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Abstract. We prove the Nonvanishing conjecture for uniruled projective log
canonical pairs of dimension n, assuming the Nonvanishing conjecture for

smooth projective varieties in dimension n−1. We also show that the existence

of good minimal models for non-uniruled projective klt pairs in dimension n
implies the existence of good minimal models for projective log canonical pairs

in dimension n.

1. Introduction. In this paper we prove several results related to the Nonvanish-
ing conjecture and the existence of good minimal models for projective log canonical
pairs over the complex numbers.

Good Minimal Models Conjecture. Let (X,∆) be a projective log canonical
pair. If KX + ∆ is pseudoeffective, then (X,∆) has a good minimal model.

The conjecture is known to hold in full generality only in dimensions at most 3.
In dimension 3, it is a culmination of work of many authors, ending in [22, 31]. Its
important part is:

Nonvanishing Conjecture. Let (X,∆) be a projective log canonical pair. If KX+
∆ is pseudoeffective, then there exists an R-divisor D ≥ 0 such that KX + ∆ ∼R D.

A complementing conjecture is the Abundance conjecture, which predicts that
for a log canonical pair, any of its minimal models is good, see Section 2.

We say that a pair (X,∆) is uniruled if X is uniruled; and similarly for non-
uniruled pairs. Our main result proves the Nonvanishing conjecture for uniruled
pairs, assuming the Nonvanishing conjecture in lower dimensions.

Theorem 1.1. The Nonvanishing conjecture for smooth projective varieties in di-
mension n−1 implies the Nonvanishing conjecture for uniruled projective log canon-
ical pairs in dimension n.
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The proof is in Section 3, by using the techniques from [27]. This result improves
considerably on the previous related results in the literature. If (X,∆) is klt and
∆ is rational, then an analogous statement was proved in [8, Theorem 8.8], using
however a much stronger assumption – the existence of good minimal models in
dimension n− 1.

An immediate corollary is:

Corollary 1.2. Let (X,∆) be a uniruled projective log canonical pair of dimension
4. If KX + ∆ is pseudoeffective, then there exists an R-divisor D ≥ 0 such that
KX + ∆ ∼R D.

Another corollary of Theorem 1.1 is the equivalence between the Nonvanishing
conjecture in dimension n − 1 and the Nonvanishing conjecture for uniruled log
canonical pairs in dimension n. This is Corollary 3.1 below.

Our second goal is to discuss relationships between the existence of good minimal
models for several classes of pairs. It is known that the termination of flips for klt
pairs implies the termination of flips for log canonical pairs, see for instance [2, 10].
Similarly, the Nonvanishing for klt pairs (even for smooth varieties) implies the
Nonvanishing for log canonical pairs, see [18] and Theorem 1.1 above; and the
existence of minimal models for klt pairs (even for smooth varieties) implies the
existence of minimal models for log canonical pairs [27]. Regarding Abundance,
statements in a similar direction were obtained in [22, 16].

In this context, the following is a very satisfactory result regarding the existence
of good minimal models. Note that we say that a pair (X,∆) has a rational boundary
if the coefficients of ∆ are rational numbers and KX + ∆ is Q-Cartier.

Theorem 1.3. The existence of good minimal models for projective non-uniruled klt
pairs with rational boundaries in dimension n implies the existence of good minimal
models for projective log canonical pairs in dimension n.

Working with log canonical pairs is often much more difficult than working with
klt pairs, which explains the significance of Theorem 1.3. Additionally, techniques
which work for non-uniruled pairs often fail on uniruled pairs, see [25, 26]. Theorem
1.3 improves considerably on [9, Theorem 1.2], by both removing an assumption and
improving the conclusion.

There is an analogous statement in the context of the Abundance conjecture, see
Theorem 4.4, which generalizes [9, Theorem 1.1] to log canonical pairs.

Most of the results in this paper can be generalised to the relative setting without
difficulties. For instance, the relative version of Theorem 1.1 follows from Theorem
1.1 and [4, Lemma 3.2.1], and the relative version of Theorem 1.3 follows from
Theorem 1.3 and [19, Theorems 1.2 and 1.7].

