1−a

L
n
B3
B3

(B)

for 1
B1

=
(

1
B2
− 1

n

)
a+ 1−a

B3
and 0 < a < 1, we have

1

2
‖∇Bu‖2

L
n
2
2 (B)

− J(u0) ≤ 1

p+ 1
‖u‖p+1

L
n
p+1
p+1 (B)

≤ C‖∇Bu‖(p+1)a

L
n
2
2 (B)
‖u‖(p+1)(1−a)

L
n
s
s (B)

,

where B1 = p + 1, B2 = 2 and B3 = s with n(p−1)
2 < s < p + 1 such that

0 < a = 2n(p−1−s)
(p+1)(sn+2s−ns) <

2
p+1 . Thus we have

1

2
‖∇Bu‖2−(p+1)a

L
n
2
2 (B)

− J(u0)‖∇Bu‖−(p+1)a

L
n
2
2 (B)

≤ C‖u‖(p+1)(1−a)

L
n
s
s (B)

,

which implies that lim
t→Tmax

‖u(t)‖2
L
n
s
s (B)

=∞.

5. Sub-critical and critical initial energy cases. In this section, we study the
well-posedness of solutions of problem (1.1)-(1.3) in the case of sub-critical and
critical initial energy levels. The succeeding result is given to show the invariant
sets of the solution for problem (1.1)-(1.3).

Lemma 5.1. Suppose that u0 ∈ H
1,n2
2,0 (B) and J(u0) < d, then

(i) all weak solutions of problem (1.1)-(1.3) belong to W provided that u0 ∈ W;
(ii) all weak solutions of problem (1.1)-(1.3) belong to V provided that u0 ∈ V.

Proof. (i) Suppose that J(u0) < d, I(u0) > 0 and u(t) is the corresponding solution
of problem (1.1)-(1.3). If u0 = 0, then u(t) = 0, i.e., u(t) ∈ W. If u0 ∈ N+, i.e.,
I(u0) > 0, we claim that u(t) ∈ N+ for 0 ≤ t < T . By reduction to absurdity,
provided that there exists a t0 ∈ (0, T ) such that u(t0) ∈ N for the first time and
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u(t) ∈ N+ for 0 ≤ t < t0, i.e., I(u(t)) > 0 for t ∈ [0, t0) and I(u0) = 0. Since u(t0)
is a solution of problem (1.1)-(1.3), by the conservation of energy, it follows that∫ t0

0

‖ut(τ)‖2
H

1, n
2

2,0 (B)
dτ + J(u(t0)) = J(u0) < d (5.1)

for any t0 ∈ (0, T ). However, by the definition of d and I(u(t0)) = 0, it implies that
J(u(t0)) ≥ d, which contradicts (5.1). Thus, u(t) ∈ N+ ⊂ W for any t ∈ [0, T ).

(ii) Similar to the proof of (i), we can obtain that u(t) ∈ V for t ∈ [0, T ) provided
u0 ∈ V.

Theorem 5.2 (Global existence and asymptotic behavior). Suppose that u0 ∈
H1,n2

2,0 (B) and J(u0) ≤ d. If u0 ∈ W, then problem (1.1)-(1.3) admits a unique global

weak solution u ∈ L∞(0,∞;H1,n2
2,0 (B)) with ut ∈ L2(0,∞;H1,n2

2,0 (B)) and satisfies

‖u(t)‖2
H

1, n
2

2,0 (B)
+

∫ t

0

‖ut(τ)‖2
H

1, n
2

2,0 (B)
dτ <

(
1 +

2(p+ 1)(c2 + 1)

p− 1

)
d, t ≥ 0. (5.2)

Moreover, the solution satisfies the estimate

‖u‖2
H

1, n
2

2,0 (B)
≤ e−2βt‖u0‖2

H
1, n

2
2,0 (B)

, 0 ≤ t <∞,

where β = 1− Cp+1
∗

(
2(p+1)(c2+1)

p−1 J(u0)
) p−1

2

.

Proof. We divide the proof into two parts, which are the global existence and the
asymptotic behavior.

Part I: Global existence.
First, we give the global existence of the solution of problem (1.1)-(1.3) for

J(u0) < d.
Since the conclusion is trivial when u0 = 0, we only consider the case u0 ∈ W\{0}.

From Theorem 4.1, let u be the weak solution of problem (1.1)-(1.3) corresponding
to the initial data u0. It follows from (3.1) and (3.2) that

J(u(t)) =
p− 1

2(p+ 1)
‖∇Bu(t)‖2

L
n
2
2 (B)

+
1

p+ 1
I(u(t)) (5.3)

and ∫ t

0

‖ut(τ)‖2
H

1, n
2

2,0 (B)
dτ + J(u(t)) = J(u0) < d. (5.4)

for all t ∈ [0, Tmax). Then by Lemma 5.1 we deduce that

u(t) ∈ W, for all 0 < t < Tmax,

which implies

I(u(t)) > 0 for all 0 < t < Tmax. (5.5)

Thus, the combination of (5.3)-(5.5) and Proposition 1 shows that

‖u(t)‖2
H

1, n
2

2,0 (B)
+

∫ t

0

‖ut(τ)‖2
H

1, n
2

2,0 (B)
dτ <

(
1 +

2(p+ 1)(c2 + 1)

p− 1

)
d, 0 < t < Tmax.

(5.6)
Therefore, by virtue of the Continuation Principle, it follows Tmax = ∞, i.e., u ∈
L∞(0,∞;H1,n2

2,0 (B)) with ut ∈ L2(0,∞;H
n
2
2 (B)) is a global weak solution of problem

(1.1)-(1.3) corresponding to initial data u0 and satisfies the estimate (5.2).
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For the case J(u0) = d, we apply the idea of scalar transformation to get the
corresponding global existence result.

