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Abstract. The global asymptotic stability of the unique positive equilibrium

point and the rate of convergence of positive solutions of the system of two

recursive sequences has been studied recently. Here we generalize this study to

the system of p recursive sequences x
(j)
n+1 = A + (x

(j+1)mod(p)
n−m /x

(j+1)mod(p)
n ),

n = 0, 1, . . . , m, p ∈ N, where A ∈ (0,+∞), x
(j)
−i are arbitrary positive numbers

for i = 1, 2, . . . ,m and j = 1, 2, . . . , p. We also give some numerical examples

to demonstrate the effectiveness of the results obtained.

1. Introduction. Difference equations are the essentials required to understand
even the simplest epidemiological model: the SIR-susceptible, infected, recovered-
model. This model is a compartmental model, which results in the basic difference
equation used to measure the actual reproduction number. It is this basic model
that helps us determine whether a pathogen is going to die out or whether we end up
having an epidemic. This is also the basis for more complex models, including the
SVIR, which requires a vaccinated state, which helps us to estimate the probability
of herd immunity.

There has been some recent interest in studying the qualitative analysis of differ-
ence equations and system of difference equations. Since the beginning of nineties
there has be considerable interest in studying systems of difference equations com-
posed by two or three rational difference equations (see, e.g., [4, 5, 6, 2, 8, 9, 11, 10,
14, 15, 17, 19, 20] and the references therein). However, given the multiplicity of
factors involved in any epidemic, it will be important to study systems of difference
equations composed by many rational difference equations, which is what we will
do in this paper.

In [2], Devault et al. studied the boundedness, global stability and periodic
character of solutions of the difference equation

xn+1 = p+
xn−m
xn

(1)
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where m ∈ {2, 3, . . .}, p is positive and the initial conditions are positive numbers.
In [20], Zhang et al. investigated the behavior of the following symmetrical

system of difference equations

xn+1 = A+
yn−m
yn

, yn+1 = A+
xn−m
xn

(2)

where the parameter A is positive, the initial conditions xi, yi are arbitrary positive
numbers for i = −m,−m+ 1, . . . , 0 and m ∈ N. While this study is good, we note
that the authors did not investigate various device properties, such as the stability
nature, the rate of convergence and the asymptotic behavior.

Complement of the work above, in [8], Gümüş studied the global asymptotic
stability of positive equilibrium, the rate of convergence of positive solutions and he
presented some results about the general behavior of solutions of system (2). Our
aim in this paper is to generalize the results concerning equation (1) and system
(2) to the system of p nonlinear difference equations

x
(1)
n+1 = A+

x
(2)
n−m

x
(2)
n

, x
(2)
n+1 = A+

x
(3)
n−m

x
(3)
n

, . . . , x
(p)
n+1 = A+

x
(1)
n−m

x
(1)
n

, n,m, p ∈ N0

(3)

where A is a nonnegative constant and x
(j)
−m, x

(j)
−m+1, . . . , x

(j)
−1, x

(j)
0 , j = 1, 2, . . . , p

are positive real numbers.
The remainder of the paper is organized as follows. In Section (2), we introduce

some definitions and notations that will be needed in the sequel. Moreover, we
present, in Theorem (2.4), a result concerning the linearized stability that will be
useful in the main part of the paper. Section (3) discuses the behavior of positive
solutions of system (3) via semi-cycle analysis method. Furthermore, Section (4) is
devoted to study the local stability of the equilibrium points and the asymptotic
behavior of the solutions when 0 ≤ A < 1, A = 1 and A > 1. In Section (5), we
turn our attention to estimate the rate of convergence of a solution that converges
to the equilibrium point of the system (3) in the region of parameters described by
A > 1. Some numerical examples are carried out to support the analysis results in
Section (6). Section (7) summarizes the results of this work, draws conclusions and
give some interesting open problems for difference equations theory researchers.

2. Preliminaries. In this section we recall some definitions and results that will
be useful in our investigation, for more details see [3, 7, 14, 13].

Definition 2.1. (see, [14]) A ‘string’ of sequential terms {x(j)µ , . . . , x
(j)
ν }, µ ≥ −1,

ν ≤ +∞ is said to be a positive semi-cycle if x
(j)
i ≥ x(j), i ∈ {µ, . . . , ν}, x

(j)
µ−1 < x(j)

and x
(j)
ν+1 < x(j), j ∈ {1, 2, . . . , p}.

A ‘string’ of sequential terms {x(j)µ , . . . , x
(j)
ν }, µ ≥ −1, ν ≤ +∞ is said to be

a negative semi-cycle if x
(j)
i < x(j), i ∈ {µ, . . . , ν}, x(j)µ−1 ≥ x(j) and x

(j)
ν+1 ≥ x(j),

j ∈ {1, 2, . . . , p}.
A ‘string’ of sequential terms

{
(x

(1)
µ , x

(2)
µ , . . . , x

(p)
µ ), . . . , (x

(1)
ν , x

(2)
ν , . . . , x

(p)
ν )
}

, µ ≥
−1, ν ≤ +∞ is said to be a positive semi-cycle (resp. negative semi-cycle) if if

{x(1)µ , . . . , x
(1)
ν },. . . , {x(p)µ , . . . , x

(p)
ν } are positive semi-cycles (resp. negative semi-

cycles).

A ‘string’ of sequential terms
{

(x
(1)
µ , x

(2)
µ , . . . , x

(p)
µ ), . . . , (x

(1)
ν , x

(2)
ν , . . . , x

(p)
ν )
}

, µ ≥
−1, ν ≤ +∞ is said to be a positive semi-cycle (resp. negative semi-cycle) with
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respect to x
(q)
n and negative semi-cycle (resp. positive semi-cycle) with respect

to x
(s)
n if {x(q)µ , . . . , x

(q)
ν } is a positive semi-cycle (resp. negative semi-cycle) and

{x(s)µ , . . . , x
(s)
ν } is a negative semi-cycle (resp. positive semi-cycle).