2. Preliminaries. Throughout the paper we work over C and all varieties are nor-
mal and projective. A fibration is a projective surjective morphism with connected
fibres. A birational contraction is a birational map whose inverse does not contract
any divisors.

Given a normal projective variety X and a pseudoeffective R-Cartier R-divisor
D on X, we denote by κι(X,D) the invariant Iitaka dimension of D, see [6]; if
the divisor D is rational, we denote its Iitaka dimension by κ(X,D). We denote
by ν(X,D) the numerical dimension of D, see [30, Chapter V], [21]; note that the
numerical dimension that we use in this paper was denoted by κσ in [30].



ON NONVANISHING FOR UNIRULED LOG CANONICAL PAIRS 3299

We use frequently and without explicit mention that the invariant Iitaka dimen-
sion and the numerical dimension behave well under proper pullbacks: if D is an
R-Cartier R-divisor on a normal variety X, and if f : Y → X is a proper surjective
morphism from a normal variety Y , then

κι(X,D) = κι(Y, f
∗D) and ν(X,D) = ν(Y, f∗D);

and if, moreover, f is birational and E is an effective f -exceptional divisor on Y ,
then

κι(X,D) = κι(Y, f
∗D + E) and ν(X,D) = ν(Y, f∗D + E).

Given a smooth projective variety X and a pseudoeffective R-divisor D on X,
we denote by Pσ(D) and Nσ(D) the R-divisors forming the Nakayama–Zariski de-
composition of D, see [30, Chapter III].

For the definitions and basic results on the singularities of pairs and the Minimal
Model Program (MMP) we refer to [24]. Unless otherwise stated, in a pair (X,∆)
the boundary ∆ always has real coefficients. A pair (X,∆) is log smooth if X is
smooth and ∆ has simple normal crossings support.

We need the following useful definition.

Definition 2.1. Let (X,∆) be a klt pair and G an effective R-Cartier R-divisor
such that KX + ∆ + G is pseudoeffective. Then the pseudoeffective threshold of
(X,∆) with respect to G is

τ(X,∆;G) := min{t ∈ R | KX + ∆ + tG is pseudoeffective}.

We distinguish between two types of good minimal models: good minimal models
in the usual sense and good minimal models in the sense of Birkar–Hashizume. In
this paper, the phrase good minimal model always means a good minimal model in
the usual sense.

Definition 2.2. Let (X,∆) be a log canonical pair. A birational map ϕ : (X,∆) 99K
(Y,∆Y ) to a Q-factorial log canonical pair (Y,∆Y ) is a good minimal model in the
sense of Birkar–Hashizume of the pair (X,∆) if ∆Y = ϕ∗∆ + E, where E is the
sum of all prime divisors which are contracted by ϕ−1, if the divisor KY + ∆Y is
semiample and if

a(F,X,∆) < a(F, Y,∆Y )

for any prime divisor F on X which is contracted by ϕ.
If, moreover, the map ϕ is a birational contraction, but Y is not necessarily

Q-factorial, then ϕ is a good minimal model of (X,∆).

The definitions of minimal models and minimal models in the sense of Birkar–
Shokurov are similar; see for instance [27, §2.2] for a discussion of their differences.

The following results are used often in the rest of the paper.

Lemma 2.3. The existence of good minimal models for klt pairs (respectively non-
uniruled klt pairs) with rational boundaries in dimension n implies the existence of
good minimal models for klt pairs (respectively non-uniruled klt pairs) in dimension
n.

Proof. Let (X,∆) be a klt pair of dimension n. Then it has a minimal model
(X ′,∆′) by [5, Corollary 0.3] and [27, Theorem A]. By passing to a small Q-
factorialization [12, Theorem 10.5], we may assume that X ′ is Q-factorial. By [3,
Proposition 3.2(3)] there exist finitely many Q-divisors ∆i and positive real num-
bers ri such that each pair (X ′,∆i) is klt, each KX′ + ∆i is nef and KX′ + ∆′ =
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ri(KX′ + ∆i). By assumption, each KX′ + ∆i is semiample, hence KX′ + ∆′ is

semiample.