Let γk = 1 − 1
k , k ∈ N+. Then there exists a sequence {uk(0)} such that

uk(0) = γku0. Consider the corresponding initial boundary value problems

ut −∆But −∆Bu = |u|p−1u, (xb, x̃) ∈ intB, t > 0, (5.7)

u(xb, x̃, 0) = uk(0), (xb, x̃) ∈ intB, (5.8)

u(0, x̃, t) = 0, (0, x̃) ∈ ∂B, t ≥ 0, (5.9)

according to Theorem 4.1 and the estimate (5.6), we know that the weak solution
u to problem (5.7)-(5.9) corresponding to the initial data uk(0) satisfies∫ t

0

‖ut(τ)‖2
H

1, n
2

2,0 (B)
dτ + J(u(t)) = J(uk(0)), 0 < t < Tmax, (5.10)

where Tmax is the maximal existence time of the solution u.
By I(u0) > 0, it follows from (iii)-(iv) in Lemma 3.2 that λ = λ(u0) ∈ (0, 1) and

λ∗ > 1, which implies that I(u0) > I(γku0) > 0 and J(γku0) < J(u0) ≤ d. By the
continuity of I(u), J(u) with respect to u, we can choose a sufficiently large k such
that ‖uk(0)− γku0‖H1, n

2
2,0 (B)

< 1
k with I(uk(0)) > 0 and J(uk(0)) < d, which means

uk(t) ∈ W for [0, Tk) by Lemma 5.1.
Since lim

k→∞
γk = 1, then for uk(0) ∈ W we have

uk(0)→ u0 strongly in H1,n2
2,0 (B), as k →∞, (5.11)

and∫ t

0

‖ukt(τ)‖2
H

1, n
2

2,0 (B)
dτ + J(uk(t)) = J(uk(0)) < J(u0) = d, 0 < t < T̃ , (5.12)

then we can obtain the boundness of uk by the same way in the previous case
J(u0) < d , namely (5.6), and the global existence result follows.

Part II: Asymptotic behavior.
In this part, we start with the claim that u(t) ∈ W for t ∈ [0,∞) when J(u) ≤ d.
If J(u0) < d, then by the assumption that I(u0) > 0 we can derive immediately

that u(t) ∈ W for t > 0 from Lemma 5.1.
If J(u0) = d, then we conclude that there exists an enough small t0 such that

I(u(t)) > 0 for t ∈ [0, t0) through the continuity of I(u(t)) with respect to t and
I(u0) > 0. Next, we assert that I(u(t)) > 0 for t ∈ [t0,∞). Arguing by contradic-
tion, assuming that t1 ∈ [t0,∞) is the first time such that I(u(t1)) = 0, then by the
definition of the potential well depth, we have

J(u(t1)) ≥ d.

In addition, by the energy identity (3.3), we have

0 < J(u(t1)) = J(u0)−
∫ t1

0

‖ut(τ)‖
H

1, n
2

2,0 (B)
dτ ≤ d,

which tells us that J(u(t1)) = d and ut ≡ 0 for 0 < t < t1. On the other hand, as
u is a global weak solution of problem (1.1)-(1.3), we directly obtain the following
equation by multiplying (1.1) by u and integrating over B

(ut, u)B + (∇But,∇Bu)B + (∇Bu,∇Bu)B =

∫
B
|u|p+1 dxb

xb
dx̃, t ≥ 0.
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Then from the definition of I(u) and I(u(t)) > 0 for t ∈ [0, t1), it follows that

(ut, u)B + (∇But,∇Bu)B = −I(u) < 0, t ∈ [0, t1), (5.13)

that is,
d

dt
‖ut‖2

H
1, n

2
2,0 (B)

= −2I(u) < 0, t ∈ [0, t1),

which contradicts with ut ≡ 0 for 0 < t < t1. Hence, we conclude I(u(t)) > 0 for
t ≥ 0.

Since u(t) ∈ W for t ≥ 0 of the case J(u0) ≤ d, namely I(u(t)) > 0 for 0 ≤ t <∞,
and it is easy to derive that the energy functional J(u(t)) is non-increasing from
the energy identity (3.3), then we have

J(u0) ≥ J(u(t))

=

(
1

2
− 1

p+ 1

)
‖∇Bu‖2

L
n
2
2 (B)

+
1

p+ 1
I(u) (5.14)

>
p− 1

2(p+ 1)(c2 + 1)
‖u‖2
H

1, n
2

2,0 (B)
,

where c is the optimal constant in Proposition 2. Moreover,∫
B
|u|p+1 dxb

xb
dx̃ ≤ Cp+1

∗ ‖u‖p+1

H
1, n

2
2,0 (B)

= Cp+1
∗

(
‖u‖2
H

1, n
2

2,0 (B)

) p−1
2

‖u‖2
H

1, n
2

2,0 (B)
. (5.15)

Then from (5.14) we define

α :=Cp+1
∗

(
‖u‖2
H

1, n
2

2,0 (B)

) p−1
2

<Cp+1
∗

(
2(p+ 1))(c2 + 1)

p− 1
J(u0)

) p−1
2

≤Cp+1
∗

(
2(p+ 1))(c2 + 1)

p− 1
d

) p−1
2

=
1

c2 + 1
< 1.

