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Abstract. This paper formulates a general framework for a space-time finite

element method for solving Richards Equation in one spatial dimension, where

the spatial variable is discretized using the linear finite volume element and the
temporal variable is discretized using a discontinuous Galerkin method. The

actual implementation of a particular scheme is realized by imposing certain

finite element space in temporal variable to the variational equation and appro-
priate “variational crime” in the form of numerical integrations for calculating

integrations in the formulation. Once this is in place, adjoint-based error esti-

mators for the approximate solution from the scheme is derived. The adjoint
problem is obtained from an appropriate linearization of the nonlinear system.

Numerical examples are presented to illustrate performance of the methods
and the error estimators.

1. Introduction. The subject of investigation in this paper is numerical solutions
of the Richards Equation [23]. This equation is a governing mathematical principle
for modeling the water flow in an unsaturated porous medium that is driven by the
gravity and capillarity that disregards air flow. Since ability to construct closed form
solutions to this equation is very limited (see for example [25, 18, 22, 24] for some
related effort on the subject), a reliance on numerical approximations is a necessity.
However, even with the emergence of many advances of computing technology, this
equation remains one of the most challenging problems in porous media flow and
transport. Recent review on its numerical solutions can be found in [17].

There are several outstanding issues attributed to the challenge. Richards Equa-
tion is strongly nonlinear, which appears as the dependence of the soil unsaturated
hydraulic conductivity (κ) and the water content (ϑ) to the pressure head (u).
Note that the presence of the water content in the equation is in terms of its tem-
poral rate of change. Inclusion of gravity in the Darcy’s velocity q, written as
q = −κ(u)∂z(u − z), can potentially create instability in the numerical solutions,
in particular, when simulating dry soil conditions. The variable z in the expres-
sion of q denotes the vertical spatial coordinate, which is positive in the downward
direction. It represents the influence of gravity to the flow. Furthermore, some of
the more realistic scenario requires taking into account the soil heterogeneity in the
simulations.
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The mixed-form (or coupled-form) of Richards Equation in one dimensional soil
column is written as follows:

∂tϑ(u)− ∂z
(
κ(u) ∂z(u− z)

)
= 0, in (a, b)× (0, T ),

u(z, 0) = u0(z), z ∈ (a, b),

Boundary Conditions: Bau = ga(t), Bb = gb(t).

(1.1)

Two typical boundary conditions are{
Bau = κ(u)∂z(u− z)

∣∣
(a,t)

, Bbu = u(b, t)
}

or
{
Bau = u(a, t), Bbu = u(b, t)

}
.

Here we assume that ϑ : (−∞, 0] → (0, 1) and κ : (−∞, 0] → (κmin, κs) with
κs > κmin > 0. The choice (−∞, 0] as the domain of ϑ and κ is done to reflect
the physical relevance that the pressure head u is always nonpositive and Richards
Equation typically models unsaturated flow.

The major theme in this paper is two-fold. One aspect centers on the devel-
opment of a numerical approximation of Richards Equation in space-time finite
element methods obtained from an appropriate variational formulation. Space-time
finite element methods have been previously used for parabolic equations (see for
example [20]) and for reaction-diffusion system (see for example [15]). A recent
work on application of control volume finite element in combination with method of
lines for solving Richards Equation is recorded in [10]. To the best of the author’s
knowledge, there has not been any attempt to apply space-time finite element meth-
ods technique to Richards Equation. In particular, a finite volume element spatial
discretization (with linear finite element) is employed due to its inherent local mass
conservation property. This is an important trait commonly desired and in some
cases imperative in order to produce reliable numerical simulations of flow and
transport in porous media (see for example [5, 8, 16]). The space-time variational
formulation in combination with a certain variational crime in the form of numerical
integration techniques would in turn yield implementable time marching schemes
for approximate solution of Richards Equation.

The other aspect is concerned with an a posteriori error estimation of the result-
ing numerical approximation. In this regard, some investigations on a posteriori
error analysis of numerical methods for Richards Equation are already available.
Bause and Knabner [3] use adaptive mixed hybrid finite element discretizations to
solve Richards Equation, where the adaptivity is performed under an a posteriori
error indicator that is based on either superconvergence or residual of the approx-
imation. Baron et al. [2] employ Discrete Duality Finite Volume (DDFV) scheme
along with second-order backward differentiation formula to solve the equation.
They derive an a posteriori error bound of the approximation using the equili-
brated fluxes method. Bernardi et al. [4] perform a semi discretization of Richards
Equation by finite element method and apply Backward Euler scheme to get the full
discretization. Then a posteriori error bounds are derived that aim at distinguishing
components of contribution of spatial discretization from temporal discretization.

In many practical situations, it may not be necessary to measure global prop-
erty of the approximate solution. More often, an accuracy is desired only for some
specified quantities of interest associated with the numerical approximation, which
is usually expressed as a functional of the approximate solution. For this purpose,
a suitable a posteriori analysis is based on duality, adjoint operators governing
the generalized Green’s function, and a variational formulation. This approach is
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adopted in this paper. It is also suitable because, as mentioned before, the numer-
ical approximation of Richards Equation is based on certain variational equations.
Utilizations of adjoint equations are not new (see for example [21] for an exten-
sive exposition on their applications). On various roles of adjoint methodologies
in performing a posteriori error estimations of numerical methods for differential
equations, one can consult [19, 15, 11, 13, 12, 14, 1] and references therein.

The rest of this paper is organized as follows. A space-time variational equation
governing the numerical approximation of Richards Equation is derived in Sec-
tion 2. The description includes examples of application of numerical integration
to produce the time marching schemes. Section 3 carries out the formulation of an
adjoint-based a posteriori error analysis of the quantities of interest calculated using
the approximate solution. Since the variational equation of the solution is nonlinear,
an appropriate linearization is conducted that would make construction of the cor-
responding adjoint equation amenable. Some numerical examples to demonstrate
performance of the numerical methods and the error estimators are shown in Sec-
tion 4. Here much of the effort is devoted to illustrate global accuracy of numerical
methods and reliability of the error estimators in terms of their capability to de-
compose the total error into relevant components. A comparison to the actual error
in some specified quantities of interest is conducted. Finally, the conclusion and
future work is discussed in Section 5.

2. Finite volume element in space and finite element in time. In what
follows, we assume that{

Bau = κ(u)∂z(u− z)
∣∣∣
(a,t)

= ga(t), Bbu = u(b, t) = 0
}
. (2.1)

are supplied to (1.1). Denoting

H1
D =

{
w : [a, b]→ R : w ∈ L2(a, b), w′ ∈ L2(a, b), w(b) = 0

}
,

the solution of (1.1) supplied with (2.1) satisfies{
〈∂tϑ(u), v〉+A(u;u, v) + ga(t)v(a) = 0, ∀v ∈ H1

D,

〈u(·, 0), v〉 = 〈u0, v〉, ∀v ∈ H1
D.

(2.2)

Here 〈·, ·〉 is the usual scalar product in L2(a, b), and A : C[a, b]×H1
D ×H1

D → R is
defined as

A(w;u, v) = 〈κ(w)∂z(u− z), ∂zv〉.
The spatial domain (a, b) is partitioned into a collection of M subintervals Th,

such that τj = (zj−1, zj) ∈ Th, with length hj = zj − zj−1, for j = 1, · · · ,M and

(a, b) = ∪Mj=1τj , where h = max{hj : 1 ≤ j ≤M}. On this Th, let

Xh =
{
w ∈ H1

D : w in τj is linear ∀τj ∈ Th
}

= span
{
φj
}M−1
j=0

,

where φj(z) is the usual ‘hat’ function such that φj(zi) = δij .

