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Abstract. We show that picture groups are directly related to maximal green

sequences for valued Dynkin quivers of finite type. Namely, there is a bijec-

tion between maximal green sequences and positive expressions (words in the
generators without inverses) for the Coxeter element of the picture group. We

actually prove the theorem for the more general set up of finite “vertically and

laterally ordered” sets of positive real Schur roots for any hereditary algebra
(not necessarily of finite type).

Furthermore, we show that every picture for such a set of positive roots is

a linear combination of “atoms” and we give a precise description of atoms as
special semi-invariant pictures.

The theory of pictures and picture groups comes from topology and goes back
to the first author’s PhD thesis [17] where pictures were used to represent elements
in the higher algebraic K-theory group K3Z[π] and these were used to obtain ob-
structions to the 1-parameter “pseudoisotopy implies isotopy” problem, extending
work of Allen Hatcher and John Wagoner who showed the relation between K2Z[π]
and pseudoisotopy [16]. The salient fact is that pictures for a group G represent
elements of H3(G) and, by an observation of S.M. Gersten [15], K3R = H3(St(R))
for any ring R (and K2R is the center of the Steinberg group St(R)). Pictures
are also known as “spherical diagrams” in some text books on combinatorial group
theory [33]. They are also called “Peiffer diagrams” and generally attributed to
Renée Peiffer who gave the algebraic definition of pictures in [34]. (See Theorem 4.)
“Partial pictures” were used by John Wagoner [37] to describe the boundary map in
the long exact K-theory sequence of an ideal. Later, in [22], John Klein and the first
author used Morse theory to construct a picture representing nontrivial elements of
K3Z[ζ] where ζn = 1. In the case n = 2, ζ = −1, this picture was shown in [18] to
give a generator of K3Z = Z/48. Later, in joint work with Kent Orr [23], the first
author used pictures to obtain new results on Milnor’s µ link invariants.
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Pictures also appeared in representation theory and combinatorics. Harm Derk-
sen and Jerzy Weyman used what we now call “semi-invariant pictures” for acyclic
quivers to give a new proof of the saturation conjecture for Littlewood-Richardson
coefficients [10]. This was based on the seminal work of Alastair King [29] using
geometric invariant theory to study representations of quivers. Around this time,
Sergey Fomin and Andrei Zelevinsky invented cluster algebras [13], [14]. Soon af-
ter that, Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten and the
second author in [8] associated to any acyclic cluster algebra a “cluster category”
whose rigid indecomposable objects correspond to the cluster variables. Following
this breakthrough, a large body of knowledge has been accumulated [7], [11], [12],
[2]. This includes work of the authors, together with Kent Orr and Jerzy Weyman
giving the connection between cluster theory of acyclic quivers and semi-invariant
pictures in [24], [25], [27].

Later, Takahide Adachi, Osamu Iyama, and Idun Reiten [1] extended cluster
theory to arbitrary finite dimensional algebras using τ -rigid objects in place of
cluster variables. In [25] the real Schur roots of an acyclic valued quiver are shown
to be c-vectors for the associated cluster algebra and labels for the “walls” D(β)
for the “wall-and-chamber” structure for hereditary algebras (given by the semi-
invariant pictures) in [25], [27]. In [6], Thomas Brüstle, David Smith and Hipolito
Treffinger extend the “wall-and-chamber” structure to arbitrary finite dimensional
algebras using τ -tilting theory and the space of stability conditions following Tom
Bridgeland [3].

Maximal green sequences were invented by Bernhard Keller to study Kontsevich-
Soebelman’s version [30], [31] of the Donaldson-Thomas invariants. What we call
“linear” maximal green sequences in [20] were earlier used by Markus Reineke for
similar formulas in [35]. Originally, a maximal green sequence was defined to be a
sequence of “green” mutations of an initial “seed” for a cluster algebra, a mutation
in the k-direction being “green” if the k-th c-vector is positive. However, here we
use the representation theoretic version where c-vectors βi are replaced with “wall-
crossing” through the walls D(βi). See [20], [21] for a detailed explanation of how
these and other versions of the definition of maximal green sequences are related.

One of the big questions which we would like to understand is the conjecture
that there are only finitely many maximal green sequences (possibly none) for any
exchange matrix. In particular, this is still not known for arbitrary acyclic exchange
matrices. These correspond to maximal wall crossing sequences in the wall-and-
chamber structure for a hereditary algebra. This version of the conjecture has
been verified for tame hereditary algebras by Thomas Brüstle, Gregoire Dupont
and Matthieu Pérotin [4] and extended to cluster-tilted algebras of tame type by
Thomas Brüstle, Stephen Hermes and the authors in [5].

In the present paper we have two objectives. The first is to devise a method
for attacking hereditary algebras of infinite type by looking at a finite “admissible”
set of exceptional modules Mβ where β ∈ S, an admissible sequence of roots. (We
recall in the Appendix the definition of exceptional modules and the fact that they
are uniquely determined by their dimension vectors which are real Schur roots β.)
The idea is to study maximal green sequences, which are given by sequences of wall
crossing, by looking only at the subsequence of those walls D(β) where β ∈ S. Such
subsequences are examples of “maximal S-green sequences” (Definition 1.16) that
we consider in greater generality in this paper. Since a maximal green sequence
cannot cross the same wall twice [5], these subsequences will be bounded in length
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by the size of S. The same holds for more general maximal S-green sequences by
Remark 1.23.

The second objective is to determine exactly which such sequences will occur
using the “picture group”. The main theorem of this paper, Theorem A, is that, for
admissible S, maximal S-green sequences are in bijection with positive expressions
for the “Coxeter element” cS in the “picture group” G(S) (Definition 1.9). We
observe that there is at least one maximal S-green sequence given by the “Coxeter
green sequence” (Remark 1.17). Also, there are only finitely many maximal S-green
sequences by Remark 1.23.

Section 1 has the definitions of “admissible” and “weakly admissible” sets of real
Schur roots which are “laterally” and “vertically ordered” and “weakly vertically
ordered” sets of roots. These are concepts introduced in this paper for the purpose
of using finite methods to study infinite sets of representations.

Subsection 1.2 has a statement of the main results Theorem A and Corollary B.
In subsection 1.3 an outline of the proof of Theorem A is given using three lemmas
C, D, E.

Section 2 contains a discussion of “compartments”. Whereas the union of all the
walls D(β) divides Euclidean space Rn into possibly infinitely many “chambers”,
since we consider only finitely many walls, D(β) for β ∈ S, the complement of these
walls has only finitely many regions which we call “compartments”. In subsection
2.3 we prove Lemma D which describes the sequence of compartments in a maximal
S-green sequence.

The theory of pictures and picture groups is explained in Section 3. The main
theorem for pictures is the “Atomic Deformation Theorem” (Theorem 3.18) which
says that every picture for the picture group G(S) has an “atomic deformation”
to the empty picture, equivalently, any picture is equivalent to a disjoint union of
“atoms”. This idea comes from [23] where a similar theorem is proved leading to
results in topology. The Atomic Deformation Theorem is used to prove the last two
lemmas C and E completing the proof of the main result.

Section 4 is the Appendix which reviews the well-known properties of exceptional
sequences, real Schur roots and wide subcategories used in this paper.

1. Introduction. In this section we give the basic definitions used in this paper
which are the concepts of “vertical” (Def. 1.4) and “lateral” orderings (Def. 1.2)
of real Schur roots and “admissible” sequences of such roots (Def. 1.6). We define
“pictures” (Fig. 1) for the “picture group” G(S) for S (Def. 1.9) and we define
“maximal S-green sequences” (Def. 1.16). We also give the statements of the main
theorems A, B and an outline of the proofs using three lemmas about pictures C,
D, E. Corollary B is the special case of Theorem A for a hereditary algebra of finite
representation type with the admissible set of roots being all positive roots of the
root system. In this special case, we obtain a group theoretic description of all max-
imal green sequences. We believe that, using τ -tilting theory, analogous statements
can be obtained for any finite dimensional algebra in particular those which are
τ -tilting finite. However, in this paper, all quivers will be valued quivers without
oriented cycles, possibly of infinite type. See the Appendix for basic background
material on exceptional modules and real Schur roots.

1.1. Basic definitions. We assume that Q is a valued acyclic quiver and we always
consider subsets S of the set of positive real Schur roots of Q. The positive real
Schur roots are precisely the dimension vectors of the exceptional modules over
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any modulated quiver with underlying valued quiver Q [25]. We need to order the
roots, in these subsets S, in two different ways which we call “lateral” and “vertical”
ordering.

Notation 1.1. Let Q be a modulated quiver and β a positive real Schur root.

1. We will denote by Mβ the unique exceptional module with dimension vector
equal to β. Exceptional modules are always indecomposable.

2. A positive real Schur root β′ will be called a subroot of β if the exceptional
module Mβ′ is isomorphic to a submodule of Mβ . This is denoted by β′ ⊂ β.

3. A positive real Schur root β′′ will be called a quotient root of β if the excep-
tional module Mβ′′ is isomorphic to a quotient of Mβ . This is denoted by
β � β′′.

Definition 1.2. By a lateral ordering ≤ on a set of real Schur roots S we mean a
total ordering on S satisfying the following for any α, β ∈ S.

1. If hom(α, β) 6= 0 then α ≤ β, where hom(α, β) = dimK HomΛ(Mα,Mβ).
2. If ext(α, β) 6= 0 then α > β, where ext(α, β) = dimK ExtΛ(Mα,Mβ).

Remark 1.3. We now state several basic facts and some examples of S with lateral
ordering and some S which do not admit such ordering.

1. If S has lateral ordering then for all α, β ∈ S, either hom(α, β) = 0 or
ext(α, β) = 0.

2. The left-to-right order of preprojective roots as they occur in the Auslander-
Reiten quiver, together with any ordering on the summands of the middle
term of each almost split sequence, is a lateral ordering. (This is any total
ordering on this set of roots so that α < β whenever there is a irreducible map
Mα →Mβ .)

3. The set af all regular roots does not admit a lateral ordering.
4. The simple roots can always be laterally ordered by taking αi < αj whenever

there is an arrow j → i in the quiver.
5. If ω is a rightmost root in S in lateral order then ext(β, ω) = 0 for all β ∈ S

and hom(ω, β′) = 0 for all β′ 6= ω ∈ S.
6. Any subset of a laterally ordered set of roots is laterally ordered with the same

ordering.

Definition 1.4. A sequence of real Schur roots S = (β1, · · · , βm) is said to be
vertically ordered if the following two conditions are satisfied for each βk ∈ S.

1. Let β′ ⊂ βk be any (positive real Schur) subroot of βk. Then β′ = βj for some
j ≤ k.

2. Let β′′�βk be a (positive real Schur) quotient-root of βk. Then β′′= βj for
some j ≤ k.

The sequence S is weakly vertically ordered if, for each βk ∈ S, at least one of the
above two conditions is satisfied.

Remark 1.5. A finite set of positive real Schur roots which is closed under subroots
and quotient roots can be vertically ordered if the roots are ordered by length, and
the roots of the same length are ordered in any way.

Definition 1.6. Let S be a finite set of positive real Schur roots.

1. S is called admissible if it has a lateral and a vertical ordering
2. S is called weakly admissible if it has a lateral ordering and a weakly vertical

ordering
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3. an admissible sequence is an admissible set listed in its vertical ordering
4. a weakly admissible sequence is a weakly admissible set listed in its weakly

vertical ordering

Remark 1.7. Let (β1, . . . , βm) be an admissible sequence (of positive real Schur
roots). The following will be crucial for the induction steps in the proofs.

1. If one of the βi’s is removed, the sequence (β1, . . . β̂i . . . , βm) is a weakly ad-
missible sequence (not necessarily admissible sequence).

2. If the last element βm is removed then the resulting sequence will still be an
admissible sequence.

“Semi-invariant pictures”. These groups were defined using all positive roots (the
algebras were of finite representation type). We now give a more general definition
of “picture groups”, using admissible subsets of positive real Schur roots for all
finite dimensional hereditary algebras.

Definition 1.8. Let S be an admissible set of (positive real Schur) roots. We will
call a subset R ⊆ S relatively closed if R is closed under extensions in S.

Relatively closed subsets R ⊂ S of admissible sets, have “picture groups”, which
we now define.

Definition 1.9. For any relatively closed subsetR ⊆ S of an admissible set of roots
S, we define the picture group G(R) as follows. There is one generator x(β) for
each β ∈ R. There is the following relation for each pair βi, βj of hom-orthogonal
roots with ext(βi, βj) = 0:

x(βi)x(βj) =
∏

x(γk) (1)

where γk runs over all roots in R which are linear combinations γk = akβi +
bkβj , ak, bk ∈ Z≥0 in increasing order of the ratio ak/bk (going from 0/1 where
γ1 = βj to 1/0 where γk = βi). In particular, x(α), x(β) commute when α, β
are both hom-orthogonal and ext-orthogonal. For any g ∈ G(R), we define a
positive expression for g to be any word in the generators x(β) (with no x(β)−1

terms) whose product is g.

Remark 1.10. (a) Note that G(R) is independent of the choice of S. However, the
existence of an admissible S containing R is important. Also, by the well-known
Theorem 4.8, each γk = akβi + bkβj has βi as a subroot and βj as a quotient root
if βi, βj are hom-orthogonal with ext(βi, βj) = 0.

