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Abstract. In this paper, we focus on a linear cooperative system with peri-
odic coefficients proposed by Mierczyński [SIAM Review 59(2017), 649-670].

By introducing a switching strategy parameter λ in the periodic coefficients,

the bifurcation of instability and the optimization of the switching strategy
are investigated. The critical value of unstable branches is determined by ap-

pealing to the theory of monotone dynamical system. A bifurcation diagram

is presented and numerical examples are given to illustrate the effectiveness of
our theoretical result.

1. Introduction. For the linear autonomous system ẋ = Ax, x ∈ Rn, it is well
known that the zero solution of the system is asymptotically stable when the real
parts of the eigenvalues of coefficient matrix A are all negative. However, the
nonautonomous linear system ẋ = A(t)x, x ∈ Rn does not possess this property in
general. In fact, even if all the eigenvalues of A(t) are negative and bounded away
from zero, the zero solution can still be unstable; and moreover, the solution of
system may grow to infinity (see, e.g. [4, 8, 14]). Very recently, Mierczyński [11]
constructed a series of such examples in cooperative system by using an unusual and
ingenious method. Consider a 2-D linear ODE

ẋ = A(t)x, x ∈ R2 (1)

with A(t) is denoted by

A(t) :=

{
A(1), t ∈ [2k, 2k + 1),

A(2), t ∈ [2k + 1, 2k + 2),
k ∈ Z,

where

A(1) :=

(
−1 c
1
4c −1

)
, A(2) :=

(
−1 1

4c
c −1

)
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and c is a positive number. For the sake of convenience, one can also rewrite the
system (1) as: {

ẋ1 = a11(t)x1 + a12(t)x2,

ẋ2 = a21(t)x1 + a22(t)x2,

where

a11(t) = a22(t) = −1, t ∈ [2k, 2k + 2), k ∈ Z,

a12(t) =

{
c, t ∈ [2k, 2k + 1),
1
4c , t ∈ [2k + 1, 2k + 2),

k ∈ Z

and

a21(t) =

{
1
4c , t ∈ [2k, 2k + 1),

c, t ∈ [2k + 1, 2k + 2),
k ∈ Z.

Recall that a linear system is cooperative (resp., strongly cooperative) if, for each
t ∈ R, the matrix A(t) has nonnegative (resp., positive) off-diagonal entries. Clearly,
system (1) is a (strongly) cooperative periodic linear system with period 2. In the
biological science and population ecology, cooperative behavior means that an in-
crease in the density of one species will enhance the growth of the other, which
abounds across all domains of life, from animals to microbes. This type of inter-
action among species is widely used by theoretical ecologists to explain biological
phenomena (see [2, 5, 10, 12]). For example, system (1) is usually described by some
bacterial populations that they always switch between two states (dormant vs. ac-
tive). If we let x1 stand for the density of bacteria in the dormant stage and x2 for
the density of bacteria in the active stage, then a12(t) (resp., a21(t)) describes the
transition rate from the active state to the dormant state (resp., from the dormant
state to the active state) at time t. It is now well-known that a (strongly) coop-
erative differential equation generates a classical (strongly) monotone dynamical
system (see [7, 13]).

Clearly, for each t, the eigenvalues of the matrix A(t) are both − 1
2 and − 3

2 .
Mierczyński [11] has shown that the zero solution of such a system can be unstable
for any c > 0 sufficiently large. More precisely, let X(t; s) stand for the transition
matrix of system (1), and let P be the Poincaré map of system (1). Then

P = X(2; 0) = eA
(2)

• eA
(1)

.

It follows that

X(2k; 0) = (X(2; 0))k = P k, k = 1, 2, · · · .
Note that

X(t; 0) :=

{
exp(tA(1)), t ∈ [0, 1),

exp((t− 1)A(2)) expA(1), t ∈ [1, 2).

So, the Poincaré map P can be directly calculated as

P = eA
(2)

• eA
(1)

= e−2

(
cosh2( 1

2 ) + 1
4c2 sinh2( 1

2 ) (2c+ 1
2c ) cosh( 1

2 ) sinh(1
2 )

(2c+ 1
2c ) cosh( 1

2 ) sinh(1
2 ) cosh2( 1

2 ) + 4c2 sinh2( 1
2 )

)
.