2.1. A brief excursion to finite volume element. The finite volume approxi-
mations rely on a local conservation property associated with the governing equa-
tion, in particular with respect to the second order differential operator in (1.1).
To fix the idea, consider τ∗ = (zl, zr) ⊂ (a, b) and apply fundamental theorem of
calculus to get∫

τ∗
−∂z

(
κ(u)∂z(u− z)

)
dz = −κ(u)∂z(u− z)

∣∣∣
∂τ∗

:= −κ(u)∂z(u− z)
∣∣∣zr
zl
. (2.3)
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The above τ∗ is called a control volume. We choose M control volumes. Specifically,
given zj , for j = 1, · · · ,M − 1, we set τ∗j = (zj−1/2, zj+1/2), where zj−1/2 is the
mid-point of τj and zj+1/2 is the mid-point of τj+1. For z0, we set τ∗0 = (z0, z1/2).
Collection of these control volumes is denoted by T ∗h . On this T ∗h , let

Yh =
{
η ∈ L2(a, b) : η in τ∗ is constant ∀τ∗j ∈ T ∗h

}
= span

{
φ∗j
}M−1
j=0

,

where φ∗j (z) is a piecewise constant function such that it is equal to 1 in τ∗j and zero

elsewhere. Set Jh : H1
D → Yh such that [Jhv](zj) = v(zj), i.e., given v ∈ H1

D, Jhv is
a piecewise constant function over T ∗h . A standard interpolation estimate suggests

‖Jhv − v‖ ≤
h

2
‖∂zv‖, for v ∈ H1

D, (2.4)

where ‖ · ‖ =
√
〈·, ·〉. By the Cauchy-Schwarz inequality, this implies

〈χ, Jhv − v〉 ≤
h

2
‖χ‖‖∂zv‖, for χ ∈ L2(a, b), v ∈ H1

D. (2.5)

To express (2.3) in a variational setting, define Ah : C[a, b]×H1
D ×H1

D → R as

Ah(w;u, v) =
∑
τ∗
j ∈T ∗

h

−κ(w)∂z(u− z)
∣∣∣
∂τ∗

j \a
[Jhv](zj).

Exclusion of a in the above equation is due to the Neumann boundary condition at
that point. Next, we quantify the discrepancy of Ah(·; ·, ·) from A(·; ·, ·).
Proposition 2.1. Let w ∈ C[a, b], u, v ∈ H1

D. Then

A(w;u, v) = Ah(w;u, v) + εA(w;u, v), (2.6)

where

εA(w;u, v) =
∑
τj∈Th

∫
τj

∂z
(
κ(w)∂z(u− z)

)
(Jhv − v) dz. (2.7)

Furthermore, when u,w ∈ Xh and κ′(r) is bounded for every r ∈ (−∞, 0], then

|εA(w;u, v)| ≤ Cκ
2
h‖∂zw∂z(u− z)‖‖∂zv‖, (2.8)

where Cκ = sup
u∈(−∞,0]

|κ′(u)|.

Proof. For any τj ∈ Th, integration by parts gives∫
τj

−∂z
(
κ(w)∂z(u− z)

)
v dz =

∫
τj

κ(w)∂z(u− z) ∂zv dz − κ(w)∂z(u− z) v
∣∣∣
∂τj
,

which when applied to A(·; ·, ·) gives

A(w;u, v) =
∑
τj∈Th

∫
τj

κ(w)∂z(u− z) ∂zv dz

=
∑
τj∈Th

(∫
τj

−∂z
(
κ(w)∂z(u− z)

)
v dz + κ(w)∂z(u− z) v

∣∣∣
∂τj\a

)
.

(2.9)

For j = 0, set Kj = τ∗j . For j = 1, · · · ,M − 1, fix a τ∗j ∈ T ∗h and suppose τj , τj+1 ∈
Th are such that Kj = τj ∩ τ∗j = (xj−1/2, xj), Kj+1 = τj+1 ∩ τ∗j = (xj , xj+1/2). By
fundamental theorem of calculus,∫

Ke

−∂z
(
κ(w)∂z(u− z)

)
Jhv dz = −κ(w)∂z(u− z)

∣∣∣
∂Ke

[Jhv](zj), (2.10)
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for e = j, j + 1. Recognizing that

∂zu
∣∣∣
∂τ∗

j

=
∑

e=j,j+1

∂zu
∣∣∣
∂Ke

+ ∂zu
∣∣∣x+

j

x−
j

,

we may apply (2.10) in Ah(·; ·, ·) to get

Ah(w;u, v) =
∑
τj∈Th

(∫
τj

−∂z
(
κ(w)∂z(u−z)

)
Jhv dz+κ(w)∂z(u−z) Jhv

∣∣∣
∂τj\a

)
. (2.11)

Subtraction of (2.9) from (2.11) and recalling that Jhv(zj) = v(zj) gives (2.6).
Furthermore, when w, u ∈ Xh, product rule of differentiation for z ∈ τj gives

∂z
(
κ(w)∂z(u− z)

)
= κ′(w)∂zw∂z(u− z) + 0,

so using this identity and the Cauchy-Schwarz inequality,

|εA(w;u, v)| =
∣∣∣ ∑
τj∈Th

∫
τj

κ′(w)∂zw∂z(u− z)(Jhv − v) dz
∣∣∣

≤ Cκ
∑
τj∈Th

‖∂zw∂z(u− z)‖L2(τj) ‖Jhv − v‖L2(τj)

≤ Cκ‖∂zw∂z(u− z)‖ ‖Jhv − v‖

≤ Cκ
2
h‖∂zw∂z(u− z)‖‖∂zv‖.

This completes the proof.

Remark 2.1. The foregoing exposition gives an indication that 〈w, Jhv − v〉 → 0
and Ah(w;u, v) → A(w;u, v) as h → 0. This will play a role later on in the a
posteriori error analysis. Various estimates such as described in (2.4), (2.5), and
(2.8) have been established in several literatures on finite volume element methods
(see for example [6, 7, 9] and references therein).

2.2. A variational equation for the approximation. In a similar fashion to
the spatial variable, we partition [0, T ] into a collection of subintervals Ik, such
that In = [tn−1, tn] ∈ Ik with time step kn = tn − tn−1 and [0, T ] = ∪Nn=1In, where
k = max{kn : 1 ≤ n ≤ N}. We denote the jump of a function w(·, t) across tn by
[w]n = w+

n − w−n , where w+
n = lims→t+n w(·, s) and w−n = lims→t−n w(·, s). On every

space-time slab [a, b]× In, the approximate solution is sought in a functional space
that contains functions that are piecewise linear polynomial in spatial variable and
polynomial of degree q in temporal variable. In particular, we define

Wq
h(In) =

{
v : [a, b]× In → R : w(z, t) =

q∑
j=0

tjvj,n(z), with vj,n ∈ Xh
}
. (2.12)

We denote byWq
h the space of functions defined on [a, b]×[0, T ] such that restriction

of w ∈ Wq
h to [a, b]× In belongs to Wq

h(In). The approximation amounts to finding
ũ ∈ Wq

h that is governed by
N∑
n=1

Rh,n(ũ; ũ, w) = 0 for every w ∈ Wq
h,

〈ũ−0 , χ〉 = 〈u0, χ〉 for every χ ∈ Xh,

(2.13)
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where

Rh,n(ũ; ũ, w) =

∫
In

(
〈∂tϑ(ũ), Jhw〉+Ah(ũ; ũ, w) + ga(t)w(a, t)

)
dt

+ 〈[ϑ(ũ)]n−1, Jhw
+
n−1〉.

(2.14)

Notice that the first equation in (2.13) is a global formulation in that the integration
is over (0, T ). While an implementation based on this formulation is possible, it
is perhaps more amenable to construct an implementation that is local over In for
n = 1, · · · , N . The corresponding equation for this formulation can be derived
from (2.13) by choosing w ∈ Wq

h such that w|(a,b)×In = v ∈ Wq
h(In) and it is zero

everywhere else, which yields

Rh,n(ũ; ũ, v) = 0 for every v ∈ Wq
h(In). (2.15)

2.3. Some examples. In what follows, we describe two specific examples that
transform (2.15) into computable algebraic schemes.

2.3.1. FVEM in space - dG0 in time. Here ũ ∈ W0
h, i.e.,

ũ
∣∣∣
In

= ũ+n−1 = ũ−n = v0,n ∈ Xh, (2.16)

which for every w0 ∈ Xh is governed by

knAh(v0,n; v0,n, w0) + w0(a)

∫
In

ga(t) dt+ 〈ϑ(v0,n)− ϑ(ũ−n−1), Jhw0〉 = 0, (2.17)

for n = 1, · · · , N . Notice that (2.17) is mimicking the Backward Euler difference
scheme with v0,n ∈ Xh being the unknown function to be solved. In particular,
setting (U0,n, U1,n, · · · , UM−1,n) = Un ∈ RM , such that

v0,n =

M−1∑
j=0

Uj,nφj , (2.18)

then Un is governed by

G(Un) = 0, (2.19)

where G : RM → RM such that Gi : RM → R, for i = 0, 1, · · · ,M−1, is constructed
from the left hand side of (2.17) by replacing w0 by φi. Here, the dependence on
Un is realized through (2.18). Clearly (2.19) is a nonlinear algebraic system of
equations governing Un.

