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Abstract. Let (C,E, s) be an extriangulated category with a proper class ξ

of E-triangles. In this paper, we study the balance of complete cohomology in
(C,E, s), which is motivated by a result of Nucinkis that complete cohomology

of modules is not balanced in the way the absolute cohomology Ext is balanced.

As an application, we give some criteria for identifying a triangulated catgory
to be Gorenstein and an Artin algebra to be F -Gorenstein.

1. Introduction. Exact categories and triangulated categories are two fundamen-
tal structures in different branches of mathematics. As expected, exact categories
and triangulated categories are not independent of each other. In [19], Nakaoka and
Palu introduced the notion of externally triangulated categories (extriangulated cat-
egories for short) as a simultaneous generalization of exact categories, triangulated
categories and extension-closed subcategories of triangulated categories [19]. After
that, the study of extriangulated categories has become an active topic, and up to
now, many results on exact categories and triangulated categories can be unified
in the same framework, e.g. see [15, 19]. Beligiannis developed in [5] a relative
version of homological algebra in triangulated categories in analogy to relative ho-
mological algebra in abelian categories, in which the notion of a proper class of
exact sequences is replaced by a proper class of triangles. Recently, the authors [15]
studied a relative homological algebra in an extriangulated category (C,E, s) which
parallels the relative homological algebra given by A. Beligianis [5] in a triangu-
lated category. By specifying a class of E-triangles, which is called a proper class
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ξ of E-triangles, the authors introduced ξ-projective, ξ-injective, ξ-Gprojective and
ξ-Ginjective dimensions, and discussed their properties.

It is well known that for any modules M and N over a ring R, a projective
resolution of M and an injective coresolution of N lead to the same cohomolgy
group Ext∗R(M,N). This implies that the absolute cohomology Ext is balanced,
which is important and fundamental for classical homological algebra. Mislin [18]
and Nucinkis [20] defined complete cohomology of modules. However, the complete
cohomology of modules is not balanced in the way Ext is balanced by [20, Theo-
rem 5.2]. Recently, the authors [14] developed a complete cohomology theory in
an extriangulated category and demonstrated that this theory shared some basic
properties of complete cohomology in the category of modules [6, 13, 18, 20, 24]
and Tate cohomology in the triangulated category [1, 21, 22]. It seems natural to
characterize when complete cohomology in extriangulated categories is balanced.
The aim of this paper is to study this question.

We now outline the results of the paper. In Section 2, we summarize some
preliminaries and basic facts about extriangulated categories which will be used
throughout the paper.

From Section 3, we assume that (C,E, s) is an extriangulated category with
enough ξ-projectives and enough ξ-injectives satisfying the additional Condition
2.3. We first recall some definitions and basic properties of ξ-complete cohomology
groups in (C,E, s), and then we prove, under some conditions, that there are two
long exact sequences of ξ-complete cohomology (see Theorems 3.9, 3.11 and 3.14).

In Section 4, we first show that for all objects M and N in (C,E, s), if M has finite
ξ-Gprojective dimension and N has finite ξ-Ginjective dimension, then ξ-complete

cohomology groups ξ̃xt
i

P(M,N) and ξ̃xt
i

I(M,N) are isomorphic for any i ∈ Z (see
Proposition 4.3), which improves [1, Theorem 4.11], [17, Theorem 2] and [21, Main
Theorem]. As a result, we characterize when ξ-complete cohomology in (C,E, s)
is balanced (see Theorem 4.4). As consequences, some criteria for a triangulated
catgory to be Gorenstein and an Artin algebra to be F -Gorenstein are given (see
Corollaries 4.6 and 4.8).

2. Preliminaries. We briefly recall some definitions and basic properties of extri-
angulated categories from [19]. We omit some details here, but the reader can find
them in [19].

Let C be an additive category equipped with an additive bifunctor

E : Cop × C → Ab,

where Ab is the category of abelian groups. For any objects A,C ∈ C, an element
δ ∈ E(C,A) is called an E-extension. For an E-extension δ ∈ E(C,A), we briefly
write

a∗δ := E(C, a)(δ) and c∗δ := E(c, A)(δ).

Let s be a correspondence which associates an equivalence class

s(δ) = [A
x // B

y // C]

to any E-extension δ ∈ E(C,A). This s is called a realization of E, if it makes
the diagrams in [19, Definition 2.9] commutative. A triplet (C,E, s) is called an
extriangulated category if it satisfies the following conditions.

1. E : Cop × C → Ab is an additive bifunctor.
2. s is an additive realization of E.
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3. E and s satisfy the compatibility conditions in [19, Definition 2.12].

Remark 2.1. Note that both exact categories and triangulated categories are ex-
triangulated categories (see [19, Example 2.13]) and extension closed subcategories
of extriangulated categories are again extriangulated (see [19, Remark 2.18]). How-
ever, there exist lots of extriangulated categories which are neither exact categories
nor triangulated categories (see [19, Proposition 3.30] and [15, Remark 3.3]).

We will use the following terminology.

Definition 2.2. (see [19, Definitions 2.15 and 2.19]) Let (C,E, s) be an extriangu-
lated category.

1. A sequence A
x // B

y // C is called a conflation if it realizes some E-
extension δ ∈ E(C,A). In this case, x is called an inflation and y is called a
deflation.

2. If a conflation A
x // B

y // C realizes δ ∈ E(C,A), we write it in the fol-
lowing way:

A
x // B

y // C
δ //

and call it an E-triangle. We usually do not write this “δ” if it is not used in
the argument.

3. Let A
x // B

y // C
δ // and A′

x′ // B′
y′ // C ′

δ′ // be any pair
of E-triangles. If a triplet (a, b, c) realizes (a, c) : δ → δ′, then we write it as

A
x //

a

��

B
y //

b
��

C

c

��

δ //

A′
x′ // B′

y′ // C ′
δ′ //

and call (a, b, c) a morphism of E-triangles.

The following condition is analogous to the weak idempotent completeness in
exact category (see [19, Condition 5.8]).

Condition 2.3. (Condition (WIC)) Consider the following conditions.

