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Abstract. The main aim of this article is to characterize inner Poisson struc-

ture on a quantum cluster algebra without coefficients. Mainly, we prove that
inner Poisson structure on a quantum cluster algebra without coefficients is

always a standard Poisson structure. We introduce the concept of so-called

locally inner Poisson structure on a quantum cluster algebra and then show it
is equivalent to locally standard Poisson structure in the case without coeffi-

cients. Based on the result from [7] we obtain finally the equivalence between
locally inner Poisson structure and compatible Poisson structure in this case.

1. Introduction and preliminaries. The introduction of quantum cluster alge-
bras in [1] is an important development of the theory of cluster algebras, which
establishes a connection between cluster theory and the theory of quantum groups,
see [2] and [5]. This is closely related to compatible Poisson structures on cluster
algebras, see [3], [6]. Moreover, in [7] we studied compatible Poisson structures
on quantum cluster algebras and the theory of second quantization related to such
Poisson structure.

In this article, we focus on another special kind of Poisson structures, i.e, inner
Poisson structure on a quantum cluster algebra without coefficients. It is found that
an inner Poisson structure is in fact a standard Poisson structure and we use the
result in [7] to connect it to a compatible Poisson structure on the same algebra.

We know from [8] that an inner Poisson structure on the path algebra of a finite
connected quiver without oriented cycles is always piecewise standard, see Example
1.4. Together with our result, it shows that in some sense, non-commutativity for
multiplication and non-trivial inner Poisson structures cannot exist simultaneously
in an associative algebra, at least in these two examples.

First, we introduce some related notations and definitions.
For n ∈ N, the n-regular tree Tn is a tree (i.e. a connected undirected acyclic

graph) whose each vertex t ∈ Tn is incident to n edges labeled 1, · · · , n respectively.

Definition 1.1. Fix n ≤ m ∈ N.
(a) A quantum seed at vertex t ∈ Tn is a triple Σ = (X̃(t), B̃(t),Λ(t)) such

that
• B̃(t) is anm×n integer matrix such that the principal part is skew-symmetrizable,
i.e. there is a positive diagonal matrix D satisfying DB(t) is skew-symmetric, where
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B(t) is the first n rows of B̃(t).

• Λ(t) is an m×m skew-symmetric integer matrix and (B̃(t),Λ(t)) is a compatible
pair, i.e,

B̃(t)>Λ(t) =
(
D O

)
. (1)

• The (extended) cluster X̃(t) = (Xe1
t , X

e2
t , · · · , X

en
t , Xen+1 , · · · , Xem) at t is

an m-tuple satisfying

Xe
tX

f
t = q

1
2 eΛ(t)f>Xe+f

t , ∀e, f ∈ Zm,
where {ei}mi=1 is the standard basis of Zm. Xei

t , i ∈ [1, n] are called cluster vari-
ables at t while Xei , i ∈ [n+ 1,m] are called frozen variables.

(b) For any k ∈ [1, n], define the mutation µk at direction k to be µk(Σ) =

Σ′ = (X̃ ′, B̃′,Λ′) such that

µk(Xek
t ) = X

−ek+[bk(t)]+
t +X

−ek+[−bk(t)]+
t

where bk(t) is the k-th column of B̃(t), [a]+ = max {a, 0} choosing the larger one of
a and 0 for any a ∈ Z and [α]+ = (max {a1, 0} , · · · ,max {as, 0})T for any vector
α = (a1, · · · , as)T .

X̃ ′ = (X̃(t))\ {Xek
t })

⋃
{µk(Xek

t )} .

B̃′ = µk(B̃(t)) = (b′ij)m×n

satisfying that

b′ij =

{
−bij(t) if i = k or j = k
bij(t) + sgn(bik(t))[bik(t)bkj(t)]+ otherwise

(2)

And Λ′ = µk(Λ(t)) = (λ′ij)m×m satisfying

λ′ij =


−λkj(t) +

m∑
l=1

[blk(t)]+λlj(t) if i = k 6= j

−λik(t) +
m∑
l=1

[blk(t)]+λil(t) if j = k 6= i

λij(t) otherwise

(3)

Note that (1) requests B̃(t) and Λ(t) to be of full column rank. It can be verified
that µk(Σ) is also a quantum seed and µk is an involution.