Lemma 2.4. The existence of good minimal models for klt pairs (respectively non-
uniruled klt pairs) in dimension n implies the existence of good minimal models for
klt pairs (respectively non-uniruled klt pairs) in dimensions at most n.

Proof. We only show the statement for non-uniruled pairs, as the other statement
is analogous.

Let (X,∆) be a non-uniruled klt pair of dimension k < n such that KX + ∆
is pseudoeffective. By passing to a small Q-factorialization [12, Theorem 10.5], we
may assume that X is Q-factorial. By [27, Lemma 2.16 and Theorem A], we may
assume that KX + ∆ is nef. By Lemma 2.3, we may assume that ∆ is rational. By
[15, Theorem 4.3] it suffices to show that κ(X,KX + ∆) = ν(X,KX + ∆).

To this end, we borrow the idea from [18, Lemma 3.2]. By passing to a log
resolution, we may assume that (X,∆) is log smooth. Let A be an abelian variety
of dimension n − k and set Y := X × A. Then Y is not uniruled, since A has no
rational curves. If π : Y → X is the first projection, then KY ∼ π∗KX and the pair
(Y, π∗∆) is a log smooth klt pair of dimension n since π is a smooth morphism.
By assumption, (Y, π∗∆) has a good minimal model, hence κ(Y,KY + π∗∆) =
ν(Y,KY + π∗∆). Since KY + π∗∆ ∼Q π

∗(KX + ∆), we conclude.

Theorem 2.5. The Nonvanishing conjecture for smooth projective varieties in di-
mension n implies the Nonvanishing conjecture in dimensions at most n and the
existence of minimal models for log canonical pairs in dimensions at most n.

Proof. The first part of the statement is contained in [18, Theorem 1.4]. For the
second part, [18, Theorem 1.4] implies the existence of minimal models in the sense
of Birkar–Shokurov for log canonical pairs in dimensions at most n. But then [19,
Theorem 1.7] gives the existence of minimal models in the usual sense.

Lemma 2.6. Let (X,∆) be a log canonical pair and let ϕ : (X,∆) 99K (X ′,∆′)
be either a minimal model of (X,∆), or a minimal model of (X,∆) in the sense
of Birkar–Shokurov, or a good minimal model of (X,∆) in the sense of Birkar–
Hashizume. Let (p, q) : W → X×X ′ be a smooth resolution of indeterminacies of ϕ.
Then there exist an effective p-exceptional divisor Ep and an effective q-exceptional
divisor Eq such that

p∗(KX + ∆) + Ep ∼R q
∗(KX′ + ∆′) + Eq.

In particular, κι(X,KX +∆) = κι(X
′,KX′ +∆′) and ν(X,KX +∆) = ν(X ′,KX′ +

∆′).

Proof. We prove only the case when (X ′,∆′) is a minimal model of (X,∆) in the
sense of Birkar–Shokurov; the other cases are analogous.

Recall that ∆′ = ϕ∗∆ + E, where E is the reduced divisor containing all the
ϕ−1-exceptional prime divisors in its support. We have the ramification formulas

KW + p−1
∗ ∆ ∼R p

∗(KX + ∆) + Ep1 + E+
1 − E

−
1

and
KW + q−1

∗ ∆′ ∼R q
∗(KX′ + ∆′) + Eq2 + E+

2 − E
−
2 ,

where Ep1 is p-exceptional but not q-exceptional, Eq2 is q-exceptional but not p-
exceptional, E+

1 , E
−
1 , E

+
2 and E−2 are effective and are both p-exceptional and q-

exceptional, E+
1 and E−1 have no common components, and E+

2 and E−2 have no
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common components. This implies

p∗(KX + ∆) + (Ep1 + q−1
∗ E) + E+

1 + E−2

∼R q
∗(KX′ + ∆′) + (Eq2 + p−1

∗ ∆− q−1
∗ ϕ∗∆) + E+

2 + E−1 .

By the definition of minimal models in the sense of Birkar–Shokurov, we have
Eq2 + p−1

∗ ∆− q−1
∗ ϕ∗∆ ≥ 0, and also Ep1 + q−1

∗ E ≥ 0 since all the coefficients of Ep1
are at least −1. This proves the result.

