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Abstract. We present here a general rule of construction of identities for
recursive sequences by using sequence transformation techniques developed in

[16]. Numerous identities are constructed, and many well known identities

can be proved readily by using this unified rule. Various Catalan-like and
Cassini-like identities are given for recursive number sequences and recursive

polynomial sequences. Sets of identities for Diophantine quadruple are shown.

1. Introduction. Albert Girard published a class of identities in Amsterdam in
1629 and Edward Waring published similar material in Cambridge in 1762-1782,
which are referred as Girard-Waring identities later. These identities may be derived
from the earlier work of Sir Isaac Newton. Surveys and some applications of these
identities can be found in Comtet [5] (P. 198), Gould [10], Shapiro and one of the
authors [13], and the authors [15]. We now give a different approach to derive
Girard-Waring identities by using the Binet formula of recursive sequences and
divided differences. Meanwhile, this approach offers some formulas and identities
that may have more wider applications. Finally, an application of the Girard-Waring
identities to the sum of powers of consecutive integers is studied.

This paper starts from a review of the application of recursive sequences in the
construction of a combinatorial identity called generalized Girard-Waring identity
from the Binet formula and the generating function of a recursive sequence. By
using the generalized Girard-Waring identity, the Binet type Girard-Waring identity
is derived. Then the generalized Girard-Waring identity is used to develop several
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transformation formulas for recursive sequences of numbers and polynomials. All
those results are shown in Nie, Chen, and the authors [16].

A recursive sequence constructed from a recursive relation starting from a few
initial quantities models some real world problems or mathematical problems. As a
natural mathematical model, recursive sequences are widely used in Combinatorics
and Graph Theory, Number Theory, Fractal, Cryptography, etc. Many recursive
number and polynomial sequences can be defined, characterized, evaluated, and/or
classified by linear recurrence relations of various orders. Throughout this paper, a
number sequence {an} is called a linear recursive sequence of order 2 if it satisfies
the following linear recurrence relation of order 2:

an = pan−1 + qan−2, n ≥ 2, (1)

for constants p, q ∈ R and q 6= 0 and initial conditions a0 and a1. Let α and β be
two roots of the quadratic equation x2 − px− q = 0, of which the left-hand side is
called the characteristic polynomial of the recurrence relation. From He and Shiue
[14] (see also in [11, 12, 17] for some applications), the general term of the sequence
an can be presented by the following Binet formula.

an =

{ (
a1−βa0
α−β

)
αn −

(
a1−αa0
α−β

)
βn, if α 6= β;

na1α
n−1 − (n− 1)a0α

n, if α = β.
(2)

In [16], the following expression of the general term of the recursive sequence
defined by (1) is given.

Theorem 1.1. ([16]) Let (an) be the sequence defined by the recursive relation (1),
and let α and β be two distinct roots of the characteristic polynomial of (1). Then
we have the following generalized Girard-Waring identity:

an = a1p
n−1 +

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
pn−2j−1qj (jpa0 + (n− 2j)a1) . (3)

Particularly, if a0 = 0 and a1 = 1, (3) implies the Binet type Girard-Waring identity

an =
αn − βn

α− β
=

[n/2]∑
j=0

(
n− j − 1

j

)
pn−2j−1qj (4)

=

[n/2]∑
j=0

(−1)j
(
n− j − 1

j

)
(α+ β)n−2j−1(αβ)j , (5)

where p = α+ β and q = −αβ.

As a source of Binet Girard-Waring identity, the generalized Girard-Waring iden-
tity (3) and its extension to recursive polynomial sequences have many applications
including a simple way in transferring recursive sequences of numbers and poly-
nomials. Recall that the Chebyshev polynomials of the first kind defined by the
recurrence relation

Tn(x) = 2xTn−1(x)− Tn−2(x) (6)
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for all n ≥ 2 with initial conditions T0(x) = 1 and T1(x) = x, from Theorem 1.1 we
have

Tn(x)

= 2n−1xn + n

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
(−1)j2n−2j−1xn−2j . (7)

Similarly, for Lucas numbers defined by

Ln = Ln−1 + Ln−2

for all n ≥ 2 and L0 = 2 and L1 = 1, we have

Ln = 1 + n

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
.

From the expressions of Tn(x) and Ln, we may see that

Tn

(
− i

2

)
=
i3n

2
Ln =

(−i)n

2
Ln,

or equivalently,

Ln = 2inT

(
− i

2

)
,

where i =
√
−1.

In general, [16] presents the following result for transferring a certain class of
recursive sequences to the Chebyshev polynomial sequence of the first kind at certain
points.

Theorem 1.2. ([16]) Let {an}n≥0 be a sequence defined by (1) with pa0 = 2a1,
a0 6= 0, and let {Tn(x)}n≥0 be the Chebyshev polynomial sequence of the first kind
defined by (6). Then

an =
2a1p

n−1

(2x0)n
Tn(x0), (8)

where

x0 = ± ip

2
√
q
.

Namely, an shown in (8) can be expressed as

an = (∓i)na0qn/2Tn
(
± ip

2
√
q

)
. (9)

Theorem 1.2 can be extended to recursive polynomial case as follows.