For the Laurent polynomial ring Z[q±
1
2 ] with a formal variable q, define the

quantum torus Tt at t to be a Z[q±
1
2 ]-algebra generated by X̃(t). Denoted by Fq

the skew-field of fractions of Tt. It does not depend on the choice of t.

Definition 1.2. Given seeds Σ(t) = (X̃(t), B̃(t),Λ(t)) at t ∈ Tn so that Σ(t′) =
µk(Σ(t)) for any t − t′ in Tn connected by an edge labeled k ∈ [1, n], then the

Z[q±
1
2 ][X±e1 , · · · , X±em ]-subalgebra of Fq generated by all variables in

⋃
t∈Tn

X(t) is

called the quantum cluster algebra Aq(Σ) (or simply Aq) associated with Σ.

A Poisson structure on an associative k-algebra A means a triple (A, ·, {−,−})
where (A, {−,−}) is a Lie k-algebra i.e. satisfying Jacobi identity such that the
Leibniz rule holds: for any a, b, c ∈ A,

{a, bc} = {a, b} c+ b {a, c} .
Algebra A together with a Poisson structure on it is called a Poisson algebra.
Denote the Hamiltonian of a ∈ A by

ham(a) = {a,−} ∈ Endk(A).
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Then the Leibniz rule is equivalent to that ham(a) is a derivation of A as an
associative algebra for any a ∈ A.

Definition 1.3. Let A be an associative algebra. [a, b] = ab − ba is called the
commutator of a and b, for any a, b ∈ A. For any λ ∈ k, (A, ·, λ[−,−]) is a
Poisson algebra called a standard Poisson structure on (A, ·).

A Poisson algebra (A, ·, {−,−}) is said to be inner if for any a ∈ A, ham(a) =
[a′,−] for some a′ ∈ A, i.e. it is an inner derivation.

As a natural generalization of standard Poisson algebras, inner Poisson structures
often arise. The following two properties indicate what they should be like for some
associative algebra A:
(a) ( [4] ) If the first Hochschild cohomology of (A, ·) vanishes, then any Poisson
structure on A is inner.
(b) ( [8] ) A Poisson bracket {−,−} on (A, ·) is an inner Poisson bracket if and only
if there is a k-linear transformation g of A satisfying ham(a) = [g(a),−] for any
a ∈ A and

[g(x), y] = [x, g(y)],∀x, y ∈ A, (4)

[g(x), g(y)]− g([g(x), y]) ∈ Z(A),∀x, y ∈ A, (5)

where Z(A) is the center of the Lie bracket [−,−]. Furthermore, for any inner
Poisson bracket {−,−} on (A, ·), we can always find a k-linear transformation g0

of A satisfying the above equations and meantime,

Z(A) ⊆ Ker(g0). (6)

Moreover, it is proved in [8] that

Example 1.4. For a finite connected quiver Q without oriented cycles,

kQ = k · 1⊕
⊕

1≤i≤m

Ii,

is a decomposition into indecomposable ideals of the Lie algebra (kQ, [−,−]). Fur-
thermore, if {−,−} is an inner Poisson structure on the path algebra kQ, then there
is a unique vector (λ1, · · · , λm) ∈ km such that

ham(a) = λi[a,−], for any a ∈ Ii, 1 ≤ i ≤ m. (7)

Conversely, for any vector (λ1, · · · , λm) ∈ km, there is a unique inner Poisson
structure on kQ (up to a Poisson algebra isomorphism) satisfying (7).

From now, let P(A) be the set of the k-linear transformations g of A satisfying
(4), (5). Define an equivalence relation ∼ on P(A) : g ∼ g′ if and only if there exists
τ ∈ Aut(A, ·) such that Im(τgτ−1−g′) ⊆ Z(A). Denote by [g] the equivalence class
of g.

Two Poisson structures on (A, ·) are called isomorphic as Poisson algebras if
there exists an associative algebra automorphism τ of (A, ·) such that it is also a Lie
algebra homomorphism. Denote by [(A, ·, {−,−})] the iso-class of (A, ·, {−,−}).

The paper is organized as follows. In Section 2, we discuss the inner Poisson
structures on a quantum cluster algebra without coefficients and prove the main
theorem.

Theorem 1.5. (Theorem 2.5) Let Aq be a quantum cluster algebra without coeffi-
cients, any inner Poisson structure on Aq must be a standard Poisson structure.
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Then in Section 3, we generalize the definition to locally inner Poisson structures
and find following equivalence.

