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Abstract. In Bayesian inverse problems, using the Markov Chain Monte

Carlo method to sample from the posterior space of unknown parameters is a
formidable challenge due to the requirement of evaluating the forward model

a large number of times. For the purpose of accelerating the inference of the

Bayesian inverse problems, in this work, we present a proper orthogonal de-
composition (POD) based data-driven compressive sensing (DCS) method and

construct a low dimensional approximation to the stochastic surrogate model

on the prior support. Specifically, we first use POD to generate a reduced order
model. Then we construct a compressed polynomial approximation by using

a stochastic collocation method based on the generalized polynomial chaos ex-

pansion and solving an l1-minimization problem. Rigorous error analysis and
coefficient estimation was provided. Numerical experiments on stochastic ellip-

tic inverse problem were performed to verify the effectiveness of our POD-DCS

method.

1. Introduction. The inverse problems refer to exploring the inherent nature of
things based on observable phenomena. There are many parameters of interest
in scientific and engineering problems that cannot be directly observed. We often
discuss these quantities indirectly through known data, that is, to formulate such
problems in the form of inverse problems [14, 7]. It can be seen from this that inverse
problems are the products of the rapid development of science and engineering,
which have been widely used in various fields such as geological engineering [25, 10],
medicine [4], environment [31], telemetry [28], control [2] and so on.

Due to the fact that parameters are sensitive to observation data, which is usu-
ally impure, this leads to the inverse problems are ill-posed, which can be addressed
with regularization [9, 27]. However, regularization methods only provide point
estimates of the unknown parameters and without quantifying the uncertainties of
the solution. Then, the statistical inference method [14, 26] entered the researchers’
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vision. In Bayesian inverse problems, the unknown parameters are treated as ran-
dom vectors with known prior distribution, and we need to infer their conditional
distribution under observation data, namely the posterior distribution. In general,
it is difficult to obtain the analytical form of the posterior distribution, so we often
consider using the Markov Chain Monte Carlo (MCMC) method [3] to explore the
posterior space. In these sampling algorithms, the forward model solution needs to
be calculated for each candidate sample. We know that evaluating forward models is
expensive in many practical problems, so direct sampling algorithms are prohibitive.
To overcome this difficulty, many scholars have proposed a series of surrogate mod-
els and effective sampling algorithms to reduce the computational cost of Bayesian
inverse problems. The former achieves the goal by reducing the cost of a single
forward model evaluation. For example, the use of generalized polynomial chaos
(gPC) basis functions to express the solutions of forward problems is proposed in
[21, 22], the projection-based model reduction techniques can be seen in [19, 15],
and adaptive methods to construct surrogate models are presented in [32, 17]. The
latter achieves this purpose by reducing the number of samples required, which has
been studied in [23, 20].

Here, we focus on the construction of effective surrogate models. Since unknown
parameters are treated as random vector ξ(ω), the forward problems can be regarded
as the stochastic problems on prior support Γ. Although the stochastic problem is
more complicated than the original one, we can calculate the approximate posterior
probability corresponding to every candidate sample at a negligible cost once its
solution expression obtained. In the physical domain D and image probability space
of unknown parameters, we can use the deterministic and stochastic basis functions
to represent the solutions of stochastic problems [13, 8]. For instance, with the
stochastic finite element methods, an approximation of solution u(x, ξ) : D×Γ→ R
has the form:

ǔ(x, ξ) =

n∑
i=1

nu∑
j=1

čijϕj(x)ψi(ξ), (1)

where the coefficient čij is with respect to (w.r.t.) a finite element basis ϕj and a
multivariate polynomial chaos (PC) basis ψi.

In the current work, we propose the data-driven compressive sensing method
based on proper orthogonal decomposition for constructing the accurate approx-
imate solutions of stochastic forward problems to accelerate the calculation of
Bayesian inverse problems. The POD-DCS method is derived from the data-driven
compressive sensing method proposed in [18]. But here, we use proper orthogonal
decomposition (POD) basis functions instead of Karhunen-Loève basis, so as to
generate a reduced order model (ROM) and avoid the recovery of covariance. Ac-
cording to the idea of compressive sensing (CS), an accurate approximate solution
of the ROM can be obtained by calculating a basis pursuit (BP) problem [18, 30]
with a small amount of data. The advantage of our method is that it constructs
the reduced order model using snapshots first, which causes the degree of freedom
(DoF) of the forward problem to be reduced from the cardinality of the finite ele-
ment to the that of POD, and then we only need to reconstruct the low-dimensional
ROM at a lower cost. From the numerical results we can see that when using the
same number of fully discrete finite element solutions, our scheme can improve accu-
racy and sparsity compared to the conventional CS method based on finite element
basis. Moreover, the cost of evaluating a forward model using our method is only
a fraction of that with the finite element method (FEM), so it can speed up the
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calculation of Bayesian inverse problems effectively. As we all know, many practical
problems can be described by partial differential equations (PDE). Here, we con-
centrate only on elliptic PDE, which is widely used in the studies of oil reservoirs
and groundwater [25], and its ill-posedness have been discussed in [16]. Of course,
our method can be naturally extended to other partial differential equations. All
the computations were performed using MATLAB R2014b on a personal computer
with 1.60GHz CPU and 4GB RAM.

The rest of this paper is organized as follows. In Section 2, we describe the
model problem used as the background of our study, then introduce the framework of
Bayesian inference and the stochastic surrogate model. In Section 3, we discuss how
to construct the POD-DCS approximate solution for a stochastic forward problem,
and provide some direct simulation results and the corresponding algorithm. The
error and sparsity analyses of our scheme are conducted in Section 4. In Section 5,
we compare our POD-DCS scheme with other methods, and use it to solve elliptic
inverse problem. Finally, we give some conclusions and indicate possible future
work in Section 6.

