
ELECTRONIC RESEARCH ARCHIVE doi:10.3934/era.2021040
Volume 29, Number 5, November 2021 pp. 3309–3321

ON MINIMAL 4-FOLDS OF GENERAL TYPE WITH pg ≥ 2
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Abstract. We show that, for any nonsingular projective 4-fold V of general

type with geometric genus pg ≥ 2, the pluricanonical map ϕ33 is birational

onto the image and the canonical volume Vol(V ) has the lower bound 1
480

,

which improves a previous theorem by Chen and Chen.

1. Introduction. Studying the behavior of pluricanonical maps of projective va-
rieties has been one of the fundamental tasks in birational geometry. For varieties
of general type, an interesting and critical problem is to find a positive integer m so
that the pluricanonical map ϕm is birational onto the image. A momentous theo-
rem given by Hacon-McKernan [13], Takayama [19] and Tsuji [20] says that for any
integer n > 0, there is some constant rn (we assume rn to be the smallest one) such
that the pluricanonical map ϕm is birational onto its image for all m ≥ rn and for
all minimal projective n-folds of general type. By using the birationality principle
(see, for example, Theorem 2.2), an explicit upper bound of rn+1 is determined
by that of rn. Therefore, finding the explicit constant rn for smaller n is the next
problem. However, rn is known only for n ≤ 3, namely, r1 = 3, r2 = 5 by Bombieri
[2] and r3 ≤ 57 by Chen-Chen [4, 5, 6] and Chen [11].

The first partial result concerning the explicit bound of r4 was due to [6, Theorem
1.11] by Chen and Chen that ϕ35 is birational for all nonsingular projective 4-folds
of general type with pg ≥ 2. It is mysterious whether the numerical bound “35” is
optimal under the same assumption.

In this paper, we go on studying this question and prove the following theorem:

Theorem 1.1. Let V be a nonsingular projective 4-fold of general type with pg(V ) ≥
2. Then

(1) ϕm is birational for all m ≥ 33;
(2) Vol(V ) ≥ 1

480 .

Remark 1.2. As pointed out by Brown and Kasprzyk [3], the requirement on pg in
Theorem 1.1(2) is indispensable from the following list of canonical fourfolds, which
are hypersurfaces in weighted projective spaces with at worst canonical singularities:

1. X78 ⊂ P(39, 14, 9, 8, 6, 1), Vol(X78) = 1/3024;
2. X78 ⊂ P(39, 13, 10, 8, 6, 1), Vol(X78) = 1/3120;
3. X72 ⊂ P(36, 11, 9, 8, 6, 1), Vol(X72) = 1/2376;
4. X70 ⊂ P(35, 14, 10, 6, 3, 1), Vol(X70) = 1/1260;
5. X70 ⊂ P(35, 14, 10, 5, 4, 1), Vol(X70) = 1/1400;

2020 Mathematics Subject Classification. Primary: 14J35, 14E05; Secondary: 14C20, 14E30.
Key words and phrases. 4-folds of general type, pluricanonical map, canonical volume, linear

system, birational geometry.

3309

http://dx.doi.org/10.3934/era.2021040


3310 JIANSHI YAN

6. X68 ⊂ P(34, 12, 8, 7, 5, 1), Vol(X68) = 1/1680.

Moreover, the following two hypersurfaces has pg ≥ 2 and ϕ17 is non-birational,
so one may expect that 18 is the optimal lower bound of m such that ϕm is birational
for a nonsingular projective 4-fold of general type with pg ≥ 2:

(1) X36 ⊂ P(18, 6, 5, 4, 1, 1);
(2) X36 ⊂ P(18, 7, 5, 3, 1, 1).

Throughout this paper, all varieties are defined over an algebraically closed field
k of characteristic 0. We will frequently use the following symbols:

� ‘∼’ denotes linear equivalence or Q-linear equivalence;
� ‘≡’ denotes numerical equivalence;
� ‘|A| < |B|’ or, equivalently, ‘|B| 4 |A|’ means |A| ⊇ |B|+ fixed effective

divisors.

2. Preliminaries. Let V be a nonsingular projective 4-fold of general type with
geometric genus pg(V ) := dimkH

0(V,OV (KV )) ≥ 2, where KV is a canonical
divisor of V . By the minimal model program (see, for instance [1, 16, 17, 18]), we can
find a minimal model Y of V with at worst Q-factorial terminal singularities. Since
the properties, which we study on V , are birationally invariant in the category of
normal varieties with canonical singularities, we shall focus our study on Y instead.