2.3.2. FVEM in space - dG1 in time. Here ũ ∈ W1
h, i.e.,

ũ
∣∣∣
In

= v0,n + tv1,n, t ∈ In, v0,n, v1,n ∈ Xh, (2.20)

which implies that ũ+n−1 = v0,n + tn−1v1,n and ũ−n = v0,n + tnv1,n. We may equiva-
lently write

ũ
∣∣∣
In

=
tn − t
kn

ũ+n−1 +
t− tn−1
kn

ũ−n , t ∈ In, ũ+n−1, ũ−n ∈ Xh. (2.21)

Choosing w = tn−t
kn

ψ+
n−1 with ψ+

n−1 ∈ Xh, and using integration by parts along
with acknowledging some cancellations,∫
In

〈∂tϑ(ũ), Jhw〉dt+ 〈[ϑ(ũ)]n−1, Jhw
+
n−1〉 = k−1n

∫
In

〈ϑ(ũ)− ϑ(ũ−n−1), Jhψ
+
n−1〉dt.
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In a similar fashion, using w = t−tn−1

kn
ψ−n with ψ−n ∈ Xh yields∫

In

〈∂tϑ(ũ), Jhw〉dt+ 〈[ϑ(ũ)]n−1, Jhw
+
n−1〉 = k−1n

∫
In

〈ϑ(ũ−n )− ϑ(ũ), Jhψ
−
n 〉dt.

Thus ũ ∈ W1
h satisfies (2.21) and for every n = 1, · · · , N , it is governed by

∫
In

〈ϑ(ũ)− ϑ(ũ−n−1), Jhψ
+
n−1〉dt +∫

In

(tn − t)
(
Ah(ũ; ũ, ψ+

n−1) + ga(t)ψ+
n−1(a)

)
dt = 0,∫

In

〈ϑ(ũ−n )− ϑ(ũ), Jhψ
−
n 〉dt +∫

In

(t− tn−1)
(
Ah(ũ; ũ, ψ−n ) + ga(t)ψ−n (a)

)
dt = 0,

(2.22)

where

ũ+n−1 =

M−1∑
j=0

U+
j,n−1φj , ũ

−
n =

M−1∑
j=0

U−j,nφj . (2.23)

Setting
(U+

0,n−1, U
+
1,n−1, · · · , U+

M−1,n−1) = U+
n−1 ∈ RM

and
(U−0,n, U

−
1,n, · · · , U−M−1,n) = U−n ∈ RM ,

and Un = (U+
n−1,U

−
n ) ∈ R2M , then (2.22) yields

G(Un) = 0, (2.24)

where G : R2M → R2M , with G = (G+, G−), and G+ : R2M → RM and G− :
R2M → RM such that G+

i : R2M → R and G−i : R2M → R are respectively
constructed from the left hand side of (2.22) by setting ψ+

n−1 = ψ−n = φi, for
i = 0, 1, · · · ,M − 1.

2.4. A variational crime by numerical integrations. The preceding descrip-
tion is a derivation of algebraic equations governing the approximation that is faith-
ful to the variational equation (2.15) and the choice of polynomial degree of the
temporal variable. Still, for a completely implementable scheme, one must rely
on further approximation of the integrations appeared in (2.17) and (2.22). In
the current setting, there are two integrations that need to be approximated: the
spatial integration 〈·, ·〉 and the temporal integration

∫
In
·dt. Utilization of various

numerical integration techniques are pretty common. In particular, in the standard
finite element methods for typical steady state problems, forms/functionals in the
variational equations, which are expressed as integrations of spatial variables, are
approximated by various Gaussian quadratures. This is clearly applicable for 〈·, ·〉.
To minimize the associated pollution to the global accuracy of the approximation,
the numerical integrations must be chosen such that the degree of their errors is of
similar order to the errors corresponding to W q

h .
Furthermore, what is more crucial in this case is how

∫
In
·dt is to be approximated.

We note that the only temporal integration in (2.17) is the one associated with the
Neumann condition ga(t), and for this a right hand point rule resulting in∫

In

ga(t) dt ≈ knga(tn)
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is adequate.
Derivation of numerical integrations for (2.22) is a bit more involved. A viable

option is the following two point Gaussian quadrature∫
In

f(t) dt ≈ kn
2

2∑
`=1

f(t`,n),

where t1,n = − kn

2
√

3
+
tn−1 + tn

2
and t2,n =

kn

2
√

3
+
tn−1 + tn

2
.

(2.25)

With this, set
ũ1,n = ũ(·, t1,n) = γ ũ+n−1 + (1− γ) ũ−n ,

ũ2,n = ũ(·, t2,n) = (1− γ) ũ+n−1 + γ ũ−n ,
(2.26)

where γ = 1+
√
3

2
√
3

. The resulting approximations G+
n,i ≈ G+

i and G−n,i ≈ G−i are

expressed as

G+
n,i(Un) =

1

2

2∑
`=1

〈ϑ(ũ`,n)− ϑ(ũ−n−1), φ∗i 〉+ knc
+
`

(
Ah(ũ`,n; ũ`,n, φi) + ga(t`,n)δi0

)
G−n,i(Un) =

1

2

2∑
`=1

〈ϑ(ũ−n )− ϑ(ũ`,n), φ∗i 〉+ knc
−
`

(
Ah(ũ`,n; ũ`,n, φi) + ga(t`,n)δi0

)
where c+l = c−r = γ, c+r = c−l = 1− γ, and δij is the usual Kronecker delta.

The approach proceeds with the construction of algebraic equations for (ũ1,n,
ũ2,n) where ũ−n appearing on the second equation above is represented as

ũ−n =
1− γ
1− 2γ

ũ1,n −
γ

1− 2γ
ũ2,n, (2.27)

which is obtained from (2.26). Thus, with (G+
n,i, G

−
n,i) replacing (G+

i , G
−
i ), (2.24)

is solved to get (ũ1,n, ũ2,n), after which ũ−n is recovered from (2.27).

3. An adjoint-based a posteriori error analysis. In many realistic situations,
it is often desirable to achieve an acceptable level of accuracy of a numerical ap-
proximation in some quantities of interest. Relevant examples include average water
content over a certain region and at some time instances or the water content at
some locations. Along this line of argument, it may be computationally infeasible
as well as very inefficient to attempt to control the error in a global fashion when
all that is required is accuracy on those aforementioned quantities. A practical
alternative is to estimate the error of the numerical approximation in the specified
quantity of interest, whose representation is expressed as a functional of u:

[Q(u)](T ) = 〈ϑ(u(·, T )), ψT 〉+

∫ T

0

(
〈ϑ(u), ψ〉+ u(a, t)ψa

)
dt, (3.1)

for given data ψT : (a, b) → R, ψ : (a, b) × (0, T ) → R, and ψa : (0, T ) → R. If
one wants to quantify the (averaged) water content at time t = T , then (3.1) uses
ψ = 0, ψa = 0, and ψT is set to be a piecewise constant function in the spatial
variable that reflects the desired nature of the average quantity. On the other hand,
if an accumulated water content is the quantity of interest to be approximated, then
ψT = 0, ψa = 0, and ψ = 1 in (3.1).

To derive the error in approximating Q(u), we use a generalized Green’s function
that solves the adjoint problem corresponding to a special choice of (adjoint) data
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ψT , ψ, and ψa, as illustrated by the description in the previous paragraph. As al-
luded to earlier, the formulation of an adjoint problem broadens the applications of
Green’s functions (see for example [19, 15, 1] and references therein). However, an
adjoint operator formally corresponds to a linear operator. Since Richards Equa-
tion and the associated numerical approximation are nonlinear problem, we must
perform a linearization, after which the adjoint problem is built to correspond to
that linearized representation.