Theorem 1.6. (Theorem 3.5) Let Aq be a quantum cluster algebra without co-
efficients and {−,−} a Poisson structure on Aq. The following statements are
equivalent:

(a) {−,−} is locally standard.
(b) {−,−} is locally inner.
(c) {−,−} is compatible with Aq.

2. Proof of the main theorem. The following theorem from [8] gives a corre-
spondence between inner Poisson brackets and k-linear transformations.

Theorem 2.1 ([8]). Let (A, ·) be an associative algebras. Then the map

{equivalence classes of P(A)} → {isoclasses of inner Poisson structures on (A, ·)}

given by

[g] 7→ [(A, ·, {−,−})], where ham(a) = [g(a),−],∀a ∈ A

is bijective.

Because of the above theorem, we can focus on the k-linear transformations
when studying inner Poisson structures. In this section, we study the inner Poisson
structures of a quantum cluster algebra Aq with deformation matrix Λ.

Because g is k-linear, we only need to think about its action on Laurent mono-
mials in Aq. In this section when we say Laurent monomials, we actually mean
Laurent monomials in the initial cluster.

Lemma 2.2. For a quantum cluster algebra Aq, if g ∈ P(Aq), then for any h ∈
[1,m] and any cluster X̃ = {X1, · · · , Xn, Xn+1, · · · , Xm}, we have

g(Xh) = kh1Xh +

lh∑
i=2

khi X
ahi1
1 X

ahi2
2 · · ·Xahim

m ,

which is expanded in a Z[q±
1
2 ]-linearly independent form, with lh ∈ N, ahi1, · · · , ahim ∈

Z and kh1 , k
h
i ∈ Z[q±

1
2 ] for 2 ≤ i ≤ lh, satisfying that

(ahi1, a
h
i2, . . . , a

h
im)Λ = (λih1, λ

i
h2, . . . , λ

i
hm) (8)

where λihp = 0 or λhp for 1 ≤ p ≤ m.

Proof. Assume

g(X1) =

l1∑
i=1

kiX
ai1
1 Xai2

2 · · ·Xaim
m , ki 6= 0

and

g(X2) =

l2∑
i=1

piX
bi1
1 Xbi2

2 · · ·Xbim
m , pi 6= 0

are expanded in Z[q±
1
2 ]-linearly independent forms. And assume {−,−} is the inner

Poisson bracket corresponding to g, i.e. {X,Y } = [g(X), Y ] for any X,Y ∈ Aq.
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Because 0 = {X1, X1} = [g(X1), X1] =
l1∑
i=1

(q

m∑
t=1

aitλt1

− 1)Xai1+1
1 Xai2

2 · · ·Xaim
m ,

we have
m∑
t=1

aitλt1 = 0 for any 1 < i < l1.

Similarly,
m∑
t=1

bitλt2 = 0 for any 1 < i < l2.

Moreover, according to (4), we then obtain that

{X1, X2} = [g(X1), X2] =

l1∑
i=1

ki(q

m∑
t=2

aitλt2

−qai1λ21)Xai1
1 Xai2+1

2 Xai3
3 · · ·Xaim

m ; (9)

{X1, X2} = [X1, g(X2)] =

l2∑
i=1

pi(1− q
m∑

t=1
bitλt1

)Xbi1+1
1 Xbi2

2 Xbi3
3 · · ·Xbim

m . (10)

Trivially, the expansions of the right-sides of (9) and (10) are also in Z[q±
1
2 ]-

linearly independent forms, which are the same due to the algebraic independence
of {X1, X2, · · · , Xm}. Hence there exists l0 ≤ l1, l2 such that there are l0 mono-
mials with non-zero-coefficients in the expansions of the right-sides of (9) and (10)
respectively and the coefficients of other monomials are all zeros.

Without loss of generality, suppose these l0 monomials with non-zero-coefficients
are just the first l0 ones in the expansions of the right-sides of (9) and (10) re-
spectively. We may assume they are in one-by-one correspondence indexed by
i = 1, 2, · · · , l0. Hence due to the above discussion, we obtain that

Case 1. For i satisfying 1 ≤ i ≤ l0,

ai1 = bi1 + 1
ai2 + 1 = bi2
ait = bit, for 3 ≤ t ≤ m

ki(q

m∑
t=2

aitλt2

− qai1λ21) = pi(1− q
m∑

t=1
bitλt1

) 6= 0
m∑
t=1

aitλt1 =
m∑
t=1

bitλt2 = 0

Case 2. For i, j satisfying l0 < i ≤ l1, l0 < j ≤ l2, we have

q

m∑
t=2

aitλt2

− qai1λ21 = 1− q
m∑

t=1
bjtλt1

=

m∑
t=1

aitλt1 =

m∑
t=1

bjtλt1 = 0.