As a consequence, the principal eigenvalue of P is larger than 1 when c > 2.13834,
which implies that any nontrivial solution of system (1) will grow to infinity. Thus,
the zero solution is unstable. In addition, Mierczyński [11] adopted another more
easier way, Peano-Baker series, to estimate the principal eigenvalue of P and obtain
the similar results.
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In the present paper, for the linear 2-periodic system (1), we will focus on the
optimization of a switching strategy for instability between the matrices A(1) and
A(2) in a period of time. For this purpose, a switching strategy parameter λ ∈ (0, 2)
is introduced into system (1) as:

ẋ = Aλ(t)x, x ∈ R2,

where

Aλ(t) :=

{
A(1), t ∈ [2k, 2k + λ),

A(2), t ∈ [2k + λ, 2k + 2),
k ∈ Z, λ ∈ (0, 2).

The main purpose of this paper is to analyze the instability of the zero solution
of the above system with respect to the switching parameter λ ∈ (0, 2). We obtain
a complete distribution in λ-c parameter plane corresponding to the instability
of the zero solution in terms of simple inequality of the parameters λ and c (see
Theorem 2.2). Furthermore, we present the bifurcation diagram (see Figure 2.1).
The optimization value of the parameter λ is also given in the unstable region (see
Theorem 2.3).

The paper is organized as follows. Section 2 is devoted to study the relationship
between parameters λ and c and the instability of the zero solution by using Poincaré
map and transition matrix. Further, we gain the optimal strategy values of unstable
branches of the zero solution and present the branch graph of instability. In Section
3, we provide some numerical simulations to illustrate the main theoretical results.
This paper ends with a discussion in Section 4.

2. Instability and bifurcation. Consider the following linear cooperative system
with a parameter λ,

ẋ = Aλ(t)x, x ∈ R2, (2)

where

Aλ(t) :=

{
A(1), t ∈ [2k, 2k + λ),

A(2), t ∈ [2k + λ, 2k + 2),
k ∈ Z, λ ∈ (0, 2).

Here, the parameter λ represents the strategy parameter switching between two
systems in a period.

Clearly, system (1) is a special case of system (2) (with λ=1). The eigenvalues of
Aλ(t) are both − 1

2 and − 3
2 for each t ∈ R. A direct calculation yields the following

transition matrix associated with system (2) as

X(t; s) =

{
exp((t− s)A(1)), s, t ∈ [2k, 2k + λ),

exp((t− s)A(2)), s, t ∈ [2k + λ, 2k + 2),
k = 1, 2, · · · .

When restricted to the interval [0,2), the transition matrix is reduced to

X(t; 0) =

{
exp(tA(1)), t ∈ [0, λ),

exp((t− λ)A(2)) exp(λA(1)), t ∈ [λ, 2).

Let us first define the Poincaré map Q of system (2), that is,

Q = X(2, 0) = e(2−λ)A
(2)

• eλA
(1)

.

Since X(2k + 2; 2k) = X(2; 0) for any k ∈ Z, we have

X(2k; 0) = (X(2; 0))k = Qk, k = 1, 2, · · · .
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LetM stand for the family of real 2× 2 matrices with off-diagonal entries positive,
and let P stand for the family of real 2 × 2 matrices with all entries positive. For
any A ∈M, one has the following proposition.

Lemma 2.1. Let A = [aij ]
2
i,j=1 ∈M. Then the following three statements are true:

(i) etA ∈ P for all t > 0.
(ii) A has two real eigenvalues (denoted µ < θ). In particular, if A ∈ P, then the

principal eigenvalue θ is simple and θ > |µ|, where the principal eigenvalue is
the largest of the eigenvalues of A.

(iii) An eigenvector ξ corresponding to θ can be taken to have its coordinates posi-
tive.

Proof. For (i)-(iii), see Proposition 2.2 and Theorem 2.5 in [11]. If A ∈ P, it
easily follows from Theorem 1.2 in [3] that the principal eigenvalue θ is simple and
θ > |µ|.

By virtue of Lemma 2.1, for any λ ∈ (0, 2), both eλA
(1)

and e(2−λ)A
(2)

belong
to P; and hence, so is the Poincaré map Q. Furthermore, there exists a unique
normalized principal eigenvector ξ corresponding to the principal eigenvalue θ of Q
with ξ ∈ IntR2

+ and θ > 0, where IntR2
+ := {(x1, x2) ∈ R2 : x1 > 0, x2 > 0}. Denote

by x(t) the solution of system (2) taking initial value x at time t = 0. x(t) is called
to be Lyapunov stable (abbr. stable) if, given ε > 0, there exists some δ = δ(ε) > 0
such that, for any other solution y(t) of system (2) satisfying |x − y| < δ, then
|x(t)− y(t)| < ε for any t ≥ 0. A solution which is not stable is said to be unstable.