2.1. Convention. For an arbitrary linear system |D| of positive dimension on a
normal projective variety Z, we define a generic irreducible element of |D| in the
following way. We have |D| = Mov|D|+ Fix|D|, where Mov|D| and Fix|D| denote
the moving part and the fixed part of |D| respectively. Consider the rational map

ϕ|D| = ϕMov|D|. We say that |D| is composed of a pencil if dimϕ|D|(Z) = 1;
otherwise, |D| is not composed of a pencil. A generic irreducible element of |D| is
defined to be an irreducible component of a general member in Mov|D| if |D| is
composed of a pencil or, otherwise, a general member of Mov|D|.

Keep the above settings. We say that |D| can distinguish different generic irre-
ducible elements X1 and X2 of a linear system |M | on Z if neither X1 nor X2 is

contained in Bs|D|, and if ϕ|D|(X1) * ϕ|D|(X2), ϕ|D|(X2) * ϕ|D|(X1).

A nonsingular projective surface S of general type with K2
S0

= u and pg(S0) = v
is referred to as a (u, v)-surface, where S0 is the minimal model of S.

2.2. Setup for the map ϕ1,Y . Fix an effective divisor K1 ∼ KY . By Hironaka’s
theorem, we may take a series of blow-ups along nonsingular centers to obtain the
model π : Y ′ → Y satisfying the following conditions:

(i) Y ′ is nonsingular and projective;
(ii) the moving part of |KY ′ | is base point free so that

g1 = ϕ1,Y ◦ π : Y ′ → ϕ1,Y (Y ) ⊆ Ppg(Y )−1

is a non-trivial morphism;
(iii) the union of π∗(K1) and all those exceptional divisors of π has simple normal

crossing supports.
Take the Stein factorization of g1. We get

Y ′
f1−−→ Γ

s−−→ ϕ1,Y (Y ),

and hence the following diagram commutes:
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Y

Y ′

ϕ1,Y (Y )

Γ-

? ?

HH
HHH

HHHj

- - - - - - - - - - - - --

f1

sπ

ϕ1,Y

g1

We may write

KY ′ = π∗(KY ) + Eπ,

where Eπ is a sum of distinct exceptional divisors with positive rational coefficients.
Denote by |M1| the moving part of |KY ′ |. Since Y has at worst Q-factorial terminal
singularities, we may write

π∗(KY ) ∼M1 + E1,

where E1 is an effective Q-divisor as well. One has 1 ≤ dim(Γ) ≤ 4.

If dim(Γ) = 1, we have M1 ∼
b∑
i=1

Fi ≡ bF , where Fi and F are smooth fibers of

f1 and b = deg f1∗OY ′(M1) ≥ pg(Y )− 1 ≥ 1. More specifically, when g(Γ) = 0, we
say that |M1| is composed of a rational pencil and when g(Γ) > 0, we say that |M1|
is composed of an irrational pencil.

If dim(Γ) > 1, by Bertini’s theorem, we know that general members Ti ∈ |M1|
are nonsingular and irreducible.

Denote by T ′ a generic irreducible element of |M1|. Set

θ1 = θ1,|M1| =

{
b, if dim(Γ) = 1;

1, if dim(Γ) ≥ 2.

So we naturally get

π∗(KY ) ≡ θ1T ′ + E1.

2.3. Notations. Pick a generic irreducible element T ′ of |M1|. Modulo further
blow-ups on Y ′, which is still denoted as Y ′ for simplicity, we may have a birational
morphism πT = π|T ′ : T ′ → T onto a minimal model T of T ′. Let t1 be the smallest
positive integer such that Pt1(T ) := dimkH

0(T,OT (t1KT )) ≥ 2. Modulo a further
blow-up of Y ′, we may assume that Mov|t1KT ′ | is base point free.

Set |N | = Mov|t1KT ′ | and let ϕt1,T be the t1-canonical map: T 99K PPt1 (T )−1.
Similar to the 4-fold case in Section 2.2, take the Stein factorization of the compo-
sition:

ϕt1,T ◦ πT : T ′
j−−→ Γ′ −→ ϕt1,T (T ).

