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ON INNER POISSON STRUCTURES OF A QUANTUM
CLUSTER ALGEBRA WITHOUT COEFFICIENTS
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Hangzhou, Zhejiang 310027, China

ABSTRACT. The main aim of this article is to characterize inner Poisson struc-
ture on a quantum cluster algebra without coefficients. Mainly, we prove that
inner Poisson structure on a quantum cluster algebra without coefficients is
always a standard Poisson structure. We introduce the concept of so-called
locally inner Poisson structure on a quantum cluster algebra and then show it
is equivalent to locally standard Poisson structure in the case without coeffi-
cients. Based on the result from [7] we obtain finally the equivalence between
locally inner Poisson structure and compatible Poisson structure in this case.

1. Introduction and preliminaries. The introduction of quantum cluster alge-
bras in [1] is an important development of the theory of cluster algebras, which
establishes a connection between cluster theory and the theory of quantum groups,
see [2] and [5]. This is closely related to compatible Poisson structures on cluster
algebras, see [3], [6]. Moreover, in [7] we studied compatible Poisson structures
on quantum cluster algebras and the theory of second quantization related to such
Poisson structure.

In this article, we focus on another special kind of Poisson structures, i.e, inner
Poisson structure on a quantum cluster algebra without coefficients. It is found that
an inner Poisson structure is in fact a standard Poisson structure and we use the
result in [7] to connect it to a compatible Poisson structure on the same algebra.

We know from [8] that an inner Poisson structure on the path algebra of a finite
connected quiver without oriented cycles is always piecewise standard, see Example
1.4. Together with our result, it shows that in some sense, non-commutativity for
multiplication and non-trivial inner Poisson structures cannot exist simultaneously
in an associative algebra, at least in these two examples.

First, we introduce some related notations and definitions.
For n € N, the n-regular tree T, is a tree (i.e. a connected undirected acyclic
graph) whose each vertex t € T, is incident to n edges labeled 1, - - - | n respectively.

Definition 1.1. Fix n <m € N.

(a) A quantum seed at vertex t € T, is a triple ¥ = (X (t), B(t), A(t)) such
that
e B(t) is an m xn integer matrix such that the principal part is skew-symmetrizable,
i.e. there is a positive diagonal matrix D satisfying D B(t) is skew-symmetric, where
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B(t) is the first n rows of B(t).
e A(t) is an m x m skew-symmetric integer matrix and (B(t), A(t)) is a compatible
pair, i.e, :

B(t)'A(t)= (D 0). (1)
e The (extended) cluster X (t) = (X&', X2, ... X Xen+1 ... X°n) at ¢ is
an m-tuple satisfying
XeX] = qpebOIT Xt e fezm,

where {e;};~, is the standard basis of Z™. X i € [1,n] are called cluster vari-
ables at t while X%, i € [n+ 1, m] are called frozen variables.

(b) For any k € [1 n], define the mutation py at direction k to be pi(X) =
¥ = (X', B’,\') such that

Mk(XtQk) — X;ek+[bk(t)]+ +Xt_6k+[_bk(t)]+

where by (t) is the k-th column of B(t), [a]s = max {a,0} choosing the larger one of
a and 0 for any a € Z and [a] = (maz {a1,0},--- ,mazx {as,0})T for any vector
a=(a, a5

X' = (XN D U (X))
B = u(B(t)) = (Vi) mxn
satisfying that

b;j_{

ij
And A = pug(A(2)

bij(t) if i=k or j=k @)
bij (t) + sgn(bi(t)) [bir (8)br; (t)]+ otherwise
)= (N

$)mxm satisfying
—Aks(t) + ;[bzk(t)h)\u (t) if i=k#j

Nij = =i (t) + lil[blk(t)]Jr)\il(t) if j=k#i 3)
Aij(t) - otherwise

Note that (1) requests B(t) and A(t) to be of full column rank. It can be verified
that ug(X) is also a quantum seed and py is an involution.

For the Laurent polynomial ring Z[qi%] with a formal variable g, define the
quantum torus T} at ¢ to be a Z[g+2]-algebra generated by X (¢). Denoted by Fy
the skew-field of fractions of T;. It does not depend on the choice of t.