For the special initial value ξ, one has

ξ(2n) = X(2n, 0)ξ = (X(2, 0))nξ = Qnξ = θnξ, n = 1, 2, · · · .

If θ > 1, then the solution ξ(t) will satisfy:

|ξ(2n)| → ∞ as n→∞,

which entails that the solution ξ(t) is an unstable solution of system (2).
Therefore, one needs to find the relationship between parameters λ and c so that

θ > 1. Our main result is given below, which provides a necessary and sufficient
criterion for the instability of system (2).

Theorem 2.2. For λ ∈ (0, 2) and c > 0, the zero solution of system (2) is unstable
if and only if

(2c− 1

2c
)2[cosh 1− cosh(1− λ)] > 4(cosh 2− cosh 1). (3)

Proof. Sufficiency. Recall that Q = X(2; 0) = e(2−λ)A
(2)

• eλA
(1)

. A tedious calcula-
tion yields that

Q = e−2 •

(
H1 H2

H3 H4

)
with

H1 = cosh(
λ

2
) cosh(1− λ

2
) +

1

4c2
sinh(

λ

2
) sinh(1− λ

2
),

H2 = 2c sinh(
λ

2
) cosh(1− λ

2
) +

1

2c
cosh(

λ

2
) sinh(1− λ

2
),

H3 =
1

2c
sinh(

λ

2
) cosh(1− λ

2
) + 2c cosh(

λ

2
) sinh(1− λ

2
),
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H4 = cosh(
λ

2
) cosh(1− λ

2
) + 4c2 sinh(

λ

2
) sinh(1− λ

2
),

which are all positive entries. Since the matrix Q belongs to P, it follows from
Lemma 2.1(ii)-(iii) that θ > 0 is a simple eigenvalue with a positive eigenvector ξ.
Let µ be the other eigenvalue of Q. By Lemma 2.1(ii), we have θ > |µ|. More
precisely, θ and µ satisfy the following quadratic equation related to the variable
m,

m2 − e−2

[
2 cosh(

λ

2
) cosh(1− λ

2
) + (4c2 +

1

4c2
) sinh(

λ

2
) sinh(1− λ

2
)

]
m+ e−4 = 0.

Solving the above equation, we obtain

θ =
1

2
e−2

[√√√√(2 cosh(
λ

2
) cosh(1− λ

2
) + (4c2 +

1

4c2
) sinh(

λ

2
) sinh(1− λ

2
)

)2

− 4

+

(
2 cosh(

λ

2
) cosh(1− λ

2
) + (4c2 +

1

4c2
) sinh(

λ

2
) sinh(1− λ

2
)

)]
.

Note that

cosh(
λ

2
) cosh(1− λ

2
) =

1

2
(cosh 1 + cosh(1− λ)),

sinh(
λ

2
) sinh(1− λ

2
) =

1

2
(cosh 1− cosh(1− λ)).

Then

θ =
1

4
e−2

[√√√√((2c+
1

2c
)2 cosh 1− (2c− 1

2c
)2 cosh(1− λ)

)2

− 16

+ (2c+
1

2c
)2 cosh 1− (2c− 1

2c
)2 cosh(1− λ)

]
.

Consequently, we obtain that θ > 1 if and only if√√√√((2c+
1

2c
)2 cosh 1− (2c− 1

2c
)2 cosh(1− λ)

)2

− 16

+(2c+
1

2c
)2 cosh 1− (2c− 1

2c
)2 cosh(1− λ) > 4e2.

Simplifying the above inequality, we obtain that θ > 1 if and only if

(2c− 1

2c
)2[cosh 1− cosh(1− λ)] > 4(cosh 2− cosh 1).

Hence, when parameters λ and c satisfy the inequality (3), the solution ξ(t) satisfies
ξ(2n) = Qnξ = θnξ →∞ as n→∞. So, the zero solution of system (2) is unstable.

Necessity. If the zero solution of system (2) is unstable, we will show that pa-
rameters λ and c satisfy the inequality (3). Suppose on the contrary that (2c −
1
2c )

2[cosh 1 − cosh(1 − λ)] ≤ 4(cosh 2 − cosh 1). From the proof of the sufficiency,
one can get θ ≤ 1; and hence, |µ| < θ ≤ 1. Let ζ be the eigenvector corresponding
to µ, so ξ and ζ are linearly independent. Thus for any initial value x0 ∈ R2, there
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exist a, b ∈ R such that x0 = aξ + bζ. Then the solution x(t; 0, x0) of system (2)
satisfies

x(2n; 0, x0) = Qnx0 = Qn(aξ + bζ) = aQnξ + bQnζ = aθnξ + bµnζ.