Definition 2.2. (see, [14]) A function x
(i)
n oscillates about x(i) if for every ξ ∈ N

there exist µ, ν ∈ N, µ ≥ ξ, ν ≥ ξ such that

(x(i)µ − x(i))(x(i)µ − x(i)) ≤ 0, i = 1, 2, . . . , p.

We say that a solution
{
x
(1)
n , x

(2)
n , . . . , x

(p)
n

}
n≥−m

of system (3) oscillates about

(x(1), x(2), . . . , x(p)) if x
(q)
n oscillates about x(q), q ∈ {1, 2, . . . , p}.

Let f (1), f (2), . . . , f (p) be p continuously differentiable functions:

f (i) : Ik+1
1 × Ik+1

2 × . . .× Ik+1
p → Ik+1

i , i = 1, 2, . . . , p,

where Ii, i = 1, 2, . . . , p are some intervals of real numbers. Consider the system
of difference equations

x
(1)
n+1 = f (1)

(
x
(1)
n , x

(1)
n−1, . . . , x

(1)
n−k, x

(2)
n , x

(2)
n−1, . . . , x

(2)
n−k, . . . , x

(p)
n , x

(p)
n−1, . . . , x

(p)
n−k

)
x
(2)
n+1 = f (2)

(
x
(1)
n , x

(1)
n−1, . . . , x

(1)
n−k, x

(2)
n , x

(2)
n−1, . . . , x

(2)
n−k, . . . , x

(p)
n , x

(p)
n−1, . . . , x

(p)
n−k

)
...

x
(p)
n+1 = f (p)

(
x
(1)
n , x

(1)
n−1, . . . , x

(1)
n−k, x

(2)
n , x

(2)
n−1, . . . , x

(2)
n−k, . . . , x

(p)
n , x

(p)
n−1, . . . , x

(p)
n−k

)
(4)

where n, k ∈ N0,
(
x
(i)
−k, x

(i)
−k+1, . . . , x

(i)
0

)
∈ Ik+1

i , i = 1, 2, . . . , p.

Define the map

F : I
(k+1)
1 × I(k+1)

2 × . . .× I(k+1)
p −→ I

(k+1)
1 × I(k+1)

2 × . . .× I(k+1)
p

by

F (W ) =
(
f
(1)
0 (W ), f

(1)
1 (W ), . . . , f

(1)
k (W ), f

(2)
0 (W ), f

(2)
1 (W ), . . . ,

. . . , f
(2)
k (W ), . . . , f

(p)
0 (W ), f

(p)
1 (W ), . . . , f

(p)
k (W )

)
,

where

W =
(
u
(1)
0 , u

(1)
1 , . . . , u

(1)
k , u

(2)
0 , u

(2)
1 , . . . , u

(2)
k , . . . , u

(p)
0 , u

(p)
1 , . . . , u

(p)
k

)T
,

f
(i)
0 (W ) = f (i)(W ), f

(i)
1 (W ) = u

(i)
0 , . . . , f

(i)
k (W ) = u

(i)
k−1, i = 1, 2, . . . , p.

Let

Wn =
(
x(1)n , x

(1)
n−1, . . . , x

(1)
n−k, x

(2)
n , x

(2)
n−1, . . . , x

(2)
n−k, . . . , x

(p)
n , x

(p)
n−1, . . . , x

(p)
n−k

)T
.

Then, we can easily see that system (4) is equivalent to the following system written
in vector form

Wn+1 = F (Wn), n ∈ N0. (5)
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Definition 2.3. (see, [13]) Let (x(1), x(2), . . . , x(p)) be an equilibrium point of
the map F where f (i), i = 1, 2, . . . , p are continuously differentiable functions

at (x(1), x(2), . . . , x(p)). The linearized system of (3) about the equilibrium point

(x(1), x(2), . . . , x(p)) is

Xn+1 = F (Xn) = BXn

where Xn =
(
x
(1)
n , x

(1)
n−1, . . . , x

(1)
n−k, x

(2)
n , x

(2)
n−1, . . . , x

(2)
n−k, . . . , x

(p)
n , x

(p)
n−1, . . . , x

(p)
n−k

)T
and B is a Jacobian matrix of the system (3) about the equilibrium point (x(1), x(2),

. . . , x(p)).

Theorem 2.4. (see, [13])

1. If all the eigenvalues of the Jacobian matrix B lie in the open unit disk |λ| < 1,
then the equilibrium point X of system (3) is asymptotically stable.

2. If at least one eigenvalue of the Jacobian matrix B has absolute value greater
than one, then the equilibrium point X of system (3) is unstable.

3. Semi-cycle analysis. In this section, we discuss the behavior of positive solu-
tions of system (3) via semi-cycle analysis method. It is easy to see that system (3)

has a unique positive equilibrium point
(
x(1), x(2), . . . , x(p)

)
= (A+1, A+1, . . . , A+

1).

Lemma 3.1. Let {(x(1)n , x
(2)
n , . . . , x

(p)
n )}n≥−m be a solution to system (3). Then,

either {(x(1)n , x
(2)
n , . . . , x

(p)
n )}n≥−m consists of a single semi-cycle or {(x(1)n , x

(2)
n , . . . ,

x
(p)
n )}n≥−m oscillates about the equilibrium (x(1), x(2), . . . , x(p)) = (A+1, A+1, . . . ,
A+ 1) with semi-cycles having at most m terms.

Proof. Suppose that {(x(1)n , x
(2)
n , . . . , x

(p)
n )}n≥−m has at least two semi-cycles. Then,

there exists n0 ≥ −m such that either

x(j)n0
< A+ 1 ≤ x(j)n0+1 or x

(j)
n0+1 < A+ 1 ≤ x(j)n0

, j = 1, 2, . . . , p.