Corollary 1. ([16]) Let {an(x)}n≥0 be a recursive polynomial sequence defined by

an(x) = p(x)an−1(x) + qan−2(x),

where p(x) ∈ R[x] and q ∈ R, with initial conditions a0(x) and a1(x) satisfying
p(x)a0(x) = 2a1(x). Then

an(x) = (∓i)na0(x)qn/2Tn

(
± ip(x)

2
√
q

)
,

where Tn(x) is the nth Chebyshev polynomial of the first kind.
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The proofs of Theorem 1.2 and Corollary 2 can be found in [16]. In addition, [16]
considers the recursive polynomial sequences defined by (1) with initial conditions
a0(x) = 0 and a1(x) 6= 0, where p = p(x) ∈ R[x] and q ∈ R. For instance,

Ûn+1(x) = 2xÛn(x)− Ûn−1(x) (10)

for all n ≥ 1, where initial conditions are Û0(x) = 0 and Û1(x) = 1. It is obvious

that Ûn+1(x) = Un(x), the Chebyshev polynomials of the second kind. By using
(3), we have

Ûn(x) = (2x)n−1
[n/2]∑
j=0

(
n− j − 1

j

)(
− 1

4x2

)j
. (11)

If an is a sequence defined by (3), with the initial conditions a0 = 0 and a1 6= 0,
direct substitution shows that

an = a1p
n−1 +

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
pn−2j−1qj(n− 2j)a1

= a1p
n−1 +

[n/2]∑
j=1

(
n− j − 1

j

)
pn−2j−1qja1

= a1p
n−1

[n/2]∑
j=0

(
n− j − 1

j

)
p−2jqj . (12)

Comparing with the rightmost sides of (11) and (12), the following result is ob-
tained.

Theorem 1.3. ([16]) Let {an}n≥0 be the sequence defined by (1) with a0 = 0 and
a1 6= 0, and let {Un(x)}n≥0 be the Chebyshev polynomial sequence of the second

kind defined by (10), where Un(x) = Ûn+1(x). Then

an = (∓i)n−1a1q(n−1)/2Un−1(x0), (13)

where

x0 = ± ip

2
√
q
.

Namely,

an = (∓i)n−1a1q(n−1)/2Un−1
(
± ip

2
√
q

)
.

Theorem 1.3 is extended in [16] to recursive polynomial case as Chebyshev poly-
nomials of the second kind.

Corollary 2. Let {an(x)}n≥0 be the recursive polynomial sequence defined by

an(x) = p(x)an−1(x) + qan−2(x),

where p(x) ∈ R[x] and q ∈ R, with initial conditions a0(x) = 0 and a1(x) 6= 0. Then

an(x) = (∓i)n−1a1(x)q(n−1)/2Un−1

(
± ip

2
√
q

)
.

Numerous examples of the transformation of recursive number and polynomial
sequences are shown in [16]. In the next section, we will see how those transfor-
mation help us to verify some well-known identities readily and to establish new
identities.
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2. Identities constructed from the recursive sequence transformation.
The Catalan identity for Fibonacci numbers Fn, namely that F 2

n − Fn+kFn−k =
(−1)n−kF 2

k , and its special case of k = 1, named the Cassini identity for Fibonacci
numbers Fn, namely that Fn+1Fn−1−F 2

n = (−1)n, are two facts about the Fibonacci
numbers that one might call common mathematical knowledge (cf. [22, 30, 32]).
We will in the following aim at presenting the Catalan-like and the Cassini-like
identities in a more general context and in the process obtain similar results for
related sequences by using the sequence transformation technique shown before.

From Theorem 1.3 we may get the Catalan-like identities of the recursive se-
quences defined by (1) as follows.

Theorem 2.1. Let {an}n≥0 be the sequence defined by (1) with a0 = 0 and a1 6= 0.
Then, we have Catalan-like identity

a2n − an+kan−k = (−q)n−ka2k. (14)

Particularly, for k = 1, we have the Cassini-like identity for (an)n≥0,

a2n − an+1an−1 = (−q)n−1a21. (15)

Proof. Let {Un(x)}n≥0 be the Chebyshev polynomial sequence of the second kind
defined by (10). Then, from (13) we have

Un(x0) = a−11 q−n/2(±i)nan+1, (16)

where x0 = ±ip/(2√q). It is known (cf. Udrea [30]) that Un(x) satisfied the identity

U2
n(x)− Un+k(x)Un−k(x) = U2

k−1(x). (17)

Substituting (16) into (17) yields

a−21 q−n(±i)2na2n+1 − a−11 q−(n+k)/2(±i)n+kan+k+1a
−1
1 q−(n−k)/2(±i)n−kan−k+1

=a−21 q−(k−1)(±i)2(k−1)a2k, (18)

which can be simplified to

a2n+1 − an+k+1an−k+1 = qn−k+1(±i)−2(n−k+1)a2k = (−q)n−k+1a2k.

Thus, we obtain (14). When k = 1, (14) implies (15).

Similarly, we have an analogue for the recursive polynomial sequence.

Corollary 3. Let {an(x)}n≥0 be a recursive polynomial sequence defined by

an(x) = p(x)an−1(x) + qan−2(x),

where p(x) ∈ R[x] and q ∈ R, with initial conditions a0(x) = 0 and a1(x) 6= 0.
Then, we have Catalan-like identity

a2n(x)− an+k(x)an−k(x) = (−q)n−ka2k(x). (19)

Particularly, for k = 1, we have the Cassini-like identity

a2n(x)− an+1(x)an−1(x) = (−q)n−1a21(x). (20)

Example 2.2. For the Fibonacci number sequence defined by Fn = Fn−1 + Fn−2
(n ≥ 2), F0 = 0, and F1 = 1, we have q = 1 and the Catalan-like identity

F 2
n − Fn+kFn−k = (−1)n−kF 2

k

and the Cassini-like identity

F 2
n − Fn+1Fn−1 = (−1)n−1.
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As for the Fibonacci polynomial sequence defined by Fn(x) = xFn−1(x)+Fn−2(x)
(n ≥ 2), F0(x) = 0, and F1(x) = 1, we have q = 1 and the Catalan-like identity

F 2
n(x)− Fn+k(x)Fn−k(x) = (−1)n−kF 2

k (x)

and the Cassini-like identity

F 2
n(x)− Fn+1(x)Fn−1(x) = (−1)n−1.

