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ABSTRACT. This paper presents a survey for some recent research on the con-
trollability of nonlinear fractional evolution systems (FESs) in Banach spaces.
The prime focus is exact controllability and approximate controllability of sev-
eral types of FESs, which include the basic systems with classical initial and
nonlocal conditions, FESs with time delay or impulsive effect. In addition,
controllability results via resolvent operator are reviewed in detail. At last,
the conclusions of this work and the research prospect are presented, which
provides a reference for further study.

1. Introduction. The theory of fractional calculus has a long-standing history,
and it can be traced back to nearly four centuries ago, which firstly appeared
in the correspondence between mathematicians Leibniz and L’Hospital about the
definition of fractional derivative in the 17th century. After a long and tortuous
development, fractional calculus has received considerable attention due mainly
to its potential and wide applications in various kinds of scientific fields such
as chemical physics, pure mathematics, signal processing, mechanics and engi-
neering, viscoelasticity, biology, neural network model, fractal theory, etc. See
[24, 56, 63, 75, 96, 102, 120, 121, 122] and references therein for further details. Actu-
ally, fractional calculus can describe mathematical models involving practical back-
ground with less parameters, and present a more vivid and accurate description over
things than integral order ones [11, 25, 36, 40, 58, 92, 99, 114, 130]. Recent research
trends and achievements in science and technology show that fractional differential
equations including both ordinary and partial ones have more extensive applications
than integral order differential equations [35, 50, 58, 65, 76, 77, 95, 103, 104, 125].

As we all know, control theory is an interdisciplinary branch of economics, engi-
neering and mathematics that investigates and analyses some dynamical behaviors
of various systems [78, 93, 116, 130, 131]. In addition, control theory of dynami-
cal systems with impulse [8, 37, 46, 72] or time delay [38, 47, 109, 110] have been
studied in the last decates. Some other excellent results for such systems are ob-
tained on stability [14, 49, 41, 42, 43, 62, 70, 106, 105, 126, 127] and stabilization
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[9, 33, 34, 45, 53, 3, 112, 113], optimal control [1, 5, 12, 18, 30, 29], etc. As an im-
portant component of technology and mathematical control theory, controllability
has already gained considerable attention. Among the methods to investigate the
controllability of diverse nonlinear systems, fixed-point theory has been used widely
and effectively, which was initiated by Tarnove in 1967 [94]. For the sake of using
fixed-point theorem, the controllability problem of nonlinear systems is transformed
to a fixed-point problem of corresponding nonlinear operator in a appropriate func-
tion space. Frequently used fixed-point theorems include Banach’s fixed-point theo-
rem [13], Schauder’s fixed-point theorem [23, 32, 129], Darbo’s fixed-point theorem
[17, 26], Schaefer’s fixed-point theorem [17], Krasnoselskii’s fixed-point theorem
[61, 101, 117], Sadovskii’s fixed-point theorem [39, 68, 123], Ménch’s fixed-point
theorem [15, 48, 57, 124, 118], etc. It should be particularly noted that the con-
trollability of fractional evolution systems (FESs) is an important issue for lots of
practical problems since the fractional calculus can derive better results than in-
tegeral order one. The two most extensively studied subjects of controllability for
FESs are exact controllability and approximate controllability.

On the other hand, time delay is a widespread phenomenon in the fields of
science and engineering. So it can not be ignored in many practical situations
[10, 52, 59, 66]. This is especially true for the evolution processes which are closely
related to time. For example, the time delay is often inevitable in the process of
pregnancy, maturation, and hatching at the different stages of population develop-
ment. Sometimes, a minor delay may restrict the system seriously, or affect the
structure and performance of the system to a great extent, and even lead to insta-
bility of the system. Therefore, various dynamic behaviors of FESs with time delay
have been investigated during the last few decades, such as optimal controllability,
stability and stabilization problems. With the continuous development of fractional
calculus, more and more attention has been paid to the controllability of various
kinds of FESs with time delay in recent years [13, 15, 22, 32, 124]. In addition, there
is another inevitable factor in practice, that is, the phenomenon of impulse which
widely exists in the real world. For example, it can be used to describe the sudden
fluctuation of population caused by disease, famine, etc, in population model. The
impulse phenomena also appear in the timing fishing or replenishment of popula-
tion ecosystem, the external stimulation in nervous system, the closing of switch in
circuit system and so on. The development of impulsive differential equations and
related theories has been growing rapidly in recent decades [55, 107, 108, 119]. As
we know, there are many processes in nature that are influenced by impulses as well
as memory and heredity such as neural network and population dynamics model,
etc. Obviously, they are most appropriately described by using fractional impulsive
differential systems. Therefore, the investigation on controllability of FESs with
impulsive effect has important theoretical significance and practical value. Never-
theless, analyzing controllability for FESs with impulse is more complicated than
that for integral order ones. In the study of the fractional (impulsive) controllabil-
ity, how to represent mild solutions of FESs is the first important step. Up to now,
many divergences and academic controversies on the mild solutions to fractional
impulsive systems still exist due to the fact that fractional derivatives have hered-
ity, nonlocal behavior and memory property. Fortunately, some relevant literatures
[87] have corrected these issues and given their correct expressions.

By the analysis and comparison of the relevant literatures, this work will present
a comprehensive overview for the controllability on some classes of FESs, such as
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some basic systems with classical initial and nonlocal conditions, FESs with time
delay or impulse. An outline of the rest of this work is arranged as follows. In
Section 2, some notations, definitions and lemmas are listed. Section 3 discusses
the controllability of some basic systems. Section 4 considers the controllability of
some classes of systems with time delay. In Section 5, controllability of systems with
impulsive effects is presented. Controllability results via resolvent operator theory
is discussed in Section 6. At last, Section 7 provides a conclusion of the present
paper and the research prospect in this area.

2. Preliminaries. This section mainly lists some necessary notations, definitions
and lemmas, which will be used throughout the present paper. The preliminaries
here can be found in, for example, [39, 73, 74].

Denote by R the set of real numbers, R the set of positive real numbers, Z*
the set of positive integer numbers and by C the set of complex numbers. Let
A:D C X — X be a closed linear operator defined on a Banach space X, where D
stands for the domain of the operator A. Obviously, D is a Banach space equipped
with the graph norm ||z|lp = ||z|| + ||Az||. Denote by LP(J, X) (p > 1) the space
of p-th power integrable functions from interval J to Banach space X, Llloc(J ) the
space of locally integrable functions on J and by C(J, X) the space of X-valued
continuous functions on J. Z(\) stands for the Laplace transform of some function
x.

Definition 2.1. The Riemann-Liouville standard fractional integral with fractional
order ¢ € R of a continuous function z : (0, +00) — R is defined as follows:

1 t
IHz(t) = D %x(t :—/ t— )9 1z(s)ds,
fa(t) = Dy "x(t) 11((])0( ) a(s)
provided that the right side integral is pointwise defined on (0, +00).

Definition 2.2. The Riemann-Liouville fractional derivative with fractional order
q € R of a continuous function z : (0, +00) — R is defined by
rodr L
RL yq _ n—q—1 _ (n—q)
Dtl'(t) = Iwcltn/o (t — 8) 4 x(s)ds = dtn ‘Dt s
where n—1 < ¢ < n € Z*, provided that the right side integral is pointwise defined
on (0, +00).

) I'(1+
As an example, for a > —1, one can obtain £ Dz = ﬁx
F'l+a-—q)

As early as the 19th century, Riemann-Liouville fractional derivative has been

well developed in the works of Abel, Riemann and Liouville. Up to now, a complete

theoretical system has been established. However, such theory had led to many

difficulties in the application of some practical problems. In order to avoid these

difficulties and to facilitate modeling the problems of engineering and physics, a

new definition of fractional derivative was proposed by Caputo in 1967:

a—q

Definition 2.3. The Caputo fractional derivative with fractional order ¢ € RT of
a continuous function x : (0, +00) — R is defined by

1 ¢ —(n—q) d"
I — t— )1 1) (g)ds = DD Ly
g [ = e s = D00 L),
where n—1 < ¢ < n € Z*, provided that the right side integral is pointwise defined
on (0,400).

“Dix(t) =
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It is not difficult to see that the Caputo derivative of a constant is equal to zero.
Especially, if ¢ € (0, 1), then

1 t Cas
m/o (t — s)"92'(s)ds,

which can be used to describe the state of the system at a given time depends on past
events. Apart from that, the solutions of Caputo-type equations can approximate
any given smooth function arbitrarily [6].