Denote by j the induced projective morphism with connected fibers from ϕt1,T ◦πT
by Stein factorization. Set

at1,T =

{
c, if dim(Γ′) = 1;

1, if dim(Γ′) ≥ 2,

where c = deg j∗OT ′(N) ≥ Pt1(T ) − 1. Let S be a generic irreducible element of
|N |. Then we have

t1π
∗
T (KT ) ≡ at1,TS + EN ,

where EN is an effective Q-divisor. Denote by σ : S → S0 the contraction morphism
of S onto its minimal model S0.
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Suppose that |H| is a base point free linear system on S. Let C be a generic
irreducible element of |H|. As π∗T (KT )|S is nef and big, by Kodaira’s lemma, there

is a rational number β̃ > 0 such that π∗T (KT )|S ≥ β̃C.
Set

β = β(t1, |N |, |H|) = sup{β̃|β̃ > 0 s.t. π∗T (KT )|S ≥ β̃C}
ξ = ξ(t1, |N |, |H|) = (π∗T (KT ) · C)T ′ .

2.4. Technical preparation. We will use the following theorem which is a special
form of Kawamata’s extension theorem (see [15, Theorem A]).

Theorem 2.1. (cf. [12, Theorem 2.2]) Let Z be a nonsingular projective variety
on which D is a smooth divisor. Assume that KZ + D ∼ A + B where A is an
ample Q-divisor and B is an effective Q-divisor such that D 6⊆ Supp(B). Then the
natural homomorphism

H0(Z,m(KZ +D)) −→ H0(D,mKD)

is surjective for any integer m > 1.

In particular, when Z is of general type and D, as a generic irreducible element,
moves in a base point free linear system, the conditions of Theorem 2.1 are auto-
matically satisfied. Keep the settings as in 2.2 and 2.3. Take Z = Y ′ and D = T ′.

If |M1| is composed of an irrational pencil, by [9, Lemma 2.5], we have

π∗(KY )|T ′ = π∗T (KT ). (1)

If |M1| is not composed of an irrational pencil, then for a sufficiently large and
divisible integer n > 0, we have

|n(
1

θ1
+ 1)KY ′ | < |n(KY ′ + T ′)|

and the homomorphism

H0(Y ′, n(KY ′ + T ′))→ H0(T ′, nKT ′)

is surjective. By [17, Theorem 3.3], Mov|nKT ′ | is base point free, so one has

Mov|nKT ′ | = |nπ∗T (KT )|.
It follows that

n(
1

θ1
+ 1)π∗(KY )|T ′ ≥Mn( 1

θ1
+1)|T ′ ≥ nπ∗T (KT ),

where the latter inequality holds by [7, Lemma 2.7]. Together with (1), we get the
canonical restriction inequality:

π∗(KY )|T ′ ≥ θ1
1 + θ1

π∗T (KT ). (2)

Similarly, one has

π∗T (KT )|S ≥
at1,T

t1 + at1,T
σ∗(KS0). (3)

We will tacitly use the following type of birationality principle.

Theorem 2.2. (cf. [5, 2.7]) Let Z be a nonsingular projective variety, A and B
be two divisors on Z with |A| being a base point free linear system. Take the Stein

factorization of ϕ|A|: Z
h−→W −→ Ph0(Z,A)−1 where h is a fibration onto a normal

variety W . Then the rational map ϕ|B+A| is birational onto its image if one of the
following conditions is satisfied:
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(i) dimϕ|A|(Z) ≥ 2, |B| 6= ∅ and ϕ|B+A||D is birational for a general member D
of |A|.

(ii) dimϕ|A|(Z) = 1, ϕ|B+A| can distinguish different general fibers of h and
ϕ|B+A||F is birational for a general fiber F of h.

2.5. Some useful lemmas. The following results on surfaces will be used in our
proof.

Lemma 2.3. (see [6, Lemma 2.5]) Let σ : S −→ S0 be the birational contraction
onto the minimal model S0 from a nonsingular projective surface S of general type.
Assume that S is not a (1, 2)-surface and that C̃ is a curve on S passing through a

very general point. Then (σ∗(KS0
) · C̃) ≥ 2.

Lemma 2.4. ([10, Lemma 2.5]) Let S be a nonsingular projective surface. Let L
be a nef and big Q-divisor on S satisfying the following conditions:

(1) L2 > 8;
(2) (L ·Cx) ≥ 4 for all irreducible curves Cx passing through a very general point

x ∈ S.

Then |KS + pLq| gives a birational map.

3. Proof of the main theorem. As an overall discussion, we keep the same
settings as in 2.2 and 2.3.

3.1. Separation properties of ϕm,Y .

Lemma 3.1. Let Y be a minimal 4-fold of general type with pg(Y ) ≥ 2. Then
|mKY ′ | can distinguish different generic irreducible elements of |M1| for all m ≥ 3.