(b) Whenever R ⊂ R′ are relatively closed subsets of an admissible set S we get
a homomorphism of groups G(R)→ G(R′) since any relation among the generators
of G(R) is also a relation among the corresponding generators of G(R′).

(c) Definition 1.9 is a generalization of the notion of “picture groups” for hered-
itary artin algebras of finite representation type as defined in [27]. Indeed, the
picture group G(Λ) for such an algebra is, by definition, equal to the picture group

G(Φ+(Λ)) for the set Φ+(Λ) of all positive roots of Λ. These roots are vertically or-
dered by dimension and laterally ordered by their position in the Auslander-Reiten
quiver of Λ, i.e., there exists a lateral ordering so that, for any irreducible map
Mα →Mβ , α < β in lateral order.

Definition 1.11. Given S admissible, we define the Coxeter element cS of G(S) to
be the product of the generators x(αi) for all simple roots αi ∈ S in lateral order,
i.e., so that αi < αj whenever there is an arrow i← j in the quiver of the algebra.
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Remark 1.12. As an element of the picture group G(S), this product cS =
∏
x(αi)

is independent of the choice of the lateral ordering. This is because one can pass from
any lateral ordering to any other by transposing consecutive generators x(αi), x(αj)
when there is no arrow between them in the quiver. But in that case, x(αi), x(αj)
commute. So, the product remains invariant.

Example 1.13. Consider the quiver of type A3 with straight orientation: 1← 2←
3. The Auslander-Reiten quiver, with modules on the left and corresponding roots
on the right is:

P3

  

α6

!!
P2

!!

==

I2

  

α4

==

!!

α5

!!
S1

>>

S2

>>

S3 α1

==

α2

==

α3

The set S = (α1, α2, α4, α3) is vertically ordered since the subroot α1 and quotient
root α2 of α4 come before it. The set S is admissible since it also has a lateral or-
dering α1 < α4 < α2 < α3. The subsequence S ′ = (α1, α4, α3) is weakly admissible.
Also, S ′ is relatively closed in S since the missing element is simple.

The picture group G(S) has four generators x(α1), x(α2), x(α3), x(α4) and four
relations given by the four pairs of hom-orthogonal roots:

1. x(α1)x(α2) = x(α2)x(α4)x(α1) from the extension α1 � α4 � α2.
2. x(α2)x(α3) = x(α3)x(α2) since the extension α5 of α2 by α3 is not in S.
3. x(α1)x(α3) = x(α3)x(α1) since α1, α3 do not extend each other.
4. x(α4)x(α3) = x(α3)x(α4) since α6 /∈ S.

Thus x(α3) is central. (This follows from the fact that α3 is last in both vertical
and lateral orderings.) The picture group G(S ′) has generators x(α1), x(α3), x(α4)
modulo the relation that x(α3) is central. The Coxeter element of G(S) is

cS = x(α1)x(α2)x(α3).

Remark 1.14. If βi, βj are hom-orthogonal and βi < βj in lateral order then

x(βi)x(βj) = x(βj)w

where w is a positive expression in letters γ where βi ≤ γ < βj in lateral order since
hom(βi, γ) 6= 0 and hom(γ, βj) 6= 0 when γ 6= βi.

An important case is when j = m, the size of S. For βi, βm hom-orthogonal we
get

x(βi)x(βm) = x(βm)x(βi).

since the other roots γk in the formula above would come after βm so do not lie in
S.

We recall that, for all roots β, there is a unique exceptional module Mβ with
dimension vector β. The subset D(β) ⊆ Rn is given by

D(β) = {x ∈ Rn : 〈x, β〉 = 0 and 〈x, β′〉 ≤ 0 ∀β′ ⊂ β}

where β′ ⊂ β means that Mβ contains an exceptional submodule isomorphic to
Mβ′ . The inner product 〈x, β〉 is the weighted dot product 〈x, β〉 =

∑
xibifi where

xi, bi are the ith coordinates of x, β and fi = dimK End(Si) where Si is the ith
simple module. So, D(β) does not contain points in Rn all of whose coordinates are
positive (or negative). For more details see Appendix 4.
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Theorem 4.1 in the Appendix proves that D(β) has the following equivalent
description.

D(β) = {x ∈ Rn : 〈x, β〉 = 0 and 〈x, β′′〉 ≥ 0 ∀β′′ � β}

where β′′ � β means that Mβ has an exceptional quotient module isomorphic to
Mβ′′ .

Given S a weakly admissible sequence of roots, let CL(S) ⊂ Rn denote the
union of D(β) for all β ∈ S. Since this set is invariant under scaling in the sense
that λCL(S) = CL(S) for all λ > 0, we usually consider just the intersection
L(S) := CL(S) ∩ Sn−1. The semi-invariant picture for G(S) is defined to be this

set L(S) ⊂ Sn−1 together with the labels of its walls by positive roots and the
normal orientation of each wall D(β) telling on which side the vector β lies. When
n = 3, we draw the stereographic projection of this set onto the plane. (Projecting
away from the negative octant. See Figures 1 and 2.)

Definition 1.15. Given S = (β1, · · · , βm) weakly admissible and ε = (ε1, · · · , εm) ∈
{0,+,−}m.

1. Define Uε to be the convex open set given by

Uε = {x ∈ Rn : 〈x, βi〉 > 0 if εi = + and 〈x, βj〉 < 0 if εj = −}.

2. ε will be called admissible (with respect to S) if for all 1 ≤ k ≤ m we have:

εk = 0 ⇐⇒ D(βk) ∩ Uε1,··· ,εk−1
= ∅.

3. When ε is admissible the open set Uε will be called an S-compartment. See
Fig. 1, 2.

In Proposition 2.1 below we show that, for S weakly admissible, each compart-
ment Uε is open and convex and these regions form the components of the comple-
ment of CL(S) in Rn.

Definition 1.16. For any weakly admissible S, we define a maximal S-green sequence

(of length s) to be a sequence of S-compartments Uε(0), · · · ,Uε(s) satisfying the fol-
lowing.

1. Every pair of consecutive compartments Uε(i−1),Uε(i) is separated by a wall
D(βki) so that ε(i − 1)ki = − and ε(i)ki = + and ε(i − 1)j = ε(i)j for all
j < ki.

2. Uε(0) is the compartment containing vectors all of whose coordinates are neg-
ative.

3. Uε(s) is the compartment containing vectors all of whose coordinates are pos-
itive.

We say that (Uε) is an S-green sequence if only the first condition is satisfied. We
define an S-green path representing the S-green sequence (Uε) to be a continuous
path, γ : R→ Rn, so that, for some t1 < t2 < · · · < ts we have the following

1. γ(t) ∈ Uε(0) when t < t1
2. γ(t) ∈ Uε(s) when t > ts
3. γ(t) ∈ Uε(i) for 0 < i < s whenever ti < t < ti+1

4. For 1 ≤ i ≤ s, γ(t) goes from the negative side to the positive side of D(βki)
for some βki ∈ S when t crosses the value ti.

The word “maximal” may be misleading. (See Figure 2.)
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D(α1) D(α2)

D(α4)

U+−0 U++0 U−++ U−+−

U−−0

D(α3)

U+−0− U++0− U−++− U−+−−

U−−0+

U+−0+

U++0+ U−+++

U−+−+

U−−0−

Figure 1. On the left is the semi-invariant picture L(S0) for the
admissible subsequences S0 = (α1, α2, α4) of S from Example 1.13.
L(S0) is a subset of S2 ⊂ R3. Thus, e.g., D(αi) are actually coor-
dinate hyperplanes. The S0-compartments are the components of
the complement of L(S0). For example, U++0 = U++ is the region
on the positive side of the two hyperplanes D(α1), D(α2). U−++ is
the set of point in U−+ on the positive side of D(α4). On the right,
the wall D(α3) cuts all five S0-compartments in half giving the
semi-invariant picture for S = (α1, α2, α4, α3) with ten compart-
ments.

D(α1)

D(α4)

D(α3)

U+0− U−+−

U−−−

U+0+

U−++

U−−+

Figure 2. Semi-invariant picture L(S ′) for the weakly admissible
sequence S ′ = (α1, α4, α3) from Example 1.13. The solid green
arrow indicates an S ′-green path giving the maximal S ′-green se-
quence U−−−,U+0−,U+0+. Note that the dashed green arrow indi-
cates another S ′-green path giving the maximal S ′-green sequence
U−−−,U−+−, U+0−,U+0+. So, “maximal” is a misnomer when S ′
is only weakly admissible. Also, L(S ′) is not a “planar picture” for
G(S ′) as defined in Section 3 since S ′ is not admissible.

Remark 1.17. The green arrow in Figure 2 is an example of a “Coxeter path”
which is given more generally as follows. Let S be an admissible set of roots. Let
α1, · · · , αk be the simple roots in S in any lateral order. In other words, any arrow
between the corresponding vertices in the quiver go from αj to αi only when i < j.
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Also, all roots in S have support at these vertices by definition of an admissible set.
The corresponding Coxeter path is defined to be the linear path γ : R→ Rn

γ(t) = (t, t, · · · , t)−
∑

jαj .

This path crosses the hyperplanes D(αi) at time t = i (in the order α1, α2, · · · ) and
it passes from the negative to the positive side of each hyperplane.

Also, this path is disjoint from all other walls D(β) for β ∈ S not simple. To see
this, suppose γ(t0) ∈ D(β). Then

〈γ(t0), β〉 = 0 =
∑

(t0 − j)fjbj .

So, some of the coefficients t0−j are positive and some are negative with the positive
ones coming first, say t0 − 1, t0 − 2, · · · , t0 − p positive and the rest negative. In
that case β′ = b1α1 + b2α2 + · · ·+ bpαp is a sum of subroots of β, but 〈γ(t0), β′〉 > 0
which contradicts the assumption that γ(t0) ∈ D(β). So, the Coxeter path does
not meet any D(β) for β ∈ S not simple. Thus, the Coxeter path is an S-green
path. Since the coordinates of γ(t) are all negative for t << 0 and all positive
for t >> 0, this green path gives a maximal S-green sequence which we call the
Coxeter green sequence. The product of the group labels on the walls crossed by
this green sequence form the Coxeter element cS = x(α1)x(α2) · · ·x(αk) ∈ G(S).

1.2. Statement of the main results. The main property of Uε ⊂ Rn is that it is
convex and nonempty when S is weakly admissible and ε is admissible with respect
to S (Proposition 2.1). Furthermore, when S is admissible, the complement of the
union of these regions forms a “picture” for the picture group G(S). The precise
statement is as follows.

Theorem 1.18. When S is admissible, each S-compartment Uε can be labelled with
an element of the picture group g(ε) ∈ G(S) so that, if Uε and Uε′ are separated by
a wall D(β), β ∈ S, with Uε′ on the positive side of D(β), then

g(ε)x(β) = g(ε′). (2)

Note that, given any system of compartment labels g(ε) satisfying (2), left mul-
tiplication of all labels by a fixed element of G(S) will preserve the condition.
Therefore, we may, without loss of generality, assume that g(ε) = 1 on the negative
S-compartment Uε where all εi are negative or zero. Theorem 1.18 follows from the
following lemma.

Lemma 1.19. For S weakly admissible, every S-compartment Uε lies in a maximal
S-green sequence given by an S-green path.

Proof. Given any S-compartment Uε, choose a general point v ∈ Uε and consider
the straight line f(t) = v + (t, t, · · · , t), t ∈ R. This line passes though walls D(β)
only in the positive direction since

〈(1, 1, · · · , 1), β〉 > 0

for all positive roots β. Thus f(t) is an S-green path giving an S-green sequence.
For t >> 0, the coordinates of f(t) are all positive. For t << 0, they are all
negative. Therefore f(t) gives a maximal S-green sequence passing through the
S-compartment Uε at t = 0.

Proof of Theorem 1.18. Given an S-compartment Uε choose an S-green path
through Uε as in the lemma above. Let g(ε) be the product of labels x(βi) for



3040 KIYOSHI IGUSA AND GORDANA TODOROV

the walls crossed by this path on the way to Uε. Condition (2) will be satisfied. We
only need to show that g(ε) is well defined. To do this suppose we have two S-green
paths γ, γ′ from the negative compartment to Uε. Since Rn is contractible these
paths are homotopic. The homotopy gives a mapping of h : [0, 1]2 → Rn. Make
this a smooth mapping transverse to CL(S).

Since each wall D(β) is contained in the hyperplane H(β), CL(S) is contained in
the union of these hyperplanes. The intersection of two hyperplanes has codimension
2. Since S is finite, there are only finitely many such subspaces. We ignore the other
intersections which have higher codimension. By transversality, the homotopy h will
only meet these codimension 2 subspaces at a finite number of points. Let x0 ∈ Rn
be one these points and let B be the set of all β ∈ S so that x0 ∈ D(β). Let A be
the set of minimal elements of B, i.e., the set of all α ∈ B so that no subroot of α
lies in B.