The nonlinearity in Richards Equation stems from θ(u) and κ(u), and that is
where the linearization effort is concentrated on. To this end, letting

ũσ = ũ+ σ(u− ũ), for σ ∈ [0, 1], (3.2)

the Mean Value Theorem for integral gives

ϑ(u)− ϑ(ũ) = ϑ′(u− ũ), where ϑ′ =

∫ 1

0

ϑ′(ũσ) dσ. (3.3)

Furthermore, setting F : H1(a, b)→ R by

F (w) = κ(w)∂z(w − z), (3.4)

its Fréchet derivative is F ′(w) : H1(a, b)→ R such that

F ′(w)v = κ(w)∂zv + (κ′(w)∂z(w − z))v (3.5)

Utilizing again the Mean Value Theorem for integral, one gets

F (u)− F (ũ) =

∫ 1

0

F ′(uσ)(u− ũ) dσ = κ∂z(u− ũ) + v(u− ũ), (3.6)

where

κ =

∫ 1

0

κ(ũσ) dσ and v =

∫ 1

0

κ′(ũσ)∂z(ũσ − z) dσ. (3.7)

At this stage, we are in a position to formulate the adjoint problem. For t ∈ [T, 0],
let ϕ(·, t) ∈ H1

D satisfy{
−〈w, ϑ′∂tϕ〉+ 〈∂zw, κ∂zϕ〉+ 〈w,v∂zϕ〉 = 〈w, ϑ′ψ〉+ w(a, t)ψa, t < T,

〈w(·, T ), ϑ′ϕ(·, T )〉 = 〈w(·, T ), ϑ′ψT 〉,
(3.8)

for every w(·, t) ∈ H1
D. Here ϕ is solution to the adjoint problem, which is governed

by a linear problem as stated in (3.8). The two theorems below state the quantifi-
cation of error in the approximation of Q(u), which is written in terms of residuals
of ũ weighted against ϕ. In what follows, we use

Rn(ũ; ũ, w) =

∫
In

(
〈∂tϑ(ũ), w〉+A(ũ; ũ, w) + ga(t)w(a, t)

)
dt

+ 〈[ϑ(ũ)]n−1, w
+
n−1〉.

(3.9)

Theorem 3.1. For ũ ∈ Wq
h in (2.13) and u in (2.2),

[Q(u)](T )− [Q(ũ)](T ) = E0 + E1 + E2 + E3, (3.10)

where

E0 = 〈ϑ(u0)− ϑ(ũ−0 ), ϕ0〉, E1 = −
N∑
n=1

Rh,n(ũ; ũ, ϕ),

E2 = −
N∑
n=1

εA,n(ũ; ũ, ϕ) dt, E3 = −
N∑
n=1

εh,n(ũ;ϕ),

(3.11)
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with Rh,n(ũ; ũ, ϕ) as expressed in (2.14), and

εA,n(ũ; ũ, w) =

∫
In

εA(ũ; ũ, w) dt,

εh,n(ũ;w) =

∫
In

〈∂tϑ(ũ), w − Jhw〉dt+ 〈[ϑ(ũ)]n−1, (w − Jhw)+n−1〉.
(3.12)

Proof. Substitute w = e = u− ũ in (3.8) so that

−〈e, ϑ′∂tϕ〉+ 〈∂ze, κ∂zϕ〉+ 〈e,v∂zϕ〉
= −〈ϑ(u)− ϑ(ũ), ∂tϕ〉+ 〈κ(u)∂z(u− z)− κ(ũ)∂z(ũ− z), ∂zϕ〉

= −
(
〈∂tϑ(ũ), ϕ〉+A(ũ; ũ, ϕ) + g(t)ϕ(a, t)

)
− ∂t〈ϑ(u)− ϑ(ũ), ϕ〉,

(3.13)

where we have used the first equation in (2.2). Since

〈e, ϑ′ψ〉+ e(a, t)ψa = 〈ϑ(u)− ϑ(ũ), ψ〉+ (u(a, t)− ũ(a, t))ψa, (3.14)

integration of (3.8) over In yields

〈ϑ(un)− ϑ(ũ−n ), ϕ−n 〉+

∫
In

(
〈ϑ(u)− ϑ(ũ), ψ〉+ (u− ũ))(a, t)ψa

)
dt

= 〈ϑ(un−1)− ϑ(ũ−n−1), ϕ+
n−1〉 −Rn(ũ; ũ, ϕ),

(3.15)

where Rn is as expressed in (3.9). Next we sum up (3.15) over n = 1, · · · , N and
take advantage of the continuity of ϕ in t to get

[Q(u)](T )− [Q(ũ)](T ) = 〈ϑ(u0)− ϑ(ũ−0 ), ϕ0〉 −
N∑
n=1

Rn(ũ; ũ, ϕ). (3.16)

The residual Rn(ũ; ũ, ϕ) can be decomposed into three components, which is ob-
tained by adding and subtracting Rh,n(ũ; ũ, ϕ):

Rn(ũ; ũ, ϕ) = Rh,n(ũ; ũ, ϕ) + δRn(ũ; ũ, ϕ), (3.17)

where

δRn(ũ; ũ, w) = Rn(ũ; ũ, w)−Rh,n(ũ; ũ, w)

=

∫
In

〈∂tϑ(ũ), w − Jhw〉dt+ 〈[ϑ(ũ)]n−1, (w − Jhw)+n−1〉

+

∫
In

(A(ũ; ũ, w)−Ah(ũ; ũ, w)) dt

= εh,n(ũ;w) +

∫
In

εA(ũ; ũ, w) dt

= εh,n(ũ;w) + εA,n(ũ; ũ, w).

(3.18)

Putting(3.18) to (3.17) and in turn to (3.16) completes the proof.

Theorem 3.2. For ũ ∈ Wq
h in (2.15) and u in (2.2),

[Q(u)](T )− [Q(ũ)](T ) = E0 + E1 + E2 + E3, (3.19)
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where

E0 = 〈ϑ(u0)− ϑ(ũ−0 ), ϕ0〉, E1 = −
N∑
n=1

Rn(ũ; ũ, ϕ− πqhϕ),

E2 = −
N∑
n=1

εA,n(ũ; ũ,Πq
hϕ), E3 = −

N∑
n=1

εh,n(ũ;πqhϕ),

(3.20)

and πqhϕ ∈ W
q
h is the usual projection of ϕ onto Wq

h.

Proof. Most derivation steps follow the proof of Theorem 3.1 up to (3.16):

[Q(u)](T )− [Q(ũ)](T ) = 〈ϑ(u0)− ϑ(ũ−0 ), ϕ0〉 −
N∑
n=1

Rn(ũ; ũ, ϕ). (3.21)

At this stage, we intend to insert (2.15), which is valid when the test function is
πqhϕ ∈ W

q
h. To do so, add and subtract Rn(ũ; ũ, πqhϕ) so that

Rn(ũ; ũ, ϕ) = Rn(ũ; ũ, ϕ− πqhϕ) +Rn(ũ; ũ, πqhϕ)

= Rn(ũ; ũ, ϕ− πqhϕ) +Rn(ũ; ũ, πqhϕ)−Rh,n(ũ; ũ, πqhϕ)

= Rn(ũ; ũ, ϕ− πqhϕ) + εA,n(ũ; ũ, πqhϕ) + εh,n(ũ;πqhϕ),

(3.22)

where similar equation to (3.18) has been used, and εA,n and εh,n are as in (3.12).
Putting all these results back to (3.21) completes the proof.

4. Numerical examples. Several numerical examples are presented in this sec-
tion to achieve two goals: 1) to investigate the global/norm-based accuracy of the
proposed approximation, and 2) to validate the robustness of error estimators that
are derived from Theorem 3.1 and Theorem 3.2. While the former cannot sat-
isfactorily substitute for a rigorous a priori error analysis, at least it should give
an illustrative indicator on the global convergence property of the approximation.
With respect to the latter, we only concentrate on the estimators’ accuracy in pre-
dicting error and their capability to decompose it into relevant components. Various
pertinent applications of the proposed error estimators to other aspects in numeri-
cal simulation of Richards Equation, such as its role in adaptivity, will be a subject
of future work.

A uniform set of discretization parameters hi = h = (b−a)/M and kn = k = T/N
is used to construct the algebraic equations (2.19). The time marching is executed
by solving this system using the standard Newton’s method of iteration.