1. Let f ∈ C(A,B), g ∈ C(B,C) be any composable pair of morphisms. If gf is
an inflation, then so is f .

2. Let f ∈ C(A,B), g ∈ C(B,C) be any composable pair of morphisms. If gf is
a deflation, then so is g.

Example 2.4. (1) If C is an exact category, then Condition (WIC) is equivalent
to C is weakly idempotent complete (see [7, Proposition 7.6]).

(2) If C is a triangulated category, then Condition (WIC) is automatically satis-
fied.

Lemma 2.5. (see [19, Proposition 3.15]) Assume that (C,E, s) is an extriangulated

category. Let A1
x1 // B1

y1 // C
δ1 // and A2

x2 // B2
y2 // C

δ2 // be any



3344 JIANGSHENG HU, DONGDONG ZHANG, TIWEI ZHAO AND PANYUE ZHOU

pair of E-triangles. Then there is a commutative diagram in C

A2

m2

��

A2

x2

��
A1

m1 // M

e2

��

e1 // B2

y2

��
A1

x1 // B1
y1 // C

which satisfies s(y∗2δ1) = [A1
m1 // M

e1 // B2] and s(y∗1δ2) = [A2
m2 // M

e2 // B1] .

We recall the following definitions from [15, Section 3]. A class of E-triangles ξ
is closed under base change if for any E-triangle

A
x // B

y // C
δ // ∈ ξ

and any morphism c : C ′ → C, then any E-triangle A
x′ // B′

y′ // C ′
c∗δ // be-

longs to ξ.
Dually, a class of E-triangles ξ is closed under cobase change if for any E-triangle

A
x // B

y // C
δ // ∈ ξ

and any morphism a : A → A′, then any E-triangle A′
x′ // B′

y′ // C
a∗δ // be-

longs to ξ.
A class of E-triangles ξ is called saturated if in the situation of Lemma 2.5,

whenever

A2
x2 // B2

y2 // C
δ2 // and A1

m1 // M
e1 // B2

y∗2δ1 // belong to ξ, then the
E-triangle

A1
x1 // B1

y1 // C
δ1 //

belongs to ξ.

An E-triangle A
x // B

y // C
δ // is called split if δ = 0. It is easy to see

that it is split if and only if x is a section or y is a retraction. The class consisting
of the split E-triangles will be denoted by ∆0.

Definition 2.6. (see [15, Definition 3.1]) Let ξ be a class of E-triangles which is
closed under isomorphisms. Then ξ is called a proper class of E-triangles if the
following conditions hold:

1. ξ is closed under finite coproducts and ∆0 ⊆ ξ.
2. ξ is closed under base change and cobase change.
3. ξ is saturated.

Definition 2.7. (see [15, Definition 4.1]) An object P ∈ C is called ξ-projective if
for any E-triangle

A
x // B

y // C
δ //

in ξ, the induced sequence of abelian groups

0 // C(P,A) // C(P,B) // C(P,C) // 0

is exact. Dually, we have the definition of ξ-injective objects.
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We denote by P(ξ) (resp. I(ξ)) the class of ξ-projective (resp. ξ-injective) objects
of C. It follows from the definition that the subcategories P(ξ) and I(ξ) are full,
additive, closed under isomorphisms and direct summands.

An extriangulated category (C,E, s) is said to have enough ξ-projectives (resp.
enough ξ-injectives) provided that for each object A there exists an E-triangle

K // P // A // (resp. A // I // K // ) in ξ with P ∈ P(ξ) (resp.
I ∈ I(ξ)).

Let K // P // A // be an E-triangle in ξ with P ∈ P(ξ), then we call
K the first ξ-syzygy of A. An nth ξ-syzygy of A is defined as usual by induction.
By Schanuel’s lemma ([15, Proposition 4.3]), any two ξ-syzygies of A are isomorphic
modulo ξ-projectives.

The ξ-projective dimension ξ-pdA of A ∈ C is defined inductively. If A ∈ P(ξ),
then define ξ-pdA = 0. Next if ξ-pdA > 0, define ξ-pdA ≤ n if there exists an
E-triangle K → P → A 99K in ξ with P ∈ P(ξ) and ξ-pdK ≤ n − 1. Finally we
define ξ-pdA = n if ξ-pdA ≤ n and ξ-pdA � n − 1. Of course we set ξ-pdA = ∞,
if ξ-pdA 6= n for all n ≥ 0.

Dually we can define the ξ-injective dimension ξ-idA of an object A ∈ C.

Definition 2.8. (see [15, Definition 4.4]) A ξ-exact complex X is a diagram

· · · // X1
d1 // X0

d0 // X−1
// · · ·

in C such that for each integer n, there exists an E-triangle Kn+1
gn // Xn

fn // Kn
δn //

in ξ and dn = gn−1fn.

Definition 2.9. (see [15, Definition 4.5]) Let W be a class of objects in C. An
E-triangle

A // B // C //

in ξ is called C(−,W)-exact (resp. C(W,−)-exact) if for any W ∈ W, the induced se-

quence of abelian groups 0 // C(C,W ) // C(B,W ) // C(A,W ) // 0 (resp.

0 // C(W,A) // C(W,B) // C(W,C) // 0 ) is exact in Ab.

Definition 2.10. (see [15, Definition 4.6]) Let W be a class of objects in C. A
complex X is called C(−,W)-exact (resp. C(W,−)-exact) if it is a ξ-exact complex

· · · // X1
d1 // X0

d0 // X−1
// · · ·

in C such that there is a C(−,W)-exact (resp. C(W,−)-exact) E-triangle

Kn+1
gn // Xn

fn // Kn
δn //

in ξ for each integer n and dn = gn−1fn.
A ξ-exact complex X is called complete P(ξ)-exact (resp. complete I(ξ)-exact)

if it is C(−,P(ξ))-exact (resp. C(I(ξ),−)-exact).

Definition 2.11. (see [15, Definition 4.7]) A complete ξ-projective resolution is a
complete P(ξ)-exact complex

P : · · · // P1
d1 // P0

d0 // P−1
// · · ·
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in C such that Pn is ξ-projective for each integer n. Dually, a complete ξ-injective
coresolution is a complete I(ξ)-exact complex

I : · · · // I1
d1 // I0

d0 // I−1
// · · ·

in C such that In is ξ-injective for each integer n.