2. Problem setup and Bayesian framework. Consider an underground steady
state aquifers modelled by two-dimensional elliptic partial differential equation with
Dirichlet boundary as{

−∇ · (a(x)∇u(x)) = f, x ∈ D,
u(x) = 0, x ∈ ∂D, (2)

where domain D = [0, 1]2. Let u(x) be the hydraulic head, a(x) be the permeability
field, and apply a constant source term in the whole domain and satisfy f ≡ 2. The
goal of this elliptic inverse problem is to estimate the unknown permeability field
a(x) from a set of observations z = [u(x1, ξ), . . . , u(xnz , ξ)]T ∈ Rnz of the solution
u at points {xs}nz

s=1. In this work, we consider the permeability field defined by
np = 4 radial basis functions with centers x1, · · · ,xnp

as:

a(x) = 0.01 +

np∑
i=1

ξi exp

(
−‖x− xi‖22

0.02

)
, (3)

where ‖ · ‖2 is Euclidean norm. These radial basis functions are shown in Figure 1,
and what we need to do is determine these weights {ξi}

np

i=1.

Figure 1. Radial basis functions used to define the permeability field.

Let ξ = [ξ1, · · · , ξnp
]T be the weight vector, and the permeability field and model

output depending on ξ are denoted as a(x; ξ) and u(x; ξ), respectively. Without
loss of generality, here we consider the additive error, i.e.,

zs = u(xs; ξ) + es, s = 1, . . . , nz (4)
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where {xs}nz
s=1 are sensor locations, ξ ∈ Rnp is the weight vector corresponding

to the data z = [z1, . . . , zns
]T ∈ Rnz , and additive error e = [e1, . . . , enz

]T ∈ Rnz

comes from measurement error, etc. Then, the forward model can be written as

z = G(ξ) + e, (5)

where G : Rnp → Rnz is a mapping from input parameters ξ to noise-free data.
Let the noise e and parameters ξ are independent mutually. Suppose further that
the components of e are independent and identically distributed (i.i.d.), and satisfy
ei ∼ N(0, σ2

e) for i = 1, · · · , nz.

2.1. Bayesian framework. In Bayesian inverse problems, the unknown parame-
ters ξ is regarded as random vector in a properly defined probability space (Ω,F ,P),
whose components are i.i.d.. Moreover, the prior probability density function of ξ
is known. In this work, we only consider the uniform prior in [0, 1]np .

By Bayes’ rule, we can infer the posterior probability density function π(ξ|z) of
unknown parameters ξ by combining the prior information π(ξ), likelihood function
π(z|ξ) and observations z, i.e.,

π(ξ|z) ∝ π(z|ξ)π(ξ). (6)

According the forward model (5) and the assumption of noise independence, likeli-
hood function π(z|ξ) has the form

π(z|ξ) =

nz∏
i=1

πei (zi − Gi(ξ)) ∝ exp

(
−‖G(ξ)− z‖22

2σ2
e

)
. (7)

In many practical problems, the posterior distributions (6) are analytically in-
tractable. Consequently, many sampling algorithms, e.g. MCMC, have been used
to ascertain the posterior space. The framework of Bayesian inverse problems with
direct sampling algorithm is shown in Figure 2. The form of the likelihood function
(7) implies that for each candidate sample ξ, we need to evaluate the corresponding
forward model G(ξ), which is expensive generally. Therefore, the naive sampling
methods are prohibitive. A series of reduced order models and effective sampling
algorithms have been developed to deal with this problem. In order to reduce the
total computational cost, the former is by reducing the cost of a single evaluation
of the forward model, and the latter is by reducing the number of samples required.
In current work, we concentrate on constructing a surrogate model to reduce the
cost of a single forward model evaluation.

Likelihood

Posterior

Data

MCMC

Estimate
parameters

Error

Forward
Model

Prior

Figure 2. Bayesian inverse problems framework with direct sampling algorithm.
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2.2. Stochastic surrogate model. In probability space (Ω,F ,P), we denote the
probability density function of random variable ξi(ω) : Ω→ R as πi(ξi), whose range
is Γi = ξi(Ω) ⊂ R. Because the components of ξ are assumed to be independent,
the joint probability density function of random vector ξ has the form

π(ξ) =

np∏
i=1

πi(ξi) (8)

with support Γ =
∏np

i=1 Γi = [0, 1]np . Here, the joint probability density function
π(ξ) is equivalent to the prior density function in Bayes’ formula (6).

For any ω ∈ Ω, the realization of random vector ξ is belong to Γ. Therefore, in
the Bayesian framework, we can restate the boundary value problem (2) as following
stochastic forward problem in image probability space (Γ,B(Γ), π(ξ)dξ) rather than
abstract probability space (Ω,F ,P):{

−∇ · (a(x, ξ)∇u(x, ξ)) = f, (x, ξ) ∈ D × Γ,
u(x, ξ) = 0, x ∈ ∂D. (9)

Here, B(Γ) is the Borel σ-algebra on Γ, and π(ξ)dξ is the measure of random vector
ξ. In fact, we can construct explicit expression of the solution u(x, ξ) to stochastic
problem (9). Then for any ω ∈ Ω, substituting the realization ξ(ω) into u(x, ξ), the
function value is consistent with the solution u(x; ξ) of the deterministic problem
(2) which has the same input ξ. Using this solution expression, we can repeatedly
evaluate the forward model (2) at a negligible cost. For this reason, the model (9)
is called the stochastic surrogate model of problem (2).

3. Data-driven compressive sensing method based on proper orthogonal
decomposition. In this section, we propose a data-driven compressive sensing
method based on proper orthogonal decomposition, which can be used to construct
efficient and sparse solution for a stochastic forward model.