Proof. Suppose m ≥ 3. As we have mKY ′ ≥ M1, we may just consider the case
when |M1| is composed of a pencil. In particular, when |M1| is composed of a ra-
tional pencil, which is the case when Γ ∼= P1, the global sections of f1∗OY ′(M1) can
distinguish different points of Γ. So |M1|, and consequently |mKY ′ | can distinguish
different general fibers of f1. Hence we may just deal with the case when |M1| is

composed of an irrational pencil. We have M1 ∼
b∑
i=1

Ti, where Ti are smooth fibers

of f1 and b ≥ 2. Pick two different generic irreducible elements T1, T2 of |M1|. Then
by Kawamata-Viehweg vanishing theorem ([14, 21]), one has

H1(KY ′ + p(m− 2)π∗(KY )q +M1 − T1 − T2) = 0,

and the surjective map

H0(Y ′,KY ′ + p(m− 2)π∗(KY )q +M1)

−→ H0(T1,
(
KY ′ + p(m− 2)π∗(KY )q +M1

)
|T1) (4)

⊕H0(T2,
(
KY ′ + p(m− 2)π∗(KY )q +M1

)
|T2). (5)

Since pg(Y ) ≥ 2, both KTi and π∗(KY ) are effective. So for general Ti, π
∗(KY )|Ti

is effective. As Ti is moving and M1|Ti ∼ 0, both groups in (4) and (5) are non-zero.
Therefore, |mKY ′ | can distinguish different generic irreducible elements of |M1|.

Lemma 3.2. Let Y be a minimal 4-fold of general type with pg(Y ) ≥ 2. Pick a
generic irreducible element T ′ of |M1|. Then |mKY ′ ||T ′ can distinguish different
generic irreducible elements of |N | for all

m ≥ 2t1 + 4.
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Proof. Suppose m ≥ 2t1 + 4. We have KY ′ ≥ π∗(KY ) ≥ T ′. Similar to the proof of
Lemma 3.1, we consider the following two situations: (i) |N | is not composed of a
pencil or |N | is composed of a rational pencil; (ii) |N | is composed of an irrational
pencil.

For (i), one has

|mKY ′ | < |2(t1 + 1)KY ′ | < |(t1 + 1)(KY ′ + T ′)|.

By Theorem 2.1, one has

|(t1 + 1)(KY ′ + T ′)||T ′ < |(t1 + 1)KT ′ |.

As (t1+1)KT ′ ≥ N, |mKY ′ ||T ′ can distinguish different generic irreducible elements
of |N |.

For (ii), it holds that

|mKY ′ | < |2(t1 + 2)KY ′ | < |(t1 + 2)(KY ′ + T ′)|.

Using Theorem 2.1 again, one gets

|(t1 + 2)(KY ′ + T ′)||T ′

< |(t1 + 2)KT ′ |
< |2KT ′ +N |
< |KT ′ + pπ∗T (KT )q + (N − S1 − S2) + S1 + S2|,

where S1 and S2 are two different generic irreducible elements of |N |. The vanishing
theorem implies the surjective map

H0(T ′,KT ′ + pπ∗T (KT )q +N)

→ H0(S1, (KT ′ + pπ∗T (KT )q +N)|S1
) (6)

⊕H0(S2, (KT ′ + pπ∗T (KT )q +N)|S2), (7)

where we note that (N −Si)|Si is linearly trivial for i = 1, 2. Since pg(T ) > 0, both
groups in (6) and (7) are non-zero. So |mKY ′ ||T ′ can distinguish different generic
irreducible elements of |N | for any m ≥ 2t1 + 4.

Lemma 3.3. Let Y be a minimal 4-fold of general type with pg(Y ) ≥ 2. Pick a
generic irreducible element T ′ of |M1| and a generic irreducible element S of |N |.
Define

|H| =

{
Mov|KS |, if (K2

S0
, pg(S)) = (1, 2) or (2, 3);

Mov|2KS |, otherwise.

Then |mKY ′ ||S can distinguish different generic irreducible elements of |H| for all
m ≥ 4(t1 + 1).

Proof. Similar to the proof of Lemma 3.2, we have

|mKY ′ ||T ′ < |4(t1 + 1)KY ′ ||T ′ < |2(t1 + 1)KT ′ |.