Definition 2.12. (see [15, Definition 4.8]) Let P be a complete ξ-projective res-
olution in C. So for each integer n, there exists a C(−,P(ξ))-exact E-triangle

Kn+1
gn // Pn

fn // Kn
δn // in ξ. The objects Kn are called ξ-Gprojective for

each integer n. Dually if I is a complete ξ-injective coresolution in C, there exists

a C(I(ξ),−)-exact E-triangle Kn+1
gn // In

fn // Kn
δn // in ξ for each integer n.

The objects Kn are called ξ-Ginjective for each integer n.

We denote by GP(ξ) (resp. GI(ξ)) the class of ξ-Gprojective (resp. ξ-Ginjective)
objects. It is obvious that P(ξ) ⊆ GP(ξ) and I(ξ) ⊆ GI(ξ).

Definition 2.13. (see [16, Definition 3.1]) Let M be an object in C. A ξ-projective
resolution of M is a ξ-exact complex P → M such that Pn ∈ P(ξ) for all n ≥ 0.
Dually, a ξ-injective coresolution of M is a ξ-exact complex M → I such that
In ∈ I(ξ) for all n ≤ 0.

We denote by Ch(C) the category of complexes in C; the objects are complexes
and morphisms are chain maps. We write the complexes homologically, so an object
X of Ch(C) is of the form

X := · · · // Xn+1

dXn+1 // Xn

dXn // Xn−1
// · · · .

The ith shift of X is the complex X[i] with nth component Xn−i and differential

d
X[i]
n = (−1)idXn−i. Assume that X and Y are complexes in Ch(C). A homomor-

phism ϕ : X // Y of degree n is a family (ϕi)i∈Z of morphisms ϕi : Xi
// Yi+n

for all i ∈ Z. In this case, we set |ϕ| = n. All such homomorphisms form an abelian
group, denoted by C(X,Y)n, which is identified with

∏
i∈Z C(Xi, Yi+n). We let

C(X,Y) be the complex of abelian groups with nth component C(X,Y)n and dif-
ferential d(ϕi) = dYi+nϕi− (−1)nϕi−1d

X
i for ϕ = (ϕi) ∈ C(X,Y)n. We refer to [3, 8]

for more details.

Remark 2.14. (see [14, Remark 3.3]) Let M and N be objects in C.
1. Note that there are two ξ-projective resolutions PM

// M and PN
// N

of M and N , respectively. A homomorphism β ∈ C(PM ,PN ) is bounded above
if βi = 0 for all i� 0. The subset C(PM ,PN ), consisting of all bounded above
homomorphisms, is a subcomplex with components

C(PM ,PN )n = {(ϕi) ∈ C(PM ,PN )n | ϕi = 0 for all i� 0}.
We set

C̃(PM ,PN ) = C(PM ,PN )/C(PM ,PN ).

2. Note that there are two ξ-injective coresolutions M // IM and N // IN
of M and N , respectively. A homomorphism β ∈ C(IM , IN ) is bounded below
if βi = 0 for all i� 0. The subset C(IM , IN ), consisting of all bounded below
homomorphisms, is a subcomplex with components

C(IM , IN )n = {(ϕi) ∈ C(IM , IN )n | ϕi = 0 for all i� 0}.
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We set
C̃(IM , IN ) = C(IM , IN )/C(IM , IN ).

Definition 2.15. (see [16, Definition 3.2]) Let M and N be objects in C.
(1) If we choose a ξ-projective resolution P // M of M , then for any integer

n ≥ 0, the ξ-cohomology groups ξxtnP(ξ)(M,N) are defined as

ξxtnP(ξ)(M,N) = Hn(C(P, N)).

(2) If we choose a ξ-injective coresolution N // I of N , then for any integer
n ≥ 0, the ξ-cohomology groups ξxtnI(ξ)(M,N) are defined as

ξxtnI(ξ)(M,N) = Hn(C(M, I)).

Remark 2.16. By [14, Lemma 3.2], one can see that ξxtnP(ξ)(−,−) and

ξxtnI(ξ)(−,−) are cohomological functors for any integer n ≥ 0, independent of
the choice of ξ-projective resolutions and ξ-injective coresolutions, respectively.
In fact, with the modifications of the usual proof, one obtains the isomorphism
ξxtnP(ξ)(M,N) ∼= ξxtnI(ξ)(M,N), which is denoted by ξxtnξ (M,N).

Throughout this paper, we always assume that C = (C,E, s) is an extriangulated
category and ξ is a proper class of E-triangles in C. We also assume that the ex-
triangulated category C has enough ξ-projectives and enough ξ-injectives satisfying
the additional Condition 2.3.

3. ξ-complete cohomology and its long exact sequences. The goal of this
section is to study long exact sequences of ξ-complete cohomology, which gives some
preparations for the proof of the main result in the next section. To this end, we
first recall some definitions and basic properties of ξ-complete cohomology in C.
Definition 3.1. (see [14, Definition 3.4]) Let M and N be objects in C, and let n
be an integer.

1. Using ξ-projective resolutions, we define the nth ξ-complete cohomology group,

denoted by ξ̃xt
n

P(M,N), as

ξ̃xt
n

P(M,N) = Hn(C̃(PM ,PN )),

where C̃(PM ,PN ) is the complex defined in Remark 2.14(1).
2. Using ξ-injective coresolutions, we define the nth ξ-complete cohomology group,

denoted by ξ̃xt
n

I(M,N), as

ξ̃xt
n

I(M,N) = Hn(C̃(IM , IN )),

where C̃(IM , IN ) is the complex defined in Remark 2.14(2).

Definition 3.2. (see [14, Definition 4.3]) Let M ∈ C be an object. A ξ-complete
resolution of M is a diagram

T
ν // P

π // M

of morphisms of complexes satisfying: (1) π : P→M is a ξ-projective resolution of
M ; (2) T is a complete ξ-projective resolution; (3) ν : T → P is a morphism such
that νi = idTi for all i� 0.