We suppose the first case, that is, x
(j)
n0 < A+ 1 ≤ x(j)n0+1 . The other case is similar

and will be omitted. Assume that the positive semi-cycle beginning with the term

(x
(1)
n0+1, x

(2)
n0+1, . . . , x

(p)
n0+1) have m terms. In this case we have

x(j)n0
< A+ 1 ≤ x(j)n0+m, j = 1, 2, . . . , p.

So, we get from system (3)

x
(j)
n0+m+1 = A+

x
(j+1)mod(p)
n0

x
(j+1)mod(p)
n0+m

< A+ 1, j = 1, 2, . . . , p.

The Lemma is proved.

Lemma 3.2. Let {(x(1)n , x
(2)
n , . . . , x

(p)
n )}n≥−m be a solution to system (3) which has

m− 1 sequential semi-cycles of length one. Then, every semi-cycle after this point
is of length one.

Proof. Assume that there exists n0 ≥ −m such that either

x(j)n0
, x

(j)
n0+2, . . . , x

(j)
n0+m−1 < A+ 1 ≤ x(j)n0+1, x

(j)
n0+3, . . . , x

(j)
n0+m, j = 1, 2, . . . , p, (6)
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or

x
(j)
n0+1, x

(j)
n0+3, . . . , x

(j)
n0+m < A+ 1 ≤ x(j)n0

, x
(j)
n0+2, . . . , x

(j)
n0+m−1, j = 1, 2, . . . , p. (7)

We will prove the case (6). The case (7) Is identical and will not be included.
According to system (3) we obtain

x
(j)
n0+m+1 = A+

x
(j+1)mod(p)
n0

x
(j+1)mod(p)
n0+m

< A+ 1, j = 1, 2, . . . , p,

and

x
(j)
n0+m+2 = A+

x
(j+1)mod(p)
n0+1

x
(j+1)mod(p)
n0+m+1

> A+ 1, j = 1, 2, . . . , p,

The result proceeds by induction. Thus, the proof is completed.

Lemma 3.3. System (3) has no nontrivial periodic solutions of (not necessarily
prime) period m.

Proof. Suppose that

(α
(1)
1 , α

(2)
1 , . . . , α

(p)
1 ), (α

(1)
2 , α

(2)
2 , . . . , α

(p)
2 ), . . . , (α(1)

m , α(2)
m , . . . , α(p)

m ), (α
(1)
1 , α

(2)
1 , . . . , α

(p)
1 ), . . .

is a m-periodic solution of system (3). It is obvious then that for this solution,

(x
(1)
n−m, x

(2)
n−m, . . . , x

(p)
n−m) = (x(1)n , x(2)n , . . . , x(p)n ), n ≥ 0.

So, the equilibrium solution
(
x(1), x(2), . . . , x(p)

)
= (A+ 1, A+ 1, . . . , A+ 1) must

be this solution. Thus, the proof is completed.

Lemma 3.4. All non-oscillatory solutions of system (3) converge to the equilibrium(
x(1), x(2), . . . , x(p)

)
= (A+ 1, A+ 1, . . . , A+ 1).

Proof. We assume there exists non-oscillatory solutions of system (3). We will prove
this lemma for the case of a single positive semi-cycle, the situation is identical for a

single negative semi-cycle, so it will be omitted. Assume that (x
(1)
n , x

(2)
n , . . . , x

(p)
n ) ≥

(x(1), x(2), . . . , x(p)) for all n ≥ −m. From system (3) we have

x
(j)
n+1 = A+

x
(j+1)mod(p)
n−m

x
(j+1)mod(p)
n

≥ A+ 1, j = 1, 2, . . . , p,

So, we get

A+ 1 ≤ x(j)n ≤ x
(j)
n−m, n ≥ 0, j = 1, 2, . . . , p (8)

From (8), there exists δ
(j)
i fori = 0, 1, . . . ,m− 1 such that

lim
n→+∞

x
(j)
nm+i = δ

(j)
i .

Hence,

(δ
(1)
0 , δ

(2)
0 , . . . , δ

(p)
0 ), (δ

(1)
1 , δ

(2)
1 , . . . , δ

(p)
1 ), . . . , (δ

(1)
m−1, δ

(2)
m−1, . . . , δ

(p)
m−1)

is a periodic solution of (not necessarily prime period ) period m. But, from Lemma
(3.3), we saw system (3) has no nontrivial periodic solutions of (not necessarily prime
period ) period m. Thus, the solution must be the equilibrium solution. So, the
proof is over.
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4. The asymptotic behavior.

4.1. The Case 0 < A < 1.

Theorem 4.1. Suppose 0 < A < 1 and {(x(1)n , x
(2)
n , . . . , x

(p)
n )}n≥−m be a positive

solution to system (3). Then the following statements hold.

i): If m is odd, and 0 < x
(j)
2k−1 < 1, x

(j)
2k >

1
1−A for k = 1−m

2 , 3−m2 , . . . , 0, then

lim
n→+∞

x
(j)
2n = +∞, lim

n→+∞
x
(j)
2n+1 = A.

ii): If m is odd, and 0 < x
(j)
2k < 1, x

(j)
2k−1 >

1
1−A for k = 1−m

2 , 3−m2 , . . . , 0, then

lim
n→+∞

x
(j)
2n = A, lim

n→+∞
x
(j)
2n+1 = +∞.

Proof. (i): From (3), for i = 1, 2, . . . , p, we get

x
(i)
1 = A+

x
(i+1)mod(p)
−m

x
(i+1)mod(p)
0

< A+
1

x
(i+1)mod(p)
0

< A+ (1−A) = 1,

x
(i)
2 = A+

x
(i+1)mod(p)
1−m

x
(i+1)mod(p)
1

> A+ x
(i+1)mod(p)
1−m > x

(i+1)mod(p)
1−m >

1

1−A
.