4.1. A problem with closed form solution. While the proposed procedures
enjoy a flexibility in their implementation, a closed form solution of Richards Equa-
tion is needed for the purpose of assessing their performance. As alluded to in
the introduction, it is only on a very rare occasion that a closed form solution of
Richards Equation is available. One such instance is when the constitutive relations
are expressed as

κ(u) = κse
αu, and ϑ(u) = ϑr + (ϑs − ϑr)eαu, (4.1)

where κs is the saturated hydraulic conductivity, ϑr and ϑs are respectively the
residual and saturated water content, and α is the reciprocal of vertical height
associated with the capillary fringe. When g?(t) = g? = constant, ? = a, b, then the
closed form solution can be expressed as a series representation:

u(z, t) = α−1 ln(κ−1s w(z, t)), (4.2)
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where

w(z, t) = C1 + C2e
αz + eαz/2

∞∑
n=1

wn(t)φn(z), with (4.3)

wn(t) = wn(0)e−µnt, µn =
κs(α

2 + 4λ2n)

4α(ϑs − ϑr)
> 0,

wn(0) =
1

〈φn, φn〉

∫ L

0

(
κse

αu0(z) − C1 − C2e
αz
)
e−αz/2φn(z) dz.

(4.4)

The pair {φn, λn}∞n=1 constitutes an eigenfunction and an eigenvalue that satisfies{
−φ′′n = λ2nφn in (a, b),

B̃aφn = 0, B̃bφn = 0,
(4.5)

where B̃? are boundary conditions for w, which are appropriately derived from B?
via the relation w(z, t) = κse

αu(z,t). The constants {C1, C2} are obtained from
imposing the boundary conditions B?u = g?.

Two examples are considered in the numerical experiments whose data are listed
in Table 4.1. Solution profiles of these examples are shown in Figure 4.1 and Fig-
ure 4.2. The axes on these figures are flipped to follow the plotting style for profiles
associated with Richards Equation (see for example [25, 24]). The initial condition
is

u0(z) = α−1 ln(κ−1s f(z)), (4.6)

where for Ex. 1,

f(z) = C1 + C2e
αz +Aeαz/2 sin(λ1z),

λ1 = π/b, C2 =
κs(e

αga − eαgb)

1− eαb , C1 = κse
αga − C2,

A =
4λ1(κse

−α(65+b/2) − C1e
−αb/2 − C2e

αb/2)

((α/2)2 + λ21)b
,

(4.7)

and for Ex. 2,

f(z) = C1 + C2e
αz + e−α(b−z)/2

6000∑
n=1

An sin(λn(b− z)),

λn is governed by tan(λnb) +
2λn
α

= 0,

C1 = −ga, C2 =
κse

αgb − C1

eαb
,

An =
α cosh(αb/2) sin(λnb)− 2λn cos(λnb) sinh(αb/2)

(α/2)2 + λ2n

4λnga
2λnb− sin(2λn)

.

(4.8)

4.2. An accuracy assessment of the approximation. In this subsection, a set
of numerical experiments to investigate accuracy of the approximation is presented.
We solve the two examples whose data are listed in Table 4.1.

Table 4.2 and Table 4.3 list the errors of approximation ϑ(ũ(T )) in L2(a, b)-
norm for Ex. 1 and Ex. 2, respectively. Four different number of elements (M =
12, 24, 48, 96) and four different number of time steps (N = 1, 2, 4, 8) are used to
collect the error data in Table 4.2, while for error data in Table 4.3, M = 5, 10, 20, 40
and N = 4, 8, 16, 32 are used.
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Ex. 1 Ex. 2

(a, b) (0, 60) cm (0, 2) m
T 1000 s 0.5 hr
Bau u(a, t) κ(u)∂z(u− z)

∣∣
(a,t)

Bbu u(b, t) u(b)
ga −65 cm −0.15 m/hr
gb 0 cm 0 m
u0 (4.6) & (4.7) (4.6) & (4.8)
α 0.01 cm−1 4 m−1

κs 0.001 cm/s 0.1 m/hr
θs 0.3 0.6
θr 0.08 0.02

Table 4.1: Data for all examples with closed form solution
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Figure 4.1. Ex. 1: u(z, t) (top) and ϑ(u(z, t)) (bottom)

First, the accuracy of FVEM-dG1 generally outperforms that of FVEM-dG0,
which is especially evident when solving Ex. 1 (see Table 4.2). The approximation
error for Ex. 1 seems to be dominated by component of the temporal discretization.
For a fixed N , refining M does not quite improve the accuracy. However, for a
fixed M , refining N by two roughly reduces the error by two for FVEM-dG0 and
by seven to ten for FVEM-dG1, especially for larger M . A strikingly different
result is observed for Ex. 2 (see Table 4.3), for which the spatial discretization
error component is more dominant. For a fixed N , the error of FVEM-dG1 shows
a quadratic convergence with respect to M . On the other hand, when N is still



3418 VICTOR GINTING

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t = 0 hr

t = 0.02 hr

t = 0.08 hr

t = 0.16 hr

t = 0.32 hr

t = 0.64 hr

u(z, t) (cm)

z
(c
m
)

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t = 0.08 hr t = 0.16 hr t = 0.32 hr

t = 0.64 hr

ϑ(u(z, t)) (cm)

z
(c
m
)

Figure 4.2. Ex. 2: u(z, t) (top) and ϑ(u(z, t)) (bottom)

small, the error of FVEM-dG0 resembles a first order convergence with respect to
M . As N is increased, a better convergence rate is obtained.

4.3. Performance of the a posteriori error estimators. As mentioned, the
error equation for a quantity of interest Q stated in Theorems 3.1 and 3.2 can be
used to derive fully computable error estimators for the approximate solution ũ.
Notice that adjoint equation (3.8) is formulated based on linearization that utilizes
Mean Value Theorem on the path ũσ = ũ+σ(u−ũ), for σ ∈ [0, 1], cf. (3.2). Since in
reality u is not available, calculation of solution to the adjoint equation (3.8) must
be done using the only available information, namely, the approximate solution ũ,
so in practice, ũσ ≈ ũ. The adjoint ϕ is approximated preferably using higher order
approximation than the one used to produce ũ.

To test the proposed error estimators, we consider two quantities of interest:
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M N FVEM-dG0 FVEM-dG1

12 1 58.0082e-03 14.5267e-03
24 1 58.1606e-03 15.1200e-03
48 1 58.1991e-03 15.2688e-03
96 1 58.2087e-03 15.3060e-03

12 2 32.5818e-03 0.6939e-03
24 2 32.5477e-03 0.8597e-03
48 2 32.5396e-03 0.9086e-03
96 2 32.5376e-03 0.9211e-03

12 4 17.3786e-03 0.2823e-03
24 4 17.2600e-03 0.0916e-03
48 4 17.2310e-03 0.1222e-03
96 4 17.2238e-03 0.1344e-03

12 8 9.0728e-03 0.3586e-03
24 8 8.9160e-03 0.0793e-03
48 8 8.8779e-03 0.0154e-03
96 8 8.8685e-03 0.0153e-03

Table 4.2: Ex. 1: Error of ϑ(ũ(T )) quantified in L2(a, b)-norm

M N FVEM-dG0 FVEM-dG1

5 4 4.9527e-02 5.0631e-02
10 4 2.0846e-02 1.8016e-02
20 4 1.0534e-02 0.4128e-02
40 4 0.8508e-02 0.0992e-02

5 8 4.9824e-02 5.0641e-02
10 8 1.8868e-02 1.7991e-02
20 8 0.6907e-02 0.4088e-03
40 8 0.4671e-02 0.0965e-02

5 16 5.0159e-02 5.0645e-02
10 16 1.8208e-02 1.7988e-02
20 16 0.5197e-02 0.4079e-02
40 16 0.2637e-02 0.0959e-02

5 32 5.0382e-02 5.0647e-02
10 32 1.8027e-02 1.7988e-02
20 32 0.4504e-02 0.4077e-02
40 32 0.1646e-02 0.0958e-02

Table 4.3: Ex. 2: Error of ϑ(ũ(T )) quantified in L2(a, b)-norm

• The spatial average of water content at time T , which is represented as

[Q(u)](T ) =
1

b− a

∫ b

a

ϑ(u(z, T )) dz. (4.9)

To calculate the adjoint solution associated with this quantity, the correspond-
ing adjoint data is ψT = 1/(b− a), and the rest are zero.
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• The total average of water content over (a, b)× (0, T ), which is expressed as

[Q(u)](T ) =
1

T

∫ T

0

1

b− a

∫ b

a

ϑ(u(z, t)) dz dt. (4.10)

The corresponding adjoint data is ψ = 1/(b− a)/T and the rest are zero.