Since t1KT ′ ≥ S, we have

|2(t1 + 1)KT ′ ||S < |2(KT ′ + S)||S < |2KS | < |H|.

As pg(S) > 0, |H| is not composed of an irrational pencil, concluding the proof.
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3.2. Two useful propositions.

Proposition 3.4. Let Y be a minimal 4-fold of general type with pg(Y ) ≥ 2. Pick
a generic irreducible element T ′ of |M1| and a generic irreducible element S of |N |.
If S is not a (1, 2)-surface, then ϕm,Y is birational for all

m > (2
√

2 + 1)(
t1
at1,T

+ 1)(1 +
1

θ1
).

Proof. Suppose m > (2
√

2 + 1)( t1
at1,T

+ 1)(1 + 1
θ1

). Since

(m− 1)π∗(KY )− T ′ − 1

θ1
E1 ≡ (m− 1− 1

θ1
)π∗(KY )

is nef and big, and it has simple normal crossing support, Kawamata-Viehweg van-
ishing theorem implies

|mKY ′ ||T ′ < |KY ′ + p(m− 1)π∗(KY )− 1

θ1
E1q||T ′

< |KT ′ + p
(
(m− 1)π∗(KY )− T ′ − 1

θ1
E1

)
|T ′q|

= |KT ′ + pQm,T ′q|, (8)

where Qm,T ′ = ((m − 1)π∗(KY ) − T ′ − 1
θ1
E1)|T ′ ≡ (m − 1 − 1

θ1
)π∗(KY )|T ′ is nef

and big and has simple normal crossing support.
By the canonical restriction inequality (2), we may write

π∗(KY )|T ′ ≡ θ1
1 + θ1

π∗T (KT ) + E1,T ′ ,

where E1,T ′ is certain effective Q-divisor. As t1π
∗
T (KT ) ≡ at1,TS + EN , one may

obtain that

Qm,T ′ − (m− 1− 1

θ1
)E1,T ′ − S − 1

at1,T
EN

≡ ((m− 1− 1

θ1
) · θ1

1 + θ1
− t1
at1,T

)π∗T (KT )

is nef and big and has simple normal crossing support. So by Kawamata-Viehweg
vanishing theorem, one has

|mKY ′ ||S < |KT ′ + pQm,T ′ − (m− 1− 1

θ1
)E1,T ′ − 1

at1,T
ENq||S

< |KS + p(Qm,T ′ − (m− 1− 1

θ1
)E1,T ′ − S − 1

at1,T
EN )|Sq|

= |KS + pUm,Sq|, (9)

where

Um,S = (Qm,T ′ − (m− 1− 1

θ1
)E1,T ′ − S − 1

at1,T
EN )|S

≡ ((m− 1− 1

θ1
) · θ1

1 + θ1
− t1
at1,T

)π∗T (KT )|S .

By (3), we have

π∗T (KT )|S ≡
at1,T

t1 + at1,T
σ∗(KS0

) + Et1,S
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for some effective Q-divisor Et1,S on S, together with (9), one has

U2
m,S = (((m− 1− 1

θ1
) · θ1

1 + θ1
− t1
at1,T

)π∗T (KT )|S)2

≥
(
((m− θ1 + 1

θ1
) · θ1
θ1 + 1

− t1
at1,T

) · at1,T
t1 + at1,T

)2 ·K2
S0
> 8,

where Um,S is nef and big. Hence the statement clearly follows from Lemma 2.3,
Lemma 2.4, Lemma 3.1, Lemma 3.2 and Theorem 2.2.

Proposition 3.5. Let Y be a minimal 4-fold of general type with pg(Y ) ≥ 2. Pick
a generic irreducible element T ′ of |M1| and a generic irreducible element S of |N |.
If S is neither a (1, 2)-surface nor a (2, 3)-surface, then ϕm,Y is birational for all

m ≥ 6(t1 + 1).

Proof. Suppose m ≥ 6(t1 + 1). Following the same procedures as in the proof of
Lemma 3.2 and Lemma 3.3, one has

|mKY ′ | < |3(t1 + 1)(KY ′ + T ′)|
and

|mKY ′ ||T ′ < |3(t1 + 1)KT ′ |.
Furthermore, one has

|mKY ′ ||S < |3(t1 + 1)KT ′ ||S
< |3(KT ′ + S)||S
= |3KS |.

By virtue of Bombieri’s result in [2] that |3KS | gives a birational map unless S is a
(1, 2)-surface or a (2, 3)-surface, together with Lemma 3.1, Lemma 3.2 and Theorem
2.2, the statement holds.