By induction, for n = 0, 1, 2, . . . and i = 1, 2, . . . , p, we obtain

x
(i)
2n−1 < 1, x

(i)
2n >

1

1−A
. (9)

So, from (3) and (9), we have

x
(i)
2n = A+

x
(i+1)mod(p)
2n−1−m

x
(i+1)mod(p)
2n−1

> A+ x
(i+1)mod(p)
2n−1−m > 2A+ x

(i+1)mod(p)
2n−3−m > 3A+ x

(i+1)mod(p)
2n−5−m > · · ·

So

x
(i)
2n > nA+ x

(i+1)mod(p)
0 . (10)

By limiting the inequality (10), we get

lim
n→∞

x
(i)
2n =∞. (11)

On the other hand, from(3), (9) and (11), we get

lim
n→∞

x
(i)
2n+1 = lim

n→∞

(
A+

x
(i+1)mod(p)
2n−m

x
(i+1)mod(p)
2n

)
= A.

(ii): The proof is similar to the proof of (i).

Open Problem. Investigate the asymptotic behavior of the system (3) when m is
even.
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4.2. The Case A = 1.

Lemma 4.2. Suppose A = 1. Then every positive solution of the system (3) is
bounded and persists.

Proof. Let {(x(1)n , x
(2)
n , . . . , x

(p)
n )}n≥−m be a positive solution to system (3). Then,

it is clear that for n ≥ 1, x
(j)
n > A = 1, j = 1, 2, . . . , p. So, we get

x
(j)
i ∈

[
L,

L

L− 1

]
, i = 1, 2, . . . ,m+ 1, j = 1, 2, . . . , p,

where

L = min

{
α,

β

β − 1

}
> 1, α = min

1≤j≤m+1
{x(1)j , x

(2)
j , . . . , x

(p)
j },

β = max
1≤j≤m+1

{x(1)j , x
(2)
j , . . . , x

(p)
ji }.

So, we get

L = 1 +
L

L/(L− 1)
≤ x(j)m+2 = 1 +

x
(j+1)mod(p)
1

x
(j+1)mod(p)
m+1

≤ L

L− 1
,

thus, the following is obtained

L ≤ x(j)m ≤
L

L− 1
.

By induction, we get

x
(j)
i ∈

[
L,

L

L− 1

]
, j = 1, 2, . . . , p, i = 1, 2, . . . (12)

Theorem 4.3. Suppose A = 1 and {(x(1)n , x
(2)
n , . . . , x

(p)
n )}n≥−m be a positive solu-

tion to system (3). Then

lim inf
n→+∞

x(i)n = lim inf
n→+∞

x(j)n , i, j = 1, 2, . . . , p,

lim sup
n→+∞

x(i)n = lim sup
n→+∞

x(j)n , i, j = 1, 2, . . . , p.

Proof. From (17), we can set

Li = lim
n→∞

supx(i)n , mi = lim
n→∞

inf x(i)n , i = 1, 2, . . . , p. (13)

We first prove the theorem for p = 2. From system (3), we have

L1 ≤ 1 +
L2

m2
, L2 ≤ 1 +

L1

m1
,m1 ≥ 1 +

m2

L2
,m2 ≥ 1 +

m2

L2
,

which implies

L1m2 ≤ m2 + L2 ≤ m1L2 ≤ m1 + L1 ≤ m2L1

thus, the following equalities are obtained

m2 + L2 = m1 + L1, L1m2 = m1L2.

So, we get that m1 = m2 and L1 = L2. Now we suppose that

Li = Lj , mi = mj , i, j = 1, 2, . . . , p− 1,
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From system (3), we have

Lp−1 ≤ 1 +
Lp
mp

, Lp ≤ 1 +
Lp−1
mp−1

,mp−1 ≥ 1 +
mp

Lp
,mp ≥ 1 +

mp

Lp
,

hence, we get

Lp−1mp ≤ mp + Lp ≤ mp−1Lp ≤ mp−1 + Lp−1 ≤ mpLp−1,

consequently , the following equalities are obtained

mp + Lp = mp−1 + Lp−1, Lp−1mp = mp−1Lp.

So, we get that mp = mp−1 and Lp = Lp−1. Thus, the proof completes.

4.3. The Case A > 1.

Theorem 4.4. Assume that A > 1. Then, the unique positive equilibrium(
x(1), x(2), . . . , x(p)

)
= (A + 1, A + 1, . . . , A + 1) of system (3) is locally asymp-

totically stable.

Proof. The linearized equation of system (3) about the equilibrium point (x(1), x(2),

. . . , x(p)) is

Xn+1 = BXn

where Xn = (x
(1)
n , x

(1)
n−1, . . . , x

(1)
n−m, x

(2)
n , x

(2)
n−1, . . . , x

(2)
n−m, . . . , x

(p)
n , x

(p)
n−1, , . . . , x

(p)
n−m)t, and B = (bij), 1 ≤ i, j ≤ pm+ p is an (pm+ p)× (pm+ p) matrix such that

B =



J A O O . . . O O
O J A O . . . O O
O O J A . . . O O
...

...
...

...
...

...
O O O O . . . J A
A O O O . . . O J


where A,J and O are (m+ 1)× (m+ 1) matrix defined as follows

J =


0 0 . . . 0 0
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 , O =


0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

 , (14)

A =


− 1
A+1 0 . . . 0 1

A+1

0 0 . . . 0 0
...

. . . . . .
...

...
0 0 . . . 0 0

 . (15)

Let λ1, λ2, . . . , λpm+p denote the eigenvalues of matrix B and let

D = diag(d1, d2, . . . , dpm+p)

be a diagonal matrix where d1 = dm+2 = d2m+3 = · · · = d(p−1)m+p = 1, dk =
dm+1+k = 1− kε for k ∈ {1, 2, . . . , p2 (m+ 1)}. Since A > 1, we can take a positive
number ε such that

0 < ε <
A− 1

(m+ 1)(A+ 1)
. (16)
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It is obvious that D is an invertible matrix. Computing matrix DBD−1, we get

DBD−1 =



J (1) A(1) O O . . . O O
O J (2) A(2) O . . . O O
O O J (3) A(3) . . . O O
...