Definition 1.2. Given seeds X(t) = (X (t), B(t), A(t)) at t € T, so that %(t') =
e (X(t)) for any t — ¢’ in T,, connected by an edge labeled k € [1,n], then the

ZlgEz][X*er, ... X¥em]-subalgebra of F, generated by all variablesin |J X (t) is
teTn
called the quantum cluster algebra A,(X) (or simply A,) associated with X.

A Poisson structure on an associative k-algebra A means a triple (A, -, {—, —})
where (A, {—,—}) is a Lie k-algebra i.e. satisfying Jacobi identity such that the
Leibniz rule holds: for any a,b,c € A,

{a,be} = {a, b} c+bia,c}.
Algebra A together with a Poisson structure on it is called a Poisson algebra.
Denote the Hamiltonian of a € A by

ham(a) = {a,—} € Endy(A).
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Then the Leibniz rule is equivalent to that ham(a) is a derivation of A as an
associative algebra for any a € A.

Definition 1.3. Let A be an associative algebra. [a,b] = ab — ba is called the
commutator of a and b, for any a,b € A. For any X € k, (4, ,\[—,—]) is a
Poisson algebra called a standard Poisson structure on (A, ).

A Poisson algebra (A, -, {—, —}) is said to be inner if for any a € A, ham(a) =
[a',—] for some a’ € A, i.e. it is an inner derivation.

As a natural generalization of standard Poisson algebras, inner Poisson structures
often arise. The following two properties indicate what they should be like for some
associative algebra A:

(a) ([4]) If the first Hochschild cohomology of (A, -) vanishes, then any Poisson
structure on A is inner.
(b) ([8]) A Poisson bracket {—, —} on (A, -) is an inner Poisson bracket if and only

if there is a k-linear transformation g of A satisfying ham(a) = [g(a), —] for any
a € Aand

[9(x), 9] = [z, 9(y)], Ve, y € A, (4)

l9(z),9(W)] — 9(l9(), y]) € Z(A), Va,y € A, (5)

where Z(A) is the center of the Lie bracket [—,—]. Furthermore, for any inner

Poisson bracket {—,—} on (A, ), we can always find a k-linear transformation g
of A satisfying the above equations and meantime,

Z(A) C Ker(go)- (6)

Moreover, it is proved in [8] that

Example 1.4. For a finite connected quiver ) without oriented cycles,

KQ=k-10 P L
1<i<m
is a decomposition into indecomposable ideals of the Lie algebra (kQ, [—, —]). Fur-
thermore, if {—, —} is an inner Poisson structure on the path algebra kQ), then there
is a unique vector (A1, , Ap) € k™ such that
ham(a) = \i[a, —],for any a € I;,1 < i < m. (7)
Conversely, for any vector (A1, -, A,) € k™, there is a unique inner Poisson

structure on k@ (up to a Poisson algebra isomorphism) satisfying (7).

From now, let P(A) be the set of the k-linear transformations g of A satisfying
(4), (5). Define an equivalence relation ~ on P(A) : g ~ ¢’ if and only if there exists
7 € Aut(A, ) such that Im(rgr~! —g’) C Z(A). Denote by [g] the equivalence class
of g.

Two Poisson structures on (A4, -) are called isomorphic as Poisson algebras if
there exists an associative algebra automorphism 7 of (A4, -) such that it is also a Lie
algebra homomorphism. Denote by [(A, -, {—, —})] the iso-class of (A, -, {—, —}).

The paper is organized as follows. In Section 2, we discuss the inner Poisson
structures on a quantum cluster algebra without coefficients and prove the main
theorem.

Theorem 1.5. (Theorem 2.5) Let A, be a quantum cluster algebra without coeffi-
cients, any inner Poisson structure on A, must be a standard Poisson structure.
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Then in Section 3, we generalize the definition to locally inner Poisson structures
and find following equivalence.

Theorem 1.6. (Theorem 3.5) Let Ay be a quantum cluster algebra without co-
efficients and {—,—} a Poisson structure on Ay. The following statements are
equivalent:

(a) {—,—} is locally standard.

(b) {—,—} is locally inner.

(¢) {—,—} is compatible with A,.

2. Proof of the main theorem. The following theorem from [8] gives a corre-
spondence between inner Poisson brackets and k-linear transformations.