As a consequence, it is easy to see that if θ < 1 then x(2n; 0, x0)→ 0 as n→∞ ,
which entails that the zero solution of system (2) is (asymptotically) stable. This is
a contradiction to our assumption. On the other hand, if θ = 1, then for any ε > 0,
one can choose a and b such that |x0| < δ = ε. Since |µ| < 1, there exists an integer
N > 0 such that |bµnζ| < ε for any n > N . Let P be the projection operator
onto the ξ-direction. Noticing that the projection operator P is bounded, there
exists a positive constant C such that |x(2n; 0, x0)| = |aξ + bµnζ| ≤ |aξ|+ |bµnζ| =
|Px0| + |bµnζ| ≤ C|x0| + |bµnζ| < (2C + 1)ε as n > N . Hence, it follows that the
zero solution of system (2) is Lyapunov stable. This also leads to a contradiction.
Thus, we have completed the proof.

According to Theorem 2.2, we write

U =

{
(λ, c) : (2c− 1

2c
)2[cosh 1− cosh(1−λ)] > 4(cosh 2− cosh 1), λ ∈ (0, 2), c > 0

}
as the unstable region. We have the following optimization of the strategy parameter
λ as:

Theorem 2.3. Let U1 = {(λ, c) ∈ U : c < 1
2} and U2 = {(λ, c) ∈ U : c > 1

2}. For
λ ∈ (0, 2) and c > 0, we have the following statements:

(i) In unstable region U1, c attains the maximum at λ = 1.
(ii) In unstable region U2, c attains the minimum at λ = 1.

Proof. By the proof of Theorem 2.2, the critical relation between parameters λ ∈
(0, 2) and c > 0 is

(2c− 1

2c
)2[cosh 1− cosh(1− λ)] = 4(cosh 2− cosh 1).

We rewrite as

(2c− 1

2c
)2 =

4(cosh 2− cosh 1)

cosh 1− cosh(1− λ)
.

Then,

2c− 1

2c
= ±2

√
cosh 2− cosh 1

cosh 1− cosh(1− λ)
. (4)

For simplicity, we denote

m(λ) :=

√
cosh 2− cosh 1

cosh 1− cosh(1− λ)
.

(i). If 0 < c < 1
2 , then the equation (4) becomes the following form

c2 +m(λ)c− 1

4
= 0,

which implies that c =
−m(λ)+

√
m2(λ)+1

2 . Due to the continuity and monotonicity of
m(λ) with respect to the variable λ, it follows that if λ ∈ (0, 1) then c is increasing
as λ increases. Meanwhile, if λ ∈ (1, 2) then c is decreasing as λ increases. So,
when λ = 1, c will attain the maximum in unstable region U1. This implies that
the statement (i) holds.
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(ii). If c > 1
2 , then the equation (4) turns out to be

c2 −m(λ)c− 1

4
= 0,

which implies that c =
m(λ)+

√
m2(λ)+1

2 . Similarly, if λ ∈ (0, 1) then c is decreasing
as λ increases. If λ ∈ (1, 2) then c is increasing as λ increases. So, when λ = 1, c will
attain the minimum in unstable region U2, which implies the statement (ii).

Remark 1. By using Matlab tools, we obtain the λ-c bifurcation diagram of in-
stability for system (2) as demonstrated in Figure 2.1.

(i) When parameters λ and c are chosen in the red region U(=U1 ∪U2), the zero
solution of system (2) is unstable.

(ii) When parameters λ and c are chosen in the green region S, the zero solution
of system (2) is (asymptotically) stable.

(iii) When parameters λ and c are chosen on the boundary between the red region
U and the green region S, the zero solution of system (2) is Lyapunov stable
(but not asymptotically stable).

6-c bifurcation diagram

U
2

S

U
1

0 1 2 3 4 5 6 7

c

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

6

The red region U (consists of U1 and U2) is the unstable region, 
the green region S is the asymptotically stable region, and the 
boundary between them are the Lyapunov stable region.

Figure 2.1

From such bifurcation diagram, one can see that the parameter c has the maxi-
mum and minimum with respect to variable λ ∈ (0, 2) in the unstable region U .