The true values of these quantities of interest for the two examples are listed in
Table 4.4.

Ex. 1 Ex. 2

Q in (4.9) 0.231831624739998887 0.129975678959476710

Q in (4.10) 0.221196137487056291 0.111225678959476525

Table 4.4: True Value of Quantities of Interest

The approximate solution is ũ ∈ W0
h (FVEM-dG0). The adjoint solution is

solved by continuous and piecewise quadratic finite element in spatial variable and
continuous piecewise linear in temporal variable. Profiles of ϕ corresponding to each
of these quantities of interest for each of the problems are shown in Figure 4.3 and
Figure 4.4, respectively.
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Figure 4.3. Ex. 1: ϕ(z, t) for Q in (4.9) (top) and for Q in (4.10)
(bottom). Each of them is obtained from numerical approximation
of (3.8), with ũ ∈ W0

h, h = (b− a)/96, and k = T/8.
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Figure 4.4. Ex. 2: ϕ(z, t) for Q in (4.9) (left) and for Q in (4.10)
(right). Each of them is obtained from numerical approximation of
(3.8), with ũ ∈ W0

h, h = (b− a)/50, and k = T/8.

Table 4.5 and Table 4.6 demonstrate performance of the error estimator for the
above quantities of interest when solving Ex. 1. In these tables, the error has been
decomposed according to the components of error listed in Theorem 3.1. As in the
accuracy assessment results, four different number of elements (M = 12, 24, 48, 96)
and four different number of time steps (N = 1, 2, 4, 8) are used. The last column,
which is labeled by Eff. denotes the ratio of error estimator (Err. Est.) to the
actual error, so the closer Eff. is to 1 indicates a more accurate error estimator.

Notice that values in the tables give an indication that the error in Q is dominated
by the contribution from temporal discretization, as refinement of the spatial mesh
for a fixed time step only causes negligible reduction in Err. Est. Reducing the time
step by two seems to reduce the error by two, which demonstrates an asymptotic first
order convergence with respect to the time step, i.e., Err. Est. = O(k). Prominence
of temporal discretization effect to the total error makes sense due to the longer
time simulation.

The component E0 quantifies the quality of representation of the true initial con-
dition u0 in the simulation. Representation of u0 is realized through the projection
of u0 onto Xh. Thus, E0 measures the discrepancy attributed to this choice, which
shows a second order convergence with respect to h (i.e., E0 = O(h2)) for a fixed
time step. Comparison of values in the tables indicates that relative contribution
of this component to the overall error is less significant.

The component E1, which measures the residual of the finite volume element
discretization weighted by the adjoint solution and integrated over time, shows a
decrease with respect to time step as well. In fact, E1 is clearly the main contributor
to the total error with asymptotic behavior E1 = O(k). The components E2 and
E3 measures the discrepancy between the variational setting associated with finite
volume element and that of standard continuous Galerkin finite element. In the
realm of a priori error analysis, these two components are bounded in terms of the
spatial mesh size h (see Proposition 2.1 and (2.5)). For every fixed N , there is a
reduction of E2 and E3 as h is refined, with mostly E2 = O(h) in Table 4.5, E2 =
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O(h2) in Table 4.6, and E3 = O(h2) in both tables. However, these two components
are less dominant in relative comparison to E1. Notice also that E0 has a different
sign than the rest of components. A capability to distinguish components of error
and to recognize potential cancellation is arguably one of the strong advantages of
the adjoint-based error estimation techniques. Finally, as illustrated by the Eff., as
refinement is performed, the error estimator gives a more accurate prediction.

Next we utilize the proposed error estimator to the numerical solution of Ex. 2.
Table 4.7 and Table 4.8 show the breakdown of error for each of the quantities of in-
terest. Again, following the accuracy assessment results, four different number of el-
ements (M = 5, 10, 20, 40) and four different number of time steps (N = 4, 8, 16, 32)
are used. As in the results for Ex. 1, the proposed estimator performs really well
in predicting the error. However, upon a closer observation, the detailed situation
is quite different from what happened in Ex. 1. In Table 4.7 (error associated with
Q in (4.9)), we notice that the error caused by discretization of the spatial variable
is more dominant, so refining the spatial mesh reduces the error. In particular,
E3 is seen to be the main contributor to the total error with asymptotic behav-
ior E3 = O(h2), which results in Err. Est. = O(h2). Notice also that time step
refinement does not seem to improve the accuracy.

The result in Table 4.8 shows that E1 and E3 are two competing error components
with E1 = O(k) and E3 = O(h2). Due to their different sign, they tend to cancel
each other, especially when M and N are still smaller. This in turn lowers the
magnitudes of total error. However, asN is increased, E3 tends to be more dominant
than E1, especially for small M . Since there is an intertwinement of the error
components stemming from temporal and spatial variables, Err. Est. in this table
does not indicate a clear pattern of convergence with respect to any discretization
parameter. However, as the two discretizations are simultaneously refined, there is
an observable reduction.

M N E0 E1 E2 E3 Err. Est. Eff.

12 1 -5.5601e-05 6.6298e-03 2.6571e-04 2.2485e-05 6.8623e-03 1.149
24 1 -1.3843e-05 6.6974e-03 1.3440e-04 5.3567e-06 6.8233e-03 1.139
48 1 -3.4568e-06 6.7142e-03 6.7378e-05 1.3220e-06 6.7794e-03 1.131
96 1 -8.6396e-07 6.7184e-03 3.3706e-05 3.2943e-07 6.7515e-03 1.126

12 2 -4.4365e-05 3.8268e-03 7.1941e-05 3.6142e-05 3.8906e-03 1.120
24 2 -1.1046e-05 3.8548e-03 3.9509e-05 8.5556e-06 3.8918e-03 1.120
48 2 -2.7579e-06 3.8617e-03 2.0874e-05 2.1051e-06 3.8820e-03 1.120
96 2 -6.8914e-07 3.8635e-03 1.0730e-05 5.2410e-07 3.8740e-03 1.115

12 4 -3.9779e-05 2.0010e-03 2.5003e-05 4.3906e-05 2.0310e-03 1.067
24 4 -9.9212e-06 2.0128e-03 1.2165e-06 1.0291e-05 2.0254e-03 1.069
48 4 -2.4774e-06 2.0158e-03 6.9258e-06 2.5084e-06 2.0227e-03 1.069
96 4 -6.1911e-07 2.0165e-03 3.7657e-06 6.2266e-07 2.0203e-03 1.068

12 8 -3.8042e-05 1.0175e-03 1.9493e-05 4.6704e-05 1.0457e-03 1.037
24 8 -9.4764e-06 1.0227e-03 5.0975e-06 1.1390e-05 1.0297e-03 1.036
48 8 -2.3676e-06 1.0240e-03 2.3602e-06 2.7559e-06 1.0268e-03 1.036
96 8 -5.9172e-07 1.0244e-03 1.3885e-06 6.8063e-07 1.0258e-03 1.036

Table 4.5: Ex. 1: Performance of the Error Estimator in Theorem 3.1 for Q in (4.9)
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M N E0 E1 E2 E3 Err. Est. Eff.