Finally, we need the existence of dlt blowups, see [23, Theorem 3.1] and [12,
Theorem 10.5].

Theorem 2.7. Let (X,∆) be a log canonical pair. Then there exists a Q-factorial
dlt pair (Y,∆Y ), called a dlt model or dlt blowup1 of (X,∆), such that there exists
a birational morphism f : Y → X with KY + ∆Y ∼R f

∗(KX + ∆).

3. Nonvanishing for uniruled log canonical pairs. In this section, we prove
our main result.

Proof of Theorem 1.1. By Theorem 2.5 we may assume the Nonvanishing conjec-
ture in dimensions up to n−1 and the existence of minimal models for log canonical
pairs in dimensions up to n− 1.

Let (X,∆) be a uniruled log canonical pair of dimension n such that KX + ∆ is
pseudoeffective. By passing to a log resolution, we may assume that (X,∆) is a log
smooth pair. By [7, Corollary 4.11] the divisor KX is not pseudoeffective.

In Steps 1–4 we assume that b∆c = 0, so that the pair (X,∆) is klt. We treat
the remaining case when b∆c 6= 0 in Steps 5–8.

Step 1. In Steps 1–4 we assume that b∆c = 0, so that the pair (X,∆) is klt. For
τ := τ(X, 0; ∆) we have 0 < τ ≤ 1. Then it suffices to show that κι(X,KX +τ∆) ≥
0, hence by replacing ∆ by τ∆ we may assume that τ = 1.

Analogously as in Step 1 of the proof of [27, Theorem 3.1]2, one can show that
we may assume the following:

Assumption 1. There exists a fibration ξ : X → Y to a normal projective variety Y
with dimY < dimX such that:

(a1) ν(F, (KX + ∆)|F ) = 0 and h1(F,OF ) = 0 for a very general fibre F of ξ,
(b1) KX + (1− ε)∆ is not ξ-pseudoeffective for any ε > 0.

Step 2. If dimY = 0, then Y is a point and ν(X,KX + ∆) = 0. We conclude by
[14, Theorem 1.2].

Step 3. Assume from now on that dimY > 0. In this step we show that we may
assume the following:

Assumption 2. There exists a fibration g : X → T to a normal projective variety T
such that:

(a2) g is a Mori fibre space given by a contraction of an extremal ray of the pair(
X, (1− ε)∆

)
for some 0 < ε� 1,

1Dlt blowups in the literature occasionally satisfy some additional properties, which we will
not need in this paper.

2In short, one runs an MMP for a pair
(
X, (1 − ζ)∆

)
, where 0 < ζ � 1 is a carefully chosen

real number. This MMP terminates with a Mori fibre space W → Y , and one replaces (X,∆) by
a suitable pair on a resolution of indeterminacies of the birational map ρ : X 99KW . One may not

replace (X,∆) by (W,ρ∗∆) since the map ρ is not known to be (KX + ∆)-non-positive.
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(b2) KX + ∆ ≡T 0.

However, instead of the pair (X,∆) being log smooth, we may only assume that it
is a Q-factorial klt pair.

To this end, we argue similarly as in Step 3 of the proof of [27, Theorem 3.1].
By (a1) and by [27, Corollary 2.18] the divisor KX + ∆ is effective over Y ; in
particular, it has an NQC weak Zariski decomposition as in [27, Definition 2.10].
By assumptions stated at the beginning of the proof and by [27, Theorem 4.4]
we may run a (KX + ∆)-MMP with scaling of an ample divisor over Y which
terminates, and we obtain a birational contraction θ : X 99K X ′. Set ∆′ := θ∗∆
and let ξ′ : X ′ → Y be the induced morphism.