Example 2.3. For the Pell polynomial sequence defined by Pn(x) = 2xPn−1(x) +
Pn−2(x) (n ≥ 2), P0(x) = 0, and P1(x) = 1, and the Pell number sequence (Pn =
Pn(1))n≥0, we have the Catalan-like identities

P 2
n(x)− Pn+k(x)Pn−k(x) = (−1)n−kP 2

k (x),

P 2
n − Pn+kPn−k = (−1)n−kP 2

k ,

and the Cassini-like identities

P 2
n(x)− Pn+1(x)Pn−1(x) = (−1)n−1,

P 2
n − Pn+1Pn−1 = (−1)n−1.

Horadam and Mahon [22] prove the above identities by using a different approach.

Example 2.4. We call an integer n ≥ 2 a balancing number (cf., for example,
Behera and Panda [2]) if

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (21)

for some r ∈ N. Here r is called the balancer corresponding to the balancing number
n. For example, 6, 35, and 204 are balancing numbers with balancers 2, 14, and 84,
respectively.

It follows from (21) that, if n is a balancing number with balancer r, then

n2 =
(n+ r)(n+ r + 1)

2

and thus

r =
−(2n+ 1) +

√
8n2 + 1

2
.

Denote (Bn)n≥0 the balancing number sequence and assume B0 = 0. In [2] the
recursive relation of the balancing number sequence is given as Bn = 6Bn−1−Bn−2
for n ≥ 2 with the initials B0 = 0 and B1 = 1. Hence, we have the Catalan-like
numbers and the Cassini-like numbers for the balancing number sequence as

B2
n −Bn+kBn−k = B2

k

B2
n −Bn+1Bn−1 = B2

1 = 1.

The above two identities are given by Catarino, Campos, and Vasco [4] using a
different approach.

The Chebyshev polynomials of the first kind Tn(x) defined by (6) satisfies the
Cassini-like identity (cf. [32])

T 2
n(x)− Tn+1(x)Tn−1(x) = 1− x2. (22)

Then, by using Theorem 1.2 we may find the analogy Cassini-like identities for some
other recursive sequences. More precisely, we have the following result.
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Theorem 2.5. Let {an}n≥0 be a sequence defined by (1) with pa0 = 2a1, a0 6= 0.
Then we have the Cassini-like identity for (an)n≥0,

a2n − an+1an−1 = (−q)n
(
a20 +

a21
q

)
. (23)

Similarly, let {an(x)}n≥0 be a recursive polynomial sequence defined by

an(x) = p(x)an−1(x) + qan−2(x),

where p(x) ∈ R[x] and q ∈ R, with initial conditions a0(x) and a1(x) satisfying
p(x)a0(x) = 2a1(x). Then

a2n(x)− an+1(x)an−1(x) = (−q)n
(
a20(x) +

a21(x)

q

)
. (24)

Proof. The transformation formula (8) shown in Theorem 1.2 with x0 = ±ip/(2√q)
and p = 2a1/a0 gives

Tn(x0) = 2−1a−11 p−(n−1)(2x0)nan

=a−10 p−n
(
± ip
√
q

)n
an = a−10 q−n/2(±i)nan.

Substituting the above expression of Tn(x0) into (22) and noting p = 2a1/a0 yields

a−20 q−n(±i)2na2n − a−10 q−(n+1)/2(±i)n+1an+1a
−1
0 q−(n−1)/2(±i)n−1an−1

=1−
(
± ip

2
√
q

)2

= 1 +
a21
a20q

.

After simplifying the leftmost side of the last equation, we obtain the identity

a−20 (−q)−n
(
a2n − an+1an−1

)
= 1 +

a21
a20q

,

which generalizes (23). Identity (24) can be proved similarly.

Remark 2.6. From the following examples, we will see many recursive sequences
satisfy the condition p = 2a1/a0. It worth investigating the reason behind the fact.

Example 2.7. Consider the Lucas polynomial sequence defined by

Ln(x) = xLn−1(x) + Ln−2(x) (25)

with initials L0(x) = 2 and L1(x) = x satisfying p(x) = x = 2L1(x)/L0(x) and
Lucas numbers Ln = Ln(1). From (23) and (24) we have the Cassini-like identities

L2
n(x)− Ln+1(x)Ln−1(x) = (−1)n(4 + x2),

L2
n − Ln+1Ln−1 = 5(−1)n.

The Fermat polynomial sequence is defined by

fn(x) = xfn−1(x)− 2fn−2(x)

with initials f0(x) = 2 and f1(x) = x satisfying p = x = 2f1(x)/f0(x), and the
Fermat number sequence is defined by (fn = fn(1))n≥0. Then, from (23) and (24)
we get the Cassini-like identities

f2n(x)− fn+1(x)fn−1(x) = 2n
(

4− x2

2

)
= 2n−1(8− x2),

f2n − fn+1fn−1 = 7 · 2n−1.
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For the Dickson polynomial sequence of the first kind defined by

Dn(x, a) = xDn−1(x, a)− aDn−2(x, a)

with initials D0(x, a) = 2 and D1(x, a) = x, it satisfies p = x = 2D1(x, a)/D0(x, a).
Then, from (23) we get the Cassini-like identity

D2
n(x, a)−Dn+1(x, a)Dn−1(x, a) = an

(
4− x2

a

)
= an−1(4a− x2), (26)

which seems to be a new identity to the best of our knowledge.
For the Pell-Lucas polynomials A122075 [27] Qn(x) defined by (see Horadam and

Mahon [22])

Qn(x) = 2xQn−1(x) +Qn−2(x) (27)

for all n ≥ 2 with initial conditions Q0(x) = 2 and Q1(x) = 2x, we have the
Cassini-like identity

Q2
n(x)−Qn+1(x)Qn−1(x) = (−1)n(4 + 4x2).