From Case 1, we get that for 1 ≤ i ≤ l0,
m∑
t=1

aitλt1 = 0

m∑
t=1

aitλt2 =
m∑
t=1

bitλt2 + λ12 − λ22 = λ12.
(11)

From Case 2, we have that for l0 < i ≤ l1,
m∑
t=1

aitλt1 = 0

m∑
t=1

aitλt2 = 0.
(12)
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In the above discussion, replacing X2 by other Xp for p 6= 1, 2, we get similarly
that:

m∑
t=1

aitλtp = λi1p (13)

where λi1p = λ1p or 0 for any 3 ≤ p ≤ m, 1 ≤ i ≤ l1.
In summary from (11), (12) and (13), we have

(ai1, ai2, · · · , aim)Λ = (λi11, λ
i
12, · · · , λi1m)

for any 1 ≤ i ≤ l1, i.e, in the expansion of g(X1) any term kiX
ai1
1 Xai2

2 · · ·Xaim
m with

ki 6= 0 must have (ai1, · · · , aim) as a solution of above equations.
When (a11, a12, · · · , a1m) = (1, 0, · · · , 0), (8) is satisfied for λ1

1p = λ1p for any
p. So in the expansion of g(X1), we may consider the monomial k1X1 as the first
term, i.e. i = 1. Note that it maybe not exist if its coefficient k1 is zero.

Then we have the expansion of g(X1) as follows:

g(X1) = k1X1 +

l1∑
i=2

kiX
ai1
1 Xai2

2 · · ·Xaim
m ,

and

(ai1, ai2, . . . , aim)Λ = (λi11, λ
i
12, . . . , λ

i
1m)

where λi1k = 0 or λ1k. It implies this lemma holds for h = 1.
The similar discussion for any Xh, h ∈ [1,m] can be given to complete the proof.

In the rest of this section we will always assume Aq is a quantum cluster algebra
without coefficients, i.e, m = n. Then (1) becomes

B>Λ = D

Following this, B and Λ are both of rank n and invertible. So n > 1 since B = 0
when n = 1. And in this case (ai1, ai2, . . . , aim) = (λi11, λ

i
12, . . . , λ

i
1m)Λ−1.

Lemma 2.3. Let Aq be a quantum cluster algebra without coefficients. If g ∈ P(Aq)

satisfies that g(X) = kXX for any Laurent monomial X in Aq with kX ∈ Z[q±
1
2 ],

then there is a scalar Z[q±
1
2 ]-transformation g′ ∈ P(Aq) such that g′ ∼ g.

Proof. For any Laurent monomial X = pXm1
1 Xm2

2 · · ·Xmn
n ∈ Aq, X communicates

with Xi if and only if
∑
j

mjλji = 0. Therefore X ∈ Z(Aq) the center of Aq if and

only if (m1,m2, · · · ,mn)Λ = 0. Because Λ is invertible, we have Z(Aq) = Z[q±
1
2 ].

Therefore for any non-constant Laurent monomial X ∈ Aq, we can find a Laurent
monomial Y0 ∈ Aq such that [X,Y0] 6= 0.

For two non-constant Laurent monomials X,Y ∈ Aq, we claim kX = kY .

Case 1. Assume XY 6= Y X.
Denote the Poisson bracket associated to g as {−,−}. Then, first, we have

{X,Y } = [g(X), Y ] = kXXY − kXY X.
On the other hand, according to (4) we have also

{X,Y } = [X, g(Y )] = kYXY − kY Y X.
Thus since XY 6= Y X, we obtain kX = kY .
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Case 2. Assume XY = Y X.
Since X,Y /∈ Z(Aq), there are Laurent monomials M,N in Aq such that XM 6=

MX,Y N 6= NY . Then from Case 1, we have kX = kM , kY = kN .
If either YM 6= MY or XN 6= NX, then kY = kM or kX = kN . It follows that

kX = kY .
Otherwise, YM = MY and XN = NX. It is easy to see that X(MN) 6=

(MN)X,Y (MN) 6= (MN)Y . So, from Case 1, kX = kMN = kY .