It’s well-known that the solution u(x, ξ) : D × Γ → R of stochastic forward
model (9) can be represented by stochastic and deterministic basis functions. Here,
we propose the POD-DCS method, which chooses a set of data-driven POD basis
functions {φj(x)}mj=1 for domain D and a set of gPC basis functions {ψi(ξ)}ni=1 for
prior support Γ, and the coefficients are determined by solving a BP problem. Next,
we discuss how to construct the POD-DCS approximate solution for a stochastic
forward problem.

3.1. Proper orthogonal decomposition. The corresponding degree of freedom
of the finite element method is expressed by nu, and let S ∈ Rnu×Ks be the snapshot
matrix:

S = [uh(x, ξ1), · · · , uh(x, ξKs)] := [uh1 (x), · · · , uhKs
(x)], (10)

where uh(x, ξi) ∈ Rnu is the finite element solution of problem (9) associated with

input parameter ξi ∈ Γ. These random inputs {ξi}Ks
i=1 are sampling from Γ ran-

domly. By solving eigenvalue problem

RV = V Λ (11)

with

Rij =
1

Ks

(
uhi (x), uhj (x)

)
, i, j = 1, · · · ,Ks, (12)
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we can obtain the diagonal singular value matrix Λ with Λjj = λj , and the matrix
of singular vectors V = [v1, · · · ,vKs ] with the j-th component

vj = [v
(j)
1 , · · · , v(j)

Ks
]T , j = 1, · · ·Ks. (13)

Since R is positive semidefinite and symmetric, we can make the eigenvectors
{vj}Ks

j=1 to be orthogonal and sort the eigenvalues in a descending order. After
normalization, the POD basis can be represented as

φj(x) =
1√
Ksλj

Ks∑
i=1

v
(j)
i uhi (x), j = 1, · · · ,m. (14)

Here, the dimension of POD basis, m, is determined by the energy ratio νm defined
as

νm =

m∑
j=1

λj

/ Ks∑
j=1

λj . (15)

Once the basis functions are computed, the solution u(x, ξ) can be approximated
as

û(x, ξ) =

m∑
j=1

αj(ξ)φj(x). (16)

The coefficients {αj}mj=1 are called reduced states and satisfy the following algebraic
system

Aα = F, (17)

where

α = [α1(ξ), · · · , αm(ξ)]T ,

Fi =

∫
D

f(x)φi(x)dx, i = 1, · · · ,m,

Aij =

∫
D

a(x, ξ)∇φj(x) · ∇φi(x)dx, i, j = 1, · · · ,m.

From the definition of the POD basis functions we known that φi(x) and φj(x)
are orthogonal for i, j = 1, · · · ,m, and {φj(x)}mj=1 minimize the error measure

M =
1

Ks

Ks∑
i=1

∥∥∥uhi (x)−
m∑
j=1

(
uhi (x), φj(x)

)
φj(x)

∥∥∥2

L2(D)
(18)

with minimum
∑Ks

j=m+1 λj [12]. When Ks is large enough, M can be regarded as

an approximation of the mean square error in the L2(D)-norm

M = E

∥∥∥uh(x, ξ)−
m∑
j=1

(
uh(x, ξ), φj(x)

)
φj(x)

∥∥∥2

L2(D)

 . (19)

3.1.1. Simulation results using POD-based stochastic ROM. For 4-dimensional sto-
chastic problem (9), we draw Ks samples of input parameters ξ from prior support
Γ randomly, and evaluate the corresponding forward model (9) by using finite ele-
ment method with mesh size h = 2−6 (i.e. nu = 4225). These solutions compose
the snapshot matrix S. For Ks = 50, 100, 200 and 300, the first 15 eigenvalues of
correlation matrix R are shown on the left of Figure 3. We can observe that the
eigenvalues have very little differences when Ks ≥ 100, but have large gaps between
Ks = 50 and Ks = 100. In order to explore the prior space fully and ensure the
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accuracy of the POD-based reduced order model, we need use Ks ≥ 100 realiza-
tions to construct the snapshot matrix. The right side of the Figure 3 shows the
cumulative energy ratios of the first 15 POD basis functions with Ks = 100, 200 and
300. We can see that the energy ratios of first 2 POD basis functions have slight
differences for different Ks. For each case, the first 3 basis functions can capture
99% energy of snapshot set, and the cumulative energy ratio of the first 9 basis
functions is very close to 1.
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Figure 3. (Left): The first 15 eigenvalues of correlation matrix R for Ks =

50, 100, 200 and 300. (Right): The cumulative energy ratios of the first 15

POD basis functions with Ks = 100, 200 and 300.

We define the expectation and variance of L2(D)-norm error between the full
finite element solution uh(x, ξ) and the POD-based approximate solution û(x, ξ) as

Ê = E
[∥∥∥uh − û∥∥∥2

L2(D)

]
, (20)

and

V̂ = V ar

[∥∥∥uh − û∥∥∥2

L2(D)

]
, (21)

where E[·] means the expectation and V ar[·] represents the variance. Here, we
approximate these statistics with Kr = 500 samples.

Figure 4 displays these error estimates of the POD-based approximate solution
associated with different Ks and different degrees of freedom m. We observe that
for a given m, the expectations and variances in these three cases only have a little
differences. And when m ≤ 4, the errors decrease very quickly, while they are
very small variations with m ≥ 9. The results for m = 3, 6, 9 and 12 are shown in
Table 1. It is clear that the change in energy from 9 to 12 POD basis functions
is so small that it is almost negligible, and the improvements in the corresponding
error statistics are also small. Moreover, for m = 9, the order of magnitude of the

differences in Ê is -4, and in variance V̂ is -5 between these three cases, while they
are larger for m = 3 and m = 6. Therefore, we consider using Ks = 100 realizations
to generate the POD basis functions and choose m to be 9 in the next experiment
to ensure accuracy without consuming too much computing resources.