By [27, Lemma 2.19] there exists a small rational number δ such that, if we run
a
(
KX′ + (1− δ)∆′

)
-MMP with scaling of an ample divisor over Y , then this MMP

is (KX′ + ∆′)-trivial. Note that KX′ + (1− δ)∆′ is not ξ′-pseudoeffective: indeed,
by possibly choosing δ smaller, we may assume that the map θ is

(
KX + (1− δ)∆

)
-

negative, and the claim follows since KX +(1−δ)∆ is not ξ-pseudoeffective by (b1).
Therefore, this relative

(
KX′ + (1− δ)∆′

)
-MMP terminates with a Mori fibre space

f ′′ : X ′′ → Y ′′ over Y by [4, Corollary 1.3.3]. Let θ′ : X ′ 99K X ′′ denote that MMP
and set ∆′′ := θ′∗∆

′.

X X ′ X ′′

Y Y ′′

θ

ξ

θ′

ξ′ f ′′

Then the pair (X ′′,∆′′) is Q-factorial klt and we have

KX′′ + ∆′′ ≡Y ′′ 0

by [27, Lemma 2.19]. Therefore, by replacing (X,∆) by (X ′′,∆′′) and by setting
T := Y ′′ and g := f ′′, we achieve Assumption 2.

Step 4. By [1, Theorem 0.2] and [13, Theorem 3.1] there exists an effective R-
divisor ∆T on T such that (T,∆T ) is klt and KX + ∆ ∼R g∗(KT + ∆T ). Since
KX+∆ is pseudoeffective and g is surjective, the divisor KT +∆T is pseudoeffective.
By assumptions in lower dimensions, we have κι(T,KT + ∆T ) ≥ 0, and hence
κι(X,KX + ∆) ≥ 0.

This concludes the proof if b∆c = 0.

Step 5. From now on we assume that b∆c 6= 0. For

τ ′ := max
{

0, τ(X,∆− b∆c; b∆c)
}

we have 0 ≤ τ ′ ≤ 1. If τ ′ < 1, then KX+∆−b∆c+τ ′b∆c is klt and pseudoeffective,
hence κι(X,KX + ∆− b∆c+ τ ′b∆c) ≥ 0 by Steps 1–4, and so κι(X,KX + ∆) ≥ 0.
Thus, we may assume that τ ′ = 1.

Analogously as in Step 1 of the proof of [27, Theorem 3.1], by picking a decreasing
sequence {εi} of positive numbers such that εi → 0 and by considering divisors
∆i := ∆ − εib∆c instead of divisors (1 − εi)∆, we show that we may assume the
following:

Assumption 3. There exists a fibration ξ : X → Y to a normal projective variety Y
with dimY < dimX such that:

(a3) ν(F, (KX + ∆)|F ) = 0 and h1(F,OF ) = 0 for a very general fibre F of ξ,
(b3) KX + ∆− εb∆c is not ξ-pseudoeffective for any ε > 0.
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Step 6. If dimY = 0, then we conclude as in Step 2 above.

Step 7. Assume from now on that dimY > 0. Then as in Step 3 above, one can
show that we may assume the following:

Assumption 4. There exists a fibration g : X → T to a normal projective variety T
such that:

(a4) g is a Mori fibre space given by a contraction of an extremal ray of the pair(
X,∆− εb∆c

)
for some 0 < ε� 1,

(b4) KX + ∆ ≡T 0.

However, instead of the pair (X,∆) being log smooth, we may only assume that it
is a Q-factorial log canonical pair and

(
X,∆− εb∆c

)
is klt.

Step 8. By Assumption 4, we have that −
(
KX + ∆ − εb∆c

)
is ample over T and

KX + ∆ ≡T 0, thus b∆c dominates T . By Theorem 2.7, there exists a dlt blowup
π : (Y,∆Y ) → (X,∆), and set g′ := g ◦ π. Then b∆Y c dominates T , hence there
exists an irreducible component S of b∆Y c which dominates T . By [11, Proposition
3.9.2]3 there exists an effective R-divisor ∆S on S such that (S,∆S) is dlt and
(KY + ∆Y )|S ∼R KS + ∆S .

By Assumption 4, there exists an R-Cartier R-divisor D on T such that KY +
∆Y ∼R g′∗D. Therefore, KS + ∆S ∼R (g′|S)∗D. Since KY + ∆Y is pseudoeffec-
tive, the divisor D is pseudoeffective and hence KS + ∆S is pseudoeffective. By
assumptions in lower dimensions, we have κι(S,KS + ∆S) ≥ 0, and thus

κι(X,KX + ∆) = κι(Y,KY + ∆Y ) = κι(T,D) = κι(S,KS + ∆S) ≥ 0.