“Dix(t) =

Definition 2.4. The Hilfer fractional derivative with fractional order 0 < v <1
and 0 < g < 1 of a continuous function z : (0, +00) — R is defined by

v, v(l— d 1—v)(1—
DVFa(t) = It( #)%It( ) ‘u)x(t),

for functions such that the expression on the right hand side exists.

Obviously, when v = 0, 0 < p < 1, the Hilfer fractional derivative corresponds
to the classical Riemann-Liouville fractional derivative; when v =1, 0 < pu < 1, it
corresponds to the classical Caputo fractional derivative.

Lemma 2.5. Suppose that x € C(J) N L*(J) with a fractional derivative of order
q € R*. Then the following equality holds:

TPRED, T2 (t) = 2(t) + e1t9™ 4 ot 2 4+ et ? ™,
wherec; €ER, i =1,2,---nandn—-1<qg<necZt.
Lemma 2.6. Letn — 1< g <n € Z". Then the following equality holds:
19D (t) = a(t) + co + et + cot? + - - + cn_1t" L,
where c; € R, ©+=0,1,2,---,n— 1.

Since the classical solution of a fractional evolution system satisfies a convolution
equation on the halfline, it is natural to employ the theory of Laplace transform
for its study. Therefore, mild solutions of the considered FESs can be obtained
mainly by applying the Laplace transform technique. For this reason, we present
the following properties:

Lemma 2.7. Let ¢ € RT. m denotes the smallest integer greater than or equal to
q. Then

o~ 1
(1) Gg(X) = YL where

—— 17l >0,
0, t<0.

|
!
—
= =
~—r

gq(t)

(i) Tir(3) = 3,50,

(i) FDTa(A) = MEO) — 3 (g-g # 2) IO,
k=0

(iv) CDFa(\) = ME() — Y 2 (0)x1-1%,

=0

3

=
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The definitions of mild solutions for various kinds of Cy-semigroup-based control
systems are usually given by some probability density functions. To this end, the
following preparations are necessary:

Definition 2.8. The Mainardi’s Wright function ¥, (0 < ¢ < 1) is defined by

= (o RN
U, (0) = = — —T , 0eC.
Remark 1. If § € RT, then
JR noa DA +qn)
w,(0) = = >-(-0) F I siuung), g € 0.1),
n=1 :

Lemma 2.9. Let 0 < g < 1, then

(i) ¥q(t) >0, t € (0,00).

(ii) / (e Mt = e Re() 2 0.
0

o [ v, T(147)

(Z“) /0 \Ijq(t)t dt = W, re (_1,00)

001 1 1
(z'v)/ —tTIT AW, (¢ )dt = 1.
o ¢

3. Controllability of some basic systems. During the past four decades, con-
trollability problems of various dynamical systems, including integeral order and
fractional order derivatives, have been widely investigated in finite-dimensional and
infinite-dimensional spaces [4, 27, 26, 57, 60, 69, 123]. Among such controllability
problems, the two most fundamental types are exact controllability and approximate
controllability. The exact controllability enables to steer the considered systems to
arbitrary final state. If there exists a control such that the systems can be steered
to zero point, we call it null controllability [86], which can be regarded as a special
case of exact controllability in some way. Under the assumption that the invert-
ible controllability operator can be constructed, the controllability problem can be
transformed into a fixed point problem.

In this section, we consider the controllability of some basic nonlinear fractional
control systems with local conditions and nonlocal conditions. First, consider the
following systems:

CDix(t) = Ax(t) + f(t,z(t)) + Bu(t), t€J=10,b], (3.1)
with classical initial condition
z(0) = w0, (3.2)
where ¢ D represents the Caputo derivative of order 0 < ¢ < 1, A is unbounded
and generates a Co-semigroup {T'(¢)}+>o on Banach space X. B is a bounded linear
operator and f is a nonlinear operator on X. If x is a classical solution of (3.1)-(3.2),
then
x(t) € D, Vt € ]0,],
which indicates that the systems will not be steered to arbitrary final state of X due
to the fact D # X in most cases. Consequently, only some types of mild solutions

are considered in the study of the control systems. With this prerequisite, we give
the following notion of exact controllability:
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Definition 3.1. The fractional control system (3.1)-(3.2) is said to be exactly
controllable on J if, for every xg, 21 € X, there exists a control u € L?(.J,U) such
that the mild solution z of systems (3.1)-(3.2) satisfies z(b) = ;.

It is worth mentioning that the introduction of mild solution in the investigation
of fractional controllability problems is the first step. However, Hernandez et al.
[20] pointed out that the definition of mild solutions used in some papers was not
appropriate for FESs as it is just a simple extension of mild solutions for integral
order evolution equations. In 2002, El-Borai [16] firstly introduced some proba-
bility density functions and gave the fundamental solutions of fractional evolution
equations, which is a significant contribution to the construction of mild solutions
for FESs. Since then, mild solutions for most of fractional controllability problems
are constructed in terms of such probability density functions. For example, with
regard to (3.1)-(3.2), the mild solution can be given as follows:

Definition 3.2. For each v € L?(J,U), a mild solution of the system (3.1)-(3.2)
we mean the function = € C(J, X)) which satisfies

x(t):T(t)xo—i—/O (t—s)q_lS(t—s)f(s,ac(s))ds—f—/o (t — $)7-1S(t — 5) Bu(s)ds,

where 7 () and S(-) are given by

/5q T(190)d6, S(t —q/ 0¢,(6)T(170)d6
and for 6 € (0, 00),

1 1 1
£,(0) = 59—1—5\1/4(9—5) > 0.

U, is the Mainardi’s Wright function defined by Definition 2.8, and £,(6) is a
probability density function defined on (0, co) satisfying

/ﬁq )do =1, / 07, (0)d0 = ((H”)) veo,1].

We are now in the position to describe the exact controllability of (3.1)-(3.2)
based on the above definition of mild solution. Suppose that the following hypoth-
esis holds:

(C) The linear operator W : L?(J,U) — X defined by
b
Wu = / (b—8)T"'S(b— s)Bu(s)ds
0

has a bounded inverse operator W1 which takes values in L%(J,U)/kerW.
Then, for Vz € C(J, X), we can construct the corresponding control function

b
up(t) =Wt (xl —T(b)xg — /0 (b—5)T1S(b — 5)f(s,;1:(5))ds> (t), ted, (3.3)

and condition (C) infers xz(b) = x1, which means that system (3.1)-(3.2) is exactly
controllable on J.

Note that the formula of Definition 3.2 contains characteristic solution opera-
tors associated with semigroup 7'(t), probability density functions and Mainardi’s
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Wright-type function. It is essentially different from the simple extension of mild
solutions for integral order evolution systems. On the basis of Definition 3.2, J.
Wang and Y. Zhou [101] established some results of exact controllability for system
(3.1)-(3.2) by utilizing properties of noncompact characteristic solution operators
and fixed point strategies.

Theorem 3.3. ([101]) Suppose that the following assumptions hold:

(i) The operator A generates a strongly continuous semigroup T(t) in X, and
there exists a constant My such that sup ||T(t)| < M.
teJ

(ii) The linear operator B : L?(J,U) — LY(J, X) is bounded, W : L*(J,U) — X
defined by

b
Wu = /0 (b—5)17"S(b— s)Bu(s)ds

has an inverse operator W=t which takes values in L*(J,U)/kerW and there
exist two positive constants My, M3 > 0 such that || B ||, w,x)< Mz and

WM 2y (L2 (0,0 fkerwy < M.
(i) f : Jx X — X is continuous and there exists a constant ¢1 € (0,q) and
1
Ly € L@ (J,RT) such that
| f(t, 1) — f(t,22))|| < Lg(t)||xr — a2, teJ, ;€ X, i =1,2.