The following lemma is a key result, which helps us to compute ξ-complete
cohomology for objects having finite ξ-Gprojective dimension using ξ-complete res-
olutions.
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Lemma 3.3. (see [14, Theorem 4.6]) Let M and N be objects in C. If M admits

a ξ-complete resolution T
ν // P

π // M, then for any integer i, there exists an

isomorphism

ξ̃xt
i

P(M,N) ∼= Hi(C(T, N)).

Remark 3.4. Note that in the module categories and triangulated categories, the
cohomology groups Hn(C(T, N)) are called Tate cohomology, see [1, 4] for more
details. Motivated by this, for all objects M and N in C, if M admits a ξ-complete

resolution T
ν // P

π // M, then the cohomology group Hn(C(T, N)) can be

defined as Tate cohomoloy group in C for any integer n, which is also denoted by

ξ̃xt
n

P(M,N) by Lemma 3.3.

Now assume that M admits a ξ-complete resolution T
ν // P

π // M. For each
n ∈ Z, we have a comparison morphism

ε̃nP(M,N) : ξxtnξ (M,N)→ ξ̃xt
n

P(M,N)

given by
HnC(ν,N) : HnC(P, N)→ HnC(T, N).

We denote by G̃P(ξ) (resp. G̃I(ξ)) the full subcategory of C whose objects have
finite ξ-Gprojective (resp. ξ-Ginjective) dimension.

Lemma 3.5. (see [14, Lemma 4.5]) Let T
ν // P

π // M and T′
ν′ // P′ π′ // M ′

be ξ-complete resolutions of M and M ′, respectively. For each morphism µ : M →
M ′, there exists a morphism µ, unique up to homotopy, making the right-hand
square of the following diagram

T
ν //

µ̃
��

P
π //

µ

��

M

µ

��
T′

ν′ // P′
π′ // M ′

commutative, and for each choice of µ, there exists a morphism µ̃, unique up to
homotopy, making the left-hand square commute up to homotopy. In particular, if
µ = idM , then µ̃ and µ are homotopy equivalences.

Remark 3.6. The assignment (M,N) 7→ ξ̃xt
n

P(M,N) defines a functor

ξ̃xt
n

P : G̃P(ξ)op × C → Ab

and the maps ε̃nP(M,N) yields a morphism of functors ε̃nP : ξxtnξ → ξ̃xt
n

P such that

both ξ̃xt
n

P and ε̃nP are independent of the choice of resolutions and liftings.

Lemma 3.7. Let

Q : · · · // Q1
d1 // Q0

d0 // Q−1
// · · ·

be a complete ξ-projective resolution. If M ∈ P̃(ξ) or M ∈ Ĩ(ξ), then C(Q,M) is
exact.

Proof. It is easy to check by [15, Lemma 5.3] and [16, Lemma 4.5].

Proposition 3.8. (1) Let M ∈ G̃P(ξ). For any integer n the following are equiv-
alent:



BALANCE OF COMPLETE COHOMOLOGY IN EXTRIANGULATED CATEGORIES 3349

(i) ξ-GpdM ≤ n.

(ii) The map ε̃iP(M,N) : ξxtiξ(M,N) → ξ̃xt
i

P(M,N) is bijective for any i ≥
n+ 1 and any N ∈ C.

(2) If ξ-pdM <∞, then ξ̃xt
i

P(M,−) = 0 for any i ∈ Z.

(3) If ξ-pdM <∞, then ξ̃xt
i

P(−,M) = 0 for any i ∈ Z.

(4) If ξ-idN <∞, then ξ̃xt
i

P(−, N) = 0 for any i ∈ Z.

Proof. (1) (i) ⇒ (ii). Since ξ-GpdM ≤ n, one has a ξ-complete resolution

T
ν // P

π // M

of M such that νi is bijective for each i ≥ n. It follows that ε̃iP(M,N) : ξxtiξ(M,N)

→ ξ̃xt
i

P(M,N) is bijective for any i ≥ n+ 1 and any N ∈ C, as desired.
(ii)⇒ (i). Assume that ε̃iP(M,N) is bijective for any i ≥ n+1 and any N ∈ C. In

particular, for any i ≥ n+ 1 and any P ∈ P(ξ), one has ξxtiξ(M,P ) ∼= ξ̃xt
i

P(M,P ).

But the latter is zero since each complete ξ-projective resolution is C(−,P(ξ))-exact.
Thus ξxtiξ(M,P ) = 0 for any i ≥ n+ 1 and any P ∈ P(ξ). So ξ-GpdM ≤ n by [16,

Theorem 3.8].
(2) Assume that ξ-pdM = n <∞. We can choose a ξ-projective resolution P→

M of length n. Then, in this case, 0
0 // P

π // M is a ξ-complete resolution of

M , and thus ξ̃xt
i

P(M,−) = 0 for any i ∈ Z.
(3) and (4) follow from Lemma 3.7 directly.

Now we show that there exists a long exact sequence of ξ-complete cohomology
under some certain conditions.

Theorem 3.9. Let M ∈ G̃P(ξ) and consider an E-triangle E : A
x // B

y // C
δ //

in ξ. Then there exists morphisms ∂̃n(M,E), which are natural in M and E, such
that the following sequence

· · · // ξ̃xt
n

P(M,A)
ξ̃xt

i

P(M,x)// ξ̃xt
n

P(M,B)
ξ̃xt

i

P(M,y)// ξ̃xt
n

P(M,C)

∂̃n(M,E)// ξ̃xt
n+1

P (M,A) // · · ·

is exact.
Moreover, the connecting map ∂̃n(M,E) makes the following diagram

ξxtnξ (M,C)
∂n(M,E)//

ε̃nP(M,C)

��

ξxtn+1
ξ (M,A)

ε̃n+1
P (M,A)

��

ξ̃xt
n

P(M,C)
∂̃n(M,E)// ξ̃xt

n+1

P (M,A).