Hence, taking β := 1− α > 0, we obtain from (5.15) that∫
B
|u|p+1 dxb

xb
dx̃ ≤ α‖u‖2

H
1, n

2
2,0 (B)

= (1− β)‖u‖2
H

1, n
2

2,0 (B)
,

which gives

β‖u‖2
H

1, n
2

2,0 (B)
≤ I(u(t)). (5.16)

On the other hand, by the definition of I(u) we have

d

dt

(∫
B
(|u(t)|2 + |∇Bu(t)|2)

dxb
xb

dx̃

)
= −2I(u(t)) ≤ −2β‖u‖2

H
1, n

2
2,0 (B)

. (5.17)

Then by Gronwall’s inequality we can obtain

‖u‖2
H

1, n
2

2,0 (B)
≤ e−2βt‖u0‖2

H
1, n

2
2,0 (B)

.
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Theorem 5.3 (Finite time blow up and lower bound estimate of blowup time).

Suppose that u0 ∈ H
1,n2
2,0 (B) and J(u0) ≤ d. If u0 ∈ V, then u(t) blows up in finite

time, i.e., there exists a T > 0 such that

lim
t→T−

∫ t

0

‖u(τ)‖2
H

1, n
2

2,0 (B)
dτ = +∞, 0 < t < T.

Moreover, T is bounded below, which can be estimated by

T ≥
‖u0‖−p+1

H
1, n

2
2,0 (B)

− r−p+1

(p− 1)Cp+1
∗

.

Proof. Firstly, by Theorem 4.1, we already have the local existence for u0 ∈ H
1,n2
2,0 (B),

then arguing by contradiction, we suppose that the solution u exists globally in time
and here we just consider nontrivial u since the trivial ones do not agree the initial
condition, thus are not solutions of problem (1.1)-(1.3). Then we define an auxiliary
function as

M(t) :=

∫ t

0

‖u(τ)‖2
H

1, n
2

2,0 (B)
dτ, t ∈ [0,∞). (5.18)

For t ∈ [0,∞) we can compute its derivative as follows

M ′(t) = ‖u(t)‖2
H

1, n
2

2,0 (B)
= ‖u(t)‖2

L
n
2
2 (B)

+ ‖∇Bu(t)‖2
L
n
2
2 (B)

(5.19)

and further by (1.1) and (3.2) we have

M ′′(t) = 2(ut(t), u(t))B + 2(∇But(t),∇Bu(t))B = −2I(u(t)). (5.20)

Next, we will reveal that the solution actually does not exist globally by showing
that M(t) tends to infinity in finite time. However, it is easier to demonstrate that
M−γ(t) has a zero point, where the exponent −γ is a negative constant. Therefore,
we take the latter as the proof scheme. Before that, we claim that M−γ(t) is concave
for sufficiently large t by constructing a differential inequality with M(t). Recalling
(3.3) and (5.3), for t ∈ [0,∞) we can obtain by (5.19) and (5.20) that

M ′′(t) = −2(p+ 1)J(u) + (p− 1)‖∇Bu(t)‖2
L
n
2
2 (B)

(5.21)

≥ 2(p+ 1)

(∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ − J(u0)

)
+

(p− 1)M ′(t)

c2 + 1
,

where c is the optimal constant of the Cone Poincaré inequality (see Proposition
2). Notice that(∫ t

0

(u, ut)Bdτ

)2

=

(
1

2

∫ t

0

d

dτ
‖u‖2
H

1, n
2

2,0 (B)
dτ

)2

=
1

4

(
‖u‖4
H

1, n
2

2,0 (B)
− 2‖u0‖2

H
1, n

2
2,0 (B)

‖u‖2
H

1, n
2

2,0 (B)
+ ‖u0‖4

H
1, n

2
2,0 (B)

)
=

1

4

(
(M ′(t))2 − 2M ′(t)‖u0‖2

H
1, n

2
2,0 (B)

+ ‖u0‖4
H

1, n
2

2,0 (B)

)
,

hence

(M ′(t))2 = 4

(∫ t

0

(u, ut)Bdτ

)2

+ 2‖u0‖2
H

1, n
2

2,0 (B)
M ′(t)− ‖u0‖4

H
1, n

2
2,0 (B)

. (5.22)
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From (5.18), (5.21) and (5.22), making use of the Hölder inequality, we have for
t ∈ [0,∞)

M(t)M ′′(t)− p+ 1

2
(M ′(t))2

≥
∫ t

0

‖u‖2
H

1, n
2

2,0 (B)
dτ

(
2(p+ 1)

(∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ − J(u0)

)
+

(p− 1)M ′(t)

c2 + 1

)
− p+ 1

2

(
4

(∫ t

0

(u, ut)Bdτ

)2

+ 2M ′(t)‖u0‖2
H

1, n
2

2,0 (B)
− ‖u0‖4

H
1, n

2
2,0 (B)

)

=2(p+ 1)

(∫ t

0

‖u‖2
H

1, n
2

2,0 (B)
dτ

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ −

(∫ t

0

(u, ut)Bdτ

)2
)

− 2(p+ 1)J(u0)M(t) +
(p− 1)M(t)M ′(t)

c2 + 1
(5.23)

− (p+ 1)M ′(t)‖u0‖2
H

1, n
2

2,0 (B)
+
p+ 1

2
‖u0‖4

H
1, n

2
2,0 (B)

≥− 2(p+ 1)J(u0)M(t) +
(p− 1)M(t)M ′(t)

c2 + 1
− (p+ 1)M ′(t)‖u0‖2

H
1, n

2
2,0 (B)

.