3.2. Compressive sensing method. In our POD-DCS algorithm, using the POD
method first can greatly reduce the DoF of the problem in hand, and simplify
the subsequent processing. Next, we utilize the idea of compressive sensing to
express the reduced states {αj(ξ)}mj=1 with gPC basis functions, and determine the
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Figure 4. The statistics estimation of L2(D)-norm error between the full

finite element solution and the POD-based ROM solution with Ks = 100, 200

and 300. (Left): Expectation. (Right): Variance.

Table 1. The statistics estimation of L2(D)-norm error between the fi-

nite element solution and the POD-based approximate solution with Ks =

100, 200, 300 and m = 3, 6, 9, 12.

m 3 6 9 12

Ks = 100

νm 0.9906 0.9988 0.9998 0.9999

Ê × 10−2 5.2424 0.9679 0.2840 0.1267

V̂ × 10−3 8.1367 0.8915 0.1475 0.0282

Ks = 200

νm 0.9908 0.9988 0.9998 0.9999

Ê × 10−2 4.9558 1.0836 0.2422 0.0907

V̂ × 10−3 6.7935 0.9507 0.1023 0.0126

Ks = 300

νm 0.9900 0.9986 0.9997 0.9999

Ê × 10−2 4.6537 0.8260 0.2229 0.0622

V̂ × 10−3 5.5292 0.4418 0.0898 0.0037

expression coefficients by using a small amount of data and solving a l1-minimization
problem.

Clearly, once the POD basis functions {φj(x)}mj=1 are obtained, we only need to

compute the reduced states αj(ξ) : Γ→ R in the expression (16) for j = 1, · · · ,m.
Here, we use the Nth-order generalized polynomial chaos to represent the reduced
states as the form

αj(ξ) ≈
n∑
i=1

cijψi(ξ), j = 1, · · · ,m, (22)

where {ψi(ξ)}ni=1 represents a set of multivariate Legendre polynomials with order
N that are orthonormal w.r.t. the joint probability density function π(ξ), and
ψ1(ξ) = 1. The cardinality of the stochastic polynomial basis is

n =
(N + np)!

N !np!
. (23)

The stochastic collocation method [29] based on polynomial interpolation can be

utilized to determine the coefficients {cij}n, m
i=1,j=1. With collocation points {ξi}Kc

i=1,
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we have a linear system α1(ξ1) · · · αm(ξ1)
...

...
α1(ξKc) · · · αm(ξKc)

 =

 ψ1(ξ1) · · · ψn(ξ1)
...

...
ψ1(ξKc) · · · ψn(ξKc)


 c11 · · · c1m

...
...

cn1 · · · cnm

 .

Simply expressed as

Â = Ψc, (24)

where Â = (αj(ξi)) ∈ RKc×m is the matrix of reduced state generated by solving
system (17), c = (cij) ∈ Rn×m is the coefficient matrix that needs to be determined,
Ψ = (ψi(ξj)) ∈ RKc×n represents the stochastic information matrix, and Kc is the
number of stochastic collocation points. As shown in Equation (23), with the in-
crease of random input dimension np, the cardinality n of polynomial basis functions
grows very quickly, which will cause linear system (24) to be underdetermined, i.e.,
Kc < n.

Based on the idea of compressive sensing, given a highly incomplete set of reduced
states by solving algebraic system (17), an accurate approximate solution of linear
system (24) can be obtained by solving the BP problem

vec(c̃) = arg min
vec(c)

‖vec(c)‖1, subject to vec(Â) = Θvec(c), (25)

where dictionary matrix Θ = Im⊗Ψ is the Kronecker product of an m×m identity

matrix Im with stochastic information matrix Ψ, vec(Â) denotes the vectorization

of matrix Â by column, and c̃ = (c̃ij) represents the coefficient matrix we calculated.
Then the reduced states can be approximated by

α̃j(ξ) =

n∑
i=1

c̃ijψi(ξ), j = 1, · · · ,m. (26)

Combining equations (16) and (26), we can get the POD-DCS approximate so-
lution of stochastic elliptic problem (9) as

ũ(x, ξ) =

n∑
i=1

m∑
j=1

c̃ijψi(ξ)φj(x). (27)

Remark 1. By using the orthogonality of multivariate Legendre polynomials, we
have

E [ũ(x, ξ)] =

m∑
j=1

c̃1jφj(x), (28)

E
[
ũ2(x, ξ)

]
=

n∑
i=1

 m∑
j=1

c̃ijφj(x)

 m∑
j′=1

c̃ij′φj′(x)

 . (29)

The details of our POD-DCS method for stochastic forward problem is presented
as following Algorithm 1.

3.2.1. Simulation results of the POD-DCS method. Table 1 illustrates that using
100 realizations to generate the POD-based approximate solution with dimension 9
can guarantee the accuracy of the model. Thus, we utilize 100 snapshots to construct

ROM, and retain only the first 9 basis functions. In this case, Ê = 2.8400 × 10−3

and V̂ = 1.4750× 10−4.
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Algorithm 1 The POD-DCS algorithm for stochastic forward problem

Input: Grid parameter h, positive integer Ks, energy ratio ν, collocation points
{ξi}Kc

i=1, the order of polynomial N .
Output: POD basis function {φj(x)}mj=1, and the coefficient matrix c̃.

1: Draw a set of random inputs {ξk}Ks

k=1 from prior support Γ independently, and

compute the corresponding solutions {uh(x, ξk)}Ks

k=1 of problem (9) by using
FEM with mesh size h, then compose a snapshot matrix S.

2: Generate the POD basis functions {φj(x)}mj=1 as (14) by solving eigenvalue

problem (11), where m is the smallest positive integer such that νm ≥ ν holds.

3: Construct the reduced state matrix Â as (24) by solving algebraic system (17)

with collocation points {ξi}Kc
i=1.