(iv) S(t) is continuous in the sense of uniformly operator topology for t > 0.
(v) For all bounded subsets B, the set

t—h oo
I s = {q/o ./5 Ot — s)T 1 (VT ((t — 5)10) f(s,2(s))dbds : x € %}

is relatively compact in X for any h € (0,t) and § > 0.
Then system (3.1)-(3.2) is exactly controllable on J provided that

M3M2M1bq:|
e|1 4 23T
[ I'(1+q)
MM 1— geq 1m0
where ¢ = 471(], My =g||Lf|| 2 , K= [(ql)blqi] )
I'(1+q) LAt (JRT) q—q

Using the similar approach in [101], J. Du et al. [15], studied the exact con-
trollability of some fractional delay control systems, and A. Kumar et al. [31], A.
Debbouche et al. [13], investigated the fractional impulsive control problems or
such problems with delay. Some fixed point theorems, such as Banach’s fixed-point
theorem, Dhage’s fixed-point theorem and Krasnoselskii’s fixed-point theorem, are
used widely in establishing the controllability results for the aforementioned papers
in which the Lipschitz conditions are all required. The premise of these results is
that the semigroups generated by infinitesimal generators are noncompact. This
can be illustrated by the following simple example:

Lemma 3.4. ([101]) Consider the following fractional differential systems
93 ot

alta) =2, (0) ot ) + 1

o(t,0) = x(t, 1) =0,

x(t,y), teJ=[01],
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wherew > 0,k > 1, and pn : Jx(0,1) — (0, 1) is continuous int. Take X = C([0,1])
and let A be Az = 2', x € D(A), where D(A) ={z € X : 2’ € X,z(0) = z(1) = 0}.

Obviously, A is an infinitesimal generator of a noncompact semigroup {7'(¢) :
t > 0} which is defined by T'(¢)x(s) = z(t + s) for x € X. Define f(¢,z(t))(y)

—t

k‘Jretglj

(t,y). Then f satisfies Lipschitz condition:

1
1F @t n = f(t22))l < g llen — 2afl, 21,22 € X, €T,

It is easy to see that all conditions of Theorem 3.3 are satisfied. Hence, the given
system is exactly controllable on J.

Authors in [101] used the equicontinuity of semigroup T'(¢) rather than its com-
pactness in infinite-dimensional spaces, which can avoid a technical mistake hap-
pening while the compactness of T'(t) is employed. Controllability result in [97]
was once established under the hypothesis that the semigroup associated with the
linear part is compact. Note that Lipschitz continuity and some compact conditions
were imposed on the nonlinear function f in [101] to guarantee the contraction and
complete continuity of corresponding integral operators, and then Krasnoselskii’s
fixed-point theorem ensured the existence of mild solution for system (3.1)-(3.2).
As a stronger condition than continuity, Lipschitz continuity is regarded only as
an idealized one in many cases, which is difficult to be applied to practical prob-
lems. In addition, it seems difficult to verify the validity of the compact condition
(v) in Theorem 3.3. Based on these observations, authors in [123] proposed a new
concept of exact controllability, and derived some sufficient conditions ensuring the
exact controllability of system (3.1)-(3.2) without Lipschitz continuity and compact
conditions imposed on nonlinearity, but relying on the differentiability of resolvent
operator.

Definition 3.5. ([123]) The fractional control system (3.1)-(3.2) is called exactly
controllable on interval J = [0,], if for any xg, 21 € X, there exists a control
u € L*(J,U) and a constant T € (0,b] such that a mild solution z of system (3.1)-
(3.2) on I = [0, 7| satisfies z(7) = ;.

Theorem 3.6. ([123]) Suppose that the following hypotheses are satisfied:

(i) f € C(I x X;D) and takes bounded sets into bounded sets.
(ii) The linear operator B : L*(J,U) — L*(J,D) is bounded, W (t) defined by

t
W (t)u = By(t) +/ S(t — s)By(s)ds, t € J,
0
1 t
where By(t) = m/ (t — 5)* ' Bu(s)ds, has an induced inverse operator
0
W=L(t) which takes values in L*(J,U)/kerW (t) for every t € J and there
exist two positive constants My, My > 0 such that || B ||pw,p)< My and
sup W) | (x.L2(2.0) kerw (1)) < Ma.
€

(iii) There exists a positive constant L such that o(f(t, D)) < La(D), t € J, for
any bounded subset D C X.

Then the fractional control system (3.1)-(3.2) is exactly controllable on J if xo €
D.
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It is shown that in Definition 3.5, the time when objective system is steered to
x1 may be reached before the end value b. When 7 equals b, Definition 3.5 is the
same as Definition 3.1. Obviously, it is easy to see that hypotheses (i) and (iii)
in Theorem 3.6 naturally hold if f is Lipschitz continuous or compact. From this
point of view, the obtained results in [123] have wider applications. In addition,
it should be stressed that whether a analytic resolvent operator is differentiable
has not been demonstrated strictly at present, which is somewhat surprising to
us because the given resolvent operator is of course continuously differentiable on
(0,00). For more details about resolvent operator theory, please refer to [74] and
references therein. Hence, in order to suppress the hypotheses that f and x( are
D-valued in (i) of Theorem 3.6, the resolvent operator is supposed to be analytic
instead of differentiability and thus the controllability result is also derived in [123].
To this end, it needs to replace only the hypotheses (i) and (ii) of Theorem 3.6 with
the following assumptions:

(i) f e C( x X;X) and takes bounded sets into bounded sets.
(i) The linear operator B : L?(J,U) — L*(J, X) is bounded, W (¢) defined by

W (tyu = S(t)Bu(t) + /Ot S(t — s)(Byu(s) — Bu(t))ds, t € J

has an induced inverse operator W ~1(¢) which takes values in L?(J,U)/kerW (t)
for every t € J and there exist two positive constants My, My > 0 such that

| B llow,x)< M, sup WO i p2 (0,0 kerw ) < Moa.
S

Next, we consider the system (3.1) with nonlocal conditions. In practice, nonlocal
conditions are usually more accurate than classical initial conditions for physical
estimation. For example, when observing the diffusion of a small amount of gas in
the tube, there is more than one initial observation value, that is, the initial value
can be determined by multiple observation points. The powerful tool to describe
such phenomenon is the differential equations with nonlocal conditions. Therefore,
more and more studies on the exact controllability of FESs with nonlocal condi-
tions emerge in large numbers. Generally, nonlocal conditions for many practical
problems can be described by the following formula:

z(0) + g(x) = o, (3.4)
Definition 3.7. ([100]) The fractional control system (3.1) and (3.4) is said to
be nonlocally exactly controllable on J iff, for every zg, 1 € X, there exists a
control u € L?(J,U) such that a mild solution = of system (3.1) and (3.4) satisfies
z(b) + g(z) = =1.
Different from (3.3), using hypothesis (C), for an arbitrary function x € C(J, X),
define the corresponding control as follows

us(t) =W (1’1 —g(z) = T(b)(zo — g(x)) — /0 (b—3)"""S(b— ) (s, w(S))dS) (t).

It is not difficult to deduce that, by using this control, the mild solution of (3.1) and
(3.4) satisfies x(b) + g(x) = x1, which indicates the objective system is nonlocally
exactly controllable on J. [100] obtained two nonlocally controllable results for
system (3.1) and (3.4) by using noncompactness measure in C(J, X). J. Liang and
H. Yang [48] considered the nonlinear fractional integro-differential equations

CDYx(t) + Az(t) = f(t,z(t), Gz(t)) + Bu(t), te J =10, (3.5)
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with nonlocal condition

katk 0<ty <ty < -+ <ty <Dh, (36)
k=1

which covers condition (3.2) as a special case. Here —A generates a Cp-semigroup on
X. The control function u € L?(J,U). U is a Banach space. f is imposed on some
growth assumptions. Under the assumption of noncompactness of Cy-semigroup,
exact controllability results of system (3.5) and (3.6) are derived. It is noted that
the nonlocal condition in (3.6) is usually used to describe the diffusion phenomenon
of small amount of gas in a transparent tube.

Thirdly, consider the following fractional evolution equations of mixed type

ODIx(t) + Ax(t) = f(t,x(t), (Sz)(t), (Tz)(t)) + Bu(t), te J =0, (3.7)

with nonlocal condition (3.4), where S and T' are given integrals with scalar kernel
k(t,s) and h(t, s), respectively. Compared with [123], [80] established some results
on exact controllability for (3.4) and (3.7) by imposing some growth conditions on
nonlinearity f and nonlocal term g rather than the Lipschitz continuity, which can
be described as follows:

i) For r > 0, there exist constants q; € |0, ¢) and functions ¢, € a J,R*) such
F 0, th 0 df pr €L
that
lf(t,z, Sz, Tx)|| < or(t), a.e.teJ, VeeX satisfying ||z| < r.

IIsor(S)IILw

Moreover, suppose hm 1nf < 4o00.