3.3. The case of dim(Γ) ≥ 2. We follow Chen-Chen’s approach in [6, Theorem
8.2] to deal with the case of dim(Γ) ≥ 2.

Theorem 3.6. ([6, Theorem 8.2]) Let Y be a minimal 4-fold of general type with
pg(Y ) ≥ 2. Assume that dim(Γ) ≥ 2, then ϕm,Y is birational for all m ≥ 15.

Proof. By Theorem 2.2, we may just consider ϕm,Y ′ |T ′ for a general member T ′ ∈
|M1|. As θ1 = 1, (2) gives

π∗(KY )|T ′ ≥ 1

2
π∗T (KT ). (10)

Pick a generic irreducible element S of |M1|T ′ |. It follows that

π∗(KY )|T ′ ≥M1|T ′ ≥ S.
Modulo Q-linear equivalence, we have

KT ′ ≥ (π∗(KY ) + T ′)|T ′ ≥ 2S. (11)

Using Theorem 2.1, we get

π∗T (KT )|S ≥
2

3
σ∗(KS0

). (12)

Thus, combining (10) and (12), one gets

π∗(KY )|S ≥
1

3
σ∗(KS0

).
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By (8), we already have

|mKY ′ ||T ′ < |KT ′ + pQm,T ′q|,
whereQm,T ′ = ((m−1)π∗(KY )−T ′− 1

θ1
E1)|T ′ ≡ (m−2)π∗(KY )|T ′ . As π∗(KY )|T ′ ≡

S + ES for some effective Q-divisor ES on T ′ and

Qm,T ′ − S − ES ≡ (m− 3)π∗(KY )|T ′

is nef and big, Kawamata-Viehweg vanishing theorem implies

|mKY ′ ||S < |KT ′ + pQm,T ′ − ESq||S
< |KS + pR′m,Sq|,

where

R′m,S = (Qm,T ′ − S − ES)|S
≡ (m− 3)π∗(KY )|S .

Since R′m,S ≡ m−3
3 σ∗(KS0

) + E′m,S , where E′m,S is an effective Q-divisor on S, by

Lemma 2.4, |KS + pR′m,Sq| gives a birational map whenever m ≥ 15.

Since Mov|KT ′ | < |M1|T ′ |, we may take t1 = 1 and by the proof of Lemma 3.2 we
know that |mKY ′ ||T ′ distinguishes different generic irreducible elements of |M1|T ′ |
for m ≥ 6. Therefore, ϕm,Y is birational for all m ≥ 15 in this case.

3.4. The case of dim(Γ) = 1.

Theorem 3.7. Let Y be a minimal 4-fold of general type with pg(Y ) ≥ 2. Assume
that dim(Γ) = 1, then ϕm,Y is birational for all m ≥ 33.

Proof. We have θ1 ≥ 1 and pg(T
′) > 0. By Lemma 3.1, |mKY ′ | distinguishes

different generic irreducible elements of |M1| for all m ≥ 3.
As an overall discussion, we study the linear system |mKY ′ ||C for generic irre-

ducible element C of |H|. Recall that, by (8) and (9), we already have

|mKY ′ ||S < |KS + pUm,Sq|,

where Um,S ≡
(
(m− 1− 1

θ1
) θ1
θ1+1 −

t1
at1,T

)
π∗T (KT )|S is a nef and big Q-divisor on S.

As we have π∗T (KT )|S ∼ βC + EH for some effective Q-divisor EH on S, applying
Kawamata-Viehweg vanishing theorem, we may get

|mKY ′ ||C < |KS + pUm,S −
1

β
EHq||C

= |KC + pUm,S − C −
1

β
EHq|C |

= |KC +Dm|, (13)

where Dm = pUm,S − C − 1
βEHq|C with

degDm ≥
(
(m− 1− 1

θ1
)

θ1
θ1 + 1

− t1
at1,T

− 1

β

)
(π∗T (KT )|S · C).

Thus, whenever m >
(
2
ξ + t1

at1,T
+ 1

β + 1
)
· θ1+1

θ1
, |mKY ′ ||C gives a birational map.

Therefore, by Lemma 3.2, Lemma 3.3 and Theorem 2.2, ϕm,Y is birational pro-
vided that

m ≥ 4t1 + 4 and m >
4

ξ
+

2t1
at1,T

+
2

β
+ 2.