For the Viate polynomials of the second kind defined by (see Horadan [21])

vn(x) = xvn−1(x)− vn−2(x) (28)

for all n ≥ 2 with the initial conditions v0(x) = 2 and v1(x) = x, we have the
Cassini-like identity

v2n(x)− vn+1(x)vn−1(x) = 4− x2.

3. An efficient and unified approach to construct product expansions and
product expressions of recursive sequences. The transformation technique
presented in the previous section provides an efficient and unified way to construct
product expansions and product expressions for two classes recursive sequences from
the corresponding product expansions and product expressions for the sequence of
Chebyshev polynomials of the first kind and the second kind. The first class is
a recursive number sequence {an}n≥0 defined by (1) with the initial conditions
satisfying pa0 = 2a1 and a0 6= 0 (the conditions of Theorem 1.2) or satisfying
a0 = 0 and a1 6= 0 (the conditions of Theorem 1.3). The second class is a recursive
polynomial sequence {an(x)}n≥0 with the initial conditions satisfying p(x)a0(x) =
2a1(x) and a0(x) 6= 0 (the conditions of Corollary 1) or satisfying a0(x) = 0 and
a1(x) 6= 0 (the conditions of Corollary 2).

We first discuss the transformation of product expansions, then the transforma-
tion of product expressions. We know that the Chebyshev polynomials of the first
kind satisfies the following product expansion

2Tm(x)Tn(x) = Tm+n(x) + Tm−n(x), m ≥ n. (29)

This follows quickly from the fact that Tn(cos θ) = cosnθ, θ = arccosx, and the
addition theorem 2 cosα cosβ = cos(α + β) + cos(α − β) with α = m arccosx and
β = n arccosx. Consequently, we have the following result.

Theorem 3.1. Let {an(x)}n≥0 be a recursive polynomial sequence defined by

an(x) = p(x)an−1(x) + qan−2(x),

where p(x) ∈ R[x] and q ∈ R, with initial conditions a0(x) and a1(x) satisfying
p(x)a0(x) = 2a1(x). Then,

2am(x)an(x) = a0(x) (am+n(x) + (−q)nam−n(x)) . (30)
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Proof. We have the following analogy of (9) for the Chebyshev polynomial sequence
of the first kind

an(x) = (∓i)na0(x)qn/2Tn

(
± ip(x)

2
√
q

)
,

from which

Tn

(
± ip(x)

2
√
q

)
= (∓i)−na0(x)−1q−n/2an(x).

Substituting the above expression for Tn into (29) yields (30).

Example 3.2. For the Dickson polynomials shown in Example 2.7, from Theorem
3.1 and noting a0(x) = 2 and q = −a, we have the identity

Dm(x, a)Dn(x, a) = Dm+n(x, a) + anDm−n(x, a). (31)

This identity seems new to our knowledge, although its special cases of m = n and
m = n+ 1, i.e.,

D2
n(x, a)−D2n(x, a) = anD0(x, a) = 2an,

Dn(x, a)Dn+1(x, a)−D2n+1(x, a) = anD1(x, a) = anx,

respectively, have been shown in Lidl, Mullen, and Turnwald, [23, p.11].
For the Pell-Lucas polynomials Qn(x) defined by (27), from Theorem 3.1 and

noting Q0(x) = 2 and q = 1, we have

Qm(x)Qn(x) = Qm+n(x) + (−1)nQm−n(x).

The special cases of m = n and m = n+ 1 are

Q2
n(x)−Q2n(x) = (−1)nD0(x) = 2(−1)n,

Qn(x)Qn+1(x)−Q2n+1(x) = (−1)nQ1(x) = 2(−1)nx,

respectively.
For the Viate polynomials of the second kind defined by (28), from Theorem 3.1

and noting v0(x) = 2 and q = −1, we have the identity

vm(x)vn(x) = vm+n(x) + vm−n(x).

The special cases of m = n and m = n+ 1 are

v2n(x)− v2n(x) = D0(x) = 2,

vn(x)vn+1(x)− v2n+1(x) = Q1(x) = x,

respectively.
For the Lucas polynomial sequence {Ln(x)} defined by (25), we have the identity

Lm(x)Ln(x) = Lm+n(x) + (−1)nLm−n(x).

The special cases of m = n and m = n+ 1 are

L2
n(x)− L2n(x) = (−1)nL0(x) = 2(−1)n,

Ln(x)Ln+1(x)− L2n+1(x) = (−1)nL1(x) = (−1)nx,

respectively.
Other examples for the Lucas number sequence are:

LmLn = Lm+n + (−1)nLm−n,

L2
n − L2n = (−1)nL0 = 2(−1)n,

LnLn+1 − L2n+1 = (−1)nL1 = (−1)n.
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For Chebyshev polynomials of the second kind, it is known that their products
can be written as

Um(x)Un(x) =

n∑
k=0

Um−n+2k(x) (32)

for m ≥ n. By this with n = 2, there is a recurrence formula for Chebyshev
polynomials of the second kind,

Um+2(x) = U2(x)Um(x)− Um(x)− Um−2(x)

=Um(x)(U2(x)− 1)− Um−2(x). (33)

We now extend the above formula to the product formulas for a class of recursive
sequences.