Then A has at most two elements since, otherwise, by Proposition 4.3, the in-
tersection of D(α) for α ∈ A has codimension ≥ 3. If A has only one element then
A = B. In that case, the wall crossing sequence is unchanged when the path is de-
formed past x0. The remaining case is when A has two elements: A = {α1, α2}. By
Corollary 4.9, the other elements of B are positive linear combinations β = xα1+yα2

and D(β) lies on the negative side of D(α1) and the positive side of D(α2) since
α1 ⊂ β implies 〈v, α1〉 ≤ 0 for all v ∈ D(β). This means that, on one side of x0, the
S-green path goes through D(α1) followed by D(α2) and on the other side, it goes
through D(α2), then, being on the positive side of D(α2) and on the negative side
of D(α1) it goes through D(β) for β ∈ B. (See Figure 3.) This sequence of wall
crossings gives the same element of the picture group. So, the group label g(ε) is
independent of the path. This proves the theorem.

D(α2)

D(α1)
D(α2)

D(α1)

D(β)

x0

hγ γ′

Figure 3. A typical intersection of two walls D(α1) and D(α2)
producing walls D(βi). In this drawing there is only β =
α1 + α2. The green path γ crosses D(α1), D(α2) and γ′ crosses
D(α2), D(β), D(α1). The homotopy h : γ ' γ′ passes through x0.

Lemma 1.20. Take any maximal S-green sequence for S admissible and consider
the sequence of walls D(βk1), · · · , D(βks) which are crossed by the sequence. Then
the product of the corresponding generators x(βki) ∈ G(S) is equal to the Coxeter
element cS ∈ G(S):

x(βk1) · · ·x(βks) =
∏

x(αi).
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Proof. Use Theorem 1.18 with the group element g(ε) = 1 on the negative S-
compartment. Then the group label on the positive S-compartment is equal to
the product of the positive expression associated to any maximal S-green sequence.
By Remark 1.17, any Coxeter path gives the Coxeter element. Therefore, every
maximal S-green sequence gives a positive expression for the Coxeter element of
G(S).

Lemma 1.20 can be rephrased as follows. Any maximal S-green sequence gives
a positive expression for cS by reading the labels of the walls which are crossed
by the sequence. The main theorem of this paper is the following theorem and its
corollary.

Theorem A. Suppose that S is an admissible set of roots. Then, the operation
described above gives a bijection:

{maximal S-green sequences}
∼=−→ {positive expressions for cS in G(S)}

It is clear that distinct maximal S-green sequences give distinct positive expres-
sions. Therefore, it suffices to show that every positive expression for cS can be
realized as a maximal S-green sequence.

Recall from Remark 1.10(c) that, for Λ a hereditary artin algebra of finite rep-
resentation type, the set Φ+(Λ) of positive roots of Λ forms an admissible set and
that the picture group of Λ is equal to the picture group of S = Φ+(Λ). This leads
to the following corollary.

Corollary B. For Λ any hereditary artin algebra of finite representation type, there
is a bijection between the set of maximal green sequences for Λ and the set of positive
expressions for the Coxeter element cQ = x(α1) · · ·x(αn) in G(Λ) = G(Φ+(Λ)).

1.3. Outline of proof of Theorem A. The proof is by induction on m, the size of
the finite set S. If m = 1, the root β1 must be simple. So, the group G(S) is infinite
cyclic with generator x(β1) which is equal to cS . There are two compartments
U1,U−1 separated by the single hyperplane D(β1) = H(β1). And U−,U+ is the
unique S-green sequence. The associated positive expression is x(β1) which is the
unique positive expression for cS . So, the result holds for m = 1. Thus, we may
assume that m ≥ 2 and the theorem holds for the admissible sequence of roots
S0 = (β1, · · · , βm−1).

Remark 1.21. One key property of the last element βm in an admissible sequence
S is that, for β 6= βm in S, x(β) commutes with x(βm) if and only if β is hom-
orthogonal to βm. The reason is that there is a formula for the commutator of
two roots if and only if they are hom-orthogonal and, in that case, the commutator
is a product of extensions of these roots. But any extension comes afterwards in
admissible (vertical) order, so any extension of βm will not be in the set S.

Lemma 1.22. There is a surjective group homomorphism

π : G(S) � G(S0)

given by sending each x(βi) ∈ G(S) to the generator in G(S0) with the same name
when i < m and sending x(βm) to 1.

Proof. By Remark 1.21 there are only two kinds of relations in G(S) involving
x(βm):

1. Commutation relations: [x(βm), x(βj)] = 1 when βm, βj are hom-orthogonal.
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2. Relations in which x(βm) occurs only once:

x(βi)x(βj) = x(βj) · · ·x(βm) · · ·x(βi).

In both cases, when x(βm) is deleted, the relation in G(S) reduces to a relation in
G(S0) (or to the trivial relation x(βj) = x(βj) in Case 1). Thus, G(S0) is given by
G(S) modulo the relation x(βm) = 1.

Suppose m ≥ 2 and βm is simple, say βm = αk the kth simple root. Then, since
S is admissible, all previous roots βj , j < m have support disjoint from αk. Then
x(βm) is central and G(S) is the product G(S) = G(S0) × Z where the Z factor
is generated by x(βm). Thus a positive expression for cS is given by any positive
expression for xS0 with the letter x(βm) inserted at any point.

Each S0-compartment Uε is the inverse image in Rn of a compartment for S0 in
Rn−1. Thus, any S-maximal green sequence will pass through these walls giving a
maximal S0-green sequence and must, at some point, pass from the negative side
of the hyperplane D(βm) to its positive side. (See Figure 1 for an example.) By
induction on m, this S0-maximal green sequence is any positive word for cS0 and
the crossing of D(βm) inserts x(βm) at any point. This describes all words for cS .
So, the theorem holds in this case.

Now suppose βm is not simple. Then S,S0 have the same set of simple roots. So,
π(cS) = cS0 . Suppose that w is a positive expression for cS in G(S). Let π(w) = w0

be the positive expression for cS0 in G(S0) given by deleting every instance of the
generator x(βm) from w. By induction on m, there exists a unique maximal S0-
green sequence Uε(0), · · · ,Uε(s) which realizes the positive expression w0. These fall
into two classes.

Class 1. Each S0-compartment Uε(i) in the maximal S0-green sequence is disjoint
from D(βm).

For maximal S0-green sequences in this class, each Uε(i) = Uε′(i) where ε′(i) =
(ε1, · · · , εm) with εm = 0 and ε(i) = (ε1, · · · , εm−1). Therefore, the maximal S0-
green sequence Uε(i) is also a maximal S-green sequence and w0 = w by the following
lemma proved in subsection 3.5. So, the positive expression w is realized by a
maximal S-green sequence.

Lemma C. Let w,w′ be two positive expressions for the same element of the group
G(S). Suppose π(w) = π(w′), i.e., the two expressions are identical modulo the gen-
erator x(βm). Then x(βm) occurs the same number of times in w,w′. In particular,
x(βm) 6= 1 in G(S).

In the case at hand, w′ = w0 does not contain the letter x(βm). So, neither does
w and we must have w = w0 as claimed. So, by Lemma C, the theorem hold when
w0 = π(w) corresponds to a maximal S0-green sequence of Class 1.

Class 2. At least one S0-compartment in the S0-green sequence meets D(βm).
For green sequences in this class, the S0-compartments which intersect D(βm)

are consecutive:

Lemma D. Let Uε(0), · · · ,Uε(s) be a maximal S0-green sequence. Then

1. The S0-compartments Uε(i) which meet D(βm) are consecutive, say Uε(p), · · · ,
Uε(q).

2. Let D(βki) be the wall between Uε(i−1) and Uε(i) so that w0 = x(βk1) · · ·x(βks).
Then βm is hom-orthogonal to βki for p < i ≤ q but not hom-orthogonal to
βkp , βkq+1 .
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3. For p < i ≤ q and δ ∈ {+,−}, D(βki) is also the wall separating Uε(i−1),δ and
Uε(i),δ.

Lemma D tells us: (1) The S0-compartments Uε(r) for p ≤ r ≤ q are divided into
two S-compartments by the wall D(βm). (3) The wall separating consecutive S0-
compartments Uε(r),Uε(r+1) for p ≤ r < q also separate the pairs of S-compartments
Uε(r),−,Uε(r+1),− and Uε(r),+,Uε(r+1),+. (See Figure 4.)

So, we can refine the maximal S0-green sequence to a maximal S-green sequence,
by staying on the negative side of D(βm) until we reach the S-compartment Uε(r),−
for some p ≤ r ≤ q, then cross through D(βm) into Uε(r),+ and continue in the
given S0-compartments but on the positive side of D(βm). This gives the maximal
S-green sequence

Uε(0),0, · · · ,Uε(p−1),0,Uε(p),−, · · · ,Uε(r),−,Uε(r),+, · · · ,Uε(q),+,Uε(q+1),0, · · · ,Uε(s),0
of length s+ 1 giving the positive expression

wr = x(βk1) · · ·x(βkp) · · ·x(βkr )x(βm)x(βkr+1
) · · ·x(βkq ) · · ·x(βks).

By the defining relations in the groupG(S), the generators x(β) and x(βm) commute
if β is hom-orthogonal to βm. By (3) in the lemma this implies that wr is a positive
expression for cS if p ≤ r ≤ q. We have just shown that each such wr is realizable
by a maximal S-green sequence. So, it remains to show that the positive expression
w that we started with is equal to one of these wr.

By Lemma C, x(βm) occurs exactly once in the expression w. We need to show
that, if the generator x(βm) occurs in the “wrong place” then w is not a positive
expression for cS , in other words, the product of the elements of w is not equal to
cS . This follows from the following lemma proved in subsection 3.5.

Lemma E. Let

R(βm) = {βi ∈ S0 : hom(βi, βm) = 0 = hom(βm, βi)}.

Let βj1 , · · · , βjs be elements of S0 which do not all lie in R(βm). Then x(βm),∏
x(βji) do not commute in the group G(S).

By part (2) of Lemma D, βkr ∈ R(βm) if p < r ≤ q and βkp , βkq+1 /∈ R(βm). So,
this lemma implies that wr is a positive expression for cS if and only if p ≤ r ≤ q.
So, we must have w = wr for one such r and w is realizable. This concludes the
outline of the proof of the main theorem. It remains only to prove the three lemmas
C, D, E invoked in the proof.

Remark 1.23. The number of times a maximal S-green sequences crosses D(βm)
is at most one. In Class 1, the number is zero by definition. In Class 2, the number
is one as explained in detail above assuming Lemmas C, D, E. It follows that any
maximal S-green sequence crosses any wall D(βk) for βk ∈ S at most once since
βk will be the last element of the subsequence R = (β1, · · · , βk) of S (which is
admissible by Remark 1.7) and any maximal S-green sequence gives a maximal
R-green sequence which crosses D(βk) the same number of times. It follows that
any maximal S-green sequence has length at most equal to the size of S. Since S
is finite, it follows that there are only finitely maximal S-green sequences.

2. Properties of compartments Uε. We derive the basic properties of the com-
partments Uε and prove Lemma D. The basic property is the following.
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Proposition 2.1. For all weakly admissible S and all admissible ε the S-compart-
ment Uε is convex and nonempty. When εm 6= 0, or equivalently, when D(βm) ∩
Uε1,··· ,εm−1

is nonempty, the boundary of D(βm) does not meet Uε1,··· ,εm−1
. Equiv-

alently,

D(βm) ∩ Uε1,··· ,εm−1
= H(βm) ∩ Uε1,··· ,εm−1

.

Consequently, the S-compartments form the components of the complement of
CL(S) in Rn.

Proof. When m = 1, β1 is simple and D(β1) = H(β1) is a hyperplane whose
complement has two convex components U+,U−. So, the proposition holds for
m = 1. Now, suppose m ≥ 2 and all statements hold for m − 1. Let S0 = S\βm.
This a weakly admissible sequence of roots. So, the S0-components Uε are convex
and open and their union is the complement of CL(S0).

Since S is weakly admissible, it either contains all subroots of βm or it contains
all quotient roots of βm. By symmetry we assume the first condition. Let ε =
(ε1, · · · , εm−1) be admissible of length m − 1. If (ε, 0) is admissible for S then
Uε,0 = Uε. Otherwise, Uε meets D(βm). In that case Uε ∩ ∂D(βm) must be empty
since any element x0 ∈ ∂D(βm) must be an element of D(β′) for some proper
subroot β′ ( βm. By assumption, β′ ∈ S0. So, x0 ∈ CL(S0). This gives a
contradiction since Uε is disjoint from CL(S0) by induction on m. Therefore, Uε
is divided into two convex open sets Uε,+ and Uε,− separated by D(βm). So the
S-compartments fill up the complement of CL(S0) ∪D(βm) = CL(S).

2.1. Inescapable regions. For S0 weakly admissible, let V be the closure of the
union of some set of S0-compartments Uε. Then V has internal and external walls.
The internal walls of V are the ones between two of the compartments Uε,Uε′ in V.
V has points on both sides of the internal walls. The external walls of V are the
ones which separate V from its complement. The region V will be called inescapable
if it is on the positive side of all of its external walls. I.e., they are all red on the
inside. Once an S0-green sequence enters such a region, it can never leave. Since
V is closed, it contains all of its internal and external walls. We also consider open
regions W which are inescapable regions minus their external walls. Then W is the
complement of the closure of the union of all compartments not in W.