Now we study this problem according to the value of pg(T ).



3318 JIANSHI YAN

Case 1. pg(T ) ≥ 2
Clearly, we may take t1 = 1 and so at1,T = 1. From [8, Section 2, Section 3], we

know that one of the following cases occurs:

(1) β ≥ 1, ξ ≥ 1; (correspondingly, d ≥ 2 in [8, 3.1, 3.2])
(2) β ≥ 1

2 , ξ ≥ 2; (correspondingly, d = 1 and b > 0 in [8, 2.8, 2.10, 3.3])

(3) β ≥ 1
4 , ξ ≥ 1; (correspondingly, d = 1, b = 0 and (1, 1)-surface case in [8, 2.13,

3.8])
(4) β ≥ 1

2 , ξ ≥ 2
3 ; (correspondingly, d = 1, b = 0 and (1, 2)-surface case in [8,

2.15, 3.7])
(5) β ≥ 1

2 , ξ ≥ 1; (correspondingly, d = 1, b = 0 and (2, 3)-surface case in [8, 2.12,
3.6])

(6) β ≥ 1
4 , ξ ≥ 2. (correspondingly, d = 1, b = 0 and other surface case in [8,

2.11, 3.5])

So ϕm,Y is birational for all m ≥ 17.

Case 2. pg(T ) = 1
According to [6, Corollary 4.10], T must be of one of the following types: (i)

P4(T ) = 1, P5(T ) ≥ 3; (ii) P4(T ) ≥ 2.
For Type (i), we have t1 = 5 and set |N | = Mov|5KT ′ |. When |N | is composed

of a pencil, we have at1,T ≥ 2 and S is exactly the general fiber of the induced
fibration from ϕt1,T ◦ πT . If S is not a (1, 2)-surface, by Proposition 3.4, ϕm,Y is
birational for all m ≥ 27. If S is a (1, 2)-surface, by [12, Proposition 4.1, Case 2],
we have β ≥ 2

7 and ξ ≥ 2
7 , and hence ϕm,Y is birational for m ≥ 29. When |N |

is not composed of a pencil, we have at1,T ≥ 1. Using the case by case argument
of [12, Proposition 4.2, Proposition 4.3], to give an exact list, (β, ξ) must be one
of the following: (1/5, 3/7), (1/5, 2/3), (1/3, 1/3), (1/5, 5/13), (1/5, 1), (1/2, 1/3),
(1/5, 1/2), (2/5, 1/3), (1/4, 1/3). Hence ϕm,Y is birational for all m ≥ 33.

For Type (ii), we have t1 = 4 and set |N | = Mov|4KT ′ |. When |N | is composed
of a pencil and the generic irreducible element S of |N | is neither a (1, 2)-surface
nor a (2, 3)-surface, by Proposition 3.5, ϕm,Y is birational for all m ≥ 30. When
P4(T ) = h0(T,OT (4KT )) = 2 and |N | is composed of a rational pencil of (1, 2)-
surfaces, the case by case argument of [12, Proposition 4.6, Proposition 4.7] tells
that (β, ξ) must be one of the following: (2/7, 2/7), (1/5, 2/5), (2/5, 2/7), (1/5, 1/3),
(1/5, 2/3), (1/5, 5/12), (1/3, 2/7), (1/4, 2/7). Hence ϕm,Y is birational for all m ≥
33. Otherwise, the case by case argument of [12, Proposition 4.5] tells that (β, ξ)
must be one of the following: (1/4, 2/5), (1/5, 2/5), (1/3, 1/3). Hence ϕm,Y is
birational for all m ≥ 31.

In conclusion, ϕm,Y is birational for all m ≥ 33.

3.5. The canonical volume of 4-folds.

Theorem 3.8. Let Y be a minimal 4-fold of general type with pg(Y ) ≥ 2. Then
Vol(Y ) ≥ 1

480 .

Proof. We have Vol(Y ) = K4
Y = (π∗(KY ))4.

Recall that π∗(KY ) ≡ θ1T ′ + E1. One has

Vol(Y ) ≥ θ1(π∗(KY ))3 · T ′ = θ1(π∗(KY )|T ′)3.

As we also have (2) and t1π
∗
T (KT ) ≡ at1,TS + EN , it follows that

Vol(Y ) ≥ θ1 · (
θ1

1 + θ1
)3(π∗T (KT ))3
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≥ θ1 · (
θ1

1 + θ1
)3 · at1,T

t1
(S · (π∗T (KT ))2)

= θ1 · (
θ1

1 + θ1
)3 · at1,T

t1
(π∗T (KT )|S)2.