Theorem 3.3. Let {an(x)}n≥0 be a recursive polynomial sequence defined by

an(x) = p(x)an−1(x) + qan−2(x),

where p(x) ∈ R[x] and q ∈ R, with initial conditions a0(x) = 0 and a1(x) 6= 0.
Then,

am+1(x)an+1(x) = a1(x)

n∑
k=0

(−q)n−kam−n+2k+1(x), (34)

which is independent of p(x). Particularly, for n = 2, we have the recursive formula

am+3(x) = am+1(x)

(
a3(x)

a1(x)
+ q

)
− q2am−1(x). (35)

Proof. From Corollary 2, we have

an(x) = (∓i)n−1a1(x)q(n−1)/2Un−1 (x0) ,

where x0 = ±ip(x)/(2
√
q). Hence,

Un(x0) =
an+1(x)

(∓i)na1(x)qn/2
= (±i)na1(x)−1q−n/2an+1(x).

Substituting the above expression of Un(x) into (32) yields

(±i)ma1(x)−1q−m/2am+1(x)(±i)na1(x)−1q−n/2an+1(x)

=

n∑
k=0

(±i)m−n+2ka1(x)−1q−(m−n+2k)/2am−n+2k+1(x).

The last equation can be simplified to

am+1(x)an+1(x) = a1(x)

n∑
k=0

(±i)2(k−n)qn−kam−n+2k+1(x),

which implies (34). Formulas (35) follows after substituting n = 2.

Remark 3.4. Clearly, Theorem 3.3 can be extended to the recursive number se-
quence {an}n≥0 defined by

an = pan−1 + qan−2,

where p, q ∈ R, with initial conditions a0 = 0 and a1 6= 0.
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Example 3.5. For the Fibonacci polynomial sequence {Fn(x)} defined in Example
2.2 with p(x) = x, q = 1, F0(x) = 0 and F1(x) = 1, from (34) and (35) in Theorem
3.3 we have product expansion and recursive formula for Fibonacci polynomials.

Fm+1(x)Fn+1(x) =

n∑
k=0

(−1)n−kFm−n+2k+1(x),

Fm+3(x) = Fm+1(x)(F3(x) + 1)− Fm−1(x)

=(x2 + 2)Fm+1(x)− Fm−1(x).

For Fibonacci numbers Fn = Fn(1), we have

Fm+1Fn+1 =

n∑
k=0

(−1)n−kFm−n+2k+1,

Fm+3 = Fm+1(F3 + 1)− Fm−1 = 3Fm+1 − Fm−1.

For the Pell polynomial sequence defined in Example 2.3 with q = 1 and P1(x) =
1, we have their product expansion and recursive formula as follows.

Pm+1(x)Pn+1(x) =

n∑
k=0

(−1)n−kPm−n+2k+1(x),

Pm+3(x) = Pm+1(x)(P3(x) + 1)− Pm−1(x)

=(4x2 + 2)Pm+1(x)− Pm−1(x).

For the Pell number sequence (Pn = Pn(1))n≥0, we have their product expansion
and recursive formula as

Pm+1Pn+1 =

n∑
k=0

(−1)n−kPm−n+2k+1,

Pm+3 = Pm+1(P3 + 1)− Pm−1 = 6Pm+1 − Pm−1.

For the balancing numbers defined in Example 2.4 by Bn = 6Bn−1 − Bn−2 for
n ≥ 2 with the initials B0 = 0 and B1 = 1, noting q = −1 we have the product
expansion and recursive formula for (Bn)n≥0 as

Bm+1Bn+1 =

n∑
k=0

Bm−n+2k+1,

Bm+3 = Bm+1(B3 − 1)−Bm−1 = 34Bm+1 −Bm−1.

In Cahill, D’Errico, and Spence [3], the following product expressions for the
Fibonacci number sequence and the Lucas number sequence were constructed:

Fn = Πn−1
k=1

(
1− 2i cos

πk

n

)
, (36)

Ln = Πn
k=1

(
1− 2i cos

(2k − 1)π

2n

)
(37)

for n ≥ 2 and n ≥ 1, respectively. In an earlier paper, Hoggatt and Bicknell [19]
showed that the roots of Fibonacci polynomials Fn(x) and Lucas polynomials Ln(x)
of degree n are x = 2i cos(kπ)/n (k = 1, 2, . . . , n− 1) and x = 2i cos(2k − 1)π/(2n)
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(k = 1, 2, . . . , n), respectively, which imply the identities

Fn(x) = Πn−1
k=1

(
x− 2i cos

πk

n

)
, (38)

Ln(x) = Πn
k=1

(
x− 2i cos

(2k − 1)π

2n

)
. (39)

We will show that identities (36)-(39) can be easily established by using our
sequence transformation technique. Actually, they are special cases of the general
results of the following two theorems.

In the handbook edited by Zwillinger [33], the product expression of Chebyshev
polynomials of the first kind and the second kind are given as

Tn(x) = 2n−1Πn
k=1

(
x− cos

(2k − 1)π

2n

)
and (40)

Un(x) = 2nΠn
k=1

(
x− cos

kπ

n+ 1

)
. (41)

Theorem 3.6. Let {an}n≥0 be a recursive number sequence defined by (1) with
initial conditions a0 and a1 satisfying pa0 = 2a1. Then, we have

an =
1

2
a0Πn

k=1

(
p± 2i

√
q cos

(2k − 1)π

2n

)
.