(1)

commutative for each n ∈ Z.
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Proof. Let T
ν // P

π // M be a ξ-complete resolution of M . Then we have a
commutative diagram of complexes

0 // C(P, A) //

��

C(P, B) //

��

C(P, C) //

��

0

0 // C(T, A) // C(T, B) // C(T, C) // 0.

(2)

The rows are exact since all terms of P and T are ξ-projective. By the bottom row
we get the desired long exact sequence, and by the commutativity of the diagram
(2) and Lemma 3.3 we get the desired commutative diagram (1). The naturality in
M follows from Lemma 3.5.

Assume that E′ : A′
x′ // B′

y′ // C ′
δ′ // is an E-triangle and ϕ : E → E′

is a morphism. Thus we have the following commutative diagram of E-triangles

A
x //

a

��

B
y //

b
��

C

c

��

δ //

A′
x′ // B′

y′ // C ′
δ′ // .

Since all terms of T are ξ-projective, we have the following commutative diagram
of exact complexes

0 // C(T, A) //

��

C(T, B) //

��

C(T, C) //

��

0

0 // C(T, A′) // C(T, B′) // C(T, C ′) // 0.

(3)

So the naturality in E holds by the commutativity of the diagram (3) and Lemma
3.3.

Using standard arguments from relative homological algebra, one can prove the
following version of the Horseshoe Lemma for ξ-complete resolutions. For conve-
nience, we give the proof.

Lemma 3.10. (Horseshoe Lemma for ξ-complete resolutions) Let

A
x // B

y // C
δ // be an E-triangle in ξ such that ξ-GpdA < ∞ and ξ-GpdC <

∞. Let T
ν // P

π // A and T′′
ν′′ // P′′

π′′ // C be ξ-complete resolutions of
A and C, respectively. Then there is a commutative diagram:

T //

ν

��

T′ //

ν′

��

T′′

ν′′

��
P //

π

��

P′ //

π′

��

P′′

π′′

��
A

x // B
y // C

(4)

where the two upper rows are split E-triangles in ξ and the columns are ξ-complete
resolutions.
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Proof. By [16, Lemma 3.3], we have a commutative diagram

P //

π

��

P′ //

π′

��

P′′

π′′

��
A

x // B
y // C

where P′ → B is a ξ-projective resolution of B. Setting n = max{ξ-GpdA, ξ-GpdC}.
Consider an E-triangle Kn

// K ′n // K ′′n // , where Kn (respectively, K ′n
and K ′′n) is the nth ξ-syzygy of A (respectively, B and C) obtained from the P
(respectively, P′ and P′′). Then Kn and K ′′n are ξ-Gprojective by [15, Proposition
5.2]. By a suitable adjustment (e.g. see [14, Proposition 4.4]), we can require that
T and T′′ are complete ξ-projective resolutions of Kn and K ′′n , respectively. As
a similar argument in proof of [15, Theorem 4.16], we can construct a complete
ξ-projective resolution T′ of K ′n such that the desired commutative diagram (4)
holds.

By Lemma 3.10, we can get the second long exact sequence of ξ-complete coho-
mology.

Theorem 3.11. Let E : A
x // B

y // C
δ // be an E-triangle in ξ with

ξ-GpdA <∞ and ξ-GpdC <∞. For each N ∈ C, there exist morphisms ∂̃n(E, N),
which are natural in N and E, such that the following sequence

· · · // ξ̃xt
n

P(C,N)
ξ̃xt

i

P(y,N)// ξ̃xt
n

P(B,N)
ξ̃xt

i

P(x,N)// ξ̃xt
n

P(A,N)

∂̃n(E,N)// ξ̃xt
n+1

P (C,N) // · · ·

is exact.
Moreover, the connecting map ∂̃n(E, N) makes the following diagram

ξxtnξ (A,N)
∂n(E,N)//

ε̃nP(A,N)

��

ξxtn+1
ξ (C,N)

ε̃n+1
P (C,N)

��

ξ̃xt
n

P(A,N)
∂̃n(E,N)// ξ̃xt

n+1

P (C,N)

commutative for each n ∈ Z.

Proof. Since A and C have finite ξ-Gprojective dimension, we can construct the
diagram (4) of ξ-complete resolutions. Moreover, since the two upper rows of (4)
are split E-triangles in ξ, by applying the functor C(−, N) we can get a commutative
diagram of complexes

0 // C(P′′, N) //

��

C(P′, N) //

��

C(P, N) //

��

0

0 // C(T′′, N) // C(T′, N) // C(T, N) // 0

with exact rows. By the bottom row we get the desired long exact sequence, and
by the commutativity of the diagram and Lemma 3.3 we get the desired equality.
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The naturality in N follows from Lemma 3.10. One can prove the naturality in E
and its proof is similar to that of Theorem 3.9.

In the rest of this section, we will give the ξ-complete cohomology theory based
on ξ-Ginjective objects. All arguments and proofs are similar to the above.

Definition 3.12. Let N ∈ C be an object. A ξ-complete coresolution of N is a
diagram

N
ι // I

µ // Q

of morphisms of complexes satisfying: (1) ι : N → I is a ξ-injective coresolution of
N ; (2) Q is a complete ξ-injective coresolution; (3) µ : I → Q is a morphism such
that µi = idQi

for all i� 0.

An object N in C admits a ξ-complete coresolution if and only if N has finite
ξ-Ginjective dimension.

Now assume that N admits a ξ-complete coresolution N
ι // I

µ // Q. For

each n ∈ Z and each M ∈ C, we have

ξ̃xt
n

I(M,N) ∼= Hn(C(M,Q))

These groups come equipped with comparison morphisms

ε̃nI(M,N) : ξxtnξ (M,N)→ ξ̃xt
n

I(M,N)

given by

HnC(M,µ) : HnC(M, I)→ HnC(M,Q).

By a dual argument to the above, ξ̃xt
n

I and ε̃nI are independent of the choice of
coresolutions and liftings.

Proposition 3.13. (1) Let N ∈ G̃I(ξ). For any integer n the following are equiv-
alent:
(i) ξ-GidN ≤ n.

(ii) The map ε̃iI(M,N) : ξxtiξ(M,N) → ξ̃xt
i

I(M,N) is bijective for any i ≥
n+ 1 and any M ∈ C.

