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ON MINIMAL 4-FOLDS OF GENERAL TYPE WITH p, > 2
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ABSTRACT. We show that, for any nonsingular projective 4-fold V' of general
type with geometric genus py > 2, the pluricanonical map ¢33 is birational
onto the image and the canonical volume Vol(V) has the lower bound 47%07
which improves a previous theorem by Chen and Chen.

1. Introduction. Studying the behavior of pluricanonical maps of projective va-
rieties has been one of the fundamental tasks in birational geometry. For varieties
of general type, an interesting and critical problem is to find a positive integer m so
that the pluricanonical map ¢, is birational onto the image. A momentous theo-
rem given by Hacon-McKernan [13], Takayama [19] and Tsuji [20] says that for any
integer n > 0, there is some constant 7, (we assume 7, to be the smallest one) such
that the pluricanonical map ¢,, is birational onto its image for all m > r,, and for
all minimal projective n-folds of general type. By using the birationality principle
(see, for example, Theorem 2.2), an explicit upper bound of 7,41 is determined
by that of 7,. Therefore, finding the explicit constant r,, for smaller n is the next
problem. However, r,, is known only for n < 3, namely, r; = 3, ro = 5 by Bombieri
[2] and 73 < 57 by Chen-Chen [4, 5, 6] and Chen [11].

The first partial result concerning the explicit bound of r4 was due to [6, Theorem
1.11] by Chen and Chen that 35 is birational for all nonsingular projective 4-folds
of general type with p, > 2. It is mysterious whether the numerical bound “35” is
optimal under the same assumption.

In this paper, we go on studying this question and prove the following theorem:

Theorem 1.1. Let V' be a nonsingular projective 4-fold of general type with p,(V') >
2. Then

(1) @m is birational for all m > 33;

(2) Vol(V) > 4.
Remark 1.2. As pointed out by Brown and Kasprzyk [3], the requirement on p, in
Theorem 1.1(2) is indispensable from the following list of canonical fourfolds, which
are hypersurfaces in weighted projective spaces with at worst canonical singularities:
X7 C P(39,14,9,8,6,1), Vol(Xrs) = 1/3024;
X7 C P(39,13,10,8,6,1), Vol(X7s) = 1/3120;
Xoo C P(36,11,9,8,6,1), Vol(Xy2) = 1/2376;
X7 C P(35,14,10,6,3,1), Vol(X7) = 1/1260;

(35,14,10,5,4, 1), Vol(X7) = 1/1400;
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6. Xgs C P(34,12,8,7,5,1), Vol(Xgs) = 1/1680.

Moreover, the following two hypersurfaces has p, > 2 and ¢7 is non-birational,
so one may expect that 18 is the optimal lower bound of m such that ¢,, is birational
for a nonsingular projective 4-fold of general type with py > 2:

(1) X36 - ]P)(187 63 5; 4,1, 1)7
(2) X536 C IP(18,7,5,3,1,1).

Throughout this paper, all varieties are defined over an algebraically closed field
k of characteristic 0. We will frequently use the following symbols:

3

¢ ‘~’ denotes linear equivalence or Q-linear equivalence;

¢ ‘=’ denotes numerical equivalence;

o ‘|A| %= |B| or, equivalently, ‘|B| < |A|’ means |A| D |B|+ fixed effective
divisors.

2. Preliminaries. Let V be a nonsingular projective 4-fold of general type with
geometric genus py(V) = dimy H*(V,Ov(Ky)) > 2, where Ky is a canonical
divisor of V. By the minimal model program (see, for instance [1, 16, 17, 18]), we can
find a minimal model Y of V' with at worst Q-factorial terminal singularities. Since
the properties, which we study on V, are birationally invariant in the category of
normal varieties with canonical singularities, we shall focus our study on Y instead.

2.1. Convention. For an arbitrary linear system |D| of positive dimension on a
normal projective variety Z, we define a generic irreducible element of |D| in the
following way. We have |D| = Mov|D| + Fix|D|, where Mov|D| and Fix|D| denote
the moving part and the fixed part of |D| respectively. Consider the rational map
©|D| = PMovp|- We say that |D| is composed of a pencil if dim g p|(Z) = 1;
otherwise, |D| is not composed of a pencil. A generic irreducible element of |D| is
defined to be an irreducible component of a general member in Mov|D| if |D] is
composed of a pencil or, otherwise, a general member of Mov|D|.