4: Select appropriate stochastic basis functions {ψi(ξ)}ni=1 with order N .
5: Obtain coefficient matrix c̃ by solving BP problem (25).
6: Generate the approximate reduced states (α̃j(ξ)) and the POD-DCS approxi-

mate solution ũ(x, ξ) of system (9) as

α̃j(ξ) =

n∑
i=1

c̃ijψi(ξ), j = 1, · · · ,m,

ũ(x, ξ) =

n∑
i=1

m∑
j=1

c̃ijψi(ξ)φj(x).

Now, we need to determine the coefficients {c̃ij}n, m
i=1,j=1 in the expression (26)

by solving l1-minimization problem (25). Here, the 7th-order Legendre PC basis
functions ψ(ξ) are used to represent the reduced states αj(ξ) for j = 1, · · · ,m, and
the total DoF of matirx c̃ is n × m = 2970. Without loss of generality, we only
consider the coefficients with absolute values larger than a fixed threshold τ , i.e.,
set the entries of c̃ whose absolute value smaller than the threshold τ to 0, and let

R̃τ be the proportion of non-zero coefficients in matrix c̃, that is

R̃τ =
#{|c̃| > τ}

#{c̃}
. (30)

Like the definitions of Ê and V̂, we denote the expectation and variance of L2(D)-
norm error between the full finite element solution uh(x, ξ) and the POD-DCS

approximate solution ũ(x, ξ) as Ẽ and Ṽ respectively, namely

Ẽ = E
[∥∥∥uh − ũ∥∥∥2

L2(D)

]
, (31)

and

Ṽ = V ar

[∥∥∥uh − ũ∥∥∥2

L2(D)

]
. (32)

The sparsity and error estimation of the POD-DCS method w.r.t. different
number of collocation points sampled from the prior space randomly and differ-
ent thresholds are drawn in Figure 5. Compared with τ = 0, for each Kc, the ratio
of non-zero coefficients is less than 5% with τ = 0.1, but the mean of the L2(D)-
norm error is much larger. This is due to the fact that the threshold is so large that
some influential basis functions are ignored. For τ = 0.01, the highest proportion
of non-zero coefficients in matrix c̃ is about 33%, and the error statistics are almost
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consistent with those of τ = 0. Therefore, we can take the threshold τ = 0.01 to
ensure the accuracy. Through regression, the expectation of our approach converges

with order 1.58 and variance converges with order 2.97, that is, Ẽ ≈ O(K
−3/2
c ) and

Ṽ ≈ O(K−3
c ), which can be seen in Figure 6. Such a highly “incomplete” set of

reduced states does contain enough information to accurately recover the reduced

order model. When Kc ≥ 200, the expectations Ẽ and variances Ṽ of L2(D)-norm
error do not change much as Kc increase. So here we use 200 collocation points
to determine the coefficients (c̃ij) of expression (27), that is, we need to calculate

200 algebraic systems (17). At this time, R̃0.01 = 20.24%, Ẽ = 4.1758× 10−3, and

Ṽ = 2.4931× 10−4.

R̃
τ
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Ṽ
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Figure 5. Sparsity and error estimations of the POD-DCS method with

different Kc and different threshold τ . (Left): The proportion R̃τ of non-zero

coefficients in matrix c̃; (Middle): The expectation Ẽ of L2(D)-norm error;

(Right): The variance Ṽ of L2(D)-norm error.
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Figure 6. Error estimations of the POD-DCS method w.r.t. different
collocation point sizes and τ = 0.01.

4. Analysis. The POD-DCS method has been described in the previous section.
In order to introduce the conclusions of error analysis and coefficients estimation of
our scheme, we first introduce several relevant properties of the compressive sensing
method in this section.

4.1. Error analysis.

Definition 4.1 (see [11]). A vector b ∈ Rn is called k-sparse if ‖b‖0 ≤ k holds,
and its best k-term approximation error in the lp-norm is defined as

σk,p(b) = inf
‖x‖0≤k

‖x− b‖p, (33)
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where ‖b‖0 is the number of non-zero terms in vector b.

Note that for 0 < q < p ≤ ∞ and set s = 1/q − 1/p > 0, the prior estimation
holds:

σk,p(b) ≤ k−s‖b‖q. (34)

In order to ensure that the matrix c can be reconstructed exactly by using l1
minimization, we introduce the restricted isometry property (RIP).

Lemma 4.2 (see [5, 24]). If for any k-sparse vector b ∈ Rn, there exists a constant
δ ∈ (0, 1) such that the inequality

(1− δ) ‖b‖22 ≤ ‖Ab‖22 ≤ (1 + δ) ‖b‖22 (35)

holds. Then δk(A) := min(δ) is called the restricted isometry constant (RIC) of
matrix A ∈ Rm×n, and the matrix A is said to satisfy the RIP of order k with RIC
δk(A). Similarly, denoting the RIC of matrix B ∈ Rp×q by δk(B), we can obtain
the inequality

max{δk(A), δk(B)} ≤ δk(A⊗B) ≤ δk(A) + δk(B) + δk(A)δk(B). (36)

Based on Lemma 4.2 we know that the RIC of dictionary matrix Θ in (25)
satisfies δk(Θ) = δk(Ψ).

Lemma 4.3 (see [11]). Assuming that δ3k(Θ) < 1/3, then the solution of l1-
minimization problem (25) satisfies

‖vec(c)− vec(c̃)‖2 ≤ Cδ
σk,1(vec(c))√

k
(37)

where the constant Cδ > 0 depends only on δ3k(Θ).

By Lemma 4.3, we give the error estimation of our POD-DCS method as follow-
ing.

Theorem 4.4. There exist constants C1, C2, C3, C4, θ > 0 and 0 < q < 1, assuming
that the dictionary matrix Θ in (25) satisfies δ3k(Θ) < 1/3. Then with probability
close to one, the expectation (31) of L2(D)-norm error between the finite element
solution and the POD-DCS approximate solution satisfies

Ẽ ≤ C1

√
V̂
Ks

+ C2

Ks∑
j=m+1

λj + C3N
−θ + C4k

1− 2
q ‖vec(c)‖2q, (38)

where C3, C4 depend on the smoothness of the reduced states and δk(Θ) respectively,
while constants C1, C2 are universal.