...
...

...
...

...
O O O O . . . J (p−1) A(p−1)

A(p) O O O . . . O J (p)


,

where

J (j) =


0 0 . . . 0 0

d(j−1)m+j+1

d(j−1)m+j
0 . . . 0 0

...
...

. . .
...

...

0 0 . . .
d(j−1)m+m+j

d(j−1)m+m+j−1
0

 , j = 0, 1, . . . , p,

A(j) =


− 1
A+1

dj
djm+j+1

0 . . . 0 1
A+1

dj
djm+j+1

0 0 . . . 0 0
...

. . . . . .
...

...
0 0 . . . 0 0

 , j = 0, 1, . . . , p− 1,

and

A(p) =


− 1
A+1

d(p−1)m+p

d1
0 . . . 0 1

A+1

d(p−1)m+p

dm+1

0 0 . . . 0 0
...

. . . . . .
...

...
0 0 . . . 0 0

 .

From d1 > d2 > . . . > d p
2 (m+1) and d p

2 (m+1) + 1 > d p
2 (m+1) + 2 > . . . > dpm+p we

can get that

d2d
−1
1 < 1

d3d
−1
2 < 1

...

dm+1d
−1
m < 1

dm+3d
−1
m+2 < 1

...

dpm+pdpm+p−1 < 1

Moreover, from A > 1 and (16) we have

1

A+ 1
+

1

(1− (m+ 1)ε)(A+ 1)

<
1

(1− (m+ 1)ε)(A+ 1)
+

1

(1− (m+ 1)ε)(A+ 1)

<
2

(1− (m+ 1)ε)(A+ 1)

< 1.



3130 AMIRA KHELIFA AND YACINE HALIM

It is common knowledge that B has the same eigenvalues as DBD
−1

, we have that

max |λi| ≤ ‖DBD
−1

‖∞

= max

{
d2d
−1
1 , . . . , dm+1d

−1
m , dm+3d

−1
m+2, . . . , dpm+pdpm+p−1,

1
A+1 + 1

(1−(m+1)ε)(A+1)

}
< 1.

We have that all eigenvalues of B lie inside the unit disk. According to Theorem

(2.4) we obtain that the unique positive equilibrium
(
x(1), x(2), . . . , x(p)

)
= (A +

1, A+1, . . . , A+1) is locally asymptotically stable. Thus, the proof is completed.

To prove the global stability of the positive equilibrium, we need the following
lemma.

Lemma 4.5. Suppose A > 1. Then every positive solution of the system (3) is
bounded and persists.

Proof. Let {(x(1)n , x
(2)
n , . . . , x

(p)
n )}n≥−m be a positive solution to system (3). Then,

it is clear that for n ≥ 1, x
(j)
n > A > 1, j = 1, 2, . . . , p. So, we get

x
(j)
i ∈

[
L,

L

L−A

]
, i = 1, 2, . . . ,m+ 1, j = 1, 2, . . . , p,

where

L = min

{
α,

β

β − 1

}
> 1, α = min

1≤j≤m+1
{x(1)j , x

(2)
j , . . . , x

(p)
j },

β = max
1≤j≤m+1

{x(1)j , x
(2)
j , . . . , x

(p)
ji }.

So, we get

L = A+
L

L/(L−A)
≤ x(j)m+2 = A+

x
(j+1)mod(p)
1

x
(j+1)mod(p)
m+1

≤ L

L− 1
,

thus, the following is obtained

L ≤ x(j)m ≤
L

L− 1
.

By induction, we get

x
(j)
i ∈

[
L,

L

L− 1

]
, j = 1, 2, . . . , p, i = 1, 2, . . . (17)

Theorem 4.6. Assume that A > 1. Then the positive equilibrium of system (3) is
globally asymptotically stable.

Proof. Let
{(
x
(1)
n , x

(2)
n , . . . , x

(p)
n

)}
n≥−m

be a solution of system (3). By Theorem

(4.4) we need only to prove that the equilibrium point (A+ 1, A+ 1, . . . , A+ 1) is
global attractor, that is

lim
n→∞

(
x(1)n , x(2)n , . . . , x(p)n

)
= (A+ 1, A+ 1, . . . , A+ 1).

To do this, we prove that for i = 1, 2, . . . , p, we have

lim
n→∞

x(i)n = A+ 1.
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From Lemma (4.5), we can set

Li = lim
n→∞

supx(i)n , mi = lim
n→∞

inf x(i)n , i = 1, 2, . . . , p. (18)

So, from (3) and (18), we have

Li ≤ A+
L(i+1)mod(p)

m(i+1)mod(p)
, mi ≥ A+

m(i+1)mod(p)

L(i+1)mod(p)
. (19)

We first prove the theorem for p = 2. From (19), we get

AL1 +m1 ≤ L1m2 ≤ Am2 + L2, AL2 +m2 ≤ L2m1 ≤ Am1 + L1.

So,

AL1 +m1 − (Am1 + L1) ≤ Am2 + L2 − (AL2 +m2),

hence

(A− 1)(L1 −m1 + L2 −m2) ≤ 0,

since A > 1, It follows that

L1 −m1 + L2 −m2 = 0,

we know that L1 −m1 ≥ 0 and L2 −m2 ≥ 0, so we obtain L1 = m1 and L2 = m2.
Now we assume that the theorem holds for p−1, that is Li = mi, i = 1, 2, . . . , p−1
and prove the theorem for p. From (19), we have

ALp +mp ≤ Lpm1 ≤ Am1 + L1, AL1 +m1 ≤ L1mp ≤ Amp + Lp.