Then, there exists a fixed element k0 ∈ Z[q±
1
2 ] such that k0 = kX for any non-

constant Laurent monomial X ∈ Aq. It follows that for any such X,

g(X) = k0X. (14)

For any constant a ∈ Z[q±
1
2 ] and any W ∈ Aq, we have

[g(a),W ] = {a,W} = [a, g(W )] = 0.

Therefore g(a) ∈ Z(Aq) = Z[q±
1
2 ], that is, g(a) is a constant.

Let g′ be the k0-scalar linear transformation of Aq, that is, for any W ∈ Aq,
define g′(W ) = k0W . Trivially, g′ ∈ P(Aq).

By (14) and since g(a) is a constant for any a ∈ Z[q±
1
2 ], we have Im(g − g′) ⊆

Z(Aq) = Z[q±
1
2 ]. It means that g ∼ g′.

Lemma 2.4. Let Aq be a quantum cluster algebra without coefficients. Then for
any g ∈ P(Aq),

(a) for any Laurent monomial X in Aq, g(X) = kXX + k′X , where kX , k
′
X ∈

Z[q±
1
2 ];

(b) there is a scalar Z[q±
1
2 ]-transformation g0 ∈ P(Aq) such that g0 ∼ g.

Proof. (a) According to Lemma 2.2,

g(Xh) = kh1Xh +

lh∑
i=2

khi X
ahi1
1 X

ahi2
2 · · ·Xahin

n , (15)

where

(ahi1, a
h
i2, . . . , a

h
in)Λ = (λih1, λ

i
h2, . . . , λ

i
hn)

and λihp = 0 or λhp for 1 ≤ p ≤ n. For m1, · · · ,mn ∈ Z, assume

g(Xm1
1 Xm2

2 · · ·Xmn
n ) =

l∑
j=1

fjX
cj1
1 X

cj2
2 · · ·Xcjn

n , (16)

satisfying c1t = mt for t ∈ [1, n], as a Z[q±
1
2 ]-linearly independent expansion except

that f1 may be zero. Let {−,−} be the Poisson structure correspond to g.
According to (4), we have:

{X1, X
m1
1 Xm2

2 · · ·Xmn
n }

= [g(X1), Xm1
1 Xm2

2 · · ·Xmn
n ]

= k1
1X

m1+1
1 Xm2

2 · · ·Xmn
n − k1

1X
m1
1 Xm2

2 · · ·Xmn
n X1

+
l1∑
i=2

k1
iX

ai11
1 · · ·Xa1in

n Xm1
1 · · ·Xmn

n −
l1∑
i=2

k1
iX

m1
1 · · ·Xmn

n X
a1i1
1 · · ·Xa1in

n

= k1
1(1− q

n∑
t=1

mtλt1

)Xm1+1
1 Xm2

2 · · ·Xmn
n



2966 FANG LI AND JIE PAN

+
l1∑
i=2

k1
i (q

∑
r>s

airmsλrs

− q
∑
r<s

airmsλsr

)X
m1+a1i1
1 · · ·Xmn+a1in

n

= k1
1(1− q

n∑
t=1

mtλt1

)Xm1+1
1 Xm2

2 · · ·Xmn
n

+
l1∑
i=2

k1
i q

∑
r>s

a1irmsλrs

(1− q
n∑

r,s=1
a1irmsλsr

)X
m1+a1i1
1 · · ·Xmn+a1in

n ;

on the other hand,

{X1, X
m1
1 Xm2

2 · · ·Xmn
n } = [X1, g(Xm1

1 Xm2
2 · · ·Xmn

n )]

=
l∑

j=1

fj(X
cj1+1
1 X

cj2
2 · · ·Xcjn

n −Xcj1
1 X

cj2
2 · · ·XcjnX1

n )

=
l∑

j=1

fj(1− q
n∑

t=1
cjtλt1

)X
cj1+1
1 X

cj2
2 · · ·Xcjn

n

Note that in the last step of the first expansion of {X1, X
m1
1 Xm2

2 · · ·Xmn
n }, we have

n∑
r,s=1

a1
irmsλsr = −

n∑
s=1

(
n∑
r=1

a1
irλrs)ms = −(a1

i1 · · · a1
in)Λ(m1 · · ·mn)>

= −(λi11 · · ·λi1n)(m1 · · ·mn)>.
(17)

The last steps of the two kinds of expansions of {X1, X
m1
1 Xm2

2 · · ·Xmn
n } are

both in Z[q±
1
2 ]-linearly independent forms, which are the same due to the algebraic

independence of {X1, X2, · · · , Xm}. Hence, for some l0 ≤ l1, l, there are l0 − 1
monomials with non-zero-coefficients in the last steps of two kinds of expansions
above respectively and the coefficients of other monomials are all zeros, besides the
first terms in these two expansion which maybe be zero or non-zero in the various
cases.