Similarly, let {an(x)}n≥0 be a recursive polynomial sequence defined by

an(x) = p(x)an−1(x) + qan−2(x),

where p(x) ∈ R[x] (p ∈ R) and q ∈ R, with initial conditions a0(x) and a1(x)
satisfying p(x)a0(x) = 2a1(x). Then, we have

an(x) =
1

2
a0(x)Πn

k=1

(
p(x)± 2i

√
q cos

(2k − 1)π

2n

)
. (42)

Proof. We now prove the formula (42) for the polynomial sequence, the correspond-
ing result for the number sequence can be proved similarly. We have the following
analogy of (9) for the Chebyshev polynomial sequence of the first kind

an(x) = (∓i)na0(x)qn/2Tn

(
± ip(x)

2
√
q

)
,

from this equation and (40) with the replacement x→ ± ip(x)2
√
q we have

an(x) = (∓i)na0(x)qn/22n−1Πn
k=1

(
± ip(x)

2
√
q
− cos

(2k − 1)π

2n

)
=(∓i)na0(x)qn/22n−1

(
± i

2
√
q

)n
Πn
k=1

(
p(x)± 2i

√
q cos

(2k − 1)π

2n

)
=

1

2
(−i2)na0(x)Πn

k=1

(
p(x)± 2i

√
q cos

(2k − 1)π

2n

)
=

1

2
a0(x)Πn

k=1

(
p(x)± 2i

√
q cos

(2k − 1)π

2n

)
.
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The equivalence of two product expression can be shown by setting k → n− k + 1.
Indeed, we have

Πn
k=1

(
p(x) + 2i

√
q cos

(2(n− k + 1)− 1)π

2n

)
=Πn

k=1

(
p(x) + 2i

√
q cos

(
π − (2k − 1)π

2n

))
=Πn

k=1

(
p(x)− 2i

√
q cos

(2k − 1)π

2n

)
.

Example 3.7. For the Lucas polynomial sequence {Ln(x)} defined by (25) with
p(x) = x, q = 1, a0(x) = 2 and a1(x) = x satisfying p(x)a0(x) = 2x = 2a1(x), from
Theorem 3.6 we immediately have (39). For Lucas numbers Ln = Ln(1), we also
readily obtain (37).

For the Dickson polynomials shown in Example 2.7, from Theorem 3.6 and noting
a0(x) = 2, a1(x) = D1(x, a) = x, and q = −a, we have the identity

Dn(x, a) = Πn
k=1

(
x± 2i

√
−a cos

(2k − 1)π

2n

)
=Πn

k=1

(
x∓ 2

√
a cos

(2k − 1)π

2n

)
. (43)

Particularly, for a = 1

Dn(x, 1) = Πn
k=1

(
x+ 2 cos

(2k − 1)π

2n

)
=Πn

k=1

(
x− 2 cos

(2k − 1)π

2n

)
.

Furthermore, Dn(x, a) has roots 2
√
a cos (2k−1)π

2n for k = 1, 2, . . . , n.
For the Pell-Lucas polynomials Qn(x) defined by (27) with p(x) = 2x, q = 1,

Q0(x) = 2 and Q1(x) = 2x satisfying p(x)Q0(x) = 4x = 2Q1(x), from Theorem 3.6
we have the product expression of Qn(x) as

Qn(x) =Πn
k=1

(
2x± 2i cos

(2k − 1)π

2n

)
=2nΠn

k=1

(
x± i cos

(2k − 1)π

2n

)
,

and Qn(x) has roots i cos (2k−1)π
2n for k = 1, 2, . . . , n.

For the Viate polynomials of the second kind defined by (28) with p(x) = x,
q = −1, v0(x) = 2 and v1(x) = x satisfying p(x)v0(x) = 2x = 2v1(x), from
Theorem 3.6 we have the product expression of vn(x) as

vn(x) =Πn
k=1

(
p(x)± 2i

√
−1 cos

(2k − 1)π

2n

)
=Πn

k=1

(
x∓ 2 cos

(2k − 1)π

2n

)
,

and vn(x) has roots 2 cos (2k−1)π
2n for k = 1, 2, . . . , n.
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Theorem 3.8. Let {an(x)}n≥0 (an))n≥0) be a recursive polynomial (number) se-
quence defined by

an(x) = p(x)an−1(x) + qan−2(x) (an = pan−1 + qan−2),

where p(x) ∈ R[x] (p ∈ R) and q ∈ R, with initial conditions a0(x) = 0 (a0 = 0)
and a1(x) 6= 0 (a1 6= 0). Then, we have

an(x) = a1(x)Πn−1
k=1

(
p(x)± 2i

√
q cos

kπ

n

)
(44)(

an = a1Πn−1
k=1

(
p± 2i

√
q cos

kπ

n

))
, (45)

where the equivalence of the two expressions in (44) ( (43)) can be seen from the
transformation k → n− k + 1.

Proof. Let {Un(x)}n≥0 be the Chebyshev polynomial sequence of the second kind
defined by (10). From Corollary 2 and (41) we have

an(x) = (∓i)n−1a1(x)q(n−1)/2Un−1

(
± ip(x)

2
√
q

)
=(∓i)n−1a1(x)q(n−1)/22n−1Πn−1

k=1

(
± ip(x)

2
√
q
− cos

kπ

n

)
=(∓i)n−1a1(x)q(n−1)/22n−1

(
± i

2
√
q

)n−1
Πn−1
k=1

(
p(x)± 2i

√
q cos

kπ

n

)
=a1(x)Πn−1

k=1

(
p(x)± 2i

√
q cos

kπ

n

)
,

where the equivalence of the last two products can be shown by setting k → n− k
into one product as

Πn−1
k=1

(
p(x) + 2i

√
q cos

(n− k)π

n

)
=Πn−1

k=1

(
p(x) + 2i

√
q cos

(
π − kπ

n

))
=Πn−1

k=1

(
p(x)− 2i

√
q cos

kπ

n

)
.