So,

ALp +mp − (Amp + Lp) ≤ Am1 + L1 − (AL1 +m1),

Thus, the following inequality is obtained

(A− 1)(Lp −mp + L1 −m1) ≤ 0,

since A > 1, L1 −m1 ≥ 0 and Lp −mp ≥ 0, we obtain Lp = mp, it signify that

Li = mi, = 1, 2, . . . , p.

Therefore every positive solution
{(
x
(1)
n , x

(2)
n , . . . , x

(p)
n

)}
n≥−1

of system (3) tends

to (A+ 1, A+ 1, . . . , A+ 1) as n→ +∞.

5. Rate of convergence. In this section, we estimate the rate of convergence of a

solution that converges to the equilibrium point
(
x(1), x(2), . . . , x(p)

)
= (A+ 1, A+

1, . . . , A+ 1) of the system (3) in the region of parameters described by A > 1. We
give precise results about the rate of convergence of the solutions that converge to
the equilibrium point by using Perron’s theorems. The following result gives the
rate of convergence of solutions of a system of difference equations

Xn+1 = (A+Bn)Xn (20)

where Xn is a (pm + p)-dimensional vector, A ∈ C(pm+p)×(pm+p) is a constant
matrix and B : Z+ → C(pm+p)×(pm+p) is a matrix function satisfying

‖Bn‖ → 0, when n→∞ (21)

where ‖.‖ indicates any matrix norm which is associated with the vector norm ‖.‖.
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Theorem 5.1. (Perron’s first Theorem, see [16]) Suppose that condition (21)
holds. If Xn is a solution of (20), then either Xn = 0 for all largen or

ρ = lim
n→+∞

‖Xn+1‖
‖Xn‖

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 5.2. (Perron’s second Theorem, see [16]) Suppose that condition
(21) holds. If Xn is a solution of (20), then either Xn = 0 for all largen or

ρ = lim
n→+∞

(‖Xn‖)
1
n

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 5.3. Assume that a solution {(x(1)n , x
(2)
n , . . . , x

(p)
n )}n≥−m of system (3)

converges to the equilibrium (x(1), x(2), . . . , x(p)) which is globally asymptotically sta-
ble. Then, the error vector

en =



e
(1)
n

e
(1)
n−1
...

e
(1)
n−m

...

e
(p)
n

e
(p)
n−1
...

e
(p)
n−m



=



x
(1)
n − x(1)

x
(1)
n−1 − x(1)

...

x
(1)
n−m − x(1)

...

x
(p)
n − x(p)

x
(p)
n−1 − x(p)

...

x
(p)
n−m − x(p)


of every solution of system (3) satisfies both of the following asymptotic relations:

lim
n→+∞

‖en+1‖
‖en‖

= |λiJF ((x(1), x(2), . . . , x(p)))|, i = 1, 2, . . . ,m

lim
n→+∞

(‖en‖)
1
n = |λiJF ((x(1), x(2), . . . , x(p)))|, i = 1, 2, . . . ,m

where |λiJF ((x(1), x(2), . . . , x(p)))| is equal to the modulus of one the eigenvalues of

the Jacobian matrix evaluated at the equilibrium point (x(1), x(2), . . . , x(p)).

Proof. First, we will find a system that satisfies the error terms. The error terms
are given as

x
(j)
n+1−x(j) =

m∑
i=0

(j)A
(1)
i (x

(1)
n−i−x(1))+

m∑
i=0

(j)A
(2)
i (x

(2)
n−i−x(2))+· · ·+

m∑
i=0

(j)A
(1)
i (x

(p)
n−i−x(p)),

(22)

for i = 1, 2, . . . ,m, j = 1, 2, . . . , p.

Set

e(j)n = x(j)n − x(j), j = 1, 2, . . . , p

Then, system (22) can be written as

e
(j)
n+1 =

m∑
i=0

(j)A
(1)
i e

(1)
n−i +

m∑
i=0

(j)A
(2)
i e

(2)
n−i + · · ·+

m∑
i=0

(j)A
(1)
i e

(p)
n−i
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where

(i+1)mod(p)A
(i)
0 = −

x
(i+1)mod(p)
n−m(

x
(i+1)mod(p)
n

)2 , (i+1)mod(p)A(i)
m =

1

x
(i+1)mod(p)
n

, i = 1, 2, . . . ,m

and the others parameters (k)A
(j)
i are equal zero.

If we consider the limiting case, It is obvious then that

lim
n→∞

(i+1)mod(p)A
(i)
0 = − 1

x
(i+1)mod(p)
n

,

lim
n→∞

(i+1)mod(p)A(i)
m =

1

x
(i+1)mod(p)
n

, i = 1, 2, . . . ,m.

That is

(i+1)mod(p)A
(i)
0 = − 1

x
(i+1)mod(p)
n

+ α(i)
n , (i+1)mod(p)A(i)

m =
1

x
(i+1)mod(p)
n

+ β(i)
n

where α
(i)
n , β

(i)
n → 0 when n → ∞. Now we have the following system of the form

(20)

en+1 = (A+Bn)en

where en =
(
e
(1)
n , e

(1)
n−1, . . . , e

(1)
n−m, e

(2)
n , e

(2)
n−1, . . . , e

(2)
n−m, . . . , e

(p)
n , e

(p)
n−1, . . . , e

(p)
n−m

)t
and

A = JF ((x(1), x(2), . . . , x(p))) =



J A(1)
n O O . . . O O

O J A(2)

n O . . . O O
O O J A(3)

n
. . . O O

...
...

...
...

...
...

O O O O . . . J A(p−1)
n

A(p)
n O O O . . . O J



Bn =



J A O O . . . O O
O J A O . . . O O
O O J A . . . O O
...

...
...

...
...

...
O O O O . . . J A
A O O O . . . O J


where

A(j)
n =


α
(j)
n 0 . . . 0 β

(j)
n

0 0 . . . 0 0
...

. . . . . .
...