(2) If ξ-idN <∞, then ξ̃xt
i

I(N,−) = 0 for any i ∈ Z.

(3) If ξ-idN <∞, then ξ̃xt
i

I(−, N) = 0 for any i ∈ Z.

(4) If ξ-pdM <∞, then ξ̃xt
i

I(M,−) = 0 for any i ∈ Z.

Theorem 3.14. (1) Let N ∈ G̃I(ξ) and consider an E-triangle

A
x // B

y // C
δ // in ξ. Then there exists a long exact sequence

· · ·
ξ̃xt

i

I(y,N)// ξ̃xt
n

I(B,N)
ξ̃xt

i

I(x,N)// ξ̃xt
n

I(A,N) // ξ̃xt
n+1

I (C,N) // · · · .

(2) Let A
x // B

y // C
δ // be an E-triangle in ξ with A,C ∈ G̃I(ξ). For

each M ∈ C, there exists a long exact sequence

· · ·
ξ̃xt

i

I(M,x)// ξ̃xt
n

I(M,B)
ξ̃xt

i

I(M,y)// ξ̃xt
n

I(M,C) // ξ̃xt
n+1

I (M,A) // · · · .
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4. The balance of ξ-complete cohomology. Our goal in this section is to study
the balance of ξ-complete cohomology. At first, we recall the following fact taking
from [21].

Lemma 4.1. (see [21, Lemma 3.3]) Given a commutative diagram

...

��

...

��

...

��
· · · // M2,2

d2,2 //

e2,2

��

M1,2

d1,2 //

e1,2

��

M0,2

e0,2

��
· · · // M2,1

d2,1 //

e2,1

��

M1,1

d1,1 //

e1,1

��

M0,1

e0,1

��
· · · // M2,0

d2,0 // M1,0

d1,0 // M0,0

in Ab with all rows and columns exact. Then there are two complexes

C : · · · → Cokerd1,2 → Cokerd1,1 → Cokerd1,0 → 0

and

D : · · · → Cokere2,1 → Cokere1,1 → Cokere0,1 → 0

with Hn(C) = Hn(D) for all n.

The following lemma is the crucial step in the study of the balance of ξ-complete
cohomology, and the proof is modified from the construction of pinched complexes
by Christensen and Jorgensen [9]. For the balance properties, see also [10, 11].

Lemma 4.2. Assume that M is ξ-Gprojective with a complete ξ-projective reso-
lution T, and N is ξ-Ginjective with a complete ξ-injective coresolution Q. Then
there are isomorphisms

HiC(T, N) ∼= HiC(M,Q)

for all i ∈ Z.

Proof. Consider the following truncated complexes

T≥0 : · · · → T2 → T1 → T0 → 0

and

Q≤0 : 0→ Q0 → Q−1 → Q−2 → · · · .
It is easy to see that T // T≥0

// M is a ξ-complete resolution of M , and

N // Q≤0
// Q is a ξ-complete coresolution of N . By Propositions 3.8 and

3.13,

HiC(T, N) = ξ̃xt
i

P(M,N) ∼= ξxtiξ(M,N) ∼= ξ̃xt
i

I(M,N) = HiC(M,Q)

for any i ≥ 1.
Now consider the following ξ-exact complexes

T�0 : 0→M → T−1 → T−2 → · · ·

and

Q�0 : · · · → Q2 → Q1 → N → 0.
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We have the following commutative diagram

...

��

...

��

...

��
· · · // C(T−2, Q2) //

��

C(T−2, Q1) //

��

C(T−2, N) //

��

0

· · · // C(T−1, Q2) //

��

C(T−1, Q1) //

��

C(T−1, N) //

��

0

· · · // C(M,Q2) //

��

C(M,Q1) //

��

C(M,N) //

��

0

0 0 0.

Since T−i ∈ P(ξ) and Qi ∈ I(ξ) for any i ≥ 1, all rows and columns are exact
except the bottom row C(M,Q�0) and the far right column C(T�0, N). By Lemma
4.1, the induced complexes

C(M,Q≥1) : · · · → C(M,Q3)→ C(M,Q2)→ C(M,Q1)→ 0

and

C(T≤−1, N) : · · · → C(T−3, N)→ C(T−2, N)→ C(T−1, N)→ 0

have isomorphic cohomology groups, that is, for any i ≤ −2,

HiC(T, N) = HiC(T≤−1, N) = HiC(M,Q≥1) = HiC(M,Q).

For the complete ξ-injective coresolution Q : · · · // Q2

dQ2 // Q1

dQ1 // Q0
// · · · ,

there are E-triangles Li+1
si // Qi

ti // Li
δi // (here L1 = N) in ξ such that dQi =

si−1ti for all i ∈ Z. Now consider the following commutative diagram

C(T−1, Q2)⊕ C(T−2, Q1)
ρ2 //

(0,C(T−2,t1))

��

C(T−1, Q1)
ρ1 //

C(T−1,t1)

��

C(T0, Q0)
ρ0 // C(T1, Q0)⊕ C(T0, Q−1)

C(T−2, N)
C(dT−1,N)

// C(T−1, N)
C(dT0 ,N)// C(T0, N)

C(T0,s0)

OO

C(dT1 ,N) // C(T1, N)

(C(T1,s0)
0 )

OO

(5)

where

ρ2 : C(T−1, Q2)⊕ C(T−2, Q1)→ C(T−1, Q1)

α := (α−1, α−2) 7→ dQ2 α−1 + α−2d
T
−1

ρ1 : C(T−1, Q1)→ C(T0, Q0)

β 7→ dQ1 βd
T
0

ρ0 : C(T0, Q0)→ C(T1, Q0)⊕ C(T0, Q−1).

γ 7→ (γdT1 , d
Q
0 γ)

Define

Φ : Kerρ1/Imρ2 → KerC(dT0 , N)/ImC(dT−1, N).

α+ Imρ2 7→ t1α+ ImC(dT−1, N)
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We first show that it is a well-defined map. Indeed, let α ∈ Kerρ1. Then

0 = ρ1(α) = dQ1 αd
T
0 = s0t1αd

T
0 = C(T0, s0)(t1αd

T
0 ).