Proof. By using the inequality 2ab ≤ a2 + b2, the error (31) follows that

Ẽ = E
[
‖uh − û+ û− ũ‖2L2(D)

]
≤ 2

{
E
[
‖uh − û‖2L2(D)

]
+ E

[
‖û− ũ‖2L2(D)

]}
.

Denote

I1 = E
[
‖uh − û‖2L2(D)

]
, I2 = E

[
‖û− ũ‖2L2(D)

]
.

We first estimate I1. The standard Monte Carlo Finite Element Method
(MCFEM) approximates the expectation function I1 by the average of samples.

Note that the random inputs {ξj}Ks
j=1 used to generate the snapshot set are sampling
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from prior support Γ randomly. Thus, we can use these samples to approximate I1
as

Ī1 =
1

Ks

Ks∑
j=1

‖uhj − ûj‖2L2(D).

where uhj and ûj represent the finite element solution and POD-based solution with
random input ξj for j = 1, · · · ,Ks, respectively. The number of realizations, Ks,
controls the statistical error ES = I1 − Ī1 [1], and

ES =E
[
‖uh − û‖2L2(D)

]
− 1

Ks

Ks∑
j=1

‖uhj − ûj‖2L2(D)

=

√√√√V ar
[
‖uh − û‖2L2(D)

]
Ks

×
KsE

[
‖uh − û‖2L2(D)

]
−
∑Ks

j=1 ‖uhj − ûj‖2L2(D)√
KsV ar

[
‖uh − û‖2L2(D)

] .

According to the central limit theorem we have

ES ∼ N
(

0, V̂/Ks

)
,

then choose a constant Cq ≥ 1.65, such that

|ES | ≤ Cq
√
V̂/Ks,

holds with probability close to one, where Cq is called quantile. With the error
measure (18), Ī1 satisfies

Ī1 =
1

Ks

Ks∑
j=1

‖uhj − ûj‖2L2(D) =

Ks∑
j=m+1

λj .

As (22), we use multivariate polynomials with order N to approximate reduced
state αj(ξ) for j = 1, · · · ,m, then there exist constants CN , θ > 0 such that∫

Γ

(
αj(ξ)−

n∑
i=1

cijψi(ξ)

)2

π(ξ)dξ ≤ CNN−θ, j = 1, · · · ,m,

holds. The constant CN depends on the smoothness of {αj(ξ)}mj=1. Using the
biorthogonality of the POD-DCS solution and Lemma 4.3, we have

I2 =

∫
Γ

∫
D

 m∑
j=1

(αj(ξ)− α̃j(ξ))φj(x)

2

π(ξ)dxdξ

=

m∑
j=1

∫
Γ

(αj(ξ)− α̃j(ξ))
2
π(ξ)dξ

=

m∑
j=1

∫
Γ

(
αj(ξ)−

n∑
i=1

cijψi(ξ) +

n∑
i=1

(cij − c̃ij)ψi(ξ)

)2

π(ξ)dξ

≤2

m∑
j=1

∫
Γ

(
αj(ξ)−

n∑
i=1

cijψi(ξ)

)2

π(ξ)dξ + 2

m∑
j=1

n∑
i=1

(cij − c̃ij)2
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≤2mCNN
−θ + 2C2

δ

σ2
k,1(vec(c))

k
.

By the prior estimation (34), we can arrive the error estimate with 0 < q < 1

Ẽ ≤2

Cq
√
V̂
Ks

+

Ks∑
j=m+1

λj + 2mCNN
−θ + 2C2

δ

σ2
k,1(vec(c))

k


≤C1

√
V̂
Ks

+ C2

Ks∑
j=m+1

λj + C3N
−θ + C4k

1− 2
q ‖vec(c)‖2q,

which completes the proof.

This theorem implies that the mean square error Ẽ consists of four parts, includ-
ing statistical error, truncation error, polynomial approximation error and sparse
reconstruction error. Among them, the first two items are derived from the POD-
based reduced order model, and the last two items are caused by the sparse recon-
struction of the corresponding reduced order model. Therefore, we can balance these
four errors and discrete error to save computing resources for a desired accuracy.

4.2. Sparsity. The error analysis has been completed and we are now ready to
show the sparsity of our POD-DCS solution.

Theorem 4.5. The coefficient matrix c̃ in the POD-DCS solution expression (27)
satisfies the estimation

n∑
i=1

c̃2ij = λj , j = 1, · · ·m. (39)

Proof. According to the eigenvalue problem (11) and the POD basis function (14)
we obtain

λjφj(x) =
1√
Ksλj

Ks∑
i=1

λjv
(j)
i uhi (x)

=
1√
Ksλj

Ks∑
i=1

(
1

Ks

Ks∑
r=1

(
uhi (x), uhr (x)

)
v(j)
r uhi (x)

)

=
1

Ks

Ks∑
i=1

(
uhi (x), φj(x)

)
uhi (x).

Thus, we know that λjφj(x) can be regarded as an approximation of the expectation
of
(
uh(x, ξ), φj(x)

)
uh(x, ξ). Using the POD-DCS solution to approximate finite

element solution, and combining the biorthogonality of the POD-DCS solution,
λjφj(x) can be approximated by

E [(ũ(x, ξ), φj(x)) ũ(x, ξ)]

=

∫
Γ

(∫
D

n∑
i=1

m∑
k=1

c̃ikψi(ξ)φk(x)φj(x)dx

)
n∑

i′=1

m∑
k′=1

c̃i′k′ψi′(ξ)φk′(x)π(ξ)dξ
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=

∫
Γ

(
n∑
i=1

c̃ijψi(ξ)

)
n∑

i′=1

m∑
k′=1

c̃i′k′ψi′(ξ)φk′(x)π(ξ)dξ

=

m∑
k′=1

(
n∑
i=1

c̃ij c̃ik′

)
φk′(x),

which implies that (39) holds true.