Keep the above settings. We say that |D| can distinguish different generic irre-
ducible elements X1 and Xo of a linear system |M| on Z if neither X; nor Xj is
contained in BSlDl, and if @|D\<X1) g_ (p‘D‘(XQ)’ (P|D|(X2> SZ @|D\<X1)-

A nonsingular projective surface S of general type with Kg = u and py(So) = v
is referred to as a (u,v)-surface, where Sy is the minimal model of S.

2.2. Setup for the map ¢ y. Fix an effective divisor K; ~ Ky. By Hironaka’s
theorem, we may take a series of blow-ups along nonsingular centers to obtain the
model 7 : Y’ — Y satisfying the following conditions:

(i) Y is nonsingular and projective;

(ii) the moving part of |Ky~| is base point free so that

g=pryom:Y = 1 y(Y)CPre()-1

is a non-trivial morphism;

(iii) the union of 7*(K7) and all those exceptional divisors of 7 has simple normal
crossing supports.

Take the Stein factorization of g;. We get

Y LT oy (),

and hence the following diagram commutes:
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fi

Y/

We may write
KY’ = 7T*(I(Y) + E7'r7
where E; is a sum of distinct exceptional divisors with positive rational coefficients.
Denote by |M;]| the moving part of |Ky/|. Since Y has at worst Q-factorial terminal
singularities, we may write

TF*(Ky) ~ M1 —+ E17
where F; is an effective Q-divisor as well. One has 1 < dim(I") < 4.

b
If dim(T") = 1, we have My ~ > F; = bF, where F; and F are smooth fibers of
i=1

fi and b = deg f1,0y/(M1) > pg(Y) — 1 > 1. More specifically, when g(I') = 0, we
say that |M| is composed of a rational pencil and when g(I') > 0, we say that |M;|
is composed of an irrational pencil.

If dim(T") > 1, by Bertini’s theorem, we know that general members T; € |M|
are nonsingular and irreducible.

Denote by T” a generic irreducible element of |M;]. Set

g fbifdim(D)=1;
UMM i dim(D) > 2.

So we naturally get
W*(Ky) = 91T/ + El.

2.3. Notations. Pick a generic irreducible element 7" of |M;|. Modulo further
blow-ups on Y, which is still denoted as Y’ for simplicity, we may have a birational
morphism 7w = «|p : T/ — T onto a minimal model T of T”. Let ¢; be the smallest
positive integer such that Py, (T) := dimy H°(T, Or(t1 Kr)) > 2. Modulo a further
blow-up of Y’, we may assume that Mov|t; K| is base point free.

Set |N| = Mov|t; K7v| and let ¢;, 7 be the t;-canonical map: T --» PPu (1)1
Similar to the 4-fold case in Section 2.2, take the Stein factorization of the compo-
sition: _

P, TOTT : T’ L) I’ — (ptl’T(T).
Denote by j the induced projective morphism with connected fibers from ¢, romr
by Stein factorization. Set

¢, if dim(I") = 1;
Ay, T = . . ’
1, if dim(IV) > 2,
where ¢ = degj.Op/(N) > P, (T) — 1. Let S be a generic irreducible element of
|N|. Then we have
tlﬂ}(KT) = atl,TS + EN,

where F is an effective Q-divisor. Denote by o : S — S the contraction morphism
of S onto its minimal model Sy.
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Suppose that |H| is a base point free linear system on S. Let C be a generic
irreducible element of |H|. As 74 (K7r)|s is nef and big, by Kodaira’s lemma, there
is a rational number § > 0 such that 75.(Kr)|s > SC.

Set

B =Bty INLIH]) = sup{B|B >0 s.t. 7(Kr)|s > 5C}

§=E&(t, N IH]) = (mp(Kr) - O
2.4. Technical preparation. We will use the following theorem which is a special
form of Kawamata’s extension theorem (see [15, Theorem Al]).

Theorem 2.1. (¢f. [12, Theorem 2.2]) Let Z be a nonsingular projective variety
on which D is a smooth divisor. Assume that Ky + D ~ A 4+ B where A is an
ample Q-divisor and B is an effective Q-divisor such that D € Supp(B). Then the
natural homomorphism

H(Z,m(Kz + D)) — H°(D,mKp)
is surjective for any integer m > 1.