Similarly, for recursive number sequence (an)n≥0 we have

an = a1Πn−1
k=1

(
p± 2i

√
q cos

kπ

n

)
.

Example 3.9. For the Fibonacci polynomial sequence {Fn(x)} defined in Exam-
ple 2.2 with p(x) = x, q = 1, F0(x) = 0 and F1(x) = 1, from Theorem 3.8 we
immediately have (38). For Fibonacci numbers Fn = Fn(1), we also readily obtain
(36).

For the Pell polynomial sequence defined in Example 2.3 by Pn(x) = 2xPn−1(x)+
Pn−2(x) (n ≥ 2), P0(x) = 0, and P1(x) = 1, and the Pell number sequence (Pn =
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Pn(1))n≥0, we have their product expressions as

Pn(x) = Πn−1
k=1

(
2x± 2i cos

kπ

n

)
= 2n−1Πn−1

k=1

(
x± i cos

kπ

n

)
Pn = 2n−1Πn−1

k=1

(
1± i cos

kπ

n

)
.

Furthermore, Pn(x) has roots i cos kπn for k = 1, 2, . . . , n.
For the balancing polynomials defined by the recurrence Bn(x) = 6xBn−1(x) −

Bn−2(x) (n ≥ 2), B0(x) = 0, and B1(x) = 1 (cf. Frontczak [9]), we have have their
product expressions as

Bn(x) =

n−1∑
k=1

(
6x± 2i

√
−1 cos

kπ

n

)
= Πn−1

k=1

(
6x∓ 2 cos

kπ

n

)
,

which was also proved by Ray [28] using a different approach.
For the balancing numbers defined by Bn = Bn(1) or by Bn = 6Bn−1 − Bn−2

for n ≥ 2 with the initials B0 = 0 and B1 = 1 (cf. Example 2.4), we have their
product expression

Bn = Πn−1
k=1

(
6± 2i

√
−1 cos

kπ

n

)
= Πn−1

k=1

(
6∓ 2 cos

kπ

n

)
.

This formula was proved in Ray [29] using a more complicated approach.

4. Identities raised from a Diophantus problem. Diophantus raised the fol-
lowing problem (Heath [18, pp.179–181] and [7, p. 513], ): “To find four numbers
such that the product of any two increased by unity is a square”, for which he
obtained the solution 1/16, 33/16, 68/16, 105/16.

Fermat [8] (cf. p. 251) found the solution 1, 3, 8, 120. In 1968, J.H. van Lint
raised the problem whether the number 120 is the unique (positive) integer n for
which the set {1, 3, 8, n} constitutes a solution for the above Diophantus’ problem;
in the same year, Baker and Davenport [1] studied this question and concluded that,
in fact, 120 is the unique integer satisfying the problem raised by J.H. van Lint. In
1977, Hoggatt and Bergum [19] observed that 1, 3, 8 are, respectively, the terms F2,
F4, F6 of the Fibonacci sequence and formulated the problem of finding a positive
integer n such that F2tn + 1, F2t+2n + 1, F2t+4n + 1 be perfect squares. Hoggatt and
Bergum also obtained the number n = 4F2t+1F2t+2F2t+3, which, for t = 1, gives
exactly n = 120.

The result shown in [19] was generalized in Morgado [25] by showing that the
product of any two distinct elements of the set

{Fn, Fn+2r, Fn+4r, 4Fn+rFn+2rFn+3r},

increased by ±F 2
aF

2
b with suitable integers a and b is a perfect square. In other

words, this set is a Fibonacci quadruple. This result was fourthly generalized in
Horadam [20] by presenting that the product of any two distinct elements of the set

{wn, wn+2r, wn+4r, 4wn+rwn+2rwn+3r}, (46)

where wn = wn(a, b; p, q) = pwn−1 − qwn−2, w0 = a, and w1 = b, increased by a
suitable integer, is a perfect square. In other words, this set is a Diophantine quadru-
ple, which is a generalization of Fibonacci quadruple because Fn = wn(0, 1; 1,−1).
Related work can be found in Melham and Shannon [24] and Cooper [6].
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Udrea [31] generalizes a result obtained in [25] for the Fibonacci sequence and
(Un = Un(x))n≥0, the sequence of Chebyshev polynomials of the second kind, more
precisely, the product of any two distinct elements of the set

{Un, Un+2r, Un+4r, 4Un+rUn+2rUn+3r}, n, r ∈ N0, (47)

increased by U2
aU

2
b , for suitable nonnegative integer a and b is a perfect square.

Morgado [26] proved an analogue result for (Tn = Tn(x))n≥0, the sequence of
Chebyshev polynomials of the first kind. More precisely, the product of any two
distinct elements of the set

{Tn, Tn+2r, Tn+4r, 4Tn+rTn+2rTn+3r}, n, r ∈ N0, (48)

increased by ((Th − Tk)/2)t, where Th and Tk, with k > h ≥ 0, are suitable terms
of the sequence (Tn)n≥0, is a perfect square.

We may use the sequence transformation technique to find the increased integers
of the Diophantine quadruple (46) when n = 2m, m ≥ 0, for some special set
{a, b, p, q}.

Theorem 4.1. Let {an}n≥0 be a sequence defined by an = pan−1 + an−2, n ≥ 2,
with a0 = 0 and a1 = 1. Then, we have a Diophantine quadruple

{a2m, a2m+2r, a2m+4r, 4a2m+ra2m+2ra2m+3r} (49)

for m, r ∈ N. More precisely, the product of any two distinct elements of the set
increased by (aαaβ)2 for suitable α, β ∈ N is a perfect square.