Given an admissible sequence S with last object βm which we assume to be
nonsimple, let S0 = (β1, · · · , βm−1). Recall that this is also admissible. We will
construct two inescapable regions W(βm),V(βm) where the first is open and the
second is closed. All maximal S0-green sequences start outside both regions, end
inside both regions and fall into two classes: those that enter W(βm) before they
enter V(βm) and those that enter V(βm) before they enter W(βm). And these
coincide with the two classes of maximal S0-green sequences discussed in the outline
of the main theorem (Corollary 2.5 below).

The first inescapable region is the open set

W(βm) := {x ∈ Rn : 〈x, α〉 > 0 for some α ( βm}.

For example, on the left side of Figure 1, m = 3 andW(β3) is the interior of D(α1).

Proposition 2.2. The complement of W(βm) in Rn is closed and convex. Fur-
thermore:

W(βm) ∩H(βm) = H(βm)−D(βm). (3)
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Proof. The complement of W(βm) is

Rn\W(βm) = {x ∈ Rn : 〈x, α〉 ≤ 0 for all α ( βm}
which is closed and convex since it is given by closed convex conditions 〈x, α〉 ≤ 0.

For the second statement, suppose that v ∈ H(βm). Then 〈v, βm〉 = 0. By the
stability conditions which we are using to define D(βm), v ∈ D(βm) if and only if
〈v, α〉 ≤ 0 for all α ⊂ βm, in other words,

D(βm) = H(βm) ∩ (Rn\W(βm))

which is equivalent to (3).

Proposition 2.3. The region W(βm) is inescapable. I.e., all external walls are
red. Furthermore, each external walls of W(βm) has the form D(α) for some α (
βm. Consequently, every S0-compartment is contained either in W(βm) or in its
complement.

Proof. Take any external wall D(α) of W(βm). Let vt be a continuous path which
goes through that wall from inside to outside. In other words, vt ∈ W(βm) for t < 0
and vt /∈ W(βm) for t ≥ 0. By definition of W(βm) this means that there is some
α′ ( βm so that 〈vt, β〉 changes sign from positive to nonpositive at t goes from
negative to nonnegative.

By choosing vt in general position, v0 will not lie in H(α′) for any α′ 6= α.
So, we must have α ( βm. And 〈vt, α〉 > 0 for t < 0 and 〈vt, α〉 < 0 for t > 0.
Therefore,W(βm) is on the positive (red) side of the external wall D(α). So,W(βm)
is inescapable.

Since each part of the boundary lies in D(α) for some α ∈ S0, the boundary of
W(βm) is contained in the union of the boundaries of the S0-compartments. So, all
such compartments are either entirely insider or entirely outside W(βm).

The second inescapable region is the closed set

V(βm) = {y ∈ Rn : 〈y, γ〉 ≥ 0 for all quotient roots γ of βm}.
For example, on the left side of Figure 1, m = 3 and V(β3) is the closure of the
interior of D(α2). In Figure 4, V(βm) is the region enclosed by the large oval. By
arguments analogous to the ones above, we get the following.

Proposition 2.4. V(βm) is a closed convex inescapable region whose external walls
all have the form D(γ) where γ is a quotient root of βm. So, every S0-compartment
is contained in V(βm) or its complement. Furthermore,

V(βm) ∩H(βm) = D(βm).

2.2. Class 1 and Class 2 maximal S0-green sequences. Recall that a maximal
S0-green sequence with S0 = (β1, · · · , βm−1) is in:

1. Class 1 if each S0-compartment Uε(i) in the green sequence is disjoint from
D(βm).

2. Class 2 if at least one S0-compartment, say Uε(j), in the S0-green sequence
meets D(βm). So, Uε(j) is divided into two S-compartments Uε(j),− and
Uε(j),+. See Figure 4.

Corollary 2.5. A maximal S0-green sequence is in Class 1 if and only if it passes
through W(βm)\V(βm). It is in Class 2 if and only if it contains a compartment in

V(βm)\W(βm) = {x ∈ Rn : 〈x, α〉 ≤ 0 for all α ( βm and 〈x, γ〉 ≥ 0 for all βm � γ}.
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Uε(p)−

Uε(p)+

Uε(r)−

Uε(r)+

Uε(q)−

Uε(q)+

H(βm)

V(βm)

W(βm)

V0γ1
γ2D(βkp)

D(βkq+1
)

D(βm)

Figure 4. The green path γ1 is in Class 1 since it is disjoint from
D(βm). The green path γ2 is in Class 2 and passes through three
S0-compartments Uε(p),Uε(r),Uε(q) in V0 = int(V(βm)\W(βm)).
Each of these is divided into two S-compartments by the wall
D(βm) and γ2 passes through four of these S-compartments in V0.
D(βm) is the part of the hyperplane H(βm) inside the oval region
V(βm) and outside of W(βm).

Proof. Every maximal green sequence starts on the negative side of the hyperplane
H(βm) and ends on its positive side. Therefore the maximal S0-green sequence must
cross the hyperplane at some point. Since βm /∈ S0, none of the S0-compartments
has H(βm) as a wall. So, there must be one compartment in the S0-green sequences
which meets the hyperplane H(βm). Let Uε be the first such compartment. Then,
either Uε ∩D(βm) is empty or nonempty. In the first case, Uε is in W(βm) and it
is outside V(βm). Since W(βm) is inescapable and does not meet D(βm), the green
sequence is in Class 1. In the second case, Uε is in V(βm) and not inW(βm) and the
green sequence is in Class 2. So, these two cases correspond to Class 1 and Class 2
proving the corollary.

Recall that R(βm) is the set of all α ∈ S0 which are hom-orthogonal to βm. Let
V0 be the interior of the closed region V(βm)\W(βm). Thus

V0 := int(V(βm)\W(βm))

= {x ∈ Rn : ∀α ( βm 〈x, α〉 < 0 and 〈x, γ〉 > 0 ∀βm � γ, γ 6= βm}.

Proposition 2.6. For all α ∈ S0, α ∈ R(βm) if and only if D(α) ∩ V0 6= ∅.

Proof. Suppose that x ∈ D(α) ∩ V0 and hom(βm, α) 6= 0. Then there is a subroot
α′ of α which is also a quotient root of βm: βm � α′ ⊂ α. Since α ∈ S0 we cannot
have βm ⊂ α. Therefore α′ is a proper quotient of βm. Then 〈x, α′〉 > 0 since
x ∈ V0 and 〈x, α′〉 ≤ 0 since x ∈ D(α) and α′ ⊂ α. This is a contradiction. So,
hom(βm, α) = 0. A similar argument shows that hom(α, βm) = 0. So, α ∈ R(βm).

Conversely, if α ∈ R(βm) then α, βm span a rank 2 wide subcategory A(α, βm) of
mod-Λ. Choose any tilting object T in the left perpendicular category ⊥A(α, βm)
(for example the sum of the projective objects). Then the g-vector g(dimT ) lies
in the interior of both D(α) and D(βm) by Proposition 4.6 since Mα,Mβm are the
minimal objects in T⊥ = A(α, βm). So, g(dimT ) ∈ V0. So, D(α) meets V0.
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Corollary 2.7. The open region V0 contains no vertices of the semi-invariant pic-
ture L(S0).

Proof. Suppose that x0 ∈ V0 is a vertex of L(S0). By Theorem 4.5, we have a wide
subcategory W(x0) of all modules V so that x0 ∈ D(V ). Since x0 is a vertex of
L(S0), the wide subcategory W(x0) must have rank n− 1 and its minimal objects
must lie in S0, i.e., W(x0) = A(α1, · · · , αn−1) where αi ∈ S0.

By Proposition 2.6, each αi is hom-orthogonal to βm. This implies that α1, · · · ,
αn−1 together with βm form the minimal roots of a wide subcategory of rank n. By
Theorem 4.7 this must be all of mod-Λ. So, βm must be a simple root contrary to
our initial assumption. Therefore V0 contains no vertices of L(S0).

Corollary 2.8. Let α1, · · · , αk be pairwise hom-orthogonal elements of R(βm) then
the intersection D(α1) ∩ · · · ∩D(αk) ∩D(βm) ∩ V0 is nonempty.

Proof. More precisely, let A(α1, · · · , αk, βm) be the rank k+ 1 wide subcategory of
mod-Λ with simple objects Mαi

,Mβm
. Let T = T1 ⊕ · · · ⊕ Tn−k−1 be any cluster

tilting object of the cluster category of ⊥A(α1, · · · , αk, βm). Then the g-vector
g(dimT ) is a point in D(α1) ∩ · · · ∩ D(αk) ∩ D(βm) which lies in the interior of
D(βm). This can be proved by induction on k using the argument in the proof of
Proposition 2.6.

2.3. Proof of Lemma D. We will show that maximal S0-green sequences satisfy
the three properties listed in Lemma D.

Proposition 2.9. An S0-compartment Uε meets D(βm) if and only if Uε ⊆ V0.

Before proving this we show that this implies the first property in Lemma D.
Recall that this states:

D(1) In every maximal S0-green sequence in Class 2, the compartments which
meet D(βm) are consecutive.

Proof of D(1). Let Uε(i) be a maximal S0-green sequence. Let p, q be minimal so
that Uε(p) ⊆ V(βm) and Uε(q) ⊆ W(βm). When the green sequence is in Class
2, p < q. Since V(βm) is inescapable, Uε(i) ⊆ V(βm) iff p ≤ i. Since W(βm) is
inescapable, Uε(i) ⊆ V0 iff p ≤ i < q. So, the compartments of the green sequence
which lie in V0 are consecutive. By the proposition these are the compartments
which meet D(βm).

Proof of Proposition 2.9. Let Uε be an S0-compartment in V0. Let x ∈ Uε. If
〈x, βm〉 = 0 then x ∈ H(βm)∩V0 ⊂ D(βm) and we are done. So, suppose 〈x, βm〉 6=
0. Pick a point y ∈ D(βm) ∩ V0 and take the straight line from x to y. Since V0

is convex, this line is entirely contained in V0. If the line is not in Uε then it must
meet an internal wall D(α) on the boundary of Uε. By Proposition 2.6, α ∈ R(βm).

Let k be maximal so that the closure of Uε contains a point z ∈ D(α∗) =
D(α1)∩· · ·∩D(αk) where α1, · · · , αk ∈ R(βm) are pairwise hom-orthogonal. Then,
by Corollary 2.8, D(α∗)∩D(βm)∩V0 is nonempty. Let w be an element. SinceD(α∗)
and V0 are both convex, D(α∗)∩ V0 contains the straight line γ(t) = (1− t)z + tw,
0 ≤ t ≤ 1.

Let δ be a very small vector so that 〈δ, βm〉 = 0 and z + δ ∈ Uε. Consider the
line γ(t) + δ. This is in Uε for t = 0 and lies in D(βm) when t = 1. This proves the
proposition if γ(t) + δ ∈ Uε for all 0 ≤ t ≤ 1. So, suppose not. Let t0 be minimal
so that this open condition fails. Then the line γ(t) meets another wall at t = t0
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and γ(t0) will be a point in the closure of Uε which meets a codimension k + 1 set
D(α0) ∩D(α1) ∩ · · · ∩D(αk) where α0 ∈ S0 is hom-orthogonal to the other roots
αi. (Take α0 of minimal length among the new roots so that γ(t0) ∈ D(α0).) This
contradicts the maximality of k. So, there is no point t0 and γ(1) + δ ∈ Uε ∩D(βm)
as claimed.

We have already shown property (2) in Lemma D: Any maximal S0-green se-
quence of Class 2 crosses a wall D(γ) at some point to enter region V0, passes
through several internal walls of V0, then exists V0 by a wall D(α) of W(βm). By
Propositions 2.4, 2.3 γ is a quotient root of βm and α is a subroot of βm, both not
hom-orthogonal to βm. By Proposition 2.6 the internal walls of V0 are D(β) where
β ∈ R(βm). So, property (2) in Lemma D holds.

The last property we need to verify in Lemma D is the following.

D(3) Suppose that the two S0-compartments Uε(1) and Uε(2) meet along a common
internal wall D(βj). Then the S-compartments Uε(1),+,Uε(2),+ meet along the com-
mon internal wall D(βj) and the S-compartments Uε(1),−,Uε(2),− also meet along
D(βj).

Proof. Let S ′, S ′0 be S,S0 with βj deleted. Then S ′,S ′0 are weakly admissible.
Since βj /∈ S ′0, the two S0-compartments Uε(1) and Uε(2) merge to form one S ′0-
compartment Uε. This compartment meets D(βm) so it breaks up into two S ′-
compartments Uε,+ and Uε,−. We know that D(βj) must divide these two S ′-
compartments into four S-compartments since Uε(1), Uε(2) are both divided into
two parts by D(βm). Since S ′-compartments are convex by Proposition 2.1, this
can happen only if D(βj) meets both S ′-compartments and forms the common wall
separating the two halves of each.