To estimate the right hand side of (5.23), we claim first that u(t) ∈ V for t ∈
[0,∞), and the proof of this claim is similar with the proof in the second step of
Theorem 5.2, for which we omit it here. Therefore, we have I(u(t)) < 0 for t ≥ 0,
then by the density of the real number we can derive that there exists a δ > 0 such
that

M ′′(t) = −2I(u(t)) ≥ δ, t ≥ 0, (5.24)

Integrating over the both sides of (5.24) from 0 to t, we get

M ′(t) ≥ δt+M ′(0) ≥ δt, t ≥ 0. (5.25)

By applying the same operation that we took for (5.24), we have

M(t) ≥ δt2 +M(0) ≥ δt2, t ≥ 0. (5.26)

Thus by (5.23), for sufficiently large t > 0 we have

M(t)M ′′(t)− p+ 1

2
(M ′(t))2 (5.27)

≥− 2(p+ 1)J(u0)M(t) +
(p− 1)M(t)M ′(t)

c2 + 1
− (p+ 1)M ′(t)‖u0‖2

H
1, n

2
2,0 (B)

=M(t)

(
p− 1

2(c2 + 1)
M ′(t)− 2(p+ 1)J(u0)

)
+M ′(t)

(
p− 1

2(c2 + 1)
M(t)− (p+ 1)‖u0‖2

H
1, n

2
2,0 (B)

)
> 0.

By direct computation we can get that

(M−γ(t))′′ = −γM−γ−2(t)
(
M(t)M ′′(t)− (γ + 1)(M ′(t))2

)
. (5.28)

Let γ = p−1
2 > 0 and N(t) := M−γ(t), then (5.28) implies that N ′′(t) < 0 for

sufficiently large t > 0 according to (5.27) and the facts that γ > 0 and M(t) ≥ 0,
which implies that N(t) is concave for sufficiently large t > 0.
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Note first that there exists a sufficiently small t̃ > 0 such that the non-trivial u
exists locally for t ∈ (0, t̃] by Theorem 4.1, which claims that N(t) = M−γ(t) > 0
for t ∈ (0, t̃]. Then we assert that N(t) is decreasing for t ∈ (0,∞). Recalling that
M ′(t) > 0 for t ∈ (0,∞), hence

N ′(t) = −γM−γ−1M ′(t) < 0, t ∈ (0,∞),

which makes N(t) keep falling for t > 0 and guarantees that the zero point can be
reached.

In fact, the case of the asymptote won’t occur since N(t) is concave for sufficiently
large t > 0, which forces the curve of N(t) to hit the t-axis for sufficiently large
t > 0 and ensures the existence of the zero point. Hence there exists a 0 < T <∞
such that

N(t) = M(t)−γ → 0, t→ T−,

which means also M(t) =
∫ t

0
‖u‖2
H

1, n
2

2,0 (B)
dτ → ∞ as t → T−, and contradicts the

hypothesis of global existence, thus u blows up in finite time.
Next, we seek the lower bound of the blow up time. By (5.20) we have

M ′′(t) = −2I(u(t)) = −2‖∇Bu(t)‖2
L
n
2
2 (B)

+ 2‖u(t)‖p+1

L
n
p+1
p+1 (B)

. (5.29)

Then Proposition 2, (5.19) and (5.29) imply

M ′′(t) ≤ 2Cp+1
∗ (M ′(t))

p+1
2 . (5.30)

By (5.25) we have already known M ′(t) > 0 for t ∈ [0, T ), thus we can divide (5.30)

by (M ′(t))
p+1
2 and get the following inequality,

M ′′(t)

(M ′(t))
p+1
2

≤ 2Cp+1
∗ . (5.31)

Integrating the inequality (5.31) from 0 to t, we have

(M ′(0))−
p−1
2 − (M ′(t))−

p−1
2 ≤ (p− 1)Cp+1

∗ t. (5.32)

Let t→ T in (5.32), since M ′(t) = ‖u(t)‖2
H

1, n
2

2,0 (B)
> r2 by (ii) of Lemma 3.3, we can

conclude that

T ≥
‖u0‖−p+1

H
1, n

2
2,0 (B)

− r−p+1

(p− 1)Cp+1
∗

.

6. Sup-critical initial energy case. In this section we give the finite time blow
up result for the sup-critical initial energy case, for which we introduce the following
three lemmas first.

Lemma 6.1 ([26]). Suppose that a positive, twice-differentiable function ψ(t) sat-
isfies

ψ′′(t)ψ(t)− (1 + θ)(ψ′(t))2 ≥ 0, t > 0, ψ(t) ∈ C2, ψ(t) > 0

where θ > 0 is a constant. If ψ(0) > 0 and ψ′(0) > 0, then there exists a t1 with

0 < t1 ≤ ψ(0)
θψ′(0) such that ψ(t) tends to infinity as t→ t1.
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Lemma 6.2. Suppose that J(u0) > 0 and u0 ∈ V, then the map

t 7→ ‖u(t)‖2
H

1, n
2

2,0 (B)

increases strictly while u(t) ∈ V for t ∈ [0, T0], where T0 is a positive constant.

Proof. Firstly, an auxiliary function is defined as follows

F (t) := ‖u(t)‖2
H

1, n
2

2,0 (B)
. (6.1)

Then it follows from (1.1) that

F ′(t) =2(ut(t), u(t))B + 2(∇But(t),∇Bu(t))B = −2I(u). (6.2)

Hence by u(t) ∈ V for t ∈ [0, T0] we get

F ′(t) > 0, t ∈ [0, T0], (6.3)

which implies that the map

t 7→ ‖u(t)‖2
H

1, n
2

2,0 (B)

is strictly increasing for t ∈ [0, T0].

Lemma 6.3 (Invariant set V). Assume that u0 satisfies

(p− 1)

2(c2 + 1)(p+ 1)
‖u0‖2

H
1, n

2
2,0 (B)

> J(u0) > 0, (6.4)

where c is the optimal constant in Proposition 2, then u(t) ∈ V for t ∈ [0, T ), where
T ≤ +∞ is the maximal existence time of the solution.