By (3) and π∗T (KT )|S ≥ βC, we may get

Vol(Y ) ≥ θ1 · (
θ1

1 + θ1
)3 · at1,T

t1
· ( at1,T
t1 + at1,T

)2K2
S0

and

Vol(Y ) ≥ θ1 · (
θ1

1 + θ1
)3 · at1,T

t1
· β(π∗T (KT )|S · C)

= θ1 · (
θ1

1 + θ1
)3 · at1,T

t1
· βξ.

Now we estimate the canonical volume according to the same classification of T
and S as in Subsection 3.3 and Subsection 3.4.

(I) The case of dim(Γ) ≥ 2
Remember that in this case, θ1 = 1, t1 = 1, at1,T = 2 (by (11)) and π∗T (KT )|S ≥

2
3σ
∗(KS0

) (by (12)). So we have Vol(Y ) ≥ 1
9 .

(II) The case of dim(Γ) = 1

Subcase (II-1). pg(T ) ≥ 2.
As in Theorem 3.7, Case 1, t1 = 1, at1,T = 1, so we correspondingly have the

estimation as follows:

(1) β ≥ 1, ξ ≥ 1, then Vol(Y ) ≥ 1
8 ;

(2) β ≥ 1
2 , ξ ≥ 2, then Vol(Y ) ≥ 1

8 ;

(3) β ≥ 1
4 , ξ ≥ 1, then Vol(Y ) ≥ 1

32 ;

(4) β ≥ 1
2 , ξ ≥ 2

3 , then Vol(Y ) ≥ 1
24 ;

(5) β ≥ 1
2 , ξ ≥ 1, then Vol(Y ) ≥ 1

16 ;

(6) β ≥ 1
4 , ξ ≥ 2, then Vol(Y ) ≥ 1

16 .

Subcase (II-2). pg(T ) = 1.
We follow the same classification of T as in Theorem 3.7, Case 2.
Recall that for Type (i), we have t1 = 5. When |N | is composed of a pencil and

the general fiber S of the induced fibration from ϕt1,T ◦πT is not a (1, 2)-surface, we
have at1,T ≥ 2, β ≥ 1

7 , ξ ≥ ( 2
7σ
∗(KS0

) · C) ≥ 4
7 , and thus Vol(Y ) ≥ 1

245 . When |N |
is composed of a pencil and the general fiber S is a (1, 2)-surface, we have at1,T ≥ 2,
β ≥ 2

7 , ξ ≥ 2
7 , and hence Vol(Y ) ≥ 1

245 . When |N | is not composed of a pencil, we

have at1,T ≥ 1. The two cases corresponding to (β, ξ) = (1
5 ,

5
13 ) in Theorem 3.7 Case

2 both have K2
S0
≥ 4, where S0 is the minimal model of a generic irreducible element

S of |N |. So Vol(Y ) ≥ 1
360 . The corresponding lower bounds of Vol(Y ) to those of

(β, ξ) (except (β, ξ) = (1
5 ,

5
13 )) are as follows: 3

1400 ,
1

300 ,
1

360 ,
1

200 ,
1

240 ,
1

400 ,
1

300 ,
1

480 .
For Type (ii), we have t1 = 4. When |N | is not composed of a pencil, then

β ≥ 1
4 , ξ ≥

2
5 and Vol(Y ) ≥ 1

320 . When |N | is composed of a pencil of (2, 3)-

surfaces, then β ≥ 1
5 , ξ ≥

2
5 and Vol(Y ) ≥ 1

400 . When |N | is composed of a pencil

of surfaces with K2
S0
≥ 2, then Vol(Y ) ≥ 1

400 . When P4(T ) = h0(T,OT (4KT )) = 2
and |N | is composed of a rational pencil of (1, 2)-surfaces, the corresponding lower
bounds of Vol(Y ) to those of (β, ξ) are as follows: 1

392 ,
1

400 ,
1

280 ,
1

480 ,
1

240 ,
1

384 ,
1

336 ,
1

448 .

Otherwise, β ≥ 1
3 , ξ ≥

1
3 and Vol(Y ) ≥ 1

288 .
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So we have shown Vol(Y ) ≥ 1
480 .

3.6. Proof of Theorem 1.1.

Proof. Theorem 3.6, Theorem 3.7 and Theorem 3.8 directly implies Theorem
1.1.
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