Figure 7 confirms the conclusion of Theorem 4.5 numerically. The error in this
figure is due to the fact that we only use the average of 100 samples to approximate
the expectation, and the error of POD-DCS solution. It is well-known that the
eigenvalues decay rapidly in many practical problems, so Theorem 4.5 implies that
the coefficients are compressible and illustrates the feasibility of using the POD-
based ROM first.

va
lu

e

0 2 4 6 8 10

0

1

log(|c̃2j |1)

log(λj)

index j

Figure 7. The eigenvalues and coefficients in the POD-DCS method with

Ks = 100, m = 9 and Kc = 200.

5. Numerical experiments. In this section, we compare the POD-DCS scheme
with POD-based ROM and the conventional CS method, and use our method to
solve the 4-dimensional elliptic inverse problem (2)-(3) to further describe its feasi-
bility and advantages.

5.1. Comparison of accuracy. The error estimates and sparsity of our POD-DCS
scheme and other two different methods are shown in Table 2. All three methods
are constructed with 100 full discrete finite element solutions. Among them, the
POD-DCS method is constructed as above discussion with Ks = 100,m = 9,Kc =
200, POD-based ROM has same dimension m, and CS represents the conventional
compressive sensing method.

Obviously, the POD method has highest accuracy, while the reconstruction er-
ror of reduced states makes the accuracy of our POD-DCS method to be inferior
to POD, and relatively little information leads to the worst accuracy of the con-
ventional CS method. In terms of sparsity, the proposed POD-DCS scheme is
slightly better than the CS method. However, the total DoF of our method is
0.2024 × n × m = 601, which is only 0.2% of that in CS method, and its DoF is
0.2182 × n × nu ≈ 3.04 × 105. The reason for the sharply decrease in the DoF is
due to the fact that we use the reduced order model, which leads to the DoF in
physical space decline from nu to m. Therefore, compared to the CS method, the
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proposed method can not only improve the accuracy and sparsity, but also greatly
reduce the degree of freedom.

From the discussions in Section 3 and Theorem 4.4 we know that the accuracy
of the POD-DCS method can be improved by increasing the number of snapshots,
the dimension of POD basis, the number of collocation points and the order of
polynomials. These quantities can be determined with the required accuracy.

Table 2. Error estimates and sparsity for different methods.

POD-DCS POD CS

E × 10−3 4.1758 2.8399 7.3896

V × 10−4 2.4931 1.4750 11.1484

R0.01 0.2024 - 0.2182

5.2. Comparison of efficiency. Here we compare the efficiency of different meth-
ods. Table 3 summarizes the cost of each stage in the construction of different
models. From the perspective of model construction, the number of full finite el-
ement solutions used in the three methods is the same. For POD-based ROM,
although it has high accuracy and does not need to solve the BP problem, the
time required to evaluate the model once is about 5 times that of the other two
methods, which is not conducive to the implementation of the sampling algorithm.
It takes only 0.2095s to evaluate the solution expression obtained by CS method,
but the size of the dictionary matrix Θ in the corresponding BP problem (25) is
(100 × nu) × (n × nu), which is usually so large that it will exceed the comput-
ing resources or the calculation speed will be very slow. According to the nature
of the finite element basis functions, here we can decompose the BP problem into
solving the each column of the coefficient matrix c, that is, transform the problem
into solving nu l1-minimization problems with size of 100 × n. This process takes
about 1.4 hours. Since the sparse reconstruction in our POD-DCS scheme is just
for reduced states, and the size of dictionary matrix is (m×Kc)× (m×n). It takes
only 21s to solve this BP problem, which is 0.42% of the time required by the CS
method. For the POD-DCS method, we also need to evaluate the reduced order
models w.r.t. Kc collocation points, but it is usually much cheaper than the full
finite element method.

Therefore, from an efficiency perspective, the offline cost of POD-based ROM is
relatively small, but the online cost is larger than the other two methods. While
compared with the CS method, the online time of the POD-DCS method only has
a little difference, but the offline time has a obvious advantage. Moreover, our
method achieves 11 times acceleration when evaluating a forward model, and the
time required to construct the solution expression of stochastic surrogate model
can be offset by the repeated calculation of the forward model. It is well known
that both POD and stochastic collocation methods can deal with highly nonlinear
problems, so for such complex problems, our method will be more attractive due to
its high efficiency.

5.3. Elliptic inverse problem. The accuracy and efficiency comparison of the
POD-DCS method with other two methods has been completed. Now, we utilize
this method to deal with the elliptic inverse problem (2)-(3). We use finite element
method with mesh size h = 2−8 to generated noise-free data associated with input
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Table 3. Computational times, in seconds, given by different methods.

# of full

FE solu-

tion

Time for per

FE solution

# of POD

solution

Time for

per POD

solution

Time

for BP

Time for

per model

output

POD-DCS 100 2.1970 200 1.0085 21 0.2002

POD 100 2.1970 - - - 1.0085

CS 100 2.1970 - - 5045 0.2095

ξo = [0.3, 0.3, 0.3, 0.3]T . Note that the mesh size is finer than that used in inversion
in order to prevent the “inverse crime”. The true permeability field a(x; ξo) and
noise-free output are shown in Figure 8. The nz = 49 measurement sensors are
uniformly distributed over D with grid spacing 2−3.

y y

x x

Figure 8. (Left): The true permeability field a(x) used for generating the

synthesize data z; (Right): The model outputs associated with true permeability
field, where black dots are the measurement sensors.