(ii) The nonlocal term g C (J E) % X is compact and continuous. There exists
a nondecreasing continuous function 1 : RT — R™T such that || g(z) ||< ¥(r)

forallz € Q. = {z € C(J,X) : ||z|lc < r} (r >0)

It should be pointed out that, different from [123], [80] used the methods includ-
ing a new estimation of the measure of noncompactness and a fixed point theorem
with respect to a convex-power condensing operator. Obviously, condition (3.4)

m
reduces to condition (3.6) when g(z) = > cxx(ti) and xo = 6. For more outstand-
k=1
ing achievements about exact controllability of fractional differential systems under
the assumptions that the nonlinearity satisfies Lipschitz continuity, compactness or
some other growth conditions, we refer to [15, 31] and references therein.
Generally speaking, the controllability of the objective system is usually trans-
formed into a fixed point problem for some nonlinear integral operator in an suitable
function space. It is worth noting that the compactness conditions play a crucial
role in the proof of their results. Sometimes, the compactness of the operator semi-
group is required to obtain the controllability of the systems. Unfortunately, this is
the case only in finite-dimensional spaces [98] since the inverse of control operator
may not exist if the state space is infinite-dimensional. Similar technical errors due
to the compactness of semigroup 7'(¢) have also been pointed out by Hernédndez
et al. [19]. It can be observed that if the semigroup associated with the system
is compact, then the control operator must also be compact. At the same time,
it is also required that the control operator is reversible on a quotient space and
the inverse operator is bounded, which means that the assumptions are too strong.
From this point of view, approximate controllability is more attractive and popular
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as an extension of exact controllability, which avoids quite a lot limitations in some
practical applications by contrast.

Compared with the exact controllability, approximate controllability can steer the
considered system to arbitrary small neighborhood of final state. It is stressed here
that exact controllability and approximate controllability coincide when the space
is finite-dimensional. On the premise that the corresponding linear systems are ap-
proximate controllable, many scholars have studied the approximate controllability
of various fractional semilinear evolution systems such as the time-delay systems
[22, 32], impulsive systems [117], stochastic equations [86, 85], neutral equations
[68] and so on. Generally speaking, the major techniques to investigate approx-
imate controllability can be classified into three categories. The first one is to
use iterative and approximate techniques, that is called sequential approach also
[44, 90, 89]. The second one is the range conditions of the operator B [32, 69].
The last one, which is also the most popular one so far, is the method to use resol-
vent conditions based on resolvent operator or solution operator of the considered
systems [82, 68, 83].

Definition 3.8. The fractional system (3.1)-(3.2) is said to be approximately con-
trollable on J if Kp(f) = X, where K,(f) is called the reachable set of system
(3.1)-(3.2) at time b and is defined as

Ky(f) ={z(b,u) € X :u e L*(J,U), x(-,u) is the mild solution of (3.1) — (3.2)}.

We can also use the following equivalent expression:

Definition 3.9. The fractional system (3.1)-(3.2) is said to be approximately con-
trollable on J if, for any desired final state 1 € X and arbitrary € > 0, there exists
a control u € L%(J,U) such that x(t) satisfies ||z(b) — z1| < e, where z(t) is a
corresponding solution of system (3.1)-(3.2).

With regard to the method to use resolvent conditions, it is particularly impor-
tant to note that the approximate controllability results are based on the supposition
that the corresponding linear dynamical systems are approximately controllable.
For this reason, consider the following linear fractional systems corresponding to
(3.1) and (3.2):

CDix(t) = Ax(t) + Bu(t), teJ=][0,b],
2(0) = o.
Note that approximate controllability of (3.8) is an extension of approximate con-

trollability of linear first-order control systems. Then it is natural to introduce the
control operator associated with (3.8) as

(3.8)

b
Iy = / (b—5)1"1S(b— s)BB*S* (b — s)ds,
0
where B* and &* denote the adjoint of B and S, respectively.

Lemma 3.10. ([84]) The linear fractional system (3.8) is approzimately control-
lable on J iff a(al +T8)~! — 0 as a — 0% in the strong operator topology.

For fractional systems (3.1) and (3.2), R. Sakthivel et al. in [84] established
a new set of sufficient conditions guaranteeing the approximate controllability by
using the semigroup theory and fixed point strategy, which is given as follows:

Theorem 3.11. Assume that the following hypotheses hold:
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(i) T(t) is a compact operator for each t € [0, b).
(i) For each t € [0,b], the function f(t,-) : X — X is continuous and for each
x € C([0,b], X), the function f(-,z):[0,b] — X is strongly measurable.
(ii) There exists a constant ¢1 € [0,q] andm € Lﬁ([O, b),R™) such that | f(t,z)
m(t) for all x € X and almost all t € [0, ).
(iv) The function f:J x X — X is continuous and uniformly bounded, and there
exists N > 0 such that || f(t,x) [|[< N for all (t,z) € J x X.

Then the semilinear fractional system (3.1)-(3.2) is approzimately controllable
on J.

<

Notice that Theorem 3.11 requires the compactness of operator T'(t), which en-
sures that operators S(t) and T (t) are also compact for every ¢t > 0. This helps
to guarantee the existence of the mild solution to systems (3.1) and (3.2) in the
sense of Definition 3.2 via Schauder’s fixed-point theorem. In addition, the selec-
tion of subsequences and the compactness of some relevant operators (see Theorem
3.3 in [84] for details) via resolvent conditions are also based on this compactness
assumption. Further, by employing the similar technique adopted in Theorem 3.11,
authors in [84] extended the approximate controllability results to nonlocal FESs
(3.1) and (3.4):

Theorem 3.12. Assume that all the assumptions of Theorem 3.11 hold and, in
addition, the following hypothesis holds:

(v) g:C(]0,b], X) = X is a given function satisfying that there exists a constant
L'> 0 such that | g(z) — 9(y) I L || 2 —y ||, for any 7,y € C((0,1], X).
Then the semilinear fractional system (3.1) with nonlocal condition (3.4) is ap-
proximately controllable on J.

On the basis of the ideas presented in [84], S. Ji [23] further investigated the
approximate controllability of the same nonlocal fractional systems by resolvent
conditions and approximation method:

Theorem 3.13. ([23]) Assume that the following hypotheses are satisfied:
(i) T(t) is compact for every t > 0.
(i) f:]0,b] x X — X is continuous and there exists a positive constant Ly such
that || f(t,z) ||[< Ly for all (t,z) € [0,b] x X.
(i11) g : C([0,0]; X) — X is continuous and there exists a positive constant Lo
such that || g(z) ||< Ly for all z € C([0,b]; X). In addition, there exists a
d = 0(r) > 0 such that g(x) = g(y) for any z,y € W, with z(s) = y(s) for
s € [6,b], where W, ={z € C(J; X) :z(t) € B}, Br={x € X : ||z| <r}.
(iv) B:U — X is a linear bounded operator.
Then the fractional control system (3.1) with nonlocal condition (3.4) is approz-
imately controllable on J.

Here, the nonlinear term f and nonlocal term ¢ are supposed to be only contin-
uous functions, which are different from that in Theorem 3.12. Furthermore, it is
noted that, in infinite-dimensional spaces, Cy-semigroup 7'(¢) is compact only when
t > 0, that is, T'(¢) is not compact at ¢ = 0. In order to overcome this difficulty,
author in [23] established a compact set of approximate solutions on the basis of
approximate semigroup T(%), and derived the approximate controllability of (3.1)
and (3.4). From this point of view, the results in [23] improved that in [84]. Such
similar techniques also be used in [64].
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4. Controllability of systems with time delay. As we all know, the current
states of some practical systems clearly depend on the past history, which is the so-
called phenomenon of time delay. It occurs frequently and is inevitable in numerous
practical systems of the real world. In fact, time delay is closely related to various
evolution equations. Hence, the effect of time delay must be considered if we intend
to describe and analyze evolution systems accurately. With the development of the
applications for fractional calculus, the research on the controllability of FESs with
time delay is more and more extensive [32, 57, 89].

According to that the time delay is finite or not, such systems in the existing
literatures on fractional controllability can be classified into two types. One is FES
with finite time delay, and the other is FES with infinite time delay. There are many
excellent results on the controllability of FESs with finite time delay [13, 86, 88].
Compared with the spaces chosen to investigate infinite time delay systems, the
Banach spaces selected to study finite time delay systems are regular and relatively
simple.