Theorem 2.1 ([8]). Let (A,-) be an associative algebras. Then the map
{equivalence classes of P(A)} — {isoclasses of inner Poisson structures on (A,-)}
given by

l9] = [(A, -, {=, = })], where ham(a) = [g(a), —],Va € A
is bijective.

Because of the above theorem, we can focus on the k-linear transformations
when studying inner Poisson structures. In this section, we study the inner Poisson
structures of a quantum cluster algebra A, with deformation matrix A.

Because g is k-linear, we only need to think about its action on Laurent mono-

mials in A,. In this section when we say Laurent monomials, we actually mean
Laurent monomials in the initial cluster.

Lemma 2.2. For a quantum cluster algebra A,, if g € P(Ay), then for any h €
[1,m] and any cluster X = {X1, -+, Xn, Xn+1, -+, Xm}, we have

lp,

h h h
9(Xn) = kI X0, + Y KX XS X,

i=2
which is expanded in a Z[qi%]-linearly independent form, withl, € N, al,--- jal €
Z and kP kI € Z[qi%] for 2 <i <y, satisfying that
h o h h ‘ i j
(ai17ai27"'7aim)A:( ;117 227"% ;Lm) (8)

where )\fw =0o0rAp for 1<p<m.

Proof. Assume
l1
g(X1) = ki X{XgE - Xk # 0

i=1
and
la
g(Xz) = 3 pXPXbR X0y £0
i=1
are expanded in Z[¢*]-linearly independent forms. And assume {—, —} is the inner

Poisson bracket corresponding to g, i.e. {X,Y} = [g(X),Y] for any X,Y € A,,.
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m
b1 >0 aitAu

Because 0 = {X1, X1} = [g(X1),X1] = Zl(qm — DXt X im
we have
Zait)\tl =0 forany 1<i<lI.
t=1
Similarly,

m
Zbit)\ﬂ =0 forany 1<1i<ls.
t=1

Moreover, according to (4), we then obtain that

11 m
D @it 2 ) Wit @ a
{)(17 XQ} — [Q(Xl); XQ] — Z ki(qt:Q _ qa11>\21)X111X212+1X313 . Xmlm; (9)
=1

> bitAsn . . ) .
{X1, Xo} = [X1,9(X2)] = ) pi(1 — ¢= XXy Xye . X (10)
i=1

Trivially, the expansions of the right-sides of (9) and (10) are also in Z[g¥z]-
linearly independent forms, which are the same due to the algebraic independence
of {X1,Xa, -+, X} Hence there exists [y < lj,ls such that there are Iy mono-
mials with non-zero-coefficients in the expansions of the right-sides of (9) and (10)
respectively and the coefficients of other monomials are all zeros.

Without loss of generality, suppose these |y monomials with non-zero-coefficients
are just the first Iy ones in the expansions of the right-sides of (9) and (10) re-
spectively. We may assume they are in one-by-one correspondence indexed by
i=1,2,---,lp. Hence due to the above discussion, we obtain that

Case 1. For i satisfying 1 < i <,

ain =bin +1
aiz +1="bi
;g = by, for3<t<m
72": a;itAt2 ) f: bitAe1
ki(q‘ﬂ _ qa11)\21) — pi(l — qt=1 ) # 0

m m

Yoaida = Y bl =0

t=1 t=1

Case 2. For i, j satisfying Iy < i <y, lg < j <3, we have

m m m m
qt§2 Githez _ qail)\Ql =1 - qt§1 bedun = Zait)\tl = Z bjt/\ﬂ =0.
t=1 t=1
From Case 1, we get that for 1 < i <,
m
a;tAe1 =0
t=1

S i (11)
Do a2 = Y bz + Az — Aog = Ao,

t=1 t=1
From Case 2, we have that for Iy < i <,

> aigh =0
i=1

Z ait>\t2 = O
t=1
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In the above discussion, replacing X» by other X, for p # 1,2, we get similarly
that:

Z ait)\tp = /\111) (13)
t=1

where Aj, = Ay or 0 for any 3 <p<m,1 <i<lI.
In summary from (11), (12) and (13), we have
(@it @iz, -+ aim)A = ()‘lila)‘li% T 7>\Zim)
for any 1 < ¢ <1y, i.e, in the expansion of g(X;) any term k; X X5 - X%m with
k; # 0 must have (a;1,- -, a;m) as a solution of above equations.
When (a11,a12,- - ,a1m) = (1,0,---,0), (8) is satisfied for A{, = Ay, for any
p. So in the expansion of g(X7), we may consider the monomial k1 X; as the first

term, i.e. ¢ = 1. Note that it maybe not exist if its coefficient k; is zero.
Then we have the expansion of g(X7) as follows:

5
9(X1) = ki X1+ ki XU XgE - X
i=2
and
(ail, A;2, ... ,aim)A = (/\’ilﬂ )\32, ceey )\Zlm)
where )\Zik =0 or A1x. It implies this lemma holds for h = 1.

The similar discussion for any Xp, h € [1,m] can be given to complete the proof.
]

In the rest of this section we will always assume A, is a quantum cluster algebra
without coefficients, i.e, m = n. Then (1) becomes

B"A=D
Following this, B and A are both of rank n and invertible. So n > 1 since B =0
when n = 1. And in this case (a1, a2, - -, @Gim) = (Ni1, Nig, ... A], )ATL

Lemma 2.3. Let A, be a quantum cluster algebra without coefficients. If g € P(A,)
satisfies that g(X) = kx X for any Laurent monomial X in A, with kx € Z[qi% ,
then there is a scalar Z[qi%]-tmnsformation g € P(A,) such that ¢’ ~ g.

Proof. For any Laurent monomial X = pX{"* X5 --- X" € A,, X communicates
with X; if and only if >~ m;\;; = 0. Therefore X € Z(A,) the center of A, if and
J

only if (mq,mg, -+ ,my)A = 0. Because A is invertible, we have Z(4,) = Z[qi%].
Therefore for any non-constant Laurent monomial X € Ay, we can find a Laurent
monomial Yy € A, such that [ X, Yp] # 0.
For two non-constant Laurent monomials X,Y € A,, we claim kx = ky.

Case 1. Assume XY # Y X.
Denote the Poisson bracket associated to g as {—, —}. Then, first, we have

(XY} = [g(X),Y] = kx XY — kxYX.
On the other hand, according to (4) we have also

{(X,Y} = [X,g(Y)] = ky XY — ky YV X.
Thus since XY # Y X, we obtain kx = ky.
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Case 2. Assume XY =Y X.

Since X,Y ¢ Z(A,), there are Laurent monomials M, N in A, such that XM #
MX,YN # NY. Then from Case 1, we have kx = kys, ky = kn.

If either YM #= MY or XN # NX, then ky = ky; or kx = ky. It follows that
kx = ky.

Otherwise, YM = MY and XN = NX. It is easy to see that X(MN) #
(MN)X,Y(MN) # (MN)Y. So, from Case 1, kx = kyn = ky.

Then, there exists a fixed element kg € Z[qi%] such that kg = kx for any non-
constant Laurent monomial X € A,. It follows that for any such X,

9(X) = ko X. (14)
For any constant a € Z[¢¥2] and any W € A,, we have
[9(a), W] ={a, W} = [a,g(W)] = 0.

Therefore g(a) € Z(A,) = Z[g2], that is, g(a) is a constant.

Let ¢’ be the ko-scalar linear transformation of A,, that is, for any W € A,
define ¢'(W) = koW. Trivially, ¢’ € P(4,).

By (14) and since g(a) is a constant for any a € Z[g¥z], we have Im(g — ¢') C
Z(A,) = Z[gF?]. Tt means that g ~ ¢ O

Lemma 2.4. Let A; be a quantum cluster algebra without coefficients. Then for
any g € P(Aq),
(a) for any Laurent monomial X in Ay, 9(X) = kxX + k., where kx,ky €
1

Z[qii],‘
(b) there is a scalar Z[gE=]-transformation go € P(A,) such that gy ~ g.