3. Planar pictures and group theory. In this section we will use planar pictures
to prove the two properties of the group G(S) that we are using: Lemmas C and
E. The key tool will be the “sliding lemma” (Lemma 3.17) which comes from the
first author’s PhD thesis [17]. Unless otherwise stated, all pictures in this section
will be planar. We begin with a review of the topological definition of a (planar)
picture with special language coming from the fact that all relations in our group
G(S) are commutator relations. Since this section uses only planar diagrams, we
feel that theorems can be proven using diagrams and topological arguments. Al-
gebraic versions of these arguments using HNN extensions, geometric realizations
of categories and cubical CAT(0) categories can be found in other papers which
prove similar results for pictures of arbitrary dimension ([26], [19], [27]). The first
example of a picture group for a picture group of a Dynkin quiver appears in a
paper by Jean-Louis Loday [32] where the picture group for the quiver of type An
with straight orientation is constructed and the picture space (the K(π, 1) for the
picture group) is also constructed.

3.1. Planar pictures. Suppose that the group G has a presentation G = 〈X | Y〉.
This means there is an exact sequence

RY ↪→ FX � G

where FX is the free group generated by the set X and RY ⊆ FX is the normal
subgroup generated by the subset Y ⊆ FX . Then G is the fundamental group of a
2-dimensional CW-complex X2 given as follows. Let X1 denote the 1-dimensional
CW-complex having a single 0-cell e0, one 1-cell e1(x) for every generator x ∈ X
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attached on e0. Then π1X
1 = FX and any f ∈ FX gives a continuous mapping

ηf : S1 → X1 given by composing the loops corresponding to each letter in the
unique reduced expression for f . Here S1 = {z ∈ C : ||z|| = 1}, 1 ∈ S1 is the
basepoint and S1 is oriented counterclockwise.

Let X2 denote the 2-dimensional CW-complex given by attaching one 2-cell e2(r)
for every relations r ∈ Y using an attaching map

ηr : S1 → X1

homotopic to the one described above. We choose each mapping ηr so that it is
transverse to the centers of the 1-cells of X1. So, the inverse images of these center
points are fixed finite subsets of S1. The relation r is given by the union of these
finite sets, call it Er ⊂ S1, together with a mapping λ : Er → X ∪ X−1 indicating
which 1-cell the point goes to and in which direction the image of ηr traverses that
1-cell. Then we have:

r =
∏
x∈Er

λ(x) ∈ FX .

The circle S1 is the boundary of the unit disk D2 = {x ∈ C : ||x|| ≤ 1}. Let
CEr ⊂ D2 denote the cone of the set Er:

CEr :=
⋃
x∈Er

{ax ∈ D2 : 0 ≤ a ≤ 1}.

This is the union of the straight lines from all x ∈ Er to 0 ∈ D2.

*

z

x

x

y

Example:

r = x−1yxz

Figure 5. The cone of Er in D2 is the part inside the circle S1.
The asterisks ∗ indicates the position of the basepoint 1 ∈ S1. The
labels are drawn on the negative side of each edge.

A picture is a geometric representation of a continuous pointed mapping θ : S2 →
X2 where pointed means preserving the base point. A (pointed) deformation of a
picture represents a homotopy of such a mapping. Deformation classes of pictures
form a module over the group ring ZG.

Definition 3.1. Given a group G with presentation G = 〈X | Y〉 and fixed choices
of Er ⊂ S1, λ : E4 → X ∪X−1, a picture for G is defined to be a graph L embedded

in the plane R2 with circular edges allowed, together with:

1. a label x ∈ X for every edge in L,
2. a normal orientation for each edge in L,
3. a label r ∈ Y ∪ Y−1 for each vertex in L,
4. for each vertex v, a smooth (C∞) embedding θv : D2 → R2 sending 0 to v

satisfying the following where E(x) denotes the union of edges labeled x.

(a) Each E(x) is a smoothly embedded 1-manifold in R2 except possibly at the
vertices.
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(b) For each vertex v ∈ L, θ−1
v (E(x)) ⊆ CEr is equal to the cone of λ−1({x, x−1})

⊂ Er.
The image of 1 ∈ S1 under θv : D2 → R2 will be called the basepoint direction of v
and will be indicated with ∗ when necessary.

The embedding θv has positive, negative orientation when r ∈ Y, r ∈ Y−1,
respectively.

One easy consequence of this definition is the following.

Proposition 3.2. Given a picture L for G, there is a unique label g(U) ∈ G for
each component U of the complement of L in R2 having the following properties.

1. g(U∞) = 1 for the unique unbounded component U∞.
2. g(V ) = g(U)x if the regions U, V are separated by an edge labeled x and

oriented towards V .

Proof. For any region U , choose a smooth path from ∞ to any point in U . Make
the path transverse to all edge sets. Then let g(U) = xε11 · · ·xεmm if the path crosses
m edges labeled x1, · · · , xm with orientations given by εi. This is well defined since
any deformation of the path which fixes the endpoints and which pushes it through
a vertex will not change the product g(U) since the paths on either side of the
vertex have edge labels giving a relation in the group and therefore give the same
product of labels in the group G.

Remark 3.3. Any particular smooth path γ from U∞ to U gives a lifting fγ(U)
of g(U) to the free group FX .

It is well-known that the set of deformation classes of pictures for any group G
is a ZG-module P (G). (See Theorem 3.5 and Corollary 3.7 below.)

The action of the group G is very easy to describe. Given any picture L and any
generator x ∈ X , the pictures xL, x−1L are given by enclosing the set L with a large
circle, labeling the circle with x and orienting it inward or outward, respectively.
Addition of pictures is given by disjoint union of translates of the pictures.

To define the equivalence relation which we call “deformation equivalence” of
pictures, it is helpful to associate to each picture L an element ψ(L) ∈ ZG〈Y〉
where ZG〈Y〉 is the free ZG module generated by the set of relations Y. This is
given by

ψ(L) =
∑
vi

g(vi) 〈ri〉

where the sum is over all vertices vi of L, ri ∈ Y∪Y−1 is the relation at vi, g(vi) ∈ G
is the group label at the basepoint direction of vi and

〈
r−1
〉

= −〈r〉 by definition.

Definition 3.4. A deformation L0 ' L1 of pictures for G is defined to be a sequence
of allowable moves given as follows.

1. Isotopy. L0 ' L1 if there is an orientation preserving diffeomorphism ϕ :
R2 → R2 so that L1 = ϕ(L0) with corresponding labels. By isotopy we can
make the images of the embeddings θv : D2 → R2 disjoint and arbitrarily
small.

2. Smooth concordance of edge sets. There are two concordance moves:
(a) If L0 contains a circular edge E with no vertices and L0 does not have

any point in the region enclosed by E then L0 ' L1 where L1 is obtained
from L0 by deleting E.
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(b) If U is a connected component of R2−L0 and two of the walls of U have the
same label x oriented in the same way (inward towards U or outward)
then, choose a path γ in U connecting points on these two edges then
perform the following modification of L0 in a neighborhood of γ to obtain
L1 ' L0.

x

x

L0 :

γ ⇒
x

x

L1 :

3. Cancellation of vertices. Suppose that two vertices v0, v1 of L0 have inverse
labels r, r−1. Suppose that there is a path γ disjoint from L0 connecting the
basepoint directions of v0, v1. Let V be the union of the θv0(D2), θv1(D2) and
a small neighborhood of the path γ. We can choose V to be diffeomorphic to
D2. Then L0 ' L1 if L0, L1 are identical outside of the region V and L1 has
no vertices in V . (The two vertices in V ∩ L0 cancel.)

⇒∗ ∗
γ

x

z

y

x

z

y

L0 L1
x

z

y

x

z

y

Concordance means L0, L1 have the same vertex sets and are equal in a neigh-
borhood of each vertex and that fγi ∈ FX are equal for L0, L1 for some (and thus
every) choice of paths γi disjoint from vertices from∞ to the basepoint direction of
each vertex of L0. The same paths work for L1 since L0, L1 have the same vertex
set.

Theorem 3.5. [37][18, Prop 7.4] L0, L1 are deformation equivalent if and only if
ψ(L0) = ψ(L1). Furthermore, the set of possible values of ψ(L) for all pictures L
is equal to the kernel of the mapping

ZG〈Y〉 d2−→ ZG〈X 〉

where d2 〈r〉 =
∑
∂xr〈x〉, where ∂x is the Fox derivative of r with respect to x.

The Fox derivative of w ∈ FX is given recursively on the reduced length of w by

1. ∂x(x) = 1, ∂x(x−1) = −x−1.
2. ∂x(y) = 0 if y ∈ X ∪ X−1 is not equal to x, x−1.
3. ∂x(ab) = ∂xa+ a∂xb for any a, b ∈ FX .

Definition 3.6. The group of pictures P (G) is defined to be the group of defor-
mation classes of pictures for G.

Corollary 3.7. There is an exact sequence of ZG-modules

0→ P (G)→ ZG〈Y〉 d2−→ ZG〈X 〉 d1−→ ZG ε−→ Z→ 0

where d1

∑
ai 〈xi〉 =

∑
ai(xi − 1), ε : ZG → Z is the augmentation map and d2 is

as above.
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Remark 3.8. The chain complex ZG〈Y〉 d2−→ ZG〈X 〉 d1−→ ZG is the cellular chain

complex of the universal covering X̃2 of the 2-dimensional CW complex X2 con-

structed above. Since X̃2 is simply connected, we have

P (G) = H2(X̃2) = π2(X̃2) = π2(X2).

Therefore, P (G) = π2(X2) as claimed at the beginning of this subsection.

We also use “partial pictures”. These are given by cutting a picture in half using
a straight line transverse to the picture.

Definition 3.9. Let w be a word in X∪X−1 given by a finite subset W of the x-axis
in R2 together with a mapping W → X ∪ X−1. A partial picture with boundary
∂L = w is defined to be a closed subset L of the upper half plane so that the
intersection of L with the x-axis is equal to W together with labels on L so that the
union of L and its mirror image L− in the lower half plane is a picture for G and so
that the labels on the edges which cross the x-axis agree with the given mapping
W → X ∪ X−1. We call L ∪ L− the double of L.

L1 :

`1 `2

ba cx yz

r1

∗v1
∗

r2

v2 ⇒

`′1

L2 :

r1

c cc c

r2

∗

∗

Figure 6. On the left, L1 is a partial picture with ∂L1 =
abr1b

−1a−1cr2c
−1 where r1 = x−1y−1z and r2 are relations (or

inverse relations). L1 is the “standard partial picture” for q(L1) =
(ab, r1)(c, r2) ∈ Q(G). On the right is L2, a deformation of L1 with
∂L2 = cc−1∂L1. q(L2) = (c, r2)(cr−1

2 c−1ab, r1) since the vertex for
r2 is on the left and cr−1

2 c−1ab is given by reading the labels on
the dotted path `′1. Then q(L1) = q(L2) by (4).

A deformation of a partial picture L is defined to be any deformation of its double
in which vertices do not cross the x-axis and which are transverse to the x-axis at
the beginning and end of the deformation. (See Figure 6 for an example where the
deformation pushes the c curve through the x-axis producing the cancelling pair
cc−1 in the word for ∂L2.) It is clear that deformation of partial pictures preserves
its boundary ∂L = w as an element of the free group FX and that w lies in the
relation group RY ⊆ FX . The main theorem about partial pictures is the following.

Theorem 3.10. The set of deformation classes of partial pictures forms a (non-
abelian) group Q(G) given by generators and relations as follows.

1. The generators of Q(G) are pairs (f, r) where f ∈ FX and r ∈ Y.
2. The relations in Q(G) are given by

(f, r)(f ′, r′)(f, r)−1 = (frf−1f ′, r′)
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Note that there is a well defined group homomorphism

ϕ : Q(G)→ FX

given by ϕ(f, r) = frf−1. Then relation (2) can be written as

(f, r)(f ′, r′) = (ϕ(f, r)f ′, r′)(f, r). (4)

The image of ϕ is RY , the normal subgroup generated by all r ∈ Y. We use the
notation

(f, r−1) := (f, r)−1. (5)

This is compatible with the relations in Q(G) and with the homomorphism ϕ since

(f, r−1)(f ′, r′)(f, r) = (fr−1f−1f ′, r′)

and ϕ(f, r−1) = fr−1f−1 = ϕ(f, r)−1. We assume that the relations are irredun-
dant. So, Y, Y−1 will be disjoint.

The generators and relations for Q(G) first appeared in a paper by Renée Peiffer
[34]. For this reason, the relations (4) and (5), or rather the equivalent equation
(f, r)(f, r−1) = 1 are called Peiffer transformations of the first and second kind,
respectively [33].

Proof. Given a partial picture L for G = 〈X |Y〉, e.g. L1 in Figure 6, the corre-
sponding element q(L1) ∈ Q(G) is given as follows.

First, by a small deformation of the partial picture, we may assume that the
x-coordinates of the vertices of L are all distinct. Label the vertices v1, · · · , vn from
left to right (in order of increasing x-coordinates). From the basepoint direction of
vertex vi, draw a lines `i straight up. By a small deformation we can make the green
lines transverse to L. (These are dotted arrow `1, `2 in Figure 6.) At each vertex
vi left ri ∈ Y

∐
Y−1 be the relation at vi and let fi ∈ F be given by reading the

labels of the edges in L traversed by `i oriented towards vi. The resulting element
of Q(G) is

q(L) = (f1, r1) · · · (fn, vn).

In Figure 6, on the left, we have r1 = x−1y−1z (r2 is not given) f1 = ab, f2 = c.
This gives

q(L1) = (ab, x−1y−1z)(c, r2)

On the right the vertices are in the reverse order. So, (c, r2) comes first. The new
line `′1 traverses six edges of L2 giving (cr−1

2 c−1ab, r1). So, the element of Q(G)
associated to L2 is

q(L2) = (c, r2)(cr−1
2 c−1ab, r1).