Consider the following fractional finite time delay system:

CDlx(t) = Ax(t) + Ayx(t — h) + Bu(t) + f(t,z(t — h)), te J=[0,b], (4.1)
with initial condition

x(t) = ¢(t), te€[—h,0], (4.2)

where % < ¢ <1, Ais the infinitesimal generator of a Cy-semigroup 7'(t) on Hilbert

space V. A; is a bounded linear operator on V. U is a Hilbert space and u(t) € U. B

is a bounded linear operator and f is a nonlinear operator on V. ¢ € C([—h,0], V).

Based on the ideas of [90, 128], authors in [44] investigated the approximate

controllability of system (4.1)-(4.2) by using iterative and approximate techniques,
i.e. sequential approach. Their main result is given as below:

Theorem 4.1. ([44]) Suppose that the following hypotheses hold:

(i) The semigroup T(t) generated by A is continuous and uniformly bounded on
V, i.e., there is a constant M > 0 such that sup ||T(t)| < M.
t€[0,4+00)
(i1) The nonlinear function f(t,x) is continuous in t for all z € V and continuous
with respect to x for almost all t € [0,b], and there exists a positive constant
L, such that

(iii) For any e >0 and ¢ € Z = L%([0,b],V), there exists a u € Y = L2([0,b],U),
such that |Gy — GBullv < e, ||Bullz < v|¢llz, where

b
Gh = / (b— )T S(b— s)h(s)ds, h € Z,
0

and 7y is a positive constant which is independent of p € Z and satisfies

M(||A[ + L)y [ b2t
I'a) 200 —1

Eo(M([|A1]] + L)b%) < 1.

Then, system (4.1)-(4.2) is approxzimately controllable.

Different from the method of resolvent conditions mentioned in Section 3, the se-
quential approach utilized in [44] has many advantages. Hypothesis (i) in Theorem
4.1 indicates that Cp-semigroup T'(¢) is not necessarily compact, which represents
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a significant difference by contrast. In fact, if the semigroup 7'(¢) is compact or dif-
ferentiable for ¢ > 0, then T'(¢) is thus continuous in the uniform operator topology
for t > 0 which means hypothesis (i) in Theorem 4.1 holds naturally [71]. Hypoth-
esis (ii) is a contraction condition that guarantees the existence and uniqueness
of mild solution for system (4.1)-(4.2). It should be pointed out that the uniform
boundedness of nonlinearity is not necessary in comparison with resolvent condi-
tions method. The most important step is to construct iterative sequence of the
control u,, by induction in accordance to hypothesis (iii), which derives a Cauchy
sequences Bu,,, and thus leads to the approximate controllability of system (4.1)-
(4.2). Considering the existence of time delay in systems, it is necessary that b is
greater than h since z(t) can not be controlled on [b — h,0] with b < h. If A; =0
and h = 0, system (4.1)-(4.2) degenerates into system (3.1)-(3.2) whose approximate
controllability was studied by the method of resolvent conditions in [84].

Another interesting work on this subject is to study the relationship of approxi-
mate controllability between FES with delay and FES without delay. A. Shukla et
al. [88] studied the approximate controllability of the following two classes of FESs
of order ¢ € (1,2]:

“Dix(t) = Az(t) + Bu(t) + f(t,z(t — h)), te J=1[0,b],
x(t) = ¢(t), te€[—h,0], (4.3)
2'(0) = xo,
and the corresponding semilinear system without delay
“Dix(t) = Az(t) + Bu(t) + f(t,z(t)), t€ J=][0,b],
z(0) = ¢(0), (4.4)
2'(0) = xp,
where 1 < ¢ < 2, A is the infinitesimal generator of cosine operator families
{Cy(t)}t>0. X and U are separable Hilbert spaces. Z = L%*([0,b],X), Z, =
L?([-h,b],X), 0<h<band Y = L*([0,b],U). The control function u : [0,b] — U.
z(t) € Z, ¢ € L*([-h,0],X). B : Y — Z is a bounded linear operator. The
nonlinearity f : [0,b] x X — V satisfies Lipschitz continuity.

Different from [44], [88] took advantage of relationships of the approximate con-
trollability between system (4.3) and its corresponding semilinear system (4.4). The
approximate controllability of system (4.3) can be obtained from that of the approx-
imate controllability of system (4.4) under some suitable assumptions. The two
above-mentioned controllability results in [88] can be characterized by the following
two theorems:

Theorem 4.2. ([88]) If the following assumptions hold:
(1) Cy(t) is a compact semigroup.
(i) f is Lipschitz continuous with respect the second variable i.e
1f(t,2(t) — g(t, w(t))|[x < Lgllx(t) —w(t)]x.
(i1i) R(G) C R(B), where G is the Nemytskii operator of the function f(t,x(t)), and
R(G), R(B) denote the range of the operator G and operator B, respectively.
(iv) The system (4.4) is approximately controllable.

Then, the system (4.8) is approzimately controllable.
Theorem 4.3. ([88]) Suppose that the assumptions (i), (ii) and (iv) in Theorem
4.2 hold. In addition, assumption (iii) in Theorem 4.2 is replaced by
(iii) " R(G) C R(B).
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Then, the system (4.8) is approximately controllable.

Besides using Lipschitz continuity of nonlinearity to obtain the existence and
uniqueness of mild solutions, some other types of fixed-point theorems are also
used to study the controllability of fractional finite time delay systems. For in-
stance, authors in [27] established some necessary and sufficient conditions for the
exact controllability of certain linear fractional finite delay systems by using the
Laplace transformation techniques and Mittag-Leffler function, and also presented
a sufficient condition for the exact controllability of nonlinear fractional finite delay
system via Schauder’s fixed-point theorem. [26] investigated a implicit fractional
finite delay system with multiple delays in control. Under the hypothesis that
control Gramian matrix W is positive definite and nonlinear term is Lipschitz con-
tinuous and bounded, some sufficient conditions ensuring the exact controllability
are obtained by Darbo’s fixed-point theorem [26].

As we know, the theory of noncompactness measures is also a powerful tool to
study the controllability of fractional time delay systems in infinite-dimensional Ba-
nach spaces. Consider the following fractional nonlocal semilinear evolution systems
with finite time delay:

{ Dix(t) = Ax(t) + f(t,z(t),x¢) + Bu(t), a.e.te J=1]0,b], (4.5)
x(t) + M(t,xz) = ¢(t), te[—h,0] ‘

where ¢ € (0,1), z : J — X, u € L?>(I,U), and B : U — X is a bounded linear
operator. X and U are Banach spaces. A: D C X — X is a closed linear unbounded
operator on X with dense domain D. ¢ € C([-h,0], X).

Inspired by [57, 123], authors in [124] established a new result of exact control-
lability for system (4.5) by utilizing the theory of noncompactness measures and
resolvent operators. Due to the existence of time delay, sometimes we need to
choose or construct some appropriate spaces. Therefore, different from [123], [124]
selects the complete space L([—h,0], X) to conquer the difficulties caused by time
delay during the use of noncompactness measures technique in different spaces (see
Lemma 4 and 5 in [124] for detais). Compared with [57], [74] deduces the mild
solutions of system (4.5) by a resolvent operator family. In order to avoid the com-
pact hypothesis on resolvent operator, differentiability of resolvent operator is used
to derive the mild solution. Similar to [123], the definition of exact controllability
described the characteristic of “fast time” in [124] (Definition 3.2, [123]). However,
the two papers did not provide numerical simulation for this phenomenon of “fast
time”. Obviously, when ¢ is taken as 0, initial condition of (4.5) reduces to the form
of condition (3.4).

Generally speaking, for the sake of investigating approximate controllability of
nonlinear FESs with delay or without delay, some restrictive assumptions need to
be imposed on the system components, such as continuity or Lipschitz continuity
of nonlinearity, control interval, compactness of semigroup, and range conditions of
operator B. For instance, S. Kumar and N. Sukavanam [32] derived the approximate
controllability for system (4.1)-(4.2) with A; = 0 by using the approach of range
conditions of operator B,

{ CDix(t) = Ax(t) + Bu(t) + f(t,z(t — h)), t€ J=][0,0], (4.6)
x(t) = ¢(t), te€[—h,0]. ’
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Denote the range of the operator B by R(B), and define a linear operator £ from
b

Z = L*([0,b],V) to V by L¢ = / (b— )T 1S(b — s)€(s)ds. Motivated by [69],
0
authors in [32] supposed the hypothesis (HB) as follows:

(HB) for each £ € Z, there exists a function n € R(B) such that L¢ = L,).