Proof. (a) According to Lemma 2.2,

lh h h h
g(Xn) = kI Xp + > kX7 X5 X (15)
i=2
where
(azhlvazh% R a?n)A = ( ;;17 )‘227 EERE) Vm)
and )\Zp =0or App for 1 <p <n. For mq, -+ ,m, €Z, assume
1
gIXTIXG= - XY = f X X X, (16)
j=1

satisfying ¢y = my for t € [1,n], as a Z[qi%]—lineaﬂy independent expansion except
that fi; may be zero. Let {—, —} be the Poisson structure correspond to g.
According to (4), we have:

(X0, XX - X )
[g(X1), X" X5 - - X7 ]
= R X XXX
1 1 1 1 1
+ Z:Zkileul c X X X = ST REXM L X X X

=2

Zn:m)\,
= k(1 -g= ¢ 'I)XIMHX;M...X;M
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L ST airmsA > airmsA m 1 1
irMsArs irMsAsr +a! ma+al,

—+ Z kil(qr>s _ qr<s )Xl 1 1,.. Xn

=2

Z me A1
= ki(1—g= )X”““Xm?- X

Iy > a s Ars Z a M Asr matal mtal
+Zk1 r>s (17q7‘e1 )Xll i X in.

=2

on the other hand,
X, X7 X2 X} = X17 Xxome .. X mn
1 2 n n
Z f]( cg1+1 612 . XTCLj" . X10j1X§j2 . ch;anl)

Z Cjt t Ci Cs C:
— Z fj(l — g 1)X111+1X212 X

Note that in the last step of the first expansion of {X7, X" X5" --- X"}, we have
—(aly - al YA(my - )T

- 1
i s)\sr = s in
r,;lawm ezzzl(rg )m (17)

= =My L) (ma o) T

The last steps of the two kinds of expansions of {X, X7"' X7 .-- X"} are
both in Z[qi%]—linearly independent forms, which are the same due to the algebraic
independence of {X1, X5, -+, X,,}. Hence, for some Iy < Iy,, there are [y — 1
monomials with non-zero-coefficients in the last steps of two kinds of expansions
above respectively and the coefficients of other monomials are all zeros, besides the
first terms in these two expansion which maybe be zero or non-zero in the various
cases.

Without loss of generality, suppose the [j—1 monomials with non-zero-coefficients
are just those ones whose indexes are with 2 < ¢ <[y and 2 < j < [y respectively
in the last steps of two kinds of expansions above, that is, we assume they are in
one-by-one correspondence indexed by i = 2,--- .

Thus, due to the above discussion, from comparation of coefficients, we obtain
that

Z mi A1 Z (ST

A = /{:1(1 g=1 )lelJrlX;”z C XM = f (1 g5 )X1CM+1X2cm X
(18)
When 2 < i <,
> ai,msArs i aj, msAsr 1 )
Lz — gt mitap | ymatdip
= fi(l—g= i Xt XL e,
When lg <i <lp,lo <j <1,
> ajmsArs i aj, msAsy 1 )
=klqg> " — gt mitap | ymatdip
0 =kjq~ E /\(1 q )Xy X, (20)
CjtAt1 . c Cin
_ - g X X X,

In (18), we have that A; = 0 if and only if > m:A\y = 0; otherwise, A1 # 0 then
=1
f1=ki.
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From (19) and (17), we obtain that for 2 < ¢ <,

ci1:m1+a%1—1
ci]g:mp—&—a1 for2<p<n

ip?
n n
0 7é E airmsAsr = - Z )\lems
r,s=1 s=1
n n n ) n
0# > cithin = X (me +aj) s = 3 medin + Ay = Y mada.
t=1 t=1 t=1 t=1

From (20) and (17), we obtain that for i,j > lg,

D> Agme = cjphp = 0. (21)
s=1 p=1

In conclusion, (¢j1,--- ,¢jn) With f; # 0 must satisfy one of (18), (19) and (20)
forany j =1,2,---,lp.

In the same way, replacing X7 by Xp, h € [1,n], we will also obtain three
equalities similar to (18), (19) and (20) such that (cj1,- - ,¢jn) with f; # 0 satisfies
one of three equalities.