Since T0 ∈ P(ξ), C(T0, s0) is injective, and hence C(dT0 , N)(t1α) = t1αd
T
0 = 0.

Thus t1α ∈ KerC(dT0 , N). Moreover, if β ∈ Imρ2, then t1β ∈ ImC(dT−1, N) by the
commutativity of left square of (5). This shows that Φ is a well-defined map.

We next show that Φ is an isomorphism. Firstly, since T−1 ∈ P(ξ), there is an
exact sequence

0 // C(T−1, L2)
C(T−1,s1)// C(T−1, Q1)

C(T−1,t1)// C(T−1, N) // 0.

In particular, the induced map C(T−1, t1) is surjective, and following this we eas-
ily get that Φ is surjective. Now assume that Φ(α + Imρ2) = 0, that is, t1α ∈
ImC(dT−1, N). Then there is β ∈ C(T−2, N) with t1α = C(dT−1, N)(β). Simi-
larly, since T−2 ∈ P(ξ), the induced map C(T−2, t1) is surjective, and hence there
is γ := (γ−1, γ−2) ∈ C(T−1, Q2) ⊕ C(T−2, Q1) with (0, C(T−2, t1))(γ) = β. By
the commutativity of left square of (5), C(T−1, t1)(α) = t1α = C(dT−1, N)(β) =

C(dT−1, N)((0, C(T−2, t1))(γ)) = C(T−1, t1)(ρ2(γ)), which shows that C(T−1, t1)(α −
ρ2(γ)) = 0, that is, α − ρ2(γ) ∈ KerC(T−1, t1) = ImC(T−1, s1). Thus there exists
δ ∈ C(T−1, L2) such that α−ρ2(γ) = C(T−1, s1)(δ). By the surjectivity of C(T−1, t2),
there is ε ∈ C(T−1, Q2) with δ = C(T−1, t2)(ε). It follows that

α = ρ2(γ) + s1δ = dQ2 γ−1 + γ−2d
T
−1 + s1t1ε

= dQ2 γ−1 + γ−2d
T
−1 + dQ2 ε = dQ2 (γ−1 + ε) + γ−2d

T
−1

= ρ2(γ−1 + ε, γ−2)

which means that α ∈ Imρ2. This shows that Φ is injective, and hence Φ is an
isomorphism.

Similarly, we can show that the following map

Ψ : KerC(dT1 , N)/ImC(dT0 , N)→ Kerρ0/Imρ1

α+ ImC(dT0 , N) 7→ s0α+ Imρ1

is an isomorphism.
On the other hand, we can prove that there is a commutative diagram as follows

C(T−1, Q2)⊕ C(T−2, Q1)
ρ2 //

��

C(T−1, Q1)
ρ1 //

��

C(T0, Q0)
ρ0 // C(T1, Q0)⊕ C(T0, Q−1)

C(M,Q2) // C(M,Q1) // C(M,Q0)

OO

// C(M,Q−1)

OO

(6)

and the two rows have isomorphic cohomological groups. It follows that the bottom
row of (5) and the bottom row of (6) have isomorphic cohomological groups, that
is, HiC(T, N) ∼= HiC(M,Q) for i = 0,−1.

More generally, we have the balance of ξ-complete cohomology as follows, which
is the key result to prove the main result, and meanwhile generalizes [1, Theorem
4.11], [17, Theorem 2] and [21, Main Theorem].

Proposition 4.3. Let M ∈ G̃P(ξ) and N ∈ G̃I(ξ). Then

ξ̃xt
i

P(M,N) ∼= ξ̃xt
i

I(M,N)
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for any i ∈ Z.

Proof. Assume that ξ-GpdM = m <∞ and ξ-GidN = n <∞. Let T
ν // P

π // M

be a ξ-complete resolution of M and N
ι // I

µ // Q a ξ-complete coresolution of

N .
For any i ∈ Z, there are E-triangles

Ki+1
// Ti // Ki

// , Di+1
// Pi // Di

//

and

Ji+1
// Ii // Ji // , Li+1

// Qi // Li //

in ξ. Set M = D0 and N = J1. Then Km = Dm is ξ-Gprojective and L−n+1 =
J−n+1 is ξ-Ginjective.

Consider the truncations

T≥m : · · · → Tm+2 → Tm+1 → Tm → 0

and

Q≤−n : 0→ Q−n → Q−n−1 → Q−n−2 → · · · .
Then T[−m] → T≥m[−m] → Km is a ξ-complete resolution of Km and L−n+1 →
Q≤−n[n]→ Q[n] is a ξ-complete coresolution of L−n+1. Thus we have

ξ̃xt
i

P(M,N) = HiC(T, N) = Hi−mC(T[−m], N) = ξ̃xt
i−m
P (Km, N)

∼= ξ̃xt
i−m−n
P (Km, J−n+1) (by Proposition 3.8(4) and Theorem 3.9 )

= ξ̃xt
i−m−n
P (Km, L−n+1) = Hi−m−nC(T[−m], L−n+1)

∼= Hi−m−nC(Km,Q[n]) (by Lemma 4.2)

= Hi−mC(Km,Q)

= ξ̃xt
i

I(Km, N).

Dually, using Proposition 3.13 and Theorem 3.14 we have

ξ̃xt
i

I(M,N) ∼= ξ̃xt
i−m
I (Dm, N) = ξ̃xt

i−m
I (Km, N).

Therefore, ξ̃xt
i

P(M,N) ∼= ξ̃xt
i

I(M,N) for any i ∈ Z.

Motivated by Gedrich and Gruenberg’s invariants of a ring [12], and Asadollahi
and Salarian’s invariants to a triangulated category [1], the authors assigned in [16,
Definition 4.2] two invariants to an extriangulated category C:

ξ-silpC = sup{ξ-idP | P ∈ P(ξ)},

ξ-spliC = sup{ξ-pdI | I ∈ I(ξ)}.
It follows from [16, Proposition 4.3] that if both ξ-silpC and ξ-spliC are finite, then
they are equal.