By (4) we see that q(L1) = q(L2) ∈ Q(G).

Claim 1. q(L) ∈ Q(G) is invariant under deformations of L and therefore well-
defined.

Proof. First, consider deformations which keep the vertices v1, · · · , vn in the same
order. Then the lines `1, · · · , `n will cross edges whose labels give the same elements
f1, · · · , fn ∈ F since the only changes will be to add or delete cancelling pairs of
edges labeled x, x−1. So, q(L) remains the same.

Next, consider deformations in which the order of the vertices changes. This
happens when, at some point in the deformation, one vertex, say vi, passes above
the next, vi+1 (or the previous one vi−1 as in Figure 6). In that case, the line



3054 KIYOSHI IGUSA AND GORDANA TODOROV

`i will cross the same edges as before, but the line `i+1 will cross edges fi+1 be-
fore and ϕ(fi, ri)fi+1 after the deformation. This will change (fi, ri)(fi+1, ri+1) to
(ϕ(fi, ri)fi+1, ri+1)(fi, ri) which are equal by (4). Thus q(L) ∈ Q(G) is unchanged.

Finally, consider a deformation in which two vertices are cancelled. In that case,
they must be consecutive, say vi, vi+1, the relations ri, ri+1 must be inverse to each
other and the paths `i, `i+1 must cross the same edges making fi = fi+1, since
otherwise, the vertices are not allowed to cancel. So, (fi+1, ri+1) = (fi, r

−1
i ) which

cancels (fi, ri) in Q(G) by (5). So, q(L) is unchanged in all deformations.

Conversely, let Q = (f1, r1) · · · (fn, rn) ∈ Q(G). We will construct the “standard
partial picture” LQ satisfying q(LQ) = Q. An example of a standard picture is L1

in Figure 6.

1. Let wi be the unique reduced word in the letters X
∐
X−1 represents fi. Each

ri is already given as a (cyclically) reduced word. Let

w(Q) = w1r1w
−1
1 · · ·wnrnw−1

n .

2. Along the x-axis choose a sequence of points one for each letter in w(Q) and
label these points with the letters of w(Q).

3. Connect the points labeled with the letters in ri to a point vi above these points
with line segments labeled with the letters of ri. Place a base point direction
∗ above vi. Then the word given by reading the edge labels counterclockwise
around vi staring at ∗ will be ri.

4. From the points labeled with the letters in wi, w
−1
i draw vertical lines going

up labeled with the letters of wi, w
−1
i . Above vertex vi connect the lines from

wi to ones from w−1
i with semicircles centered at vi. Since all the loose edges

in the upper half-plane have been closed off, this gives a partial picture L. We
denote this LQ and call it the standard partial picture corresponding to Q.

Claim 2. q(LQ) = Q.

Claim 3. Lq(L) ' L.

These two claims imply that Q 7→ LQ, L 7→ q(L) give a 1-1 correspondence
between deformation classes of partial pictures and the elements of Q(G).

Proof of Claim 2. This follows directly from the construction of LQ. The straight
line going up from each vertex vi will cross the picture through semicircular edges
labelled with the letters of wi. The relation at vi is ri by construction. So q(LQ) =
(w1, r1) · · · (wn, rn) = Q.

Proof of Claim 3. Given a partial picture L with q(L) = Q, for example L2 in Figure
6, a deformation of L to the standard picture LQ is given by “pushing down” to the
x-axis all edges outside a small nbd of the lines `i. Since there are no vertices of L
outside these neighborhoods, this deformation is allowed. The result is a standard
partial picture for Q = q(L). See Figure 7.

Thus Q↔ LQ is a bijection as claimed.

3.2. Pictures with good commutator relations. If the same letter, say x, oc-
curs more than twice in a relation r, then, at the vertex v, the edge set E(x) cannot
be a manifold. (For example, if G =

〈
x |x3

〉
then E(x) will not be a manifold.)

However, this does not happen in our case because our relations are “good”.
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`2

L2 :

r2

c cc c

`1

r1

∗

∗

⇒

c

r1

`1

∗

Lq(L2) :

r2

`2

∗

Figure 7. Dotted lines `1, `2 are given by definition of q(L2). Take
dashed lines parallel to `1, `2 and connected with small semicircles
below vertices v1, v2. Push the dashed line down to the x-axis.
This gives an admissible deformation of L2 (on the left) to Lq(L2)

(on the night). The dotted lines `1, `2 cross the same edges in both
partial pictures.

We define a good commutator relation to be a relation of the form

r(a, b) := ab(bc1, · · · , cka)−1

where a, b, c1, · · · , ck are distinct elements of X and k ≥ 0. The letters a, b will be
called X-letters and the letters cj will be called Y-letters in the relation. In the
picture, the two X-letters in any commutator relation form the shape of the letter
“X” since the lines labeled with these letters go all the way through the vertex. Call
theses X-edges at the vertex. The edges labeled with the Y-letters go only half way
and stop at the vertex. Call these Y-edges at the vertex. (See Figure 8.) In the

definition of a picture we can choose the sets Er ⊂ S1 so that the points labeled
a, a−1 (and b, b−1) are negatives of each other. Then the edge sets E(a), E(b) will
be manifolds. (Since a, b, cj are all distinct there are no other coincidences of labels
at the vertices.)

Example:

r = r(a, b) = ab(bc1c2c3a)−1

b

a

a

b

•
c3

c2

c1∗

Figure 8. The X-letters a, b have edge sets which are smooth at
the vertex. The basepoint direction is on the negative side of both
X-edges E(a), E(b).

We have the following trivial observation.

Proposition 3.11. Suppose that G = 〈X | Y〉 is a group having only good commu-
tator relations. Then, given any label x, the edge set E(x) in L is a disjoint union
of smooth simple closed curves and smooth paths. At both endpoints of each path,
x occurs as a Y-letter. It occurs as x at one end and x−1 at the other.
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Corollary 3.12. Suppose that G has only good commutator relations. Then, for
any picture L for G and any label x, the number of vertices of L having x as Y-letter
is equal to the number of vertices of L having x−1 as Y-letter.

3.3. Atoms. Let S = (β1, · · · , βm) be an admissible sequence of real Schur roots
for a hereditary algebra Λ. Then G(S) has only good commutator relations. We
need the Atomic Deformation Theorem which says that every picture in G(S) is a
linear combination of “atoms”. In other words atoms generate P (G). The definition
comes from [27] and [26] but is based on [23] where similar generators of P (G) are
constructed for a torsion-free nilpotent group G.

Suppose that S is admissible and α∗ = (α1, α2, α3) is a sequence of three hom-
orthogonal roots in S ordered in such a way that ext(αi, αj) = 0 for i < j. Let
A(α∗) be the rank 3 wide subcategory of mod-Λ with simple objects α∗. One easy
way to describe this category is

A(α∗) = (⊥Mα∗)
⊥

where Mα∗ = Mα1
⊕Mα2

⊕Mα3
. In other words, A(α∗) is the full subcategory

of mod-Λ of all modules X having the property that Hom(X,Y ) = 0 = Ext(X,Y )
for all Y having the property that Hom(Mα∗ , Y ) = 0 = Ext(Mα∗ , Y ). The objects
of A(α∗) are modules M having filtrations where the subquotients are Mαi . Since
ext(αi, αj) = 0 for i < j, the modules Mα1

occur at the bottom of the filtration and
Mα3

occurs at the top of the filtration. Let wide(α∗) denote the set of all dimension
vectors of the objects ofA(α∗). The elements of wide(α∗) are all nonnegative integer
linear combinations of the roots αi. These are elements of the 3-dimensional vector
space Rα∗ spanned by the roots α∗.

Let L(α∗) ⊆ S2 be the semi-invariant picture for the category A(α∗). We recall
([27], [26], [19]) that L(α∗) is the intersection with the unit sphere S2 ⊆ Rα∗ ∼= R3

with the union of the 2-dimensional subset D(β) of Rα∗ where β ∈ wide(α∗) given
by the stability conditions:

D(β) := {x ∈ Rα∗ : 〈x, β〉 = 0, 〈x, β′〉 ≥ 0 for all β′ ⊂ β, β′ ∈ wide(α∗)}
When we stereographically project L(α∗) ⊂ S2 into the plane R2 we get a planar
picture for the group G(wide(α∗)) according to the definitions in this section.

Definition 3.13. Let S, α∗ be as above. Then the atom AS(α∗) ⊂ R2 is defined
to be the picture for G(S) given by taking the semi-invariant picture L(α∗) ⊂ S2,
stereographically projecting it away from the point −

∑
dimPi ∈ Rα∗ where Pi

are the projective objects of A(α∗) and deleting all edges having labels x(γ) where
γ /∈ S.

Figure 9 gives an example of an atom. We need to prove that certain aspects of
the shape are universal.

Proposition 3.14. Any atom AS(α1, α2, α3) has three circles E(αi) = D(αi) with
labels x(αi) ∈ G and all other edge sets have two endpoints. There is exactly one
vertex v outside the α3 circle. This vertex has the relation r(α1, α2). Dually, there
is exactly one vertex inside the α1 circle with relation r(α2, α3)−1.

We use the notation r(α, β) for r(x(α), x(β)) For example, the blue lines in Figure
8 meet at two vertices giving the relations

r(α, β) = x(α)x(β) (x(β)x(γ1)x(γ2)x(α))
−1

at the top and r(α, β)−1 in the middle of the brown x(ω) circle.
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a b

w

Figure 9. The atom AA(α, β, ω). There are three circles labeled
α, β, ω. There is only one vertex (black dot) outside the brown
circle labeled ω. There is only one vertex inside the α circle. The
faint gray line is deleted since, in this example, its label is not in
the set S.

Proof. The only objects of A(α∗) which do not map onto Mα3 are the objects of
A(α1, α2) which are the objects Mα1 ,Mα2 and their extensions Mγj . These give
the terms in the commutator relation r(α1, α2) and these lines meet at only two
vertices in the atom. All other edges of the atom have at least one abutting edge
with a label γ where γ � α3. By the stability condition defining D(γ), these points
must be inside or on the α3 circle as claimed.

3.4. Sliding Lemma and Atomic Deformation Theorem. We will prove the
Sliding Lemma 3.17 and derive some consequences such as the Atomic Deformation
Theorem 3.18 which says that every picture for G(S) is a linear combination of
atoms. First, some terminology. We say that L′ is an atomic deformation of L
if L′ is a deformation of L plus a linear combination of atoms. Thus the Atomic
Deformation Theorem states that every picture has an atomic deformation to the
empty picture.

Suppose that S is an admissible set of roots with a fixed lateral ordering and let
ω ∈ S. Recall that S−(ω) is the set of all β ≤ ω in lateral order in S. In particular,
either β = ω or hom(ω, β) = 0 and ext(β, ω) = 0. Also, R−(ω) is the set of all
β ∈ S−(ω) which are hom-orthogonal to ω. Since these are relatively closed subsets
of S, the picture groups G(S−(ω)) and G(R−(ω)) are defined. (See Remark 1.10.)

S−(ω) := {β ∈ S : β ≤ ω in lateral order }
R−(ω) := {β ∈ S−(ω) : hom(β, ω) = 0}

for any ω ∈ S.

Lemma 3.15 (Monomorphism Lemma). The homomorphism G(R−(ω)) →
G(S−(ω)) induced by the inclusion R−(ω) ↪→ S−(ω) has a retraction ρ given on
generators by

ρ(x(β)) =

{
x(β) if β ∈ R−(ω)

1 otherwise
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Furthermore, ρ takes pictures and partial pictures L for G(S−(ω)) and gives a
picture or partial picture ρ(L) for G(R−(ω)) by simply deleting all edges with labels
x(β) where β /∈ R−(ω).

Figure 11 gives an example of how this lemma is used. The proof is analogous to
the proof of the dual statement which goes as follows. Recall that, for any α in an
admissible set of roots S, S+(α) is the set of all β ≥ α in S and R+(α) is the set
of all β ∈ S+(α) which are hom-orthogonal to α. As in the case of S−(ω),R−(ω)
these are relatively closed subsets of S.

Lemma 3.16. The homomorphism G(R+(α)) → G(S+(α)) induced by the inclu-
sion R+(α) ↪→ S+(α) has a retraction ρ given on generators by

ρ(x(β)) =

{
x(β) if β ∈ R+(α)

1 otherwise

Furthermore, ρ takes pictures and partial pictures L for G(S+(α)) and gives a pic-
ture or partial picture ρ(L) for G(R+(α)) by simply deleting all edges with labels
x(β) where β /∈ R+(α).

Proof. The key is that R+(α) is given by a linear condition. Since ext(α, β) = 0
for all β ∈ S+(α) (and hom(β, α) = 0 for all β 6= α in S+(α)) we have:

R+(α) = {β ∈ S+(α) : 〈g(α), β〉 = hom(α, β)− ext(α, β) = 0}.
Since any two letters in any relation in are linearly independent, if two letters in any
relation in G(S+(α)) lie in R+(α) then all the letters in the relation lie in R+(α).
Thus, if only part of the relation survives under the retraction it must be a single
letter. This letter, say γ, cannot be a Y-letter: If it were and γ1, γ2 are the X-letters
in that relation then hom(α, γ1) and hom(α, γ2) would both be nonzero. Since one
of these is a subroot of γ, this would also make hom(α, γ) 6= 0 and γ /∈ R+(α). So,
none of the letters in such a relation will lie in R+(α). Therefore, the retraction
S+(α) → R+(α) sends relations to relations and induces a retraction of groups
ρ : G(S+(α))→ G(R+(α)).