According to our assumption, we always have (c11,--+ ,c1n) = (M1, -+ ,my).
Now we want to prove by contradiction that (¢;1,--- ,¢jn) can only be (0,---,0)

for 2 < j <. Hence, we first assume that (¢;1,---,¢jn) # (0,---,0) in this case.
We can choose some special mg$,--- ,m§, € ZZ, such that

n
> m@An # Aip for any i, h
=1

> mf Ay, # 0 for any ¢, h (22)
t=1
my¢ > 0 for any ¢
For any X, h € [1,n], we first claim that under the condition (22), (¢;1,- -+, ¢jn)
with f; # 0 does not satisfy the equality similar to (19).
In fact, because A is invertible, so since (¢j1,---,¢jn) # (0,---,0), we have
(¢j1,- -+ y¢ein)A # (0,---,0). Therefore (cj1,--- ,¢jn) can not satisfy an equality

similar to (20) for all h € [1,n], i.e. it must satisfy some equations similar to (18)
or (19) for some h. Therefore all of the possible (¢j1,---,¢in) # (0,---,0) are
(m$ +aly, - mg +all —1,--- ,m9 +al)) for some i and h. Hence for any h, by
(22),

n

n
t; Cjt/\th = t;(mf + a?t)kth — >\ph =

NIE

MY + Ay — Aph

5
Il

1
;m?/\m 75 0, if )\;h = )\ph

— t=

t; mto)\th - )\ph 7é 0, if )\;h = u.

So for any h, (0,---,0) is the only (¢j1,--- ,¢;n) satisfying the equalities similar
to (20), (mg,---,m?) is the only (c11,--- ,c1p) satisfying the equalities similar to
(18), while all of that

o p o p o p
(m1+ai17"' amp+aip_1>"' ’mn+ain)

satisfy the equalities similar to (19).
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Hence for any (c¢j1,--- ,¢jn) # (0,---,0) with 2 < j <y, we have
¢l =m§’+a]11 —l=---=mi+a}
(23)
cjn:mZ—i—a]l-n = =mj+aj, — 1
Then for any hy # ho,
h
£h1 —1l= a]ﬁl
ﬁhz - C}lljhz 1
i =ajn, foranyh # hy, hs
Therefore,
Za Anhy =X, = 0= Anyn,
and
n )
> alixun, = Z aip Anhs + Anihy = Ny + Mahs = Ay
for any hi,ho. Hence (a?ll,~~ , ?jL)A = (An1, ", Anyn). Again because A is
invertible, we have (a?l1 S ,a%) = ep,,. Therefore by (23) we get
h h
(le"“ 7Cjn) = (m€?"' 7m;’)L) + (aji7"' 7aj711) —€h, = (m%"' am(Y)L)v

which contradicts to our assumption as 57 > 2. Thus in conclusion, under the
condition (22), (¢j1,---,¢jn) with f; # 0 does not satisfy the equality similar to
(19) for any h.

Hence, indeed, the case satisfying the equality similar to (19) would not happen
under the assumption of (22). It means for any h, we only have (20) to hold for

2 < i < lj,. Therefore, > \) m? =0 for any h and 2 < i < [}, according to (21).

s=1

Define sets:

Sih = {(mla e 7mn) S Zgo | (m17 e )mn)A = (tla e 7th717)\ihath+1a e 7tn)
Vi1, ytho1,thi1, * ,tn € Z} for any i, h € [1,n];

Th = {(mla e 7mn) S Zgo | (m17 T 7mn)A = (tla 7th71705 th+1a o atn)
Vi1, yth_1,thi1, -ty € Z} for any h € [1,n).

Then the set of positive integer vectors (mq,-- -, m,) satisfying (22) is equal to
the set

0\ U 1h U T

i,h€[1,n]

For any 4, h, the sets S;;,T; lie discretely in their corresponding (n — 1)-dimen-
sional nonnegative cones Cjp, D; in Q" respectively. All of C;,, D; are contained
in the n-dimensional nonnegative cone (or say, the first quadrant) QZ, of Q™. Let
c'= U (CinruUby).

i,h€[1,n]

It is easy to see that every [-dimensional nonnegative cone included in Q% can
be seen uniquely as an intersection of an [-dimensional linear subspace and Q%
for any | < n. Denote by Pj, the (n — 1)-dimensional linear subspace such that
Cin = P (NQ%, and by Q; the (n — 1)-dimensional linear subspace such that

D; = Q; Q% for i, h € [1,7].
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Let PP = |J PpUQ; Then, C'C P

i,he[1,n]

Assume there is at most p(< n) linearly independent vectors in Q%2 \ C’. Let
P, be the subspace spanned by these p linearly independent vectors. Then QTZLO C
Py JC" C Py|UP'. But the standard basis {eq,- - ,e,} € Q%,. It follows that
Q" C Py P’, which contradicts to the well-known fact that every finite n-dimen-
sional linear space can not be contained in a union of finitely many subspaces with
dimensions less than n.