This concludes the proof.

We immediately have:

Proof of Corollary 1.2. The Nonvanishing conjecture for terminal threefolds was
proved in [28, 29]; for a different proof, see [25, Theorem 6.7 and Remark 6.8].
Then the result follows from Theorem 1.1.

As mentioned in the introduction, we have the following corollary.

Corollary 3.1. The Nonvanishing conjecture in dimension n − 1 is equivalent to
the Nonvanishing conjecture for uniruled projective log canonical pairs in dimension
n.

Proof. One direction follows from Theorem 1.1. For the other direction, we only
need to prove the Nonvanishing conjecture for smooth projective varieties in dimen-
sion n− 1 by Theorem 2.5.

Let X be a smooth projective variety of dimension n−1 such that KX is pseudo-
effective. Consider Y := X ×P1. Then OY (KY ) ' p∗OX(KX)⊗ q∗OP1(−2), where
p and q are the corresponding projections. Pick two different points a and b on P1.
Then KY + q∗a+ q∗b ∼ p∗KX is pseudoeffective since KX is pseudoeffective. Since
Y is uniruled and of dimension n, and the pair (Y, q∗a+ q∗b) is dlt, we have

κ(X,KX) = κ(Y,KY + q∗a+ q∗b) ≥ 0

by assumption.

3This result is stated in [11] for Q-divisors. The proof for R-divisors is analogous, see for
instance [17, Proposition 2.8].
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4. Around the existence of good minimal models. In this section we prove
Theorem 1.3 and several related results which are of independent interest. The
following lemma is essentially a combination of main results of [19]. Note, however,
that it is not a special case of [19, Theorem 1.2] since we use different notions of
good minimal models.

Lemma 4.1. Assume the existence of good minimal models for projective klt pairs
with rational boundaries in dimension n− 1.

Let (X,∆) be a projective log canonical pair of dimension n such that κι(X,KX+
∆) = ν(X,KX+∆). Then (X,∆) has a good minimal model. If additionally KX+∆
is nef, then it is semiample.

Proof. By Lemmas 2.3 and 2.4, we may assume the existence of good minimal
models for klt pairs in dimensions at most n− 1.

By [19, Theorem 1.2 and Theorem 1.7], we may run a (KX + ∆)-MMP with
scaling of an ample divisor which terminates. Hence, we may assume that KX + ∆
is additionally nef, and we need to show that KX + ∆ is semiample.

By [19, Theorem 1.2] the pair (X,∆) has a good minimal model (X ′,∆′) in
the sense of Birkar–Hashizume. Let (p, q) : W → X × X ′ be a smooth resolution
of indeterminacies of the map ϕ : X 99K X ′. Then by Lemma 2.6 there exist an
effective p-exceptional divisor Ep and an effective q-exceptional divisor Eq such that

p∗(KX + ∆) + Ep ∼R q
∗(KX′ + ∆′) + Eq.

By [15, Lemma 2.16] and since p∗(KX + ∆) and q∗(KX′ + ∆′) are nef, we obtain

p∗(KX + ∆) = Pσ
(
p∗(KX + ∆) + Ep

)
∼R Pσ

(
q∗(KX′ + ∆′) + Eq

)
= q∗(KX′ + ∆′).

This gives that p∗(KX + ∆) is semiample, hence there exists a fibration f : W → Z
and an ample R-divisor A on Z such that p∗(KX + ∆) ∼R f

∗A. If C is any curve
contracted by p, then A · f(C) = f∗A · C = p∗(KX + ∆) · C = 0, and therefore,
C is contracted by f . By the Rigidity lemma [7, Lemma 1.15] the map f factors
through p, so KX + ∆ is R-linearly equivalent to the pullback of A to X, and thus
is semiample.

Proposition 4.2. Assume the existence of good minimal models for projective dlt
pairs in dimension n− 1.