It should be pointed out that hypothesis (HB) is essential to obtain the approximate
controllability for system (4.6), since it implies that the corresponding linear system
of (4.6) is approximately controllable. Also, from hypothesis (HB), they deduced
that there is a geometrical relation in Z between the range of operator B and the
null space of operator L,

Z = No(L) & Ny (£) = No(£L) & R(B),

where Ng- (L) denotes the orthogonal complement space of null space No(£). Due to
the existence of time delay, mild solution is derived in the same way as in [88]. Else,
the uniform boundedness of nonlinearity required in resolvent conditions method is
replaced by Lipschitz continuity here. The technique of range conditions of operator
B is rarely used by far, we refer to [22, 91] for further details.

As we know, the theory of differential equations with finite time delay has been
developed extensively. However, there are many complex dynamic systems in prac-
tice which can not be described and analyzed accurately by using finite time delay.
In recent years, the theory of differential equations with infinite delay has received
a great deal of concerns and gained rapid progress due to its applications in science
and engineering. The choice of phase space is of vital importance. How to choose
a suitable phase space is essential to solve such problems with infinite time delay.
The most effective phase spaces used so far are Cj-class space and C,4-class space
[2, 21]. This is also true for FESs with infinite time delay. More recently, many
controllability results about FESs with infinite delay were established [28, 68]. P.
Muthukumar et al. [68] presented some sufficient conditions to obtain the approxi-
mate controllability for nonlinear fractional nonlocal neutral stochastic differential
systems of order a € (1,2) with infinite time delay and Poisson jumps by using
Lebesgue dominated convergence theorem and the compactness of some operator
families.

In addition, [28] studied the following fractional systems with infinite delay:

Dg;"[x(t) —g(t,m)] = Azx(t) + f(t,z) + Bu(t), te(0,0], (4.7)
18901 mo = ¢(0) € C, ¢ € (—o00,0], (4.8)
IO 0() | imo = G(0) + q(261, 240 255 -+ 26,) € Chy t € (—00,0],  (4.9)

where Dgf stands for Hilfer fractional derivative of order n and type &. & € [0,1]
and n € (%, 1). Cy, is an appropriate phase space. A is the infinitesimal generator
of analytic semigroup {T'(¢)}. 0 < t1 <t < t3 < --- <ty < b, q:Cy — Cp.
Under appropriate assumptions applied to semigroup 7" and the power of A together
with some growth conditions imposed on nonlinear function, exact controllability of
system (4.7)-(4.8) was established by utilizing Moénch’s fixed-point theorem. As an
extension of system (4.7)-(4.8), the nonlocal neutral differential systems (4.7) and
(4.9) was considered also in [28]. It should be remarked that the Hilfer fractional
derivative degenerates into classical Riemann-Liouville fractional derivative if £ =
0, n € (0,1), and it degenerates into classical Caputo derivative if ¢ =1, n € (0,1).
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As we know, the general method to study the approximate controllability on FESs
with infinite time delay is resolvent condition technique [83]. Differently, A. Shukla
et al. in [89] studied the approximate controllability for the following semilinear
FES of order « € (1, 2] with infinite delay based on the sequential approach:

CDix(t) = Ax(t) + Bu(t) + f(t,x;), t€[0,0],

x(t)=x90=¢ €B, tec(—o0,0]. (4.10)

2(0) =¥ €Y,
where A is the infinitesimal generator of strongly continuous cosine family {C, (t) }:>0
on the Banach space Y and A belongs to C*(Y; M,w) [74]. State x(t) takes values
inY. B:U — Y is a bounded linear operator, U is a Banach space. The his-
tory function x¢ : (—00,0] — Y which is defined as x¢(0) = z(t + 0) belongs to B
for ¢ > 0, where B is a Cj,-class abstract phase space described axiomatically, and
maps (—o0, 0] into ¥ endowed with a seminorm |||/ which satisfies some necessary
axioms.

Theorem 4.4. ([89]) Assume the following conditions hold:

(i) The nonlinear function f(t,z) : [0,b] x B — Y satisfies the Caratheodory
condition and there exists a positive constant L such that

||f(t,$) - f(tay)”Y < L||$ - y”%a V:c,y € %7 te [Oab]

(ii) For any given € > 0 and p € L?([0,b],Y), there exists some w € U such that
b

|Lp—LBully <€, where Lp = / (I“7'C,) (b—s)p(s)ds, for p € L*([0,b],Y).
0
(iii) || Bullz2(j0,6),v) < Mpllz2(j0,5),v), where X is a positive constant independent of
.

Mb? b1L
w) The constant X\ satisfies ——AL exp(M —) < 1.
() i I'(q) ( F(q))

Then, the fractional infinite time delay system (4.10) is approximately control-
lable.

It should be pointed out that hypothesis (ii) in Theorem 4.4 plays an important
role in ensuring the approximate controllability for correponding linear system.
Authors in [89] defined a solution mapping ¢ from L?([0,5],Y) to C([0,b],Y) as
(¢Bu)(t) = x4(Bu) to deduce K,(0) = Y. This is crucial to derive the approxi-
mate controllability of system (4.10) provided that K;(0) C K,(f). Hypothesis on
nonlinearity and construction of the sequence of control are similar to that in [44].

5. Controllability of systems with impulsive effects. In real applications, a
system (such as signal processing systems, computer networks, automatic control
systems, and telecommunications) is often affected by abrupt changes and instan-
taneous disturbances at a certain moment. These systems are often described by
impulsive differential systems which contain some continuous-time differential equa-
tions and some jumping operators. Since impulsive differential systems involved in
piecewise continuous function spaces, some properties of continuous function spaces
may not be applicable if they are extended to piecewise continuous spaces, such as
Ascoli-Arzela theorem and the properties of noncompactness measure. For the sake
of describing the evolution processes more reasonably and accurately, the influence
of abrupt changes and instantaneous disturbances must be fully considered.

In many cases, impulse phenomenon and memory effect cross each other in evolu-
tion processes. For instance, impulsive system is suitable to describe the population
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model which is suddenly affected by disease and famine. However, the current num-
ber of population is closely related to the previous population base, gender ratio
and age structure. These phenomena with memory effect can be described more
precisely by fractional impulsive differential systems. Hence, it is believed that frac-
tional differential equations with impulse and fractional impulsive control systems
have great research significance and wide application background.

With regard to the study on controllability of fractional impulsive evolution
equations, the most important step is to obtain the existence of mild solutions to
the considered systems. The first systematic investigation for the mild solutions of
fractional impulsive evolution equations was made by Mophou [67]. Although this
type of mild solution has been quoted by many scholars, it is not suitable for their
considered systems. The main reason is that these definitions based on that in [67]
do not consider its memory and heredity. In recent years, some mathematicians
have pointed out this error in the comments of [87].

Based on this, Z. Liu et al. [61] considered the following nonlinear fractional
impulsive evolution systems:

CD?.’I}(t) = A.Z‘(t) + BU(t) + f(t,.’II(t))7 ted= [Oab] \ {tlat% o 'atk}v
z(0) = o,

where g € (0,1], state z(t) € X, control function u € L?(J,U), and X, U are Banach
spaces. A is the infinitesimal generator of a strongly continuous semigroup {7'(t) }+>0
on Banach space X. f:J x X — X is a given X-value function. I; : X — X is
continuous, 0 =tg < t; < -+ <t; < -+ <t < tpy1 = b, Ax(t;) = 2(t]) — x(t]),
z(t}) and z(t;") denote the rlght and the left limits of z(¢t) at t =¢; (i =1,2,---, k).
They derived the mild solution of fractional impulsive system (5.1) satisfying

T (t)xo + /0 (t —5)71S(t — 5)(f(s,2(s)) + Bu(s))ds, t € [0,t1],

T(t)z0 +/0 (t— $)1LS(t — 8)(F(5,2(5)) + Bu(s))ds
z(t) = +T(t —t1) 1 (2(t])), t € (t1,t2], (5.2)

t

T(t)a:o—i—/o (t— $)I7LS(t — $)(F(5,2(s)) + Bu(s))ds
3 T = t) L)), t € (t, ).

In addition to the hypotheses of Theorem 3.2 in [101], authors in [61] supposed that
impulsive functions I; (¢ = 1,2, - -, k) satisfy Lipschitz continuity, and defined a
piecewise control function in view of (5.2). The eaxct controllability result of system
(5.1) is established by using Krasnoselskii’s fixed-point theorem.