Given any picture or partial picture L for G(S+(α)), each vertex has a relation r
which has the property that either ρ(r) = r or ρ(r) is an unreduced relation of the
form xx−1 or ρ(r) is empty. In the second case ρ(r) = xx−1 we consider the vertex
as part of the smooth curve E(x). Removal of all edges with labels not in R+(α)
therefore keeps L looking locally like a picture for R+(α). But pictures and partial
pictures are defined by local conditions.

Using the Monomorphism Lemma 3.15, we can now state and prove the key
lemma about pictures for G(S). Recall that E(ω) is the union of the set of edges
with label x(ω) and that, for any root β ∈ R−(ω), any vertex with relation r(β, ω)
or r(β, ω)−1 has Y-edges on the positive side of the X-line E(ω). (For example, in
Figure 9, α, β and all letters γi in r(α, β) lie in R−(ω). So the edges corresponding
to the commutator relations r(γi, ω) for all letters γi in r(α, β) lie in the interior of
the brown circle E(ω) = D(ω). Since Figure 9 is an atom, the edges are curved in
the positive direction.) We also note that the base point direction is on the negative
side of both X-lines at each crossing.

Lemma 3.17 (Sliding Lemma). Suppose that L is a picture for G(S) so that E(ω)
is a disjoint union of simple closed curves. Let U be one of the components of the
complement of E(ω) and let Σ = U ∩ E(ω) be the boundary of the closure U of U .
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Suppose that U is on the negative side of Σ and that all edges in L ∩ U have labels
x(β) for β ∈ R−(ω). Then there is an atomic deformation L ∼ L′ which alters L
only in an arbitrarily small neighborhood V of U so that L′ ∩ V contains no edges
with labels ≥ ω in lateral order.

Proof. By assumption, every edge which crosses Σ has a label x(β) where β ∈
R−(ω). This implies that all Y-edges at all vertices on Σ lie outside the region
U . So, at each vertex of Σ, only one edge E(β) goes into the region U . Also, all
basepoint directions of all vertices on Σ lie inside U .

The proof of the lemma is by induction on the number of vertices in the region
V containing Σ. Suppose first that this number is zero. Then Σ has no vertices
and L ∩ U is a union of disjoint simple closed curves which can be eliminated by
concordance one at a times starting with the innermost simple closed curve. This
includes Σ. The result has no edges with labels ≥ ω.

Suppose next that L has vertices on the set Σ but no vertices in the region U
enclosed by Σ. Then every edge of L in U is an arc connecting two vertices on Σ
and the negative side of each arc has a path connecting the two basepoint directions
at these two vertices. So, we can cancel all pair of vertices and we will be left with
no vertices in V . As before, we can then eliminate all closed curves in V including
Σ which has now become a union of simple closed curves.

Finally, suppose that U contains a vectex v having relation r(α, β)±. So, v
contributes ±g 〈r(α, β)〉 to the algebraic expression for L. Then α, β ∈ R−(ω) by
assumption. Now add the atom∓A(α, β, ω) (which resembles Figure 9) in the region
containing the basepoint direction of v. (See the left side of Figure 10.) This adds
∓gA(α, β, ω) to the algebraic expression for L. The atom has a circle labeled x(ω)
oriented inward with exactly one vertex outside this circle with relation r(α, β)∓

(the mirror image of the relation at v) by Proposition 3.14. The new vertex cancels
the vertex v. (See the right side of Figure 10.) Repeating this process eliminates
all vertices in the new region U ′.

After that, all edges in U
′
, the closure of U ′ can be eliminated. This eliminates all

edges with label ω from V . However, it also introduces new edge sets (the interior
of the ω oval in the atom). However, these all have labels < ω. So, we are done.

Since the entire process was a sequence of picture deformations and addition of
ZG(S) multiples of atoms, it is an atomic deformation.

Theorem 3.18 (Atomic Deformation Theorem). Suppose that S is an admissible
set of real Schur roots. Then any picture for G(S) has a null atomic deformation.
I.e., it is deformation equivalent to a ZG linear combination of atoms. Equivalently,
the ZG(S)-module P (G(S)) is generated by atoms.

This theorem follows from the Sliding Lemma and we will see that it implies
Lemma C.

Proof. Let S = (β1, · · · , βm) be an admissible set of roots. Let β1, · · · , βm be the
same set rearranged in lateral order. Let Rk be the set of all elements of S which
are ≤ βk in lateral order. Thus, Rk = S−(βk). Take k minimal so that the labels
which occurs in L all lie in Rk. If k = 1 then L has no vertices and is a disjoint
union of simple closed curves which are null homotopic. By induction, it suffices to
eliminate ω = βk as a label from the picture L by picture deformations and addition
of atoms without introducing labels βj for j > k.
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Figure 10. Illustrating proof of Sliding Lemma 3.17: Σ in blue
is a disjoint union of E(ω) closed curves which encloses a region
U = Σ ∪ U . All Y-edges for vertices on Σ lie outside U . The atom
A(α, β, ω) in the proof has already been added on the left. The new
region U ′ is the complement of the new ω oval in U . The vertex v
has been cancelled with the vertex in the atom on the right.

Since ω is a rightmost element in the set Rk, x(ω) does not occur as a Y-letter
at any vertex of L. Therefore the edge set E(ω) is a disjoint union of simple
closed curves. Let Σ be innermost such curve and Σ′ be a curve parallel to Σ on
the negative side. (See Figure 11.) Then Σ′ crosses on those edges E(β) where
β ∈ S−(ω) are hom-orthogonal to ω. In other words, β ∈ R−(ω).

Let L′0 be the mirror image of L0 through Σ′. Then L0∪L′0 is null deformable, i.e.,
L0 +L′0 = 0 in the group of partial pictures Q(Rk). Since Σ′ meets only edges with
labels in R−(ω), we can apply the retraction ρ from the Monomorphism Lemma
3.15 to just one side of Σ′ and still have a well-defined picture. This construction
gives us two pictures: L′ = ρ(L0) ∪ L1 and L′′ = L0 ∪ ρ(L′0).

Claim L is deformation equivalent to L′
∐
L′′, i.e., L = L′ + L′′ in the group

P(Rk).
Pf: The group of pictures P(Rk) is a a subgroup of the group of partial pictures

Q(Rk) and in that group we have:

L = L0 + L1 = L0 + ρ(L′0) + ρ(L0) + L1 = L′′ + L′

since ρ(L′0) + ρ(L0) = ρ(L0 + L′0) = ρ(0) = 0.
The simple closed curve Σ lies either in L′ or L′′. If Σ ⊂ L′ then Σ can be removed

by L′ by an atomic deformation by the Sliding Lemma 3.17 since the edges inside Σ
are in R−(ω), bing in ρ(L0). If Σ ⊂ L′′ (as drawn in Figure 11), the region outside
Σ has all labels in R−(ω). So, it can be removed by Lemma 3.17. In both cases, the
number of E(ω) components in L′

∐
L′′ (the same as the number of components

in L) has been reduced by one by an atomic deformation without introducing any
new labels ≥ ω. By induction on the number of components of E(ω), this set can
be removed and k can be reduced by one. So, by induction on k, we are done. The
entire picture can be deformed into nothing by atomic deformation.

3.5. Proofs of Lemmas C, E. The proofs of Lemmas C and E are very similar.

Proof of Lemma C. Suppose that w,w′ are expressions for the same element of
G(S) and π(w), π(w′) are equal as words in the generators of G(S0). This means
that π(w−1w′) reduces to the trivial (empty) word in G(S0).
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L0

L1

Σ′Σ L0

ρ(L′0)

Σ′ Σ′ρ(L0)

L1

Figure 11. Illustrating proof of Atomic Deformation Theorem
3.18: Σ′ (in red) is on the negative side of an innermost E(ω) curve
Σ (in blue). The picture L = L0 ∪ L1, on the left, is deformation
equivalent to the disjoint union of two pictures: L′′ = L0 ∪ ρ(L′0),
in the middle, and L′ = ρ(L0) ∪ L1 on the right. The E(ω) com-
ponent Σ lies either in L′ or L′′. (Here it is in L′′ in the middle.)
In either case, it can be removed by the Sliding Lemma 3.17.

Let L be a partial picture giving the proof that w−1w′ is trivial in G(S). Then
π(L) can be completed to a true picture L0 for the group G(S0) by joining together
cancelling letters in π(w−1w′). By the Atomic Deformation Theorem 3.18, L0 is
equivalent to a sum of atoms. However, each atom A for G(S0) can be lifted to

an atom Ã for G(S) by definition of the atoms. Therefore, up to deformation

equivalence, L can be lifted to a picture L̃ for G(S). By Corollary 3.12, the number

of vertices of L̃ having x(βm) as Y-letter is equal to the number of vertices having
x(βm)−1 as Y-letter. This implies that the number of vertices in L0 lifting to ones in

L̃ having x(βm)−1 as Y-letter is equal to the number of vertices in L0 lifting to ones

in L̃ having x(βm)−1 as Y-letter are equal. So, the number of times x(βm), x(βm)−1

occur as Y-letters in L are equal. So, the number of times that x(βm), x(βm)−1 occur
in the word w−1w′ are equal. So, x(βm) occurs the same number of times in the
words w,w′ as claimed.

Proof of Lemma E. Recall that βm is the last element of an admissible set S.
Lemma E says that if w0 is a positive expression for some element of G(S) which
commutes with x(βm) then every letter of w0 commutes with βm. To prove this,
suppose not and let w0 be a minimal length positive expression in the letters S
satisfying the following.

1. As an element of G(S), w0 commutes with x(βm).
2. One of the letters of w0, say x(β), does not commute with x(βm). Equivalently,
β, βm are not hom-orthogonal (Remark 1.21).

Clearly, w0 has at least 2 letters and the first and last letter of w0 do not commute
with x(βm).

In the group G(S) we have the relation

W = w0x(βm)w−1
0 x(βm)−1 = 1.

A proof of the relation W = 1 gives a partial picture L for G(S) having the word
W as it boundary. Let β1, · · · , βm be the letters in S in lateral order. Then
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βm = βk for some k. Let βi, βj be the letters which occurs in the partial picture
L with i minimal and j maximal. Then i < j and i ≤ k ≤ j. In particular, either
i < k or k < j. By symmetry we may assume that k < j. Then we will use the
Monomorphism Lemma 3.15 for ω = βj 6= βm. (For k = j the argument is the same
using the dual lemma 3.16 with α = βi.)

There are two cases. Either λ = βj is a letter in W or not.

Case 1. λ is not a letter in W . Then the edge set E(λ) is a disjoint union of simple
closed curves. We claim that these can all be eliminated by Lemmas 3.15 and 3.17.
Let Σ be any component of E(λ). Let Σ′ be a parallel curve on the negatives side
of Σ. Then Σ′ crosses only edges E(β) where β is hom-orthogonal to λ. Therefore,
we can apply the retraction ρ : G(S−(λ)) → G(R−(λ)) to the region enclosed by
Σ′ to eliminate all edges in that region which are not hom-orthogonal to λ. By
the Sliding Lemma 3.17 we can then eliminate Σ if it is still there. Repeating this
process produces a new partial picture L′ with boundary W so that the laterally
rightmost letter in L′ is a letter in W , i.e., we are reduced to Case 2.

Case 2. λ = βj is a letter in W . Since j > k, λ is then a letter in w0. The
generator x(λ) may occur several times in w0 and x(λ)−1 occurs in w−1

0 . Taking
the first occurrence of x(λ) in w0 we can write w0 = w1x(λ)w2 there x(λ) is not a
letter in w1. Then

W = w1x(λ)w2x(βm)w−1
2 x(λ)−1w−1

1 x(βm)−1

is the boundary of L which is a partial picture for G(S−(λ)). Since λ is rightmost
in later order, x(λ) does not occur as a Y-letter at any of the vertices of L. There-
fore, the edge set E(λ) is a disjoint union of simple closed curves and disjoint arcs
connecting the x(λ) in w0 to the x(λ)−1 in w−1

0 . Since these arc are disjoint, the
outermost such arc Σ connects the first occurrence of x(λ) in w0 to the last occur-
rence of x(λ)−1 in w−1

0 . Let Σ′ be an arc parallel to Σ on its negative side. Thus
L = L0 ∪ L1 where L0 is the portion of L enclosed by Σ′. Since x(λ) is to the left
of x(λ)−1, Σ ⊂ L0. (See the left side of Figure 12.)

w1x(λ)w2x(βm)w−1
2 x(λ)−1w−1

1 x(βm)−1

Σ

Σ′

L0

L1

ρ(L0)

L1

w1 ρ (w2)x(βm)ρ
(
w−1

2

)
w−1

1 x(βm)−1

Σ′

Figure 12. (Proof of Lemma E) The partial picture L for
G(S−(λ)) is divided into two parts L = L0 ∪ L1 by Σ′. Applying
ρ : G(S−(λ)) → G(R−(λ)) to L0 eliminates x(λ) from the word
w0 = w1x(λ)x2 but does not eliminage x(βm). Then w1ρ(w2) com-
mutes with x(βm) contradicting the minimality of w0.