Let (X,∆) be a pseudoeffective Q-factorial projective dlt pair of dimension n
such that b∆c 6= 0 and KX + ∆− εb∆c is not pseudoeffective for any ε > 0. Then
κι(X,KX + ∆) = ν(X,KX + ∆).

Proof. Analogously as in Steps 5–7 of the proof of Theorem 1.1 one can show that
we may assume the following:

Assumption. There exists a fibration g : X → T to a normal projective variety T
such that:

(a) g is a Mori fibre space given by a contraction of an extremal ray of the pair(
X,∆− εb∆c

)
for some 0 < ε� 1,

(b) KX + ∆ ≡T 0.

However, instead of the pair (X,∆) being Q-factorial dlt, we may only assume that
it is a Q-factorial log canonical pair and

(
X,∆− εb∆c

)
is klt.

Now we use the notation from Step 8 of the proof of Theorem 1.1. Then that
step shows that κι(X,KX + ∆) = κι(S,KS + ∆S), and one can show analogously
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that ν(X,KX +∆) = ν(S,KS +∆S). We conclude by our assumption in dimension
n− 1.

We are now ready to prove:

Proof of Theorem 1.3. The proof is by induction on n, the claim being easy when
n = 1. By Lemmas 2.3 and 2.4 we may assume the existence of good minimal
models for non-uniruled klt pairs in dimensions at most n− 1, hence by induction
we may assume the existence of good minimal models for all log canonical pairs in
dimensions at most n− 1.

Let (X,∆) be a log canonical pair of dimension n such that KX + ∆ is pseudo-
effective. By Lemma 4.1 it suffices to show that κι(X,KX + ∆) = ν(X,KX + ∆).

By passing to a log resolution we may assume that (X,∆) is log smooth.

Step 1. We assume first that b∆c = 0. The pair (X,∆) has a minimal model (X ′,∆′)
by [27, Theorem A] and by assumption, since smooth varieties with the pseudoef-
fective canonical classes are not uniruled by [7, Corollary 4.11]. By [3, Proposition
3.2(3)] there exist finitely many Q-divisors ∆i and positive real numbers ri such that
each pair (X ′,∆i) is klt, each KX′ + ∆i is nef and KX′ + ∆′ =

∑
ri(KX′ + ∆i). By

[9, Theorem 1.1] and by assumption each KX′ + ∆i is semiample, hence KX′ + ∆′

is semiample.

Step 2. From now on we assume that b∆c 6= 0. By Proposition 4.2 we may assume
that there exists 0 < ε < 1 such that KX + ∆− εb∆c is pseudoeffective.

We have that κι
(
X,KX + ∆− εb∆c

)
≥ 0 by Step 1 since

(
X,∆− εb∆c

)
is a klt

pair. Therefore, there exists an R-divisor D ≥ 0 such that KX + ∆− εb∆c ∼R D.
Pick 0 < δ < ε. Then

KX + ∆− (ε− δ)b∆c ∼R D + δb∆c and KX + ∆ ∼R D + εb∆c.
Since

(
X,∆− (ε− δ)b∆c

)
is a klt pair and KX + ∆− (ε− δ)b∆c is pseudoeffective,

the pair
(
X,∆ − (ε − δ)b∆c

)
has a good minimal model by Step 1. Therefore, we

have κι
(
X,D + δb∆c

)
= ν

(
X,D + δb∆c

)
, so κι

(
X,D + εb∆c

)
= ν

(
X,D + εb∆c

)
by [9, Lemma 2.9]4. This concludes the proof.

An immediate corollary is the following.

Corollary 4.3. The existence of good minimal models for uniruled projective log
canonical pairs in dimension n implies the existence of good minimal models for
projective log canonical pairs in dimensions at most n− 1.

Proof. By Theorem 1.3 and Lemma 2.4 we only need to prove the existence of
good minimal models for klt pairs with rational boundaries in dimension n− 1. By
assumption and by Corollary 3.1, we may assume the Nonvanishing conjecture for
log canonical pairs in dimension n− 1.