5 4 -3.6102e-05 -6.2164e-08 -3.6456e-07 1.0290e-02 1.0253e-02 0.977
10 4 -1.3302e-05 3.3879e-09 -4.6917e-09 3.9111e-03 3.8978e-03 0.993
20 4 -5.7876e-06 9.9041e-10 -2.2824e-10 1.0090e-03 1.0032e-03 0.998
40 4 -2.7053e-06 5.6955e-10 -3.8568e-11 2.4965e-04 2.4695e-04 0.999

5 8 -3.6107e-05 -4.3218e-08 -3.5113e-07 1.1133e-02 1.1096e-02 0.974
10 8 -1.3302e-05 1.8737e-10 -4.7768e-10 4.3243e-03 4.3110e-03 0.993
20 8 -5.7876e-06 1.9063e-11 -6.0320e-12 1.0842e-03 1.0784e-03 0.998
40 8 -2.7053e-06 5.5338e-12 -4.5001e-13 2.6644e-04 2.6373e-02 0.999

5 16 -3.6121e-05 6.8028e-08 -4.5382e-07 1.1595e-02 1.1559e-02 0.973
10 16 -1.3302e-05 1.6801e-11 -8.8583e-11 4.5811e-03 4.5678e-03 0.992
20 16 -5.7876e-06 5.2323e-13 -3.2271e-13 1.1290e-03 1.1232e-03 0.998
40 16 -2.7053e-06 4.0884e-14 -2.5154e-14 2.7647e-04 2.7376e-04 0.999

5 32 -3.6089e-05 -4.4295e-08 4.5726e-08 1.1837e-02 1.1801e-02 0.972
10 32 -1.3302e-05 2.5330e-12 -2.9891e-11 4.7280e-03 4.7144e-03 0.992
20 32 -5.7876e-06 2.6583e-14 -9.4480e-14 1.1545e-03 1.1487e-03 0.998
40 32 -2.7053e-06 -1.0436e-14 -1.8777e-14 2.8211e-04 2.7941e-04 0.999

Table 4.7: Ex. 2: Performance of the Error Estimator in Theorem 3.1 for Q in (4.9)

M N E0 E1 E2 E3 Err. Est. Eff.

12 1 -7.6641e-05 -5.9702e-03 6.5348e-06 2.7273e-05 -6.0131e-03 1.290
24 1 -1.9082e-05 -5.9818e-03 1.6059e-06 6.7751e-06 -5.9925e-03 1.290
48 1 -4.7653e-06 -5.9847e-03 3.9971e-07 1.6907e-06 -5.9874e-03 1.290
96 1 -1.1910e-06 -5.9854e-03 9.9817e-08 4.2248e-07 -5.9861e-03 1.290

12 2 -7.4772e-05 -3.0291e-03 1.6147e-05 2.5436e-05 -3.0623e-03 1.123
24 2 -1.8616e-05 -3.0342e-03 3.9483e-06 6.3250e-06 -3.0426e-03 1.123
48 2 -4.6488e-06 -3.0355e-03 9.8092e-07 1.5784e-06 -3.0376e-03 1.123
96 2 -1.1619e-06 -3.0358e-03 2.4483e-07 3.9441e-07 -3.0363e-03 1.123

12 4 -7.4397e-05 -1.5584e-03 2.3449e-05 2.4137e-05 -1.5852e-03 1.057
24 4 -1.8523e-05 -1.5609e-03 5.7189e-06 6.0235e-06 -1.5677e-03 1.057
48 4 -4.6257e-06 -1.5615e-03 1.4158e-06 1.5036e-06 -1.5632e-03 1.057
96 4 -1.1561e-06 -1.5617e-03 3.5295e-07 3.7571e-07 -1.5621e-03 1.057

12 8 -7.4326e-05 -7.9524e-04 2.7824e-05 2.3365e-05 -8.1837e-04 1.027
24 8 -1.8504e-05 -7.9647e-04 6.8634e-06 5.8679e-06 -8.0225e-04 1.027
48 8 -4.6210e-06 -7.9678e-04 1.6962e-06 1.4661e-06 -7.9824e-04 1.027
96 8 -1.1549e-06 -7.9686e-04 4.2208e-07 3.6638e-07 -7.9722e-04 1.027

Table 4.6: Ex. 1: Performance of the Error Estimator in Theorem 3.1 for Q in (4.10)

Tables 4.9 to 4.12 present the decomposition of error for Ex. 1 and Ex. 2 into
various components as dictated by Theorem 3.2. The columns for E0 = E0, Err. Est.,
and Eff. are not included since they are the same as in the corresponding columns in
Tables 4.5 to 4.8, respectively. The component E1 seems to be the main contributor
to the total error. For results associated with Ex. 1 (see Tables 4.9 and 4.10), the
asymptotic behavior is roughly E1 = O(k). For Ex. 2 with Q as stated in (4.9) (see
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M N E0 E1 E2 E3 Err. Est. Eff.

5 4 -3.6102e-05 -4.6874e-03 -7.6435e-08 7.2999e-03 2.5763e-03 0.921
10 4 -1.3302e-05 -4.6875e-03 -8.4587e-10 3.3265e-03 -1.3743e-03 1.026
20 4 -5.7876e-06 -4.6875e-03 -3.4359e-11 9.8963e-04 -3.7036e-03 1.001
40 4 -2.7054e-06 -4.6875e-03 -4.2724e-12 2.5707e-04 -4.4331e-03 1.000

5 8 -3.6102e-05 -2.3437e-03 -4.6414e-08 7.2458e-03 4.8659e-03 0.950
10 8 -1.3302e-05 -2.3437e-03 -6.5517e-11 3.5887e-03 1.2316e-03 0.961
20 8 -5.7876e-06 -2.3437e-03 -7.0707e-13 1.0899e-03 -1.2596e-03 1.004
40 8 -2.7054e-06 -2.3437e-03 -4.9054e-14 2.8339e-04 -2.0631e-03 1.000

5 16 -3.6105e-05 -1.1719e-03 -7.9249e-08 7.1892e-03 5.9812e-03 0.956
10 16 -1.3302e-05 -1.1719e-03 -1.0129e-11 3.7626e-03 2.5774e-03 0.977
20 16 -5.7876e-06 -1.1719e-03 -6.6506e-14 1.1637e-03 -1.3957e-05 1.823
40 16 -2.7054e-06 -1.1719e-03 -1.1789e-14 3.0287e-04 -8.7171e-04 1.001

5 32 -3.6103e-05 -5.8593e-04 -2.1637e-08 7.1541e-03 6.5320e-03 0.959
10 32 -1.3302e-06 -5.8594e-04 -3.1392e-12 3.8643e-03 3.2650e-03 0.979
20 32 -5.7876e-06 -5.8594e-04 -4.6973e-14 1.2132e-03 6.2149e-04 0.988
40 32 -2.7054e-06 -5.8594e-04 -1.1491e-14 3.1628e-04 -2.7236e-04 1.002

Table 4.8: Ex. 2: Performance of the Error Estimator in Theorem 3.1 for Q in (4.10)

M N E1 E2 E3
12 1 6.9104e-03 7.5953e-06 0
24 1 6.8352e-03 1.8846e-06 6.9389e-18
48 1 6.7824e-03 4.6724e-07 3.4694e-18
96 1 6.7523e-03 1.1620e-07 6.9389e-18

12 2 3.8392e-03 6.1045e-06 8.9582e-05
24 2 3.8789e-03 1.5228e-06 2.2428e-05
48 2 3.8787e-03 3.7986e-07 5.6090e-06
96 2 3.8732e-03 9.4827e-08 1.4024e-06

12 4 1.9444e-03 5.6811e-06 1.1982e-04
24 4 2.0038e-03 1.4190e-06 3.0033e-05
48 4 2.0173e-03 3.5462e-07 7.5129e-06
96 4 2.0189e-03 8.8625e-08 1.8785e-06

12 8 9.4839e-04 5.5176e-06 1.2981e-04
24 8 1.0052e-03 1.3769e-06 3.2575e-05
48 8 1.0206e-03 3.4421e-07 8.1499e-06
96 8 1.0243e-03 8.6050e-08 2.0378e-06

Table 4.9: Ex. 1: Decomposition of Error according to Theorem 3.2 for Q in (4.9)

Table 4.11), the asymptotic behavior is E1 = O(h2). However, it is not quite the
case for Q in (4.10) (see Table 4.12).