...
0 0 . . . 0 0

 , j = 1, 2, . . . , p.

and A,J and O are the (m+ 1)× (m+ 1) matrix defined in (14) and (15).
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‖Bn‖ → 0 when n → ∞. Therefore, the limiting system of error terms can be
written as

en+1 =



J A O O . . . O O
O J A O . . . O O
O O J A . . . O O
...

...
...

...
...

...
O O O O . . . J A
A O O O . . . O J





e
(1)
n

e
(1)
n−1
...

e
(1)
n−m

...

e
(p)
n

e
(p)
n−1
...

e
(p)
n−m


and ‖Bn‖ → 0 when n → ∞. This system is exactly the linearized system of (3)

evaluated at the equilibrium point
(
x(1), x(2), . . . , x(p)

)
. From Theorems (5.1) and

(5.2), the result follows.

6. Numerical examples. In this section we will consider several interesting nu-
merical examples to verify our theoretical results. These examples shows different
types of qualitative behavior of solutions of the system (3). All plots in this section
are drawn with Matlab.

Exemple 6.1. Let m = 1 and p = 10 in system (3), then we obtain the system

x
(1)
n+1 = 1.2 +

x
(2)
n−1

x
(2)
n

, x
(2)
n+1 = A+

x
(3)
n−1

x
(3)
n

, . . . , x
(10)
n+1 = 1.2 +

x
(1)
n−1

x
(1)
n

, n ∈ N0 (23)

with A = 1.2 > 1 and the initial values x
(1)
−1 = 3.3, x

(1)
0 = 2, x

(2)
−1 = 1.1, x

(2)
0 =

0.3, x
(3)
−1 = 2.3, x

(3)
0 = 1.5, x

(4)
−1 = 0.5, x

(4)
0 = 2, x

(5)
−1 = 1.9, x

(5)
0 = 0.8, x

(6)
−1 = 4, x

(6)
0 =

1.3, x
(7)
−1 = 1.2, x

(7)
0 = 1.3, x

(8)
−1 = 2.1, x

(8)
0 = 2.3, x

(9)
−1 = 3.6, x

(9)
0 = 0.2, x

(10)
−1 =

2.3, x
(10)
0 = 1.1. Then the positive equilibrium point (x(1), x(2), . . . , x(10)) = (2.2, 2.2,

. . . , 2.2) of system (23)) is globally asymptotically stable (see Figure (1), Theorem
(4.4)).

Exemple 6.2. Consider the system (23) with A = 1 and the initial values x
(1)
−1 =

0.3, x
(1)
0 = 1.1, x

(2)
−1 = 1.3, x

(2)
0 = 0.3, x

(3)
−1 = 1.4, x

(3)
0 = 1.5, x

(4)
−1 = 0.5, x

(4)
0 =

2, x
(5)
−1 = 1.9, x

(5)
0 = 0.8, x

(6)
−1 = 4, x

(6)
0 = 1.3, x

(7)
−1 = 1.4, x

(7)
0 = 1.3, x

(8)
−1 = 0.1, x

(8)
0 =

1.1, x
(9)
−1 = 1.6, x

(9)
0 = 1.7, x

(10)
−1 = 1.9, x

(10)
0 = 1.1. Then the solution oscillates

about the positive equilibrium point (x(1), x(2), . . . , x(10)) = (2, 2, . . . , 2) of system
(23) with semi-cycles having at most five terms. Also, the equilibrium is not globally
asymptotically stable (see Figure(2), Theorem 4.2).

Exemple 6.3. Consider the system (23) with A = 0.9 and the initial values

x
(1)
−1 = 1.2, x

(1)
0 = 0.7, x

(2)
−1 = 1.2, x

(2)
0 = 2.3, x

(3)
−1 = 0.4, x

(3)
0 = 1.1, x

(4)
−1 = 0.8, x

(4)
0 =

8, x
(5)
−1 = 1.3, x

(5)
0 = 1.8, x

(6)
−1 = 2.6, x

(6)
0 = 0.9, x

(7)
−1 = 1.4, x

(7)
0 = 1.1, x

(8)
−1 =

0.1, x
(8)
0 = 1.4, x

(9)
−1 = 0.9, x

(9)
0 = 1.3, x

(10)
−1 = 1.2, x

(10)
0 = 2.1. Then the positive
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Figure 1. The plot of system (23) with A = 1.2 > 1
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Figure 2. The plot of system (23) with A = 1

equilibrium point (x(1), x(2), x(3), x(4)) = (1.9, 1.9, . . . , 1.9) of system (23) is not
globally asymptotically stable. Also, this solution is unbounded solution see Figure
(3), Theorem 4.2).

Exemple 6.4. Let m = 5 and p = 4 in system (3), then we obtain the system

x
(1)
n+1 = A+

x
(2)
n−5

x
(2)
n

, x
(2)
n+1 = A+

x
(3)
n−5

x
(3)
n

, x
(3)
n+1 = A+

x
(4)
n−5

x
(4)
n

, x
(4)
n+1 = A+

x
(1)
n−5

x
(1)
n

, n ∈ N0

(24)

with A = 1.4 > 1 and the initial values x
(1)
−5 = 1.2, x

(1)
−4 = 0.8, x

(1)
−3 = 1.9, x

(1)
−2 =

2.2, x
(1)
−1 = 0.3, x

(1)
0 = 1.7, x

(2)
−5 = 1.3, x

(2)
−4 = 2.4, x

(2)
−3 = 1.2, x

(2)
−2 = 0.5, x

(2)
−1 =

1.6, x
(2)
0 = 2.3, x

(3)
−5 = 0.4, x

(3)
−4 = 1.1, x

(3)
−3 = 1.4, x

(3)
−2 = 2.1, x

(3)
−1 = 0.3, x

(3)
0 =

1.1, x
(4)
−5 = 0.8, x

(4)
−4 = 1.2, x

(4)
−3 = 1.8, x

(4)
−2 = 3.1, x

(4)
−1 = 0.7, x

(4)
0 = 1.8,. Then the
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Figure 3. The plot of system (23) with A = 0.9 < 1

positive equilibrium point (x(1), x(2), x(3), x(4)) = (2.4, 2.4, 2.4, 2.4) of system (24))
is globally asymptotically stable (see Figure (4), Theorem (4.4)).
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2