Proof. From (2.1) of [30], the sequence of Chebyshev polynomials of the second kind
satisfy

UmUm+r+s + Ur−1Us−1 = Um+rUm+s

for any x ∈ C, and m, r, s ∈ N, and noting (16),

Un(x0) = a−11 q−n/2(±i)nan+1 = (±i)nan+1,

where x0 = ±ip/(2√q), we immediately have

(±i)mam+1(±i)m+r+sam+r+s+1 + (±i)r−1ar(±i)s−1as
=(±i)m+ram+r+1(±i)m+sam+s+1.

In the last equation, canceling (±i)2m+r+s and then replacing m+ 1 by 2m yields

a2ma2m+r+s + aras = a2m+ra2m+s. (50)

By setting s = r in (50), one obtain

a2ma2m+2r + a2r = a22m+r (51)

for m, r ∈ N. Let us replace 2m by 2m+ 2r in (51). Then

a2m+2ra2m+4r + a2r = a22m+3r (52)

for m, r ∈ N. Identities (51) and (52) prove the theorem partially with α = r and
β = 1.

Let us replace r by 2r in (51). Then,

a2ma2m+4r + a22r = a22m+2r (53)

for m, r ∈ N, which proves the theorem partially with α = 2r and β = 0.
From identity (50), it follows

(aras)
2 = (a2m+ra2m+s − a2ma2m+r+s)

2
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and so

4a2ma2m+ra2m+sa2m+r+s + a2ra
2
s = (a2m+ra2m+s + a2ma2m+r+s)

2 (54)

for m, r, s ∈ N. By setting s = 2r into (54), one obtains

4a2ma2m+ra2m+2ra2m+3r + a2ra
2
2r = (a2m+ra2m+2r + a2ma2m+3r)

2 (55)

for m, r ∈ N. Let us replace 2m by 2m+ r in (55). Then it becomes

4a2m+ra2m+2ra2m+3ra2m+4r + a2ra
2
2r = (a2m+2ra2m+3r + a2m+ra2m+4r)

2 (56)

for m, r ∈ N. Identities (55) and (56) prove the theorem partially with α = r and
β = 2r.

Finally, in (54), by using the replacements s→ r and 2m→ 2m+ r, we have

4a2m+ra
2
2m+2ra2m+3r + a4r = (a22m+2r + a2m+ra2m+3r)

2 (57)

for m, r ∈ N, which proves the theorem of the product of a2m+2r and
4a2m+ra2m+2ra2m+3r increased by (aαaβ)2 with α = β = r. Thus, the proof of
the theorem is completed by the identities (51)-(53) and (55)-(57).

From the Diophantine quadruple (48) of the sequence of Chebyshev polynomials
of the first kind we have the following Diophantine quadruple of recursive sequences.

Theorem 4.2. Let {an}n≥0 be a sequence defined by an = 2pan−1 + an−2, n ≥ 2,
with a0 = 1 and a1 = p. Then, we have a Diophantine quadruple

{a2m, a2m+4r, a2m+8r, 4a2m+2ra2m+4ra2m+6r} (58)

for m, r ∈ N. More precisely, the product of any two distinct elements of the set
increased by ((aα − aβ)/2)t for suitable integers β > α ≥ 0 is a perfect square.

Proof. The transformation formula (8) shown in Theorem 1.2 with x0 = ±ip/(2√q)
= ±ip/2 and 2pa0 = 2p = 2a1 gives

Tn(x0) = a−10 q−n/2(±i)nan = (±i)nan. (59)

Replacing n and r in (2.3)-(2.8) in [26], we have

T2nT2n+4r +
1

2
(T0 − T4r) = T 2

2n+2r, (60)

T2nT2n+8r +
1

2
(T0 − T8r) = T 2

2n+4r, (61)

T2n+4rT2n+8r +
1

2
(T0 − T4r) = T 2

2n+6r, (62)

4T2nT2n+2rT2n+4rT2n+6r +

[
1

2
(T2r − T6r)

]2
= (T2nT2n+6r + T2n+2rT2n+4r)

2, (63)

4T2n+2rT2n+4rT2n+6rT2n+8r +

[
1

2
(T2r − T6r)

]2
= (T2n+2rT2n+8r + T2n+4rT2n+6r)

2, (64)

4T2n+2rT
2
2n+4rT2n+6r +

[
1

2
(T0 − T4r)

]2
= (T2n+2rT2n+6r + T 2

2n+4r)
2. (65)
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By substituting x = x0 = ±ip/2 and then (59) into above identities (60)-(65), we
obtain

a2na2n+4r +
1

2
(a0 − a4r) = a22n+2r, (66)

a2na2n+8r +
1

2
(a0 − a8r) = a22n+4r, (67)

a2n+4ra2n+8r +
1

2
(a0 − a4r) = a22n+6r, (68)

4a2na2n+2ra2n+4ra2n+6r +

[
1

2
(a2r − a6r)

]2
= (a2na2n+6r + a2n+2ra2n+4r)

2, (69)

4a2n+2ra2n+4ra2n+6ra2n+8r +

[
1

2
(a2r − a6r)

]2
= (a2n+2ra2n+8r + a2n+4ra2n+6r)

2, (70)

4a2n+2ra
2
2n+4ra2n+6r +

[
1

2
(a0 − a4r)

]2
= (a2n+2ra2n+6r + a22n+4r)

2. (71)

The proof is completed by (66)-(71).

For p = 3, the corresponding sequence (an)n≥0 = (1, 3, 19, 117, 721, . . .) is the
OEIS sequence A005667 (cf. [27]), which generates a Diophantine quadruple shown
in Theorem 4.2.

For many other p, we may obtain some new sequences with a Diophantine quadru-
ple. Here, the new sequences mean that they are not included by the OEIS [27].
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