3. Numerical simulation. In this section, we provide several numerical simula-
tions to illustrate our main results. First, we randomly select the initial values of
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parameters λ and c in unstable region U = U1 ∪ U2 to make the numerical fitting
analysis.

When taking λ = 1
2 < 1, c = 0.1 in the unstable region U1 and initial value

ξ = (7.7, 2.172), the solution ξ(t) of system (2) is shown in Figure 3.1.
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Figure 3.1

By taking λ = 4
3 > 1, c = 5 in the unstable region U2 and initial value ξ =

(2.85, 9.585), the solution ξ(t) of system (2) is shown in Figure 3.2.
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Figure 3.2

From Figures 3.1-3.2, it is clear that the solutions will grow to infinity as t
increases gradually. We conclude the zero solution of system (2) is unstable.



A COOPERATIVE SYSTEM WITH PERIODIC COEFFICIENTS 3077

Next, we will select parameters λ and c in stable region S. Taking λ = 1
2 <

1, c = 2 and initial value ξ = (3.209, 9.471), the solution ξ(t) of system (2) is shown
in Figure 3.3.
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Figure 3.3

Now, we take λ = 4
3 > 1, c = 2 and initial value ξ = (5.282, 8.491), the solution

ξ(t) of system (2) is shown in Figure 3.4.
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Figure 3.4

From Figure 3.3-3.4, one can see that all the solutions are asymptotic to zero as
t increases to infinity when the values of λ and c are chosen in region S.

4. Discussion. In this paper, we analyze the instability of the zero solution of
a cooperative differential system (2) with periodic coefficients. By introducing a
switching strategy parameter λ, we investigate the bifurcation for instability of
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the zero solution. Theorem 2.2 gives a necessary and sufficient condition, which
guarantees the instability of zero solution. By taking λ ∈ (0, 2) as a variable, we
obtain that the parameter c can attain the maximum at λ = 1 in unstable region
U1, while it attains the minimum at λ = 1 in unstable region U2 in Theorem 2.3. In
other words, λ = 1 will attain the optimal value either in U1 or in U2. In particular,
when λ = 1, the system (2) is reduced to system (1), which has been investigated
in Mierczyński [11].

The parameters λ-c bifurcation graph in Figure 2.1 clearly reveals the unstable
region and stable region of the zero solution. Moreover, we observe that the insta-
bility of the zero solution will disappear gradually when the parameter λ tends to
0 or 2. In order to illustrate our results more vividly, we present numerical sim-
ulations to show the main conclusions. Based on the above analysis, we can also
make suitable modification on the entries of A(1) and A(2) to obtain more analogous
results.

In addition, we should bear in mind that the time-periodic differential equations
are due to biological applications, such as the results of seasonal changes, availability
of food. So it should be emphasized that analogous constructions could be made for
quasi-periodic, almost periodic; and more general dependence on time. Meanwhile,
in our system (2), the switching between the two matrices A(1) and A(2) in a period
only occurs at one fixed time λ in the interval (0,2). If the switching time is allowed
to be the random variable, it is also possible to construct more analogous systems
(see, e.g. [1, 6, 9]). Another possible extension is to consider higher dimension
dynamical systems. We will leave them for future research.
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[1] M. Benäım, S. Le Borgne, F. Malrieu and P.-A. Zitt, On the stability of planar randomly
switched systems, Ann. Appl. Probab, 24 (2014), 292–311.

[2] D. H. Boucher, S. James and K. H. Keeler, The ecology of mutualism, Annual Review of
Ecology and Systematics, 13 (1982), 315–347.

[3] K. C. Chang, K. Pearson and T. Zhang, Perron-Frobenius Theorem for Nonnegative Tensors,

Commun. Math. Sci., 6 (2008), 507–520.

[4] C. Chicone, Ordinary Differential Equations with Applications, 2nd edition, Springer-Verlag,
New York, 2006.

[5] B. S. Goh, Stability in models of mutualism, Amer. Natur., 113 (1979), 261–275.
[6] L. Gurvits, R. Shorten and O. Mason, On the stability of switched positive linear systems,

IEEE Trans. Automat. Control , 52 (2007), 1099–1103.

[7] M. W. Hirsch and H. L. Smith, Monotone dynamical systems, Handbook of Differential Equa-

tions: Ordinary Differential Equations, Vol. II, 239–357, Elsevier B. V., Amsterdam, (2005).
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