In particular, when Z is of general type and D, as a generic irreducible element,
moves in a base point free linear system, the conditions of Theorem 2.1 are auto-
matically satisfied. Keep the settings as in 2.2 and 2.3. Take Z =Y’ and D = T".

If |M;] is composed of an irrational pencil, by [9, Lemma 2.5], we have

T (Ky)|r = 77(Kr). (1)
If | M| is not composed of an irrational pencil, then for a sufficiently large and

divisible integer n > 0, we have

1
\n(a— + 1)Ky/| = |’I’L(Ky/ —+ T/)|
1

and the homomorphism
H(Y' \n(Ky +T') = HY(T',nKr)
is surjective. By [17, Theorem 3.3], Mov|nKr-| is base point free, so one has
Mov|nKr/| = |nmh(Kr)|.

It follows that

1

"(9* + ) (Ky)|r = Mn(%—&-l)hw > nmp(Kr),

1
where the latter inequality holds by [7, Lemma 2.7]. Together with (1), we get the
canonical restriction inequality:

b1

(K ;> “(KT). 2
™ ( Y)\T_1+917TT( T) (2)
Similarly, one has
at,, T
(K > b o%(Kg,). 3
mp(Kr)|s > — (Ks0) (3)

We will tacitly use the following type of birationality principle.

Theorem 2.2. (c¢f. [5, 2.7]) Let Z be a nonsingular projective variety, A and B
be two divisors on Z with |A] being a base point free linear system. Take the Stein

factorization of |4 Z W PPZAT yhere h is a fibration onto a normal
variety W. Then the rational map @ g 4| is birational onto its image if one of the
following conditions is satisfied:
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(i) dimpa|(Z) > 2, |B| # 0 and ¢|p4a||p is birational for a general member D
of |A].

(ii) dimpa(Z) = 1, opya; can distinguish different general fibers of h and
©|B+A||F is birational for a general fiber F' of h.

2.5. Some useful lemmas. The following results on surfaces will be used in our
proof.

Lemma 2.3. (see [6, Lemma 2.5]) Let 0 : S — Sy be the birational contraction
onto the minimal model Sy from a nonsingular projective surface S of general type.
Assume that S is not a (1,2)-surface and that C is a curve on S passing through a

very general point. Then (6*(Kg,) - C) > 2.

Lemma 2.4. ([10, Lemma 2.5]) Let S be a nonsingular projective surface. Let L
be a nef and big Q-divisor on S satisfying the following conditions:
(1) L? > 8;
(2) (L-Cy) >4 for all irreducible curves Cy, passing through a very general point
xes.

Then |Kg + "L7 gives a birational map.

3. Proof of the main theorem. As an overall discussion, we keep the same
settings as in 2.2 and 2.3.

3.1. Separation properties of ¢, y.

Lemma 3.1. Let Y be a minimal 4-fold of general type with py(Y') > 2. Then
|mKy| can distinguish different generic irreducible elements of | M| for all m > 3.

Proof. Suppose m > 3. As we have mKy: > M;, we may just consider the case
when | M| is composed of a pencil. In particular, when |M;| is composed of a ra-
tional pencil, which is the case when I' 2 P!, the global sections of f;,Oy/(M;) can
distinguish different points of I'. So |M;|, and consequently |mKy-| can distinguish

different general fibers of fi. Hence we may just deal with the case when |Mj| is
b
composed of an irrational pencil. We have M; ~ > T;, where T; are smooth fibers
i=1
of f1 and b > 2. Pick two different generic irreducible elements T3, T of |M;]. Then

by Kawamata-Viehweg vanishing theorem ([14, 21]), one has
HY Ky +"(m —2)n*(Ky)?+ M, — Ty —Ty) = 0,
and the surjective map
H(Y',Ky' + " (m — 2)7*(Ky)" + M)
— HY Ty, (Ky +"(m —2)r*(Ky)" + Mi)|r,) (4)
eH (T, (Ky' +"(m — 2)7*(Ky) " + Mi)|r,). (5)

Since py(Y') > 2, both K, and 7*(Ky) are effective. So for general T;, 7*(Ky)|r,
is effective. As T; is moving and M|, ~ 0, both groups in (4) and (5) are non-zero.
Therefore, |mKy| can distinguish different generic irreducible elements of |M;]|. O