2.5

3

n

Figure 4. The plot of system (24) with A = 1.4 > 1

Exemple 6.5. Consider the system (24) with A = 1 and the initial values x
(1)
−5 =

0.4, x
(1)
−4 = 1.3, x

(1)
−3 = 2.9, x

(1)
−2 = 1.2, x

(1)
−1 = 0.8, x

(1)
0 = 1.2, x

(2)
−5 = 0.3, x

(2)
−4 =

1.4, x
(2)
−3 = 1.3x

(2)
−2 = 0.5, x

(2)
−1 = 1.6, x

(2)
0 = 2.1, x

(3)
−5 = 1.3, x

(3)
−4 = 2.1, x

(3)
−3 =

1.4, x
(3)
−2 = 2.1, x

(3)
−1 = 0.3, x

(3)
0 = 1.5, x

(4)
−5 = 0.6, x

(4)
−4 = 1.2, x

(4)
−3 = 1.3, x

(4)
−2 =

0.8, x
(4)
−1 = 1.7, x

(4)
0 = 0.1, . Then the solution oscillates about the positive equilib-

rium point (x(1), x(2), x(3), x(4)) = (2.4, 2.4, 2.4, 2.4) of system (24) with semi-cycles
having at most five terms. Also, the equilibrium is not globally asymptotically
stable (see Figure(5), Theorem 4.2).
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Figure 5. The plot of system (24) with A = 1

Exemple 6.6. Consider the system (24) with A = 0.7 and the initial values

x
(1)
−5 = 1.3, x

(1)
−4 = 0.9, x

(1)
−3 = 2.1, x

(1)
−2 = 0.9, x

(1)
−1 = 0.7, x

(1)
0 = 2.2, x

(2)
−5 = 1.3, x

(2)
−4 =

0.4, x
(2)
−3 = 1.3x

(2)
−2 = 1.5, x

(2)
−1 = 1.2, x

(2)
0 = 1.1, x

(3)
−5 = 1.7, x

(3)
−4 = 1.6, x

(3)
−3 =

1.5, x
(3)
−2 = 2.3, x

(3)
−1 = 0.9, x

(3)
0 = 1.5, x

(4)
−5 = 0.6, x

(4)
−4 = 1.4, x

(4)
−3 = 2.3, x

(4)
−2 =

3.1, x
(4)
−1 = 2.7, x

(4)
0 = 1.9. Then the positive equilibrium point (x(1), x(2), x(3), x(4)) =

(1.7, 1.7, 1.7, 1.7) of system (23) is not globally asymptotically stable. Also, this so-
lution is unbounded solution see Figure (6), Theorem 4.2).
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Figure 6. The plot of system (24) with A = 0.7 < 1

7. Conclusions and some open problems. In the paper, we studied the global
behavior of solutions of system (3) composed by p rational difference equations.
More exactly, we here study the global asymptotic stability of equilibrium, the rate
of convergence of positive solutions. Also, we present some results about the general
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behavior of solutions of system (3) and some numerical examples are carried out
to support the analysis results. Our system generalized the equations and systems
studied in [2, 8] and [20].

The findings suggest that this approach could also be useful for extended to a
system with arbitrary constant different parameters, or to a system with a nonau-
tonomous parameter, or to a system with different parameters and arbitrary powers.
So, we will give the following some important open problems for difference equations
theory researchers.

Open Problem 1. study the dynamical behaviors of the system of difference
equations

x
(1)
n+1 = A1+

x
(2)
n−m

x
(2)
n

, x
(2)
n+1 = A2+

x
(3)
n−m

x
(3)
n

, . . . , x
(p)
n+1 = Ap+

x
(1)
n−m

x
(1)
n

, n,m, p ∈ N0

where Ai, i = 1, 2, . . . , p are nonnegative constants and x
(j)
−m, x

(j)
−m+1, . . . , x

(j)
−1, x

(j)
0 , j

= 1, 2, . . . , p are positive real numbers.

Open Problem 2. study the dynamical behaviors of the system of difference
equations

x
(1)
n+1 = αn+

x
(2)
n−m

x
(2)
n

, x
(2)
n+1 = αn+

x
(3)
n−m

x
(3)
n

, . . . , x
(p)
n+1 = αn+

x
(1)
n−m

x
(1)
n

, n,m, p ∈ N0

where αn is a sequence (this sequence can be chosen as convergent, periodic or

bounded), and x
(j)
−m, x

(j)
−m+1, . . . , x

(j)
−1, x

(j)
0 , j = 1, 2, . . . , p are positive real numbers.

Open Problem 3. study the dynamical behaviors of the system of difference
equations

x
(1)
n+1 = A1+

(
x
(2)
n−m

)p1(
x
(2)
n

)q1 , x
(2)
n+1 = A2+

(
x
(3)
n−m

)p2(
x
(3)
n

)q2 , . . . , x
(p)
n+1 = Ap+

(
x
(1)
n−m

)pp(
x
(1)
n

)qp ,

wheren,m, p ∈ N0, Ai, i = 1, 2, . . . , p are nonnegative constants, the parameters

pi, qi, i = 1, 2, . . . , p are non-negative and x
(j)
−m, x

(j)
−m+1, . . . , x

(j)
−1, x

(j)
0 , j = 1, 2, . . . , p

are positive real numbers.
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[17] D. T. Tollu, Y. Yazlik and N. Taşkara, Behavior of positive solutions of a difference equation,

J. Appl. Math. Inform., 35 (2017), 217–230.
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