Also by using the similar techniques as in [61] and with the Lipschitz continuity
imposed on nonlocal terms, [79] and [115] further studied the exact controllability
of the following fractional impulsive differential and integro-differential evolution
equations with nonlocal conditions, respectively:

“Dix(t) = Ax(t) + Bu(t) + f(t,z(t)), t€J=[0,b]\{t1,t2, -k},
Ax(t;) = Li(x(t;)), i=1,2,-- -k,
z(0) + g(z) = zo,

(5.3)
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+ Bu(t) + f(t,2(t), (Hz)(), teJ=[0,0]\{tr,ta,-- - 1k},
1 2

(5.4)
As for the case g(x) = 0, similar results of exact controllability for system (5.4) was
obtained in [81].
Recently, authors in [17] considered the following similar FESs with nonlocal
initial condition and impulsive effects:

CDix(t) = Ax(t) + Bu(t) + f(t,z(t)), t€ J=1[0,b]\ {t1,ta, -~ tx},

Azx(t) = Li(z(t;), i=1,2,--k,

z(0) = g(x),

(5.5)

The approximate controllability was established by using Schaefer’s fixed-point the-
orem, Darbo’s fixed-point theorem and the theory of noncompactness measure. It
should be further pointed out that [17] adopted the approximate technique to deal
with system (5.5), which is different from the conventional method that certain
fixed point theorem is applied directly to the corresponding integral operator. This
method can overcome the difficulty caused by nonlocal conditions and reduce the
assumptions on the impulsive terms effectively. In addition, unlike the hypotheses
of [13, 79, 84, 115] in which the nonlinearity f and nonlocal function g were assumed
to be Lipschitz continuous, the controllability result in [17] was obtained without
the Lipschitz continuous or compact conditions on f and g.

At present, most of the fractional impulsive controllability results are involved
in Caputo fractional derivative. However, there are still a few literatures on the
controllability of FESs with Riemann-Liouville derivatives [54, 60]. In [54], Z. Liu et
al. studied the approximate controllability of a class of fractional impulsive neutral
evolution equations with Riemann-Liouville derivatives under the assumption

k
+Y Mdi(t—t)* 7 +

i=1

LagMb®
INa+1)

Ly Mb™

Lagll A7 + Tita)

<1 (5.6)

Unfortunately, this assumption is unreasonable due to the possibility that operator
A~! may be unbounded and (¢ — ¢;)*~! may tend to infinity as t — ;.

In addition, Z. Liu et al. in [60] considered the following fractional impulsive
evolution systems with Riemann-Liouville derivatives:

RLDIL(t) = Ax(t) + Bu(t) + [(La(t), ¢ €] = 0,0\ {tr,ts, - ta),
AL %) = Gty a(ty), i=1,2,--k,
Itl_ql“(t)l,g:o =1x9 € X,

(5.7)
where A is the infinitesimal generator of a Cy-semigroup {7'(¢) };>o on Banach space
X. f,G;: J x X — X are given continuous functions. AItI:qx(ti) = Itl_fq;v(tf) -
I'92(t7) = D(q)(lm (t—t;) "% (t)— lim (t—t;)' " 92(t)). I'] () and '~ 9 (1))

b t—t; -t t; t;
denote the right and the left limits of I} ~%(t) at t = ; (i = 1,2, ---, k). The control
wisin LP(J,U),p > % and U is a Banach space. B is a linear operator from LP(J, U)
into LP(J, X).
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In order to avoid the error (5.6), authors in [60] established some new suffi-
cient conditions of approximate controllability for system (5.7). By introducing
Banach space PCi_4(J,X) = {z : (t — t;)'7%(t) € C((ti,tit1],X) and lim (¢t —

t

t+

k3

ti)17%x(t) exists,i = 0,1,2, - - k} with a weighted norm
|zllpe,, = max{ sup (t—t:)""Yz(t)]|x: i=0,1,2,-- -k},
tE(tistign]

they derived the existence and uniqueness of PC'i _;-mild solutions for systems (5.7)
under the Lipschitz continuity exerted on the nonlinearity and impulsive items.
Noticing that the semigroup T'(t) is differentiable on X, system (5.7) is proved to
be approximately controllable by using iterative and approximate techniques. The
controllability results are presented as below:

Theorem 5.1. ([60]) Suppose that the following hypotheses hold:
(i) The function f(-,z) : J — X is measurable for all x € X and ||f(-,0)| €
LP(J,RY). Moreover, there exists a constant L > 0 such that
I1f(t,x) = ft )l < Lt =)' "z — yllx
for a.e. t € (t;,ti41],i=0,1,2,-- -k, and z,y € X.
(ii) There exist constants 0 < d; < T'(q)/(2M > (t;—t;—1)771), i=1,2,--- k+1,
j=1
(M = sup | T@®)|) such that ||Gi(t;,z) — Gi(t; , )| < dillx —yllx, for all
te[0,4+00)
z,y € X.
(iii) For any e >0 and p € LP(J, X), there exists a control u € LP(J,U) such that
IGp — GBulx <&, [|Bullrrs,x) < NlellLex),
where

b
Gh = / (b—5)T"'S(b— s)h(s)ds, h(-) € LP(J, X),

0
N is a positive constant satisfying

M F [ p—1\""#
N(1L= D) E,(MLY) ~5 <;_1> <1,

and D* = max{[M i di(t; —tj—1)T ) E,(MLDY)|/T(q) : i =1,2,-- -, k}.
j=1

Then, system (5.7) is approxzimately controllable on J, if the Cy-semigroup T(t)
generated by A is differentiable on Banach space X.

6. Controllability results via resolvent operator. Generally speaking, the ap-
proach of resolvent operator can be applied to the inhomogeneous equations to
derive various variation of parameters formulas, and also it can lead to improved
perturbation results and stronger properties of the variation of parameter formulas
[74]. For equations with unbounded operators in infinite-dimensional space, the
resolvent operator is more appropriate because it is a direct generalization of Cjy-
semigroups and cosine families. From the viewpoint of dependent parameters, it
can be generally classified into two types: univariate resolvent operator [39, 68, 129]
and bivariate resolvent operator [7, 13, 111].
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Definition 6.1. ([7]) Let A : D(A) C E — FE be a closed linear operator defined
on a Banach space E and a,8 > 0. Let p(A) be the resolvent set of A, we say
that A is the generator of an («, 8)-resolvent operator family, if there exist w > 0
and a strongly continuous function S, g: [0,+00) — L(E) such that S, g(t) is
exponentially bounded, {A® : ReA > w} C p(A), and for all u € E,

(o)

NPT — Ay = / e NSy p(t)udt, Rel > w.
0

In this case, {Sqa,3(t)}+>0 is called the (o, B)-resolvent operator family (also called

(a, B)-resolvent operator function) generated by A.

Definition 6.2. ([74]) The bounded linear operator {S(t)};>0 C L£(X) on X is
called a resolvent operator of the following integral equation:

u(t) = /0 o(t — s)Au(s)ds, t >0,

where the scalar kernel o € L} (R*) and o # 0, provided that:

loc
(i) S(t) is strongly continuous, S(0) = I;
(ii) S(t) commutes with A, that is S(¢)D C D, AS(t)u = S(t)Au for each u € D
and each t > 0;

t
(iii) S(t)u =u+ / o(t — s)AS(s)uds, for all u € D, t > 0.
0

For the special cases o(t) = 1 and o(t) = t, the resolvent operator S(t) reduces
to the Co-semigroup e* (T'(t)) and the cosine operator family Co(t), respectively.
Denote S(t) by Sa(t) with a € (0,2]. It is not difficult to see that Sy 1(t) = Sa (),
S1(t) = T(t) and Sa(t) = Co(t).

Based on the subordination principle, if A is a infinitesimal generator of a Cjy-
semigroup T'(t) (S1(¢)) being exponentially bounded, then it must be a infinitesimal
generator of a resolvent operator S, (t) with a € (0,1). But the converse may not
be true. Consequently, all the classic Cy-semigroup-based controllability results in
the existing literature can be also obtained similarly via resolvent operator S, (t)
with a € (0,1). More specifically, the resolvent operator theory plays an important
role on those FESs that can not generate a Cy-semigroup but admit a resolvent
operator. For more details of resolvent operator theory, please refer to [74] and
references therein.