Lemma 3.2. Let Y be a minimal 4-fold of general type with py(Y) > 2. Pick a
generic irreducible element T' of |Mi|. Then |\mKy-||r can distinguish different
generic irreducible elements of |[N| for all
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Proof. Suppose m > 2t; +4. We have Ky+ > 7*(Ky) > T’. Similar to the proof of
Lemma 3.1, we consider the following two situations: (i) |N| is not composed of a
pencil or |N| is composed of a rational pencil; (ii) |N| is composed of an irrational
pencil.

For (i), one has

ImKy| = [2(t + DEy | = [(t + 1)(Ky +T7)].
By Theorem 2.1, one has
[t + 1) (Kyr + )| = [(t1 + 1) K]

As (t1+1)Kp > N, |[mKy||7: can distinguish different generic irreducible elements
of |NJ.
For (ii), it holds that

ImKy| = 2(t1 + 2) Ky | = [ (t1 + 2)(Kyr +T7)].
Using Theorem 2.1 again, one gets
|(t1+2)(Kyr +T")[| 1
= It +2)K7 |
7 [2K7/ + N|
| K + "mp(Kp) "+ (N = S1 — S2) + 51 + Sal,

Y

where S and Sy are two different generic irreducible elements of [ N|. The vanishing
theorem implies the surjective map

HY(T', Ky + "5 (Kp)7 + N)
- H°(S1, (K + "m5 (K1) + N)ls, ) (6)
GH®(S2, (K + "m5 (K1) + N)|s,), (7)

where we note that (N —S;)|s, is linearly trivial for ¢ = 1, 2. Since p,(T) > 0, both
groups in (6) and (7) are non-zero. So |mKy~||7» can distinguish different generic
irreducible elements of |N| for any m > 2t; + 4. O

Lemma 3.3. Let Y be a minimal 4-fold of general type with py(Y) > 2. Pick a
generic irreducible element T’ of |Mi| and a generic irreducible element S of |N|.

Define

H| = Mov|Ks|, if (KZ,,pe(S)) = (1,2) or (2,3);
Mov|2Ks|, otherwise.

Then |[mKy/||s can distinguish different generic irreducible elements of |H| for all

Proof. Similar to the proof of Lemma 3.2, we have
(mEy||r = [4(t + 1) Ky [[z0 = [2(t1 + 1) Koo
Since t1 K7 > S, we have
2(t1 + D) Kp|ls = 2K + 9)|s = [2Ks| = |H].

As py(S) > 0, |H| is not composed of an irrational pencil, concluding the proof. [
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3.2. Two useful propositions.

Proposition 3.4. Let Y be a minimal 4-fold of general type with py(Y') > 2. Pick
a generic irreducible element T' of |M1| and a generic irreducible element S of |N]|.
If S is not a (1,2)-surface, then @y, y is birational for all

t 1

+ 1)1+ ).
P )1+ 50

Proof. Suppose m > (22 +1)(-2— +1)(1 + %) Since
t1

T

m > (22 + 1)(

(m—1)r*(Ky) - T — —E; = (m -1 — —)n*(Ky)

is nef and big, and it has simple normal crossing support, Kawamata-Viehweg van-
ishing theorem implies

[mEy ||z

Y

1
[y 4" (m = ) (Ky) = 5Byl

Y

1
|KTI + I_((7’771 — 1)7T*(Ky) — T/ — ?E1)|T/—l‘
1

- |KT’ + ’_Qm,T’—I|7 (8)
where Q. = ((m — 1)7*(Ky) — T — éE1)|T/ =(m-1- é)ﬂ'*(Ky”T/ is nef
and big and has simple normal crossing support.