Hence, we can find n linearly independent vectors in Q% \ C’, say vq,--- ,v, €
QY,, whose coordinates satisfy respectively the condition (_22).

Now, we can find an a € Zy such that av; € Z%,. Without loss of generality,
we may think for each av; = (m$;,--- ,m%;) (i = 1,--- ,n), the condition (22) still
is satisfied. Otherwise, the only possibility is that the first condition in (22) is not
satisfied, then we can always replace a by ra for certain r € Z, such that the first
condition in (22) is satisfied, too.

In summary, we can obtain Q-linearly independent vectors av; = (mg,, -+ ,m2,) €
Z%, (i =1,---,n) satisfying (22).

“And as we discussed above, the following equation is satisfied:
miy e omi,

M 0 M) | s [ =0

me, m
So (Al -+, A¢ ) can only be (0,---,0) for any h, 2 < i < l;. Then it follows from
Lemma 2.2 that for any h and 2 < i <,

o
nn

(aﬁlv"' )a?n):((),... ;0). (24)
Then, we have g(X3) = k' X), + kb where kb € Z[¢*2].
For general (my,---,m,) € Z™ such that X" --- X" is a Laurent monomial
in A,. According to our above discussion and by (24), we have
i me g
== XXX = (X X X

2 cithe Cj1 cj Ci
= ij(l — qt=1 J 1)X1_7 +1X2J2 L XCm
J

So we have ) ¢jtAy1 = 0 for any j > 2. Replacing X; by Xp, h € [1,n], we
t=1

obtain that (gjla -+, ¢jn)A =0 for any j > 2. However, it contradicts to that A is
invertible since we have assumed (c;1,- - ,¢jn) # (0,---,0).
Hence (cj1,- -+ ,¢jn) = (0,---,0) for any j > 2.

Then by (16), we get g(X{™ - - X') = faX7™ - X' + fo, where f1,f2 €
Z[qi%]. That is, for any cluster Laurent monomial X in A,

9(X) = kx X + K, (25)
where kx, ky € Z[g*3].

(b) For any g € P(A,), by (25), we define ¢’ to be the map satisfying ¢'(X) =
kx X for any cluster Laurent monomial X € A, and ¢'(a) = 0 for any a € Z[g¥2].
Trivially, ¢’ € P(A,). Since Im(g — ¢') C Z(A4,), we have g ~ ¢’.

By Lemma 2.3, there is a scalar Z[¢*2]-transformation gy € P(Ag4) such that
go ~ ¢'. Tt follows that go ~ g. O
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Combining Lemma 2.3 and Lemma 2.4, we get our main result on inner Poisson
structures.

Theorem 2.5. Let A, be a quantum cluster algebra without coefficients, any inner
Poisson structure on A, must be a standard Poisson structure.

Proof. According to Theorem 2.1, any inner Poisson bracket on A, corresponds to
a linear transformation g € P(A,) up to isomorphism. By Lemma 2.3 and Lemma
2.4, we can choose a scalar linear transformation ¢’ in the iso-class of g, that is,
g (W) = koW for a fixed element ko € Z[¢¥2] and for any W € A,. It follows
that ham(W) = ko[W, —] for any W € A,, which means the Poisson structure is
standard. O

3. On locally inner Poisson structures. First we introduce the following defi-
nitions and results in [7].

Definition 3.1. (a) For a quantum cluster algebra Ay, one of its extended cluster
X(t) = (X1,---,X,,) at t € T, is said to be log-canonical with respect to a
Poisson structure (Ag, -, {—, —}) if {Xi, X;} = w;; X+ where w;; € Z[g*2] for
any 4,7 € [1,m].

(b) A Poisson structure {—, —} on a quantum cluster algebra A, is called com-
patible with A, if all clusters in A, are log-canonical with respect to {—, —}.