Theoretically, for the evolution equations with order of fractional derivative
a € (0,2], resolvent operator theory can be fully utilized and it can play an ef-
fective role in the investigation of controllability problems. But compared with
classic Cy-semigroup-based fractional controllability consequences, the results ob-
tained by resolvent operators is relatively few. Considering the case that the in-
finitesimal generator A defined on a dense domain is possiblely dependent on more
than one variable, Debbouche and Baleanu [13] introduced a new concept called
(v, u)-resolvent operator, and studied the exact controllability for a class of frac-
tional nonlocal impulsive integro-differential control system by utilizing the fixed
point theory and the properties of (a,u)-resolvent operator. It should be pointed
out that all variables of the systems in [13] need to satisfy Lipschitz continuity con-
dition, which is limited for practical problems. Under a new introduced concept of
exact controllability and assumptions that f satisfies continuity instead of Lipschitz
continuity, [123] obtained an interesting controllability result by using the theory of
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resolvent operator, fixed point strategy and Kuratowski’s measure of noncompact-
ness. Its result is an extension of the existing result of exact controllability to some
degree.

Up to now, there are not many papers on controllability problems of FESs with
order « € (1,2). Especially, the resolvent operator theory plays an irreplaceable
role in dealing with the evolution equations of order « € (1,2). P. Muthukumar and
K. Thiagu [68] presented some sufficient conditions to obtain the approximate con-
trollability for nonlinear fractional nonlocal neutral impulsive stochastic differential
systems of order a € (1,2) with infinite delay and Poisson jumps by using Lebesgue
dominated convergence theorem and the compactness of some operator families.
Utilizing resolvent operator theory and fixed point techniques, R. Sakthivel et al.
[83] derived some sufficient conditions to ensure the approximate controllability for
a class of nonlinear fractional differential systems of order o € (1,2) with nonlocal
conditions. In addition, the same results are obtained for such systems with infinite
time delay. Chang et al. [7] introduced (c, 3)-resolvent operator {S, g(t)}i>0 in
the sense of Definition 6.1 to investigate the approximate controllability for two
classes of FESs of Sobolev type with order a € (1,2) via the norm continuity and
compactness about {5, 5(t)}+>0 for suitable a, 5 > 0.

Recently, K. Li et al. in [39] considered the fractional systems (3.1), (3.4) together
with the initial condition

.7;/(0) = Yo, (6'1)

An appropriate definition of mild solutions via Laplace transformation was intro-
duced. Else, they derived some sufficient conditions to ensure the exact controlla-
bility for nonlocal problem (3.1), (3.4) and (6.1) by using Sadovskii’s fixed-point
theorem and vector-valued operator theory under the following hypotheses on non-
linearity together with some conditions imposed on operators B and W.

(i) f:]0,b] x X — X satisfies the Carathéodory condition, i.e. f(-,z) is measur-

able for all x € X, and f(,-) is continuous for a.e. ¢ € [0, b].
(ii) f:[0,b0] x X — X is compact.
(iii) There exists a function Iy € L'([0,b]; R4) such that

1t 2) = f(t2) (IS (@) [z ==, =,2€X.

Following [39], authors in [89] and [88] addressed the semilinear fractional control
system of order « € (1,2] with infinite delay and finite delay, respectively. They
derived some sufficient conditions to ensure approximate controllability of the pro-
posed systems. What’s interesting is that the sequential method was used in [89]
instead of the fixed point strategy.

For most practical problems, it is especially effective to solve the abstract differ-
ential equations of second order directly rather than transforming them into first-
order systems. Travis and Webb [97] established the theory of strongly continuous
sine and cosine operator families, in which they analyzed the advantages of such
method. But for fractional controllability problems of order « € (1,2], the major
difficulty is how to give the appropriate definition of mild solutions for considered
systems since the Mainardi’s Wright-type function is only well defined for « € (0, 1).
Fortunately, this problem was well solved by Y. Zhou and J. He [129]. They derived
a new concept of mild solutions for the objective system (3.1), (3.2) and (6.1) by
using the Laplace transformation and Mainardi’s Wright-type function based on the
theory of sine and cosine operator families:
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Definition 6.3. ([129]) For each u € L?(J;U), a mild solution of the system (3.1),
(3.2) and (6.1), it means that the function x € C(J;X) satisfies the following
integral equation

2(t) = Cy(t)zo + Ky(t)e, + / (t— )7 Byt — 5) (s, 2(5))ds

+/0 (t — )91 P,(t — s)Bu(s)ds,

for each t € J, where ¢ = £ € (1,1) and

C,(t) = /0 h M,(0)C(t90)d0, K,(t) = /O t Cy(s)ds, Py(t) = /O h g6 M, (6)S(t70)df,

M,(t) denotes Mainardi’s Wright-type function, C'(t) and S(¢) represents strongly
continuous cosine operator family and sine operator family, respectively.

Their main results are as follows:

Theorem 6.4. ([129]) Assume the following conditions holds:
(i) f(t,") : X = X is continuous for a.e. t € J =10,b], and f(-,x) : J — X is
strongly measurable for all x € X.
(ii) There exists a function kg € L*(J,R") such that

| f(t,2) [< kp()p(] 2 ),

for each t € J and for all x € X, where ¢ : Rt — RT is a nondecreasing
continuous function satisfying

lim inf #(r)

r—00 T

=0.
(iii) The linear operator B : U — X is bounded, W : L*(J,U) — X defined by
b
Wu = / (b—8)TtP,(b— s)Bu(s)ds
0

has an inverse operator W =1 which takes values in L*(J,U)/kerW and there
exist two positive constants My, My > 0 such that || B |1, w,x)< My and

WM 2y (x, L2 (0,0 fkerwy < Mo

(v) For everyt € J and for each v > 0, the set {P,(t — s)f(s,z), s € [0,t], z €
X, ||lz|| < r} is relatively compact in X.

Then, the evolution system (3.1), (3.2) and (6.1) is exactly controllable on J.

It is observed that the infinitesimal generator A in [129] generates a strongly con-
tinuous cosine operator family C(¢) (or denotes S2(t)). As a result of subordination
principle, it can also generate the resolvent operator S, (t) associated with A similar
to [39] for a € (1,2), but the converse statement does not necessarily hold. Hence,
[129] present a new approach to obtain the exact controllability of FESs with order

€ (1,2). Subsequently, based on the mild solution given in [129], authors in [82]
further investigated the approximate controllability for fractional differential evo-
lution equations of order « € (1,2). Their main results are obtained by using the
properties of solution operators deduced from cosine and sine operators families,
Schauder’s fixed-point theorem and Dhage’s fixed-point theorem.
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7. Conclusions and future work. The controllability is one of the fundamental
problems for FESs. This work has provided a comprehensive survey on the ele-
mentary results and some recent progress of the controllability for FESs. Exact
controllability and approximate controllability of some kinds of FESs are reviewed.
Firstly, several basic FESs with classical initial and nonlocal conditions are consid-
ered. Some fundamental theory and sufficient conditions are presented to ensure
the exact controllability and approximate controllability for such systems. Secondly,
FESs with finite time delay and infinite time delay are discussed, respectively. We
talked over three different methods for investigating approximate controllability of
these time-delay systems. Thirdly, controllability results on some types of FESs
with impulsive effects are discussed. At last, exact controllability and approximate
controllability for FESs obtained by using resolvent operator theory have been care-
fully analyzed.

The interested directions of the theoretical study in the future on the controlla-
bility for FESs may be as follows:

(i) The systems studied on this topic will be more and more extensive and com-
plicated. For instance, it is valuable to investigate controllability for hybrid
FESs with delay, impulse or stochastic factors.

(ii) Besides fixed point theorem, more effective tools for studying controllability
of FESs should be further developed.

(iii) Application area of controllability for FESs in reality need to be investigated
in depth.

For our subsequent work, the following issues will continue to be focused on:

(1) It is noted that Lipschitz continuity and compact conditions are required in
most of existing work on this area. How to relax such conditions imposed on
nonlinear terms still need to be well investigated.

(2) Relationship of approximate controllability between FES with impulse and FES
without impulse has not been fully described. Further research progress in this
field is expected to be well achieved.

(3) When FES is affected by impulse and time delay simultaneously, the investiga-
tion of controllability on its nonlocal problem is still insufficient. In particular,
to deal with such problems via resolvent operator should be further explored.

(4) Numerical simulation or other applications about the theoretical results, such as
digital filters in Digital Signal Processing (DSP), should be paid more attention
in the future work.
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