By the canonical restriction inequality (2), we may write

01
— 1 (K FEi 7
1+917TT< T) + B,

where Ey 7 is certain effective Q-divisor. As 175 (Kr) = ay, 7S + En, one may
obtain that

™ (Ky)|r =

1 1
Qm,T’ - (m -1- ?)EI,T/ -5- En
1 at,, T
1 01 3]
= (m—-1-——)- - 7w (K
(tm =1 ) o — Loy g

is nef and big and has simple normal crossing support. So by Kawamata-Viehweg
vanishing theorem, one has

1
ImKy|ls = |Kr+"Qmr —(m—1- Z)E1,T/ - En7|s
1 a’tl,T
1
= |KS+F(Qm,T/ 7(m71,97)E17T/ —S - EN)|S—I|
1 ¢y, T
= |Kg+"UnsT, (9)
where
1 1
Uns = (Qmm —(m-—1- ?)El,T’ -5 - En)ls
1 at,, T
1 0, t1
= —-1—-—) — = (K
(m—1= ) g~ e omKls
By (3), we have
a *
w3 (Kr)|s = ——0"(Ks,) + Ei, s

t1 +ag, T
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for some effective Q-divisor Ey, g on S, together with (9), one has

1 0 t
2 _ —1-==). 1 o 1 * K 2
Uhs = ((m=1=3) T35 =~ mmi(Kn)ls)
_91+1 0, tq at,, T

2 2
> (((m _ _ : K5, > 8,
= ((( 01 ) h+1 a7 U+ atlvT) *

where U, s is nef and big. Hence the statement clearly follows from Lemma 2.3,

Lemma 2.4, Lemma 3.1, Lemma 3.2 and Theorem 2.2. O

Proposition 3.5. Let Y be a minimal 4-fold of general type with py,(Y') > 2. Pick
a generic irreducible element T' of |M1| and a generic irreducible element S of |N]|.
If S is neither a (1,2)-surface nor a (2, 3)-surface, then o,y is birational for all

m > 6(t; +1).

Proof. Suppose m > 6(t; + 1). Following the same procedures as in the proof of
Lemma 3.2 and Lemma 3.3, one has
ImKy| = |3(t:1 + 1)(Kyr +T7)]
and
|mKy |7 = |3(t1 + 1) K|
Furthermore, one has

ImKy||ls = [3(t1+1)Kr|s
= 13(Kr +9)lls
= |3Kg].

By virtue of Bombieri’s result in [2] that |3Kg| gives a birational map unless S is a
(1,2)-surface or a (2, 3)-surface, together with Lemma 3.1, Lemma 3.2 and Theorem
2.2, the statement holds. O

3.3. The case of dim(I') > 2. We follow Chen-Chen’s approach in [6, Theorem
8.2] to deal with the case of dim(I") > 2.

Theorem 3.6. ([6, Theorem 8.2]) Let Y be a minimal 4-fold of general type with
pg(Y) > 2. Assume that dim(I") > 2, then ¢,y is birational for all m > 15.

Proof. By Theorem 2.2, we may just consider ¢, y+ |7+ for a general member 1" €
|M7]. As 6, =1, (2) gives

w (K v > g (). (10)
Pick a generic irreducible element S of |My|7|. It follows that

7 (Ky)|r > My|p > S.
Modulo Q-linear equivalence, we have

Kpr > (7" (Ky) + T") |1 > 28. (11)

Using Theorem 2.1, we get

mi(Krls > 20° (Ks,) (12
Thus, combining (10) and (12), one gets

1
m(Ky)ls 2 507 (Ks,).
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By (8), we already have
ImKy |7 = | Ko + Q7
where Q, 77 = ((m—l)w*(Ky)—T’—%ElﬂT/ = (m—-2)7*(Ky)|r. As7*(Ky)|r =
S + Eg for some effective Q-divisor Es on 1" and
Qm,T’ -5 - ES = (m — 3)7T*(Ky)|T/

is nef and big, Kawamata-Viehweg vanishing theorem implies

ImKy||ls = |Kr +"Qmr — Es’|s

7 [Ks+ MR, s,

where
ms = (Qmr —S—FEs)|s
= (m—3)7"(Ky)l|s-
Since R;, ¢ = n=35%(Kg,) + B, 5» where E] ¢ is an effective Q-divisor on S, by

Lemma 2.4, |[Ks + "R, 5| gives a birational map whenever m > 15.

Since Mov|Kr/| = \Ml |77|, we may take t; = 1 and by the proof of Lemma 3.2 we
know that |mKy~||7s distinguishes different generic irreducible elements of | M| 7|
for m > 6. Therefore, ¢,, y is birational for all m > 15 in this case. O

3.4. The case of dim(T") = 1.

Theorem 3.7. Let Y be a minimal 4-fold of general type with p,(Y') > 2. Assume
that dim(T") = 1, then @,y is birational for all m > 33.