Proof. First we claim that u0 ∈ V by (6.4), i.e. u(t) ∈ V for t = 0. By the definition
of J(u(t)) (3.1) we have

J(u0) =
1

2
‖∇Bu0‖2

L
n
2
2 (B)

− 1

p+ 1
‖u0‖p+1

L
n
p+1
p+1 (B)

(6.5)

=

(
1

2
− 1

p+ 1

)
‖∇Bu0‖2

L
n
2
2 (B)

+
1

p+ 1
I(u0)

≥ (p− 1)

2(c2 + 1)(p+ 1)
‖u0‖2

H
1, n

2
2,0 (B)

+
1

p+ 1
I(u0),

thus by (6.4) and (6.5) we can drive that I(u0) < 0, namely u0 ∈ V.
Then we prove that u(t) ∈ V for t ∈ (0, T ). Since I(u0) < 0, we have I(u(t)) < 0

on [0, t0) for sufficiently small t0 > 0 according to the continuity of I(u(t)) with
respect to t. Arguing by contradiction, if I(u(t)) doesn’t remain negative on [0, T ),
then there must exist a t1 ∈ [t0,∞) such that I(u(t1)) = 0 for the first time.
It follows from Lemma 6.2 that the map t 7→ ‖u(t)‖2

H
1, n

2
2,0 (B)

increases strictly for

t ∈ [0, t1), by which and (6.4) we get

‖u(t)‖2
H

1, n
2

2,0 (B)
> ‖u0‖2

H
1, n

2
2,0 (B)

>
2(c2 + 1)(p+ 1)

(p− 1)
J(u0), t ∈ (0, t1), (6.6)

then from the continuity of ‖u(t)‖2
H

1, n
2

2,0 (B)
with respect to t, we can obtain

‖u(t1)‖2
H

1, n
2

2,0 (B)
> ‖u0‖2

H
1, n

2
2,0 (B)

>
2(c2 + 1)(p+ 1)

p− 1
J(u0). (6.7)
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On the other hand, recalling the definition of J(u(t)) and (3.3), we have

J(u0) =J(u(t1)) +

∫ t1

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ

≥1

2
‖∇Bu(t1)‖2

L
n
2
2 (B)

− 1

p+ 1
‖u(t1)‖p+1

L
n
p+1
p+1 (B)

(6.8)

=

(
1

2
− 1

p+ 1

)
‖∇Bu(t1)‖2

L
n
2
2 (B)

+
1

p+ 1
I(u(t1)),

then applying the Cone Poincaré inequality (Proposition 2) to (6.8) with I(u(t1)) =
0, we have

J(u0) ≥ p− 1

2(p+ 1)
‖∇Bu(t1)‖2

L
n
2
2 (B)

≥ (p− 1)

2(c2 + 1)(p+ 1)
‖u(t1)‖2

H
1, n

2
2,0 (B)

, (6.9)

≥ (p− 1)

2(c2 + 1)(p+ 1)
‖u0‖2

H
1, n

2
2,0 (B)

,

which contradicts (6.7), thus we can drive that u(t) ∈ V for t ∈ [0, T ).

Next we give the blow up results for arbitrary positive initial energy as follows:

Theorem 6.4 (Finite time Blow up with J(u0) > 0). Let u0 ∈ H
1,n+1

2
2,0 (B). If u0

satisfies (6.4), then u(t) blows up in finite time. Furthermore, the upper bound of
blowup time can be estimated by

T ≤
4‖u0‖2

H
1, n

2
2,0 (B)

(p− 1)σ
,

where σ := p−1
2(c2+1)(p+1)‖u0‖2

H
1, n

2
2,0 (B)

− J(u0).

Proof. Similar as Theorem 5.2, we also divide the proof into two parts, which are
the finite time blow up and the estimating of the upper bound of the blow up time.

Part I: Finite time blow up.
Firstly, Theorem 4.1 has asserted the local existence of the solution, then arguing

by contradiction, we suppose that u(t) exists globally in time, i.e. the maximal
existence time T = ∞. Now we take a sufficiently small ε > 0 and a positive
constant c0 > 0 such that

c0 >
1

4
ε−2‖u0‖4

H
1, n

2
2,0 (B)

(6.10)

and define a new auxiliary function for t ∈ [0,∞) as follows

P (t) := (M(t))2 + ε−1‖u0‖2
H

1, n
2

2,0 (B)
M(t) + c0, (6.11)

where M(t) is the auxiliary function defined before in (5.18). Hence for t ∈ [0,∞),

P ′(t) =

(
2M(t) + ε−1‖u0‖2

H
1, n

2
2,0 (B)

)
M ′(t) (6.12)

and

P ′′(t) =

(
2M(t) + ε−1‖u0‖2

H
1, n

2
2,0 (B)

)
M ′′(t) + 2(M ′(t))2.
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Set ξ := 4c0 − ε−2‖u0‖4
H

1, n
2

2,0 (B)
, then (6.10) indicates ξ > 0. Thus for t ∈ [0,∞) we

have

(P ′(t))2 =

(
4(M(t))2 + 4ε−1‖u0‖2

H
1, n

2
2,0 (B)

M(t) + ε−2‖u0‖4
H

1, n
2

2,0 (B)

)
(M ′(t))2

=

(
4(M(t))2 + 4ε−1‖u0‖2

H
1, n

2
2,0 (B)

M(t) + 4c0 − ξ
)

(M ′(t))2

= (4P (t)− ξ) (M ′(t))2,

which tells

4P (t)(M ′(t))2 = (P ′(t))2 + ξ(M ′(t))2, t ∈ [0,∞). (6.13)

By (6.13), for t ∈ [0,∞) we get

2P (t)P ′′(t)

=2

((
2M(t) + ε−1‖u0‖2

H
1, n

2
2,0 (B)

)
M ′′(t) + 2(M ′(t))2

)
P (t)

=2

(
2M(t) + ε−1‖u0‖2

H
1, n

2
2,0 (B)

)
M ′′(t)P (t) + 4P (t)(M ′(t))2 (6.14)

=2

(
2M(t) + ε−1‖u0‖2

H
1, n

2
2,0 (B)

)
M ′′(t)P (t) + (P ′(t))2 + ξ(M ′(t))2.