Let (X,∆) be a klt pair of dimension n− 1 such that KX + ∆ is pseudoeffective
and ∆ is a Q-divisor. By passing to a small Q-factorialization [12, Theorem 10.5],
we may assume that X is Q-factorial. By [15, Theorem 4.3] it suffices to show that
κ(X,KX + ∆) = ν(X,KX + ∆). By passing to a log resolution, we may assume
(X,∆) is log smooth.

Consider Y := X × P1. Then OY (KY ) ' p∗OX(KX) ⊗ q∗OP1(−2), where p
and q are the corresponding projections. Pick two different points a and b on P1.
Then KY + p∗∆ + q∗a + q∗b ∼Q p∗(KX + ∆) is pseudoeffective since KX + ∆ is

4This result is stated in [9] for Q-divisors, but the proof works verbatim for R-divisors.
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pseudoeffective. Since p is a smooth morphism, (Y, p∗∆ + q∗a+ q∗b) is log smooth
and thus a dlt pair. Since Y is uniruled and of dimension n, (Y, p∗∆ + q∗a + q∗b)
has a good minimal model by assumption and hence

κ(X,KX + ∆) = κ(Y,KY + p∗∆ + q∗a+ q∗b)

= ν(Y,KY + p∗∆ + q∗a+ q∗b) = ν(X,KX + ∆).

This finishes the proof.

As announced in the introduction, we also have:

Theorem 4.4. Assume the existence of good minimal models for non-uniruled pro-
jective klt pairs with rational boundaries in dimension n− 1.

Then the Abundance conjecture for non-uniruled projective klt pairs with rational
boundaries in dimension n implies the Abundance conjecture for uniruled projective
log canonical pairs in dimension n.

Proof. By Theorem 1.3 and Lemma 2.4 we may assume the existence of good min-
imal models for log canonical pairs in dimensions at most n− 1.

Now, let (X,∆) be a uniruled log canonical pair of dimension n such that KX+∆
is nef. It suffices to show that κι(X,KX + ∆) = ν(X,KX + ∆) by Lemma 4.1. By
passing to a log resolution we may assume that (X,∆) is log smooth, but we may
no longer assume that KX + ∆ is nef. We are done as in Steps 1 and 2 of the proof
of Theorem 1.3 and the only difference is that we replace [27, Theorem A] by [27,
Theorem C] in Step 1 of that proof.

Finally, we note the following corollary of Theorem 1.3 and of [20, 19]:

Corollary 4.5. Assume the existence of good minimal models for non-uniruled
projective klt pairs with rational boundaries in dimension n− 1.

Let (X,∆) be a projective log canonical pair of dimension n having a non-trivial
morphism to an abelian variety. If KX + ∆ is pseudoeffective, then (X,∆) has a
good minimal model.

Proof. By Theorem 1.3 and Lemma 2.4 we may assume the existence of good min-
imal models for log canonical pairs in dimensions at most n− 1.

Let A be the abelian variety as in the statement. By [19, Theorem 1.2 and
Theorem 1.7] we can run a (KX +∆)-MMP over A which terminates with a relative
minimal model (X ′,∆′) of (X,∆) over A. Let α : X ′ → A be the induced morphism.
If KX′ + ∆′ were not nef, then there would exist the contraction cR : X → Z of a
(KX′ +∆′)-negative extremal ray R. Then by the Cone theorem [12, Theorem 1.1],
R is spanned by the class of some rational curve C on X ′. Since abelian varieties
contain no rational curves, the curve C has to be contracted by α, a contradiction
since KX′ + ∆′ is α-nef. Therefore, KX′ + ∆′ is nef.

We now show that KX′ + ∆′ is semiample. By Theorem 2.7 we may assume
that (X ′,∆′) is a Q-factorial dlt pair. By [3, Proposition 3.2(3)] there exist finitely
many Q-divisors ∆i and positive real numbers ri such that each pair (X ′,∆i) is
log canonical, each KX′ + ∆i is nef and KX′ + ∆′ =

∑
ri(KX′ + ∆i). By [20,

Theorem 1.1] we then have κ(X,KX′ +∆i) = ν(X,KX′ +∆i), hence each KX′ +∆i

is semiample by Lemma 4.1, and therefore so is KX′ + ∆′.
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