Proof. We have 61 > 1 and py(T’) > 0. By Lemma 3.1, |mKy-| distinguishes
different generic irreducible elements of |M;| for all m > 3.
As an overall discussion, we study the linear system |mKy-||c for generic irre-
ducible element C of |H|. Recall that, by (8) and (9), we already have
ImKy s 7 |[Ks +"Un,s 7,
where Uy, g = ((m—1— Ly bt ) (Kr)|s is a nef and big Q-divisor on S.

01761+1 aty,T
As we have 74 (Kr)|s ~ BC + Eg for some effective Q-divisor Fy on S, applying

Kawamata-Viehweg vanishing theorem, we may get

1
ImKy|lc = |Ks+"Uns—=Eu'llc

g
= |[Kc+"Uns—C-— %EH—WC\
= |Kc + Dnl, (13)
where D, ="Up, g —C — %EH—'|C with
dog D 2 ((m—1 - )72 - o= P EDls - O)
Thus, whenever m > (% ) 91+1 , |mKy||c gives a birational map.

Therefore, by Lemma 3.2, Lemma 3.3 and T heorem 2.2, ¢y, y is birational pro-
vided that A o 5
m >4ty +4and m > - + ! + =4+ 2.
g atl,T ﬂ

Now we study this problem according to the value of py(T).
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Case 1. p,(T) > 2
Clearly, we may take t; = 1 and so a¢, » = 1. From [8, Section 2, Section 3], we
know that one of the following cases occurs:
(1) B>1, &> 1; (correspondingly, d > 2 in [8, 3.1, 3.2])
(2) B> 4, &>2; (correspondingly, d =1 and b > 0 in [8, 2.8, 2.10, 3.3])
(3) B> 1, &> 1; (correspondingly, d = 1, b = 0 and (1, 1)-surface case in [8, 2.13,

3.8])

(4) B> 1, &> 2; (correspondingly, d = 1, b = 0 and (1,2)-surface case in [3,
2.15, 3.7))

(5) > % & > 1; (correspondingly, d = 1, b = 0 and (2, 3)-surface case in [8, 2.12,
3.6])

(6) B> 1, &> 2. (correspondingly, d = 1, b = 0 and other surface case in [3,
2.11, 3.5))

S0 @,y is birational for all m > 17.

Case 2. py,(T) =1

According to [6, Corollary 4.10], T must be of one of the following types: (i)
PA(T) = 1, Po(T) > 3; (il) Pa(T) > 2.

For Type (i), we have t; = 5 and set |N| = Mov|5K7/|. When |N| is composed
of a pencil, we have a;, 7 > 2 and S is exactly the general fiber of the induced
fibration from ¢, 7 o mp. If S is not a (1, 2)-surface, by Proposition 3.4, v, vy is
birational for all m > 27. If S is a (1, 2)-surface, by [12, Proposition 4.1, Case 2],
we have 3 Z and £ > 2 , and hence ¢, y is birational for m > 29. When |N|
is not composed of a pencﬂ we have a¢, 7 > 1. Using the case by case argument
of [12, Proposition 4.2, Proposition 4.3], to give an exact list, (8,£) must be one
of the following: (1/5,3/7), (1/5,2/3), (1/3,1/3), (1/5,5/13), (1/5,1), (1/2,1/3),
(1/5,1/2), (2/5,1/3), (1/4,1/3). Hence @y, y is birational for all m > 33.

For Type (ii), we have t; = 4 and set |N| = Mov|4K7/|. When |N| is composed
of a pencil and the generic irreducible element S of |N| is neither a (1,2)-surface
nor a (2,3)-surface, by Proposition 3.5, ¢,, y is birational for all m > 30. When
Py(T) = h°(T,O0r(4Kr)) = 2 and |N| is composed of a rational pencil of (1,2)-
surfaces, the case by case argument of [12, Proposition 4.6, Proposition 4.7] tells
that (8, &) must be one of the following: (2/7,2/7), (1/5,2/5), (2/5,2/7), (1/5,1/3),
(1/5,2/3), (1/5,5/12), (1/3,2/7), (1/4,2/7). Hence ¢, y is birational for all m >
33. Otherwise, the case by case argument of [12, Proposition 4.5] tells that (5, &)
must be one of the following: (1/4,2/5), (1/5,2/5), (1/3,1/3). Hence ¢,y is
birational for all m > 31.