Then from (6.13) and (6.14), for t ∈ [0,∞) we can derive that

2P (t)P ′′(t)− (1 + β)(P ′(t))2

=2

(
2M(t) + ε−1‖u0‖2

H
1, n

2
2,0 (B)

)
M ′′(t)P (t) + ξ(M ′(t))2 − β(P ′(t))2 (6.15)

=2

(
2M(t) + ε−1‖u0‖2

H
1, n

2
2,0 (B)

)
M ′′(t)P (t) + ξ(M ′(t))2 − β(4P (t)− ξ)(M ′(t))2

=2

(
2M(t) + ε−1‖u0‖2

H
1, n

2
2,0 (B)

)
M ′′(t)P (t)− 4βP (t)(M ′(t))2 + ξ(1 + β)(M ′(t))2

>2

(
2M(t) + ε−1‖u0‖2

H
1, n

2
2,0 (B)

)
M ′′(t)P (t)− 4βP (t)(M ′(t))2,

where β > 0 is a positive constant that will be determined in the sequel.
Next, we estimate the term M ′′(t). Testing the both sides of (1.1) by u, for

t ∈ [0,∞) we have

1

2

d

dt
‖u‖2
H

1, n
2

2,0 (B)
= −I(u) (6.16)

= −‖∇Bu‖2
L
n
2
2 (B)

+ ‖u‖p+1

L
n
p+1
p+1 (B)

= −2J(u) +
p− 1

p+ 1
‖u‖p+1

L
n
p+1
p+1 (B)

.

By (6.4), we can take β such that

1 < β <

(p− 1)‖u0‖2
H

1, n
2

2,0 (B)

2(c2 + 1)(p+ 1)J(u0)
. (6.17)
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Notice by Lemma 6.3 that I(u(t)) < 0 for t ∈ [0,+∞), then combining (6.16) with
(3.3), for t ∈ [0,∞) we see

1

2

d

dt
‖u‖2
H

1, n
2

2,0 (B)

=− 2J(u) +
p− 1

p+ 1
‖u‖p+1

L
n
p+1
p+1 (B)

=2(β − 1)J(u)− 2βJ(u) +
p− 1

p+ 1
‖u‖p+1

L
n
p+1
p+1 (B)

(6.18)

≥− 2βJ(u0) + 2β

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ +

p− 1

p+ 1
‖u‖p+1

L
n
p+1
p+1 (B)

=− 2βJ(u0) + 2β

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ − p− 1

p+ 1
I(u) +

p− 1

p+ 1
‖∇Bu‖2

L
n
2
2 (B)

>− 2βJ(u0) + 2β

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ +

p− 1

p+ 1
‖∇Bu‖2

L
n
2
2 (B)

.

The application of Cone Poincaré inequality asserts

p− 1

p+ 1
‖∇Bu‖2

L
n
2
2 (B)

≥ (p− 1)

(c2 + 1)(p+ 1)
‖u‖2
H

1, n
2

2,0 (B)
. (6.19)

Putting (6.19) into (6.18), for t ∈ [0,∞) we have

M ′′(t) =
d

dt
‖u‖2
H

1, n
2

2,0 (B)
(6.20)

>− 4βJ(u0) + 4β

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ +

2(p− 1)

(c2 + 1)(p+ 1)
‖u‖2
H

1, n
2

2,0 (B)
.

By (6.16), Hölder and Young’s inequalities, for t ∈ [0,∞) we estimate the term
(M ′(t))2 as follows

(M ′(t))2 =‖u‖4
H

1, n
2

2,0 (B)

=

(
‖u0‖2

H
1, n

2
2,0 (B)

+ 2

∫ t

0

(u, ut)Bdτ

)2

(6.21)

≤

(
‖u0‖2

H
1, n

2
2,0 (B)

+ 2

(∫ t

0

‖u‖2
H

1, n
2

2,0 (B)
dτ

) 1
2
(∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ

) 1
2

)2

=‖u0‖4
H

1, n
2

2,0 (B)
+ 4‖u0‖2

H
1, n

2
2,0 (B)

(∫ t

0

‖u‖2
H

1, n
2

2,0 (B)
dτ

) 1
2
(∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ

) 1
2

+ 4M(t)

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ

≤‖u0‖4
H

1, n
2

2,0 (B)
+ 2ε‖u0‖2

H
1, n

2
2,0 (B)

M(t) + 2ε−1‖u0‖2
H

1, n
2

2,0 (B)

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ

+ 4M(t)

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ.

Then from (6.20), (6.21) and (6.15), for t ∈ [0,∞) we have

2P ′′(t)P (t)− (1 + β)(P ′(t))2
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>2

(
2M(t) + ε−1‖u0‖2

H
1, n

2
2,0 (B)

)
M ′′(t)P (t)− 4βP (t)(M ′(t))2

>I1I2 − I3I4,

where

I1 :=2P (t)

(
2M(t) + ε−1‖u0‖2

H
1, n

2
2,0 (B)

)
,

I2 :=− 4βJ(u0) + 4β

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ +

2(p− 1)

(c2 + 1)(p+ 1)
‖u‖2
H

1, n
2

2,0 (B)
,

I3 :=4βP (t),

I4 :=‖u0‖4
H

1, n
2

2,0 (B)
+ 2ε‖u0‖2

H
1, n

2
2,0 (B)

M(t) + 2ε−1‖u0‖2
H

1, n
2

2,0 (B)

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ

+ 4M(t)

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ.