Recall from [16, Definition 4.1] that a full subcategory X ⊆ C is called a gener-
ating subcategory of C if for all M ∈ C, C(X ,M) = 0 implies that M = 0. Dually,
a full subcategory Y ⊆ C is called a cogenerating subcategory of C if for all N ∈ C,
C(N,Y) = 0 implies that N = 0.

Next, we are in a position to prove the main result of this section.
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Theorem 4.4. Let C be an extriangulated category, and let P(ξ) be a generat-

ing subcategory of C and I(ξ) a cogenerating subcategory of C. If ξ̃xt
i

P(M,N) ∼=
ξ̃xt

i

I(M,N) for all objects M and N in C, then ξ-spliC = ξ-silpC < ∞. The con-
verses hold if C satisfies the following condition:

Condition (?): If N ∈ C and M ∈ P̃(ξ) such that ξxtiξ(M,N) = 0 for any

i ≥ 1, then C(M,N) ∼= ξxt0
ξ(M,N). Dually, if N ∈ C and M ∈ Ĩ(ξ) such that

ξxtiξ(N,M) = 0 for any i ≥ 1, then C(N,M) ∼= ξxt0
ξ(N,M).

Proof. Assume that ξ̃xt
i

P(M,N) ∼= ξ̃xt
i

I(M,N) for all objects M and N in C. Let

M be an object in P(ξ). Then ξ̃xt
i

P(M,M) = 0. Thus ξ̃xt
i

I(M,M) = 0, and hence
ξ-idM < ∞ by [14, Theorem 3.10]. Similarly, one can show that ξ-pdN < ∞ for
any object in I(ξ). So ξ-spliC = ξ-silpC <∞ by [16, Proposition 4.3].

By hypothesis and [16, Theorem 4.7], we get that every object in C has fi-

nite ξ-Gprojective dimension and finite ξ-Ginjective dimension. So ξ̃xt
i

P(M,N) ∼=
ξ̃xt

i

I(M,N) for all objects M and N in C by Proposition 4.3.

Example 4.5. (see [16, Example 4.10]) (1) Assume that (C,E, s) is an exact cat-
egory and ξ is a class of exact sequences which is closed under isomorphisms. One
can check that Condition (?) in Theorem 4.4 is automatically satisfied.

(2) If C is a triangulated category and the class ξ of triangles is closed under
isomorphisms and suspension (see [5, Section 2.2] and [15, Remark 3.3(3)]), then
Condition (?) in Theorem 4.4 is also satisfied.

Recall from [1, Definition 4.6] that a triangulated category C is called Gorenstein
if there exists a positive integer n such that any object of C has both ξ-Gprojective
and ξ-Ginjective dimension less than or equal to n.

Corollary 4.6. Let C be a triangulated category, and let P(ξ) be a generating
subcategory of C and I(ξ) a cogenerating subcategory of C. Then C is Gorenstein if

and only if ξ̃xt
i

P(M,N) ∼= ξ̃xt
i

I(M,N) for all objects M and N in C.

Proof. The result holds by Theorem 4.4, Example 4.5(2) and [16, Corollary 4.12].

Let R be a ring and ModR the category of left R-modules. Then it is clear that
the class of projective left R-modules is a generating subcategory of ModR and the
class of injective R-modules is a cogenerating subcategory of ModR. If we assume
that C is the category of left R-modules and ξ is the class of all exact sequences in
ModR, then by Theorem 4.4 and Example 4.5(1), we have the following corollary,
which has been proved by Nucinkis in [20].

Corollary 4.7. (see [20, Theorem 5.2]) Let R be a ring. Then ξ̃xt
i

P(M,N) ∼=
ξ̃xt

i

I(M,N) for all left R-modules M and N if and only if spliR = silpR <∞.

Let Λ be an Artin algebra over a commutative Artin ring k, and modΛ the
category of finitely generated left Λ-modules. We denote by (modΛ)op the opposite
category of modΛ. Suppose that F is an additive subbifunctor of the additive
bifunctor Ext1

Λ(−,−) : (modΛ)op × modΛ → Ab. Recall from [2] that a short
exact sequence η : 0 → A → B → C → 0 in modΛ is said to be F -exact if η is
in F (C,A). A Λ-module P (resp. I) in modΛ is said to be F -projective (resp.
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F -injective) if for each F -exact sequence 0 → A → B → C → 0, the sequence
0 → HomΛ(P,A) → HomΛ(P,B) → HomΛ(P,C) → 0 (resp. 0 → HomΛ(C, I) →
HomΛ(B, I)→ HomΛ(A, I)→ 0) is exact. The full subcategory of modΛ consisting
of all F -projective (resp. F -injective) modules is denoted by P(F ) (resp. I(F )).
Assume that F has enough projectives and injectives. Then (modΛ, ε) is an exact
category, where ε is the class of F -exact sequences.

On the other hand, it follows from [23, Theorem 3.4] that Λ is F -Gorenstein if
and only if sup{pdF I | I ∈ I(F )} = sup{idFP | P ∈ P(F )} < ∞, where pdF I =
inf{n | Extn+1

F (I,B) = 0 for any B ∈ modΛ} and idFP = inf{n | Extn+1
F (A,P ) =

0 for any A ∈ modΛ}. Thus we have the following corollary which characterizes
when an Artin algebra is F -Gorenstein.

Corollary 4.8. Let Λ be an Artin algebra and F an additive subbifunctor with
enough projectives and injectives. If we assume that C is the exact category (modΛ, ε)
and ξ = ε is the class of F -exact sequences in modΛ, then Λ is F -Gorenstein if and

only if ξ̃xt
i

P(M,N) ∼= ξ̃xt
i

I(M,N) for all finitely generated left Λ-modules M and
N .

Proof. By Theorem 4.4 and Example 4.5(1), one has that ξ̃xt
i

P(M,N) ∼= ξ̃xt
i

I(M,N)
for all finitely generated left Λ-modules M and N if and only if sup{pdF I | I ∈
I(F )} = sup{idFP | P ∈ P(F )} <∞. So the result holds by [23, Theorem 3.4].
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