In conclusion, ¢,, y is birational for all m > 33. O

3.5. The canonical volume of 4-folds.

Theorem 3.8. Let Y be a minimal 4-fold of general type with p,(Y) > 2. Then
Vol(Y) > 4.
Proof. We have Vol(Y) = Ky = (7*(Ky))*.
Recall that 7*(Ky) = 6.7’ + E;. One has
Vol(Y) > 0y (n*(Ky))? - T' = 0y (7* (Ky)|7)>.
As we also have (2) and t175 (K1) = a, 75 + En, it follows that

R ()?

VOI(Y) > 0 - (
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b1 5 aur . 2
> . LT g K
> 0 (1+91) i (S (mp(K7))7)
_ 2! 3 O, T, « 2
= 6 (1+‘91 : (m7(K7)|s)”

By (3) and 7k (K7)|s > BC, we may get

Vol(Y) > 6;-( 2! )3 a7, O4T )2 K2

1+6,)  t titanr
and
01 ag, T
Hy > . 3, Ml * .
VOUY) 2 0 (1) L (i (s - ©)

o 01 3 Q¢ T

Now we estimate the canonical volume according to the same classification of T
and S as in Subsection 3.3 and Subsection 3.4.

(I) The case of dim(T") > 2

Remember that in this case, 6, = 1,¢1 = 1,a¢, 7 = 2 (by (11)) and 75 (K7)|s >
20*(Ks,) (by (12)). So we have Vol(Y) >

(IT) The case of dim(T") =1

Subcase (II-1). py(T) > 2.
As in Theorem 3.7, Case 1, t; = 1,as,7 = 1, so we correspondingly have the
estimation as follows:

1
5

(1) B>1,£>1, then Vol(Y) > £;
(2) B> 3, &> 2, then Vol(Y) > &
(3) B> 1 ¢>1, then Vol(Y) > &;
(4) B> 3, €> 2, then Vol(Y) > o
(5) B> 1, €>1, then Vol(V) > &
(6) B> 1, &> 2, then Vol(Y) > .

Subcase (II-2). py(T) = 1.

We follow the same classification of 1" as in Theorem 3.7, Case 2.

Recall that for Type (i), we have t; = 5. When |N| is composed of a pencil and
the general fiber S of the induced fibration from ¢y, romp is not a (1 2) surface, we
have a;, 7 >2, > % 7 &> (2 *(Kg,)-C) > %7 and thus Vol(Y') > 245 When |N|
is composed of a pencﬂ and the general fiber S is a (1, 2)-surface, we have a;, > 2,
8> %, £E> %, and hence Vol(Y) > 245 When |N| is not composed of a pencil, we
have a;, 7 > 1. The two cases corresponding to (5,&) = (é, 153) in Theorem 3.7 Case
2 both have K ?% >4, Where So is the minimal model of a generic irreducible element
S of |[N|. So Vol(Y) > 360 The corresponding lower bounds of Vol(Y') to those of
(B,€) (except (8,€) = (3, %)) are as follows: 14300, 265+ 385 565 395 T65 3650 Ta5-

For Type (ii), we have t; = 4. When |N]| is not composed of a pencil, then
B> 16> 2and Vol(Y) > 535. When |N| is composed of a pencil of (2,3)-
surfaces, then 8 > £,£ > 2 and Vol(Y) > 400 When |N| is composed of a pencﬂ
of surfaces with K2 > 2, then Vol(Y) > g5. When Py(T) = h®(T,Or(4Kr)) =
and |N| is composed of a rational pencil of (1, 2)-surfaces, the corresponding 1ower
bounds of Vol(Y )to those of (B,€) are as follows: =15, =, 51, 1o o= L L1

3927 400 280 480° 240° 384 336° 448"
Otherwise, 8> 1,£ > £ and Vol(Y) > 5ic.
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So we have shown Vol(Y) > 4&5. O

3.6. Proof of Theorem 1.1.

Proof. Theorem 3.6, Theorem 3.7 and Theorem 3.8 directly implies Theorem
1.1. O
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