Taking γ := 2(p−1)
(c2+1)(p+1)‖u0‖2

H
1, n

2
2,0 (B)

− 4βJ(u0), then (6.17) ensures γ > 0. Choosing

ε such that

ε <
γ

2β‖u0‖2
H

1, n
2

2,0 (B)

,

then recalling that ‖u(t)‖2
H

1, n
2

2,0 (B)
is decreasing with respect to t by Lemma 6.2, for

t ∈ [0,∞) we obtain

2P ′′(t)P (t)− (1 + β)(P ′(t))2

>I1I2 − I3I4

=I1

(
4β

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ + γ

)
− I3I4

>I1

(
4β

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ + 2βε‖u0‖2

H
1, n

2
2,0 (B)

)
− I3I4

=4βP (t)

(
2M(t) + ε−1‖u0‖2

H
1, n

2
2,0 (B)

)(
2

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ + ε‖u0‖2

)
− I3I4

=I3

((
2M(t) + ε−1‖u0‖2

H
1, n

2
2,0 (B)

)(
2

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ + ε‖u0‖2

H
1, n

2
2,0 (B)

)
− I4

)
=0.

Thus

P ′′(t)P (t)− 1 + β

2
(P ′(t))2 > 0, t ∈ [0,∞).

Since P (0) = c0 > 1
4ε
−2‖u0‖4

H
1, n

2
2,0 (B)

> 0 and P ′(0) = ε−1‖u0‖4
H

1, n
2

2,0 (B)
> 0, by

Lemma 6.1 we can conclude that there exists a 0 < T <∞ such that

lim
t→T

P (t) = +∞.

According to the definition of P (t), i.e. (6.11), we can conclude that

lim
t→T

M(t) = +∞,



SEMILINEAR PSEUDO-PARABOLIC EQUATIONS 3715

which claims the blow up of the solution.
Part II: Upper bound of the blow up time
In Part I we have draw the conclusion that the maximal existence time T is finite,

next, we estimate the upper bound of blowup time. For t ∈ [0, T ), we define

ψ(t) :=

∫ t

0

‖u(τ)‖2
H

1, n
2

2,0 (B)
dτ + (T − t)‖u0‖2

H
1, n

2
2,0 (B)

+ µ(t+ ν)2, (6.22)

where µ > 0 and ν > 0 are constants, which will be determined later in the process
of argumentation. Thus we have

ψ′(t) = ‖u(t)‖2
H

1, n
2

2,0 (B)
− ‖u0‖2

H
1, n

2
2,0 (B)

+ 2µ(t+ ν), (6.23)

then it follows from (3.3), Proposition 2 and (6.4) that

ψ′′(t) =− 2I(u(t)) + 2µ

≥(p− 1)‖∇Bu‖2
H

1, n
2

2,0 (B)
− 2(p+ 1)J(u)

≥ p− 1

c2 + 1
‖u(t)‖2

H
1, n

2
2,0 (B)

− 2(p+ 1)J(u) (6.24)

=
p− 1

c2 + 1
‖u(t)‖2

H
1, n

2
2,0 (B)

− 2(p+ 1)J(u0) + 2(p+ 1)

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ

≥2(p+ 1)

(
p− 1

2(c2 + 1)(p+ 1)
‖u0‖2

H
1, n

2
2,0 (B)

− J(u0) +

∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ

)
> 0.

Furthermore, we obtain ψ′(t) ≥ ψ′(0) = 2µ(t + ν) > 0 via (3.3), which implies
ψ(t) ≥ ψ(0) = T‖u0‖2

H
1, n

2
2,0 (B)

+ µν2 > 0 for all t ∈ [0, T ).

On the other hand, we can derive that

−1

4
(ψ′(t))2 =−

(
1

2

(
‖u(t)‖2

H
1, n

2
2,0 (B)

− ‖u0‖2
H

1, n
2

2,0 (B)

)
+ µ(t+ ν)

)2

(6.25)

=

(∫ t

0

‖u‖2
H

1, n
2

2,0 (B)
dτ + µ(t+ ν)2

)(∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ + µ

)
−
(

1

2

(
‖u(t)‖2

H
1, n

2
2,0 (B)

− ‖u0‖2
H

1, n
2

2,0 (B)

)
+ µ(t+ ν)

)2

−
(
ψ(t)− (T − t)‖u0‖2

H
1, n

2
2,0 (B)

)(∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ + µ

)
=I5 − I6 −

(
ψ(t)− (T − t)‖u0‖2

H
1, n

2
2,0 (B)

)(∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ + µ

)
,

where

I5 :=

(∫ t

0

‖u‖2
H

1, n
2

2,0 (B)
dτ + µ(t+ ν)2

)(∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ + µ

)
,

I6 :=

(
1

2

(
‖u(t)‖2

H
1, n

2
2,0 (B)

− ‖u0‖2
H

1, n
2

2,0 (B)

)
+ µ(t+ ν)

)2

.