5. Conclusion and future work. This paper investigates the application of
adjoint-based a posteriori error analysis for numerical approximation of Richards
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M N E1 E2 E3
12 1 -5.9364e-03 0 0
24 1 -5.9734e-03 0 0
48 1 -5.9826e-03 0 0
96 1 -5.9849e-03 0 0

12 2 -3.0501e-03 2.5710e-06 5.9998e-05
24 2 -3.0397e-03 6.4271e-07 1.5112e-05
48 2 -3.0369e-03 1.6068e-07 3.7850e-06
96 2 -3.0361e-03 4.0169e-08 9.4670e-07

12 4 -1.6024e-03 4.3468e-06 8.7251e-05
24 4 -1.5722e-03 1.0865e-06 2.1970e-05
48 4 -1.5644e-03 2.7161e-07 5.5023e-06
96 4 -1.5624e-03 6.7902e-08 1.3762e-06

12 8 -8.5030e-04 5.5588e-06 1.0069e-04
24 8 -8.1048e-04 1.3899e-06 2.5351e-05
48 8 -8.0031e-04 3.4750e-07 6.3488e-06
96 8 -7.9774e-04 8.6875e-08 1.5879e-06

Table 4.10: Ex. 1: Decomposition of Error according to Theorem 3.2 for Q in (4.10)

M N E1 E2 E3
5 4 1.0289e-02 -7.6351e-08 3.0166e-07

10 4 3.9111e-03 -5.9250e-10 4.6158e-09
20 4 1.0090e-03 -1.7676e-11 1.7694e-10
40 4 2.4965e-04 -1.9490e-12 2.1193e-11

5 8 1.1134e-02 7.3138e-08 -1.3466e-06
10 8 4.3243e-03 -6.0938e-11 1.1118e-09
20 8 1.0842e-03 -4.8331e-13 1.1840e-11
40 8 2.6644e-04 -2.7270e-14 6.6398e-13

5 16 1.1601e-02 8.7291e-08 -5.8431e-06
10 16 4.5811e-03 -1.1412e-11 3.7774e-10
20 16 1.1290e-03 -3.7491e-14 1.0044e-12
40 16 2.7647e-04 -4.7254e-15 1.7396e-14

5 32 1.1833e-02 2.1590e-08 3.9613e-06
10 32 4.7277e-03 -3.8970e-12 1.8867e-10
20 32 1.1545e-03 -1.9623e-14 1.5073e-13
40 32 2.8211e-04 -4.4201e-15 -2.7756e-17

Table 4.11: Ex. 2: Decomposition of Error according to Theorem 3.2 for Q in (4.9)

Equation. Construction of the approximate solution is cast into space-time varia-
tional formulation, specifically using the finite volume element in spatial variable
and discontinuous Galerkin finite element in temporal variable. The resulting error
estimators have the capability to predict components of error in certain quantities
of interest that are expressed as a functional of the solution. The two examples give
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M N E1 E2 E3
5 4 2.6123e-03 -7.7482e-09 1.1954e-07

10 4 -1.3610e-03 -5.0964e-11 1.2934e-09
20 4 -3.6979e-03 -1.4624e-12 4.4327e-11
40 4 -4.4304e-03 -1.6102e-13 5.1326e-12

5 8 4.9021e-03 6.9429e-09 -1.0375e-07
10 8 1.2450e-03 -5.4195e-12 2.1318e-10
20 8 -1.2539e-03 -4.3805e-14 1.8653e-12
40 8 -2.0604e-03 -3.6394e-15 9.6166e-14

5 16 6.0183e-03 1.5114e-08 -1.0262e-06
10 16 2.5907e-03 -1.0270e-12 5.4566e-11
20 16 -8.1695e-06 -9.7700e-15 1.0732e-13
40 16 -8.6900e-04 -2.1094e-15 1.2386e-15

5 32 6.5684e-03 3.4467e-09 -3.0913e-07
10 32 3.2783e-03 -3.6607e-13 2.2585e-11
20 32 6.2727e-04 -8.8020e-15 1.0911e-14
40 32 -2.6966e-04 -2.1545e-15 -4.1980e-16

Table 4.12: Ex. 2: Decomposition of Error according to Theorem 3.2 for Q in (4.10)

a strong indication that the error estimators are robust and capable to predict the
error satisfactorily.

As for future work, we are interested in exploring further applications of the error
estimators, in particular as to how they are applied to the setting of multidimen-
sional problems. Owing to the various challenges persistent in the approximations
of Richards Equation, a utilization of adaptivity is perhaps the only judicious route.
Here the adaptivity is multi-faceted, not only as it pertains to local spatial refine-
ment and dynamic time stepping, but also as it relates to determining optimal
number of iterations when solving the nonlinear algebraic system. In this regard,
the prospect of adjoint-based approach to estimate the components of error seems
to be very promising.

Another interesting subject, which is not pursued in the present work, is a rig-
orous mathematical analysis of the proposed approximation. It must begin with
establishing the existence of an approximate solution of (2.15). Here a potentially
useful tool is either the Banach Fixed Point Theorem or the Brouwer Fixed Point
Theorem. It should then be followed by a careful convergence analysis with the
ultimate goal of showing the existence of a limit of the sequence of approximate so-
lutions as (h, k)→ (0, 0), and confirming that the limit satisfies a weak formulation
of the Richards Equation. This can then be supplied with a study convergence rate
of the approximate solution with respect to h and k.
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[2] V. Baron, Y. Coudière and P. Sochala, Adaptive multistep time discretization and lineariza-
tion based on a posteriori error estimates for the Richards equation, Appl. Numer. Math.,

112 (2017), 104–125.

http://www.ams.org/mathscinet-getitem?mr=MR1960405&return=pdf
http://dx.doi.org/10.1007/978-3-0348-7605-6
http://www.ams.org/mathscinet-getitem?mr=MR3574244&return=pdf
http://dx.doi.org/10.1016/j.apnum.2016.10.005
http://dx.doi.org/10.1016/j.apnum.2016.10.005


AN ADJOINT-BASED A POSTERIORI ANALYSIS 3427

[3] M. Bause and P. Knabner, Computation of variably saturated subsurface flow by adaptive
mixed hybrid finite element methods, Advances in Water Resources, 27 (2004), 565–581.

[4] C. Bernardi, L. El Alaoui and Z. Mghazli, A posteriori analysis of a space and time discretiza-

tion of a nonlinear model for the flow in partially saturated porous media, IMA J. Numer.
Anal., 34 (2014), 1002–1036.

[5] M. A. Celia, E. T. Bouloutas and R. L. Zarba, A general mass-conservative numerical solution
for the unsaturated flow equation, Water Resour. Res., 26 (1990), 1483–1496.

[6] P. Chatzipantelidis, Finite volume methods for elliptic PDE’s: A new approach, M2AN Math.

Model. Numer. Anal., 36 (2002), 307–324.
[7] P. Chatzipantelidis, V. Ginting and R. D. Lazarov, A finite volume element method for a

non-linear elliptic problem, Numer. Linear Algebra Appl., 12 (2005), 515–546.

[8] Z. Chen, G. Huan and Y. Ma, Computational Methods for Multiphase Flows in Porous Media,
vol. 2 of Computational Science & Engineering, Society for Industrial and Applied Mathe-

matics (SIAM), Philadelphia, PA, 2006.

[9] S.-H. Chou and Q. Li, Error estimates in L2, H1 and L∞ in covolume methods for elliptic
and parabolic problems: A unified approach, Math. Comp., 69 (2000), 103–120.

[10] B. Cumming, T. Moroney and I. Turner, A mass-conservative control volume-finite element

method for solving Richards’equation in heterogeneous porous media, BIT , 51 (2011), 845–
864.

[11] K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Computational Differential Equations,

Cambridge University Press, Cambridge, 1996.
[12] K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differ-

ential equations, in Acta Numerica, 1995 , Acta Numer., Cambridge Univ. Press, Cambridge,
1995, 105–158.

[13] K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to computational methods for

differential equations, in Theory and Numerics of Ordinary and Partial Differential Equations
(Leicester, 1994), Adv. Numer. Anal., IV, Oxford Univ. Press, New York, 1995, 77–122.

[14] D. Estep, A posteriori error bounds and global error control for approximation of ordinary

differential equations, SIAM J. Numer. Anal., 32 (1995), 1–48.
[15] D. J. Estep, M. G. Larson and R. D. Williams, Estimating the error of numerical solutions of

systems of reaction-diffusion equations, Mem. Amer. Math. Soc., 146 (2000), no. 696.

[16] R. Eymard, M. Gutnic and D. Hilhorst, The finite volume method for Richards equation,
Comput. Geosci., 3 (1999), 259–294.

[17] M. W. Farthing and F. L. Ogden, Numerical solution of Richards’ equation: A review of

advances and challenges, Soil Science Society of America Journal , 81 (2017), 1257–1269.
[18] W. R. Gardner, Some steady-state solutions of the unsaturated moisture flow equation with

application to evaporation from a water table, Soil Science, 85 (1958), 228–232.
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