In this Bayesian inverse problem, the components of weight vector ξ are assumed
to be i.i.d. and have a prior ξi ∼ U(0, 1) for i = 1, · · · , np, where np = 4. As de-
scribed in section 3, we first construct the POD-DCS approximate solution ũ(x, ξ)
of the stochastic problem (9) in prior support Γ = [0, 1]np with Ks = 100,m =
9,Kc = 200 and τ = 0.01. Then substituting this approximate solution expression
into (7) to get the approximate likelihood function, thereby obtaining the approx-
imate posterior probability density function from Bayes’ rule (6). The framework
for solving the Bayesian inverse problems using the POD-DCS approximate solution
of the stochastic surrogate model is shown in Figure 9. Denote the approximate
likelihood function and the approximate posterior probability density function as-
sociated with POD-DCS solution as π̃(z|ξ) and π̃(ξ|z) respectively. The Hellinger
distance and Kullback–Leibler distance between the exact posterior distribution
π(ξ|z) and its approximation π̃(ξ|z) have been shown in [26] and [30]. Here, we use
delayed-rejection adaptive Metropolis (DRAM) algorithm to explore the approxi-
mate posterior distribution π̃(ξ|z), whose computational cost is only a fraction of
that in exploring the true posterior distribution π(ξ|z). This is because the cost of
evaluating a finite element solution is about 11 times that of a POD-DCS solution,
which can be observed from Table 3.

Here we consider that the observation data z contains noise e, which satisfies
zero-mean Gaussian distribution N(0, σ2

eInz ) with σe = 0.05. For the finite element
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Figure 9. Bayesian inverse problems framework with POD-DCS approxi-

mate solution.

method, conventional CS method and POD-DCS method, we use the DRAM algo-
rithm to draw 3 × 104 samples respectively. Among them, the first 5000 samples
are discarded as burn-in periods and the last 25000 samples are used to estimate
the posterior densities. The 95% confidence interval and posterior marginal prob-
ability density of each component of unknown input parameters ξ = [ξ1, ξ2, ξ3, ξ4]
are shown in Table 4 and Figures 10. Obviously, the 95% confidence intervals w.r.t.
all these three methods contain true input parameters ξo, and the length of these
confidence intervals does not exceed 0.03. But compared with the conventional CS
method, the posterior marginal densities obtained by our scheme are closer to that
obtained by FEM. In Figure 11, we display the estimated permeability field and its
error, which correspond to the maximum a posterior probability (MAP) parameters
generated by the POD-DCS method. We can see that the error between the esti-
mated permeability field and the true permeability field is small enough. Therefore,
the proposed method can deal with Bayesian inverse problems efficiently.

Table 4. The 95% confidence intervals of each input parameter obtained by

different methods.

FEM POD-DCS CS

ξ1 [0.2898, 0.3173] [0.2883, 0.3164] [0.2963, 0.3248]

ξ2 [0.2858, 0.3134] [0.2844, 0.3126] [0.2913, 0.3175]

ξ3 [0.2913, 0.3191] [0.2927, 0.3200] [0.2906, 0.3208]

ξ4 [0.2750, 0.3016] [0.2762, 0.3047] [0.2736, 0.3022]

From the previous discussion, it is clear that the POD-DCS surrogate model
speeds up the evaluation speed of model while ensuring the accuracy. Therefore,
this method can be considered for Bayesian inverse problem, optimal control and
other problems requiring repeated evaluation of forward model. Note that the BP
problem (25) is solvable in polynomial time [6]. While the dictionary matrix Θ
we used depends on the numbers of POD bases and stochastic bases, i.e. m and
n. Therefore, for a specific problem, the dimension of POD-based ROM and the
degree of the polynomial interpolation should be selected appropriately. It is further
known that this method has limitations for the problem whose eigenvalue decays
slowly, which is the inherent shortcoming of the POD method.
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Figure 10. The posterior marginal densities of unknown parameters with

σe = 0.05 noise in the observations.

y

x

Figure 11. The estimated permeability field and error corresponding to

the MAP parameters generated by the POD-DCS method. (Left): Estimated
permeability field; (Right): Error.

6. Conclusion. In summary, for statistical inverse problems, we can regard the de-
terministic forward problem as a stochastic forward problem on the prior support of
unknown parameters, and the solutions of these two problems with the same input
are equal. Therefore, in this work, we propose a data-driven compressive sensing
method based on proper orthogonal decomposition to construct the solution ex-
pression of stochastic surrogate model to accelerate the Bayesian inference of an
inverse problem. The snapshot-based POD method is first used to construct the
ROM of stochastic problem, then the stochastic collocation method based on gPC
basis functions is adopted to represent the reduced states, and the coefficients are
determined by solving an l1-minimization problem. Substituting this approximate
solution into the likelihood function can obtain an approximate likelihood function,
thereby obtaining an approximate posterior. The approximate posterior space can
be explored faster than the original one. We make error analysis and coefficient
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estimation for this method, and prove that as the number of snapshots, POD car-
dinality, polynomial order, and number of collocation points increase, the mean
square error of approximate solution will decrease. In addition, the expression coef-
ficients are related to the eigenvalues. A series of numerical experiments show that
when using the same number of full finite element solutions, the POD-DCS method
has better accuracy and sparsity than the conventional CS method. Although our
method needs to solve the ROM w.r.t. the collocation points, the sparse recon-
struction of low-dimensional reduced states is much cheaper than the CS method.
Moreover, in inferring the permeability field for elliptic PDE, our method can not
only get an accurate result, but also be much faster than the direct calculation.

Accelerating the decline of eigenvalue in POD method is a problem worthy of
consideration. And for complex problems, evaluating the forward model is costly.
In order to construct an accurate reduced order model, we usually need many real-
izations, which can be prohibitive. Therefore, we plan to use a multi-fidelity scheme
or select appropriate snapshots to overcome this difficulty. This is the subject of
future work.
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