Using the Monomorphism Lemma 3.15, we apply the retraction ρ to L0. This
will eliminate Σ and all occurrences of the letter x(λ) in W giving a new relation:

w1ρ(w2)ρ(x(βm))ρ(w2)−1w−1
1 x(βm)−1 = 1

or, equivalently, w1ρ(w2)ρ(x(βm)) = x(βm)w1ρ(w2). By Lemma C proved above,
x(βm) occurs the same number of times in these two expressions. So, ρ(x(βm)) =
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x(βm). In particular, λ is hom-orthogonal to βm. Equivalently x(λ) commutes with
x(βm). So, x(λ) is not the first letter of w0 which means w1 is a nontrivial word.

This gives a new word w′0 = w1ρ(w2) which is shorter than w0, commutes with
x(βm) and has at least one letter (the first letter of w1) which does not commute
with x(βm). This contradicts the minimality of w0 and completes the proof of
Lemma E.

4. Appendix. This Appendix contains basic background material for this paper.
Details can be found in [25] and [20]

4.1. Exceptional representations of modulated quivers. We assume through-
out the paper that Q is a quiver without loops, oriented cycles or multiple edges
i → j (since multiplicity of edges is included in the valuation). We recall briefly
that a valuation on a quiver Q is given by assigning positive integers fi to each
vertex i and pairs of positive integers (dij , dji) to every arrow i → j in Q having

the property that fidij = fjdji. For example, the Kronecker quiver is • (2,2)−−−→ •.
A K-modulation of a valued quiver is given by assigning a division algebra Fi of
dimension fi at each vertex and an Fi-Fj-bimodule Mij on each arrow i → j with
dimKMij = fidij = fjdji. A representation of a modulated quiver consists of a
right Fi-vector space Vi at each vertex and an Fj-linear map Vi ⊗Mij → Vj on
each arrow i → j. A representation V is called a brick if its endomorphism ring is
a division algebra. An exceptional module is a brick having no self-extensions. For
hereditary algebras of finite type, all bricks are exceptional.

Given any module X we denote by X⊥ the full subcategory of mod-Λ with all
objects Y so that

HomΛ(X,Y ) = 0 = ExtΛ(X,Y )

Similarly, ⊥X is the category of all Λ-modules Y so that X ∈ Y ⊥. An exceptional
sequence of length k is defined to be a sequence of exceptional modules E1, E2, · · · ,
Ek so that Ei ∈ E⊥j for all i < j.

The dimension vector dimV of a representation of a modulated quiver is defined
to be (d1, d2, · · · , dn) where di is the dimension of Vi as a vector space over Fi.
A real Schur root of the valued quiver Q is defined to be the dimension vector
of an exceptional module for any modulation of Q. This concept is known to be
independent of the choice of modulation. See [25] for details. In this paper we
assume a modulation is given.

The semi-stability set D(V ) of any module V is defined by

D(V ) := {x ∈ Rn : 〈x,dimV 〉 = 0 and 〈x, dimV ′〉 ≤ 0 for all submodules V ′ ⊂ V }
where we use the bilinear pairing:

〈x, y〉 =
∑

xiyifi.

For any real Schur root β let D(β) = D(Mβ) where Mβ is the unique exceptional
module with dimension vector β. In this paper we use the following refinement of
the definition of D(β) which is essentially proved in [25].

Theorem 4.1. For β a real Schur root and x ∈ Rn so that 〈x, β〉 = 0, the following
are equivalent.

1. 〈x, β′〉 ≤ 0 for all real Schur subroots β′ of β.
2. 〈x, dimV ′〉 ≤ 0 for all submodules V ⊆Mβ.
3. 〈x, dimV ′′〉 ≥ 0 for all quotient modules V ′′ of Mβ.
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4. 〈x, β′′〉 ≥ 0 for all real Schur quotient roots of β.

Proof. It is shown in [25] that (1) is equivalent to (2) for x ∈ Zn. This easily implies
that (1) and (2) are equivalent for x ∈ Qn. Taking the closure we get that (1) and
(2) are equivalent for all x ∈ Rn.

The equivalence (2) ⇔ (3) is obvious. The equivalence (3) ⇔ (4) follows from
the equivalence (1) ⇔ (2). Indeed, applying the duality functor D = Hom(−,K),
the exceptional Λ-module Mβ and quotient module Mβ′′ become exceptional DΛ
modules with the same dimension vectors, but DMβ′′ ⊂ DMβ . So, x ∈ Rn satisfies
(4) for Λ if and only if 〈−x, β′′〉 ≤ 0 for β′′ ⊂ β (as DΛ-roots). Equivalently,
x ∈ DΛ(β) using the criteria (1),(2) if and only if −x ∈ DDΛ(β) using the quotient
root criteria (4),(3) respectively. So (3)⇔ (4).

Following [20], we use g-vectors and modified dot product in this paper instead
of the Euler product used in [25]. and we define the g-vector of a module X to be

g(X) := dimP0/radP0 − dimP1/radP1

where

0→ P1 → P0 → X → 0

is the minimal projective presentation of X. Equivalently, g(X) = C−1
Λ dimX where

CΛ is the Cartan matrix of Λ.

Lemma 4.2. The g-vector of X satisfies the following for any representation V .

〈g(X),dimV 〉 = dimK HomΛ(X,V )− dimK ExtΛ(X,V ).

In particular, 〈g(X),dimV 〉 = 0 when X ∈ ⊥V .

Proof. This follows from the exact sequence:

0→ HomΛ(X,V )→ HomΛ(P0, V )→ HomΛ(P1, V )→ ExtΛ(X,V )→ 0

and the evident fact that dimK HomΛ(P, V ) = 〈g(P ),dimV 〉.

This immediately gives the following.

Proposition 4.3. The dimension vectors of modules in an exceptional sequence
are linearly independent.

Proof. Suppose that E1, · · · , Ek is an exceptional sequence. Lemma 4.2 implies

〈g(Ej),dimEi〉 = 0

for all i < j. But 〈g(Ej),dimEj〉 = dimK EndΛ(Ej) 6= 0. So, dimEj cannot be a
linear combination of dimEi for I < j.

The g-vector of a shifted projective module P [1] is define by g(P [1]) := −g(P ).
We have the following “Virtual Stability Theorem” from [25].

Theorem 4.4. If X ∈ ⊥Mβ then g(X) ∈ D(β). If P ∈ ⊥Mβ is projective then
g(P [1]) = −g(P ) ∈ D(β). Conversely, for any x ∈ D(β) ∩ Zn there is a module X
and a projective module P so that

1. x = g(X ⊕ P [1]) = g(X)− g(P ).
2. X,P ∈ ⊥Mβ, i.e., Hom(X ⊕ P,Mβ) = 0 = Ext(X,Mβ).
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4.2. Wide subcategories. Recall that a full subcategoryW of an abelian category
A is wide if it is closed under extension and kernels and cokernels of morphism
between objects. This implies in particular that W is closed under taking direct
summands.

Returning to the case of mod-Λ for a hereditary algebra Λ, we note that X⊥ is
a wide subcategories for any object X. To see this, look at the following six term
exact sequence for any short exact sequence 0→ A→ B → C → 0.

0→ Hom(X,A)→ Hom(X,B)→ Hom(X,C)→
Ext(X,A)→ Ext(X,B)→ Ext(X,C)→ 0

If A,C ∈ X⊥ then we see that B ∈ X⊥. If B ∈ X⊥ then Hom(X,A) = 0 =
Ext(X,C). So, any object which is both a subobject and quotient object of an
object of X⊥ is also in X⊥. So, X⊥ is a wide subcategory of mod-Λ. Similarly, ⊥X
is a wide subcategory.

Closely related to this example is the following well-known fact. (See [20] for a
short proof.)

Theorem 4.5. Let R be any subset of Rn. Then the set W(R) of all representation
V so that R ⊂ D(V ) is a wide subcategory of mod-Λ.

Consider the case when R = {x0} is a single point x0 6= 0 ∈ Rn. Suppose that
S is an admissible set of real Schur roots. Recall our notation that D(β) = D(Mβ)
where Mβ is the unique exceptional module with dimension vector β.

What can we say about the set of β ∈ S so that x0 ∈ D(β)?

Proposition 4.6. Let α ∈ S. Then x0 is in the interior of D(α) if and only if Mα

is a minimal object of the wide subcategory W(x0).

Proof. If x0 lies in the interior of D(α), 〈x0, γ〉 < 0 for all subroots γ ( α. So,
x0 /∈ D(γ). So, α is minimal. The converse follows in the same way.

A wide subcategory W ⊂ mod-Λ has rank k if it is isomorphic to the module
category of an hereditary algebra with k simple modules. More concretely, such
a wide subcategory contains k Hom-orthogonal exceptional modules forming an
exceptional sequence: X1, X2, · · · , Xk. In other words, Ext(Xj , Xi) = 0 for j ≥ i.
And all other objects of W are iterated extensions of the Xi with each other. From
this description we see that the Xi are objects of W of minimal length, i.e., proper
subobjects and proper quotient objects of the Xi do not lie in W. In particular,
the Xi are uniquely determined by W. In general, not every wide subcategory
of mod-Λ has finite rank. For example, when Λ has infinite representation type,
the subcategory of regular modules is a wide subcategory of infinite rank since the
Auslander-Reiten translation functor τ is an automorphism on this subcategory.

One special case of a finite rank wide subcategory which we need in this paper
is the case k = n.

Theorem 4.7. Let (E1, · · · , En) be an exceptional sequence of Hom-orthogonal
objects in mod-Λ. Then all Ei are simple. In particular, mod-Λ is the only wide
subcategory of rank n.

Proof. This follows from the theory of exceptional sequences. By [9] and [36], the
action of the braid group on n strands acts transitively on the set of exceptional
sequences of length n. However, by definition, braid moves keep objects in the same
wide subcategory which is the category of all objects which are iterated extensions of



3066 KIYOSHI IGUSA AND GORDANA TODOROV

the Ei with each other. By the theorem of [9] and [36], this includes all exceptional
sequences. But the sequence of simple modules of mod-Λ forms an exceptional
sequence. So, every simple Λ-module is in our wide subcategory. So, the wide
subcategory is all of mod-Λ. Since the Ei are minimal objects, they must all be
simple.

Let α1, · · · , αk be real Schur roots so that (Mα1 , · · · ,Mαk
) is a sequence of Hom-

orthogonal sequence of modules forming an exceptional sequence. Then we denote
by A(α1, · · · , αk), or A(α∗) for short, the wide subcategory of mod-Λ generated by
the modules Mαi

. As remarked above, this is a rank k wide subcategory whose
objects have a filtration with subquotients Mαi

. Another description is:

A(α1, · · · , αk) = ⊥ ((Mα1
⊕ · · · ⊕Mαk

)⊥
)

In other words, A(α∗) = ⊥(E1⊕· · ·⊕En−k) for any choice of a complete exceptional
sequence (E1, · · · , En−k,Mα1

, · · · ,Mαk
) ending in the Mαi

.
Here is another well-known fact that we need.

Theorem 4.8. The wide subcategory W = A(α1, · · · , αk) described above contains
the exceptional module Mβ if and only if β is a nonnegative linear combination of
the αi.

Proof. Necessity of this condition is clear since all objects of W are iterated ex-
tensions of the modules Mαi

. For the converse, we choose an extension of this
sequence to a complete exceptional sequence (E1, · · · , En−k,Mα1 , · · · ,Mαk

). Then
W = ⊥(E1 ⊕ · · · ⊕En−k). By Theorem 4.4, an exceptional module Mβ lies in W if
and only if g(β) ∈

⋂
j D(Ej). But this is a convex set. Since this condition holds

for the roots αi, it holds for any nonnegative linear combination of the αi.

For an admissible set of roots S, this theorem and Proposition 4.6 imply the
following.

Corollary 4.9. For x0 6= 0 ∈ Rn, let α1, · · · , αk be the elements of S for which
Mαi is minimal in W(x0) = {M : x0 ∈ D(M)}. Then, S ∩ W(x0) is the set of
elements of S which are sums of these roots (β =

∑
niαi for ni ≥ 0).

Proof. Let β ∈ S ∩ W(x0). So, x0 ∈ D(β). If β is not one of the αi then, by
Proposition 4.6, x0 ∈ ∂D(β). This implies that x0 ∈ D(γ) for a subroot γ ( β. It
follows that x0 ∈ D(γ′) for all components γ′ of the quotient root β − γ. These
subroots and quotient roots of β all lie in S since S is admissible. By induction on
the length of β we conclude that each γ, γ′ is a nonnegative linear combination of
the αi. So, the same holds for their sum β.

Conversely, suppose β ∈ S has the form β =
∑
niαi for ni ≥ 0. Since S is

admissible, the modulesMα1 , · · · ,Mαk
are Hom-orthogonal and form an exceptional

sequence (being in lateral order). By Theorem 4.8, Mβ lies in the wide subcategory
W(x0) as claimed.
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