In [7], we define the cluster decomposition of a quantum cluster algebra as follow-
ing. Let A, 1, Aq 1, be two quantum cluster algebras with initial seeds (Xy,, By, ,
Ap) and (Xp,, Br,,Ar,) respectively, and let © be an |I1]| X |I2| integer matrix
satisfying

BIT 0 =0
1
0B, =0.
Define A, 1, | |g Aq,1, to be the algebra equivalent to A, 1, ®Z[qi%] Ag1, s a ZlgEz)-
module with twist multiplication:
(@@b)(cod) = kg™ ®aX}) © Xjid (27)

5]

(26)

for b = E k;if(z,c = Z lj)N(ij, where 7, 5; are exponential column vectors.
i J

Let A, ;, be quantum cluster algebras with initial seeds (X, By,,Ay,) for i €
[1,7]. | | is associative in the sense that

(Aqu I_le)1 Aq,b) |—|®’ Aq,fs = Aqu Lle//(Aq,IQ |_|@3 Aq,f3)’
where

@':(8§>, " =(0: ©).

Theorem 3.2. [7] Let A, be a quantum cluster algebra with initial seed (X,B,A)

and {—, —} a compatible Poisson bracket on A,. Assume () is the Poisson matriz of
~ ~ T ~
the initial cluster with respect to {—,—}, B has the decomposition B = @ By, with
i=1

indecomposables BL: fori e [1,r], and Aq 1, is the quantum cluster indecomposable
subalgebra of A, determined by (By,,Ar,). Then Ay = | | Aq.1,-
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T
We call A, = || A, 1, a cluster decomposition of A,.
i=1

In particular, when A, is a quantum cluster algebra without coefficients, B is
invertible. Hence by (26), we have © = O. So, from (27), we also obtain (a ®b)(c®
d) = ac ® bd in this case, which means the cluster decomposition is exactly tensor
decomposition 4, = Q;_; Aq.1,-

We generalize inner Poisson structures to locally inner structures in the sense of
cluster decomposition.

Definition 3.3. Let A, be a quantum cluster algebra with the cluster decomposi-
tion A, = l_lzzl Ag,1;-

(a) A Poisson structure {—,—} on A, is said to be locally inner if for any
a € Ag and i € [1,7], there is a; € Ay 1, such that ham(a)|a, , = [ai, —].
(b) A Poisson structure {—, —} on 4, is a locally standard Poisson structure

if {X;, X,;} = 0 when ¢ and j are from different I, and {—, —} is of standard poisson
structure on each X , i.e, {Xi, X;} = a,[ Xy, X;], where i, € I, a, € Z[g*3].

Proposition 1. Let A, be a quantum cluster algebra without coefficients, any locally
inner Poisson structure on Aq is locally standard.

Proof. Assume A, has the cluster decomposition 4, = @Q;_, Aq 1, and {—,—} is a
locally inner Poisson bracket on A,. According to the definition, {—, —} is inner
when restricted on each Ay r,. Hence by Theorem 2.5, ham(a) |4, ,,= Aila, =] for
some \; € Z[g¥2] and any a € Aq,1;- Moreover, for any a € Ay 1,0’ € Ay, and
i F ],
{a,d'} =[a;,ad') € Agr,, and {a,d'} =[a,a}] € Ag1,.
So, {a,ad'} € A1, NAg1, = Z]g*2] according to the independence of cluster vari-
ables and I; N I; = (. And, note that the expansions of [a;,a’] and [a, a}] will not
contain non-zero constant terms in Z[g*2] due to the definitions of the operation
[, ] and quantum torus. Thus, {a,a’} = 0.
Therefore, for any a € Ay 1,,

ram(@)La,,,={ M7 120
Then the Poisson structure is exactly locally standard. O

Theorem 3.4. [7] Let A, be a quantum cluster algebra without coefficients. Then
a Poisson structure {—,—} on Ay is compatible with A, if and only if it is locally
standard on Ag.

Since a locally standard Poisson structure is evidently locally inner, combining
Proposition 1 and Theorem 3.4, we have the final conclusion:

Theorem 3.5. Let A, be a quantum cluster algebra without coefficients and {—, —}
a Poisson structure on A,. The following statements are equivalent:

(a) {—, =} is locally standard.

(b) {—,—} is locally inner.

(¢) {—,—} is compatible with A,.
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