To estimate (6.25) clearly, we will show that I5 − I6 > 0,

I5 − I6 =I5 −
(

1

2
(‖u(t)‖2

H
1, n

2
2,0 (B)

− ‖u0‖2
H

1, n
2

2,0 (B)
) + µ(t+ ν)

)2
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=I5 −
(

1

2

∫ t

0

d

dτ
‖u(τ)‖2

H
1, n

2
2,0 (B)

dτ + µ(t+ ν)

)2

=I5 −
(∫ t

0

(u, ut)Bdτ + µ(t+ ν)

)2

≥I5 −
(∫ t

0

‖u(τ)‖
H

1, n
2

2,0 (B)
‖ut(τ)‖

H
1, n

2
2,0 (B)

dτ + µ(t+ ν)

)2

,

then by the Cauchy-Schwartz inequality we get

I5 − I6 ≥I5 −
(∫ t

0

‖u(τ)‖
H

1, n
2

2,0 (B)
dτ

∫ t

0

‖ut(τ)‖
H

1, n
2

2,0 (B)
dτ + µ(t+ ν)

)2

=I5 − (k1(t)k2(t) + µ(t+ ν))
2

=
(
(k1(t))2 + µ(t+ ν)2

) (
(k2(t))2 + µ

)
− (k1(t)k2(t) + µ(t+ ν))

2

= (
√
µk1(t))

2 − 2
√
µk1(t)

√
µ(t+ ν)k2(t) + (

√
µ(t+ ν)k2(t))

2

= (
√
µk1(t)−√µ(t+ ν)k2(t))

2

≥0,

where k1(t) :=
∫ t

0
‖u(τ)‖

H
1, n

2
2,0 (B)

dτ and k2(t) :=
∫ t

0
‖ut(τ)‖

H
1, n

2
2,0 (B)

dτ . Hence,

−(ψ′(t))2 ≥− 4

(
ψ(t)− (T − t)‖u0‖2

H
1, n

2
2,0 (B)

)(∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ + µ

)

≥− 4ψ(t)

(∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ + µ

)
. (6.26)

Then by (6.22), (6.24) and (6.26), we achieve

ψ(t)ψ′′(t)− p+ 1

2
(ψ′(t))2

≥ψ(t)

(
ψ′′(t)− 2(p+ 1)

(∫ t

0

‖ut‖2
H

1, n
2

2,0 (B)
dτ + µ

))
(6.27)

≥2(p+ 1)ψ(t)

(
p− 1

2(c2 + 1)(p+ 1)
‖u0‖2

H
1, n

2
2,0 (B)

− J(u0)− µ
)
.

Let σ := p−1
2(c2+1)(p+1)‖u0‖2

H
1, n

2
2,0 (B)

− J(u0), then we can take a sufficiently small

µ ∈ (0, σ] such that

p− 1

2(c2 + 1)(p+ 1)
‖u0‖2

H
1, n

2
2,0 (B)

− J(u0)− µ ≥ 0, (6.28)

hence for t ∈ [0,∞), from (6.27) and (6.28) we have

ψ(t)ψ′′(t)− p+ 1

2
(ψ′(t))2 ≥ 0.
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It is easy to verify that ψ(0) = T‖u0‖2
H

1, n
2

2,0 (B)
+ µν2 > 0, ψ′(0) ≥ 2µν > 0, which

implies that the conditions of Lemma 6.1 are satisfied. Then applying Lemma 6.1,
we can derive that

T ≤ 2ψ(0)

(p− 1)ψ′(0)
≤
‖u0‖2

H
1, n

2
2,0 (B)

(p− 1)µν
T +

ν

p− 1
. (6.29)

Let ν be large enough such that

ν ∈

‖u0‖2
H

1, n
2

2,0 (B)

(p− 1)µ
,+∞

 , (6.30)

then it follows from (6.29) that

T ≤ µν2

(p− 1)µν − ‖u0‖2
H

1, n
2

2,0 (B)

. (6.31)

Note that µ ∈ (0, σ] by (6.28). To estimate the upper bound of the blow up time,
we can revise the range of µ according to (6.30) and define the following set to
describe the pair (µ, ν)

M :=

(ν, µ)

∣∣∣∣∣ ν ∈
‖u0‖2

H
1, n

2
2,0 (B)

(p− 1)σ
,+∞

 , µ ∈

‖u0‖2
H

1, n
2

2,0 (B)

(p− 1)ν
, σ

 .

From the above discussions, we get

T ≤ inf
(µ,ν)∈M

µν2

(p− 1)µν − ‖u0‖2
H

1, n
2

2,0 (B)

. (6.32)

Next we define

f(µ, ν) :=
µν2

(p− 1)µν − ‖u0‖2
H

1, n
2

2,0 (B)

,

where (µ, ν) ∈M. Thus the estimation of the blow-up time turns into seeking the
minimal value of f(µ, ν). First differentating f(µ, ν) with respect to µ, we have

∂

∂µ
f(µ, ν) =

−ν2‖u0‖2
H

1, n
2

2,0 (B)(
(p− 1)µν − ‖u0‖2

H
1, n

2
2,0 (B)

)2 < 0,

which means that f(µ, ν) is decreasing with respect to µ, for which we have

inf
(µ,ν)∈M

f(µ, ν) = inf
ν
f(σ, ν),

where ν ∈

‖u0‖2
H

1, n
2

2,0 (B)

(p−1)σ ,+∞

 . Then we compute the partial derivative of f(σ, ν)

with respect to ν and let it equal zero, we can obtain the minimum

νmin =

2‖u0‖2
H

1, n
2

2,0 (B)

(p− 1)σ
,
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thus we have

inf
(µ,ν)∈M

f(µ, ν) = f(σ, νmin) =

4‖u0‖2
H

1, n
2

2,0 (B)

(p− 1)σ
,

which means also

T ≤
4‖u0‖2

H
1, n

2
2,0 (B)

(p− 1)σ
.
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