Without loss of generality, suppose the l0−1 monomials with non-zero-coefficients
are just those ones whose indexes are with 2 ≤ i ≤ l0 and 2 ≤ j ≤ l0 respectively
in the last steps of two kinds of expansions above, that is, we assume they are in
one-by-one correspondence indexed by i = 2, · · · , l0.

Thus, due to the above discussion, from comparation of coefficients, we obtain
that

A1 = k1
1(1−q

n∑
t=1

mtλt1

)Xm1+1
1 Xm2

2 · · ·Xmn
n = f1(1−q

n∑
t=1

c1tλt1

)Xc11+1
1 Xc12

2 · · ·Xc1n
n .
(18)

When 2 ≤ i ≤ l0,

0 6= k1
i q

∑
r>s

a1irmsλrs

(1− q
n∑

r,s=1
a1irmsλsr

)X
m1+a1i1
1 · · ·Xmn+a1in

n

= fi(1− q
n∑

t=1
citλt1

)Xci1+1
1 Xci2

2 · · ·Xcin
n .

(19)

When l0 < i ≤ lh, l0 < j ≤ l,

0 = k1
i q

∑
r>s

a1irmsλrs

(1− q
n∑

r,s=1
a1irmsλsr

)X
m1+a1i1
1 · · ·Xmn+a1in

n

= fj(1− q
n∑

t=1
cjtλt1

)X
cj1+1
1 X

cj2
2 · · ·Xcjn

n .

(20)

In (18), we have that A1 = 0 if and only if
n∑
t=1

mtλt1 = 0; otherwise, A1 6= 0 then

f1 = k1
1.
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From (19) and (17), we obtain that for 2 ≤ i ≤ l0,

ci1 = m1 + a1
i1 − 1

cip = mp + a1
ip, for 2 ≤ p ≤ n

0 6=
n∑

r,s=1
airmsλsr = −

n∑
s=1

λi1sms

0 6=
n∑
t=1

citλt1 =
n∑
t=1

(mt + a1
it)λt1 =

n∑
t=1

mtλt1 + λi11 =
n∑
t=1

mtλt1.

From (20) and (17), we obtain that for i, j > l0,

n∑
s=1

λi1sms =

n∑
p=1

cjpλp1 = 0. (21)

In conclusion, (cj1, · · · , cjn) with fj 6= 0 must satisfy one of (18), (19) and (20)
for any j = 1, 2, · · · , l0.

In the same way, replacing X1 by Xh, h ∈ [1, n], we will also obtain three
equalities similar to (18), (19) and (20) such that (cj1, · · · , cjn) with fj 6= 0 satisfies
one of three equalities.

According to our assumption, we always have (c11, · · · , c1n) = (m1, · · · ,mn).
Now we want to prove by contradiction that (cj1, · · · , cjn) can only be (0, · · · , 0)

for 2 ≤ j ≤ l. Hence, we first assume that (cj1, · · · , cjn) 6= (0, · · · , 0) in this case.
We can choose some special mo

1, · · · ,mo
n ∈ Zn≥0 such that

n∑
t=1

mo
tλth 6= λih for any i, h

n∑
t=1

mo
tλth 6= 0 for any i, h

mo
t ≥ 0 for any t

(22)

For any Xh, h ∈ [1, n], we first claim that under the condition (22), (cj1, · · · , cjn)
with fj 6= 0 does not satisfy the equality similar to (19).

In fact, because Λ is invertible, so since (cj1, · · · , cjn) 6= (0, · · · , 0), we have
(cj1, · · · , cjn)Λ 6= (0, · · · , 0). Therefore (cj1, · · · , cjn) can not satisfy an equality
similar to (20) for all h ∈ [1, n], i.e. it must satisfy some equations similar to (18)
or (19) for some h. Therefore all of the possible (cj1, · · · , cjn) 6= (0, · · · , 0) are
(mo

1 + ahi1, · · · ,mo
h + ahih − 1, · · · ,mo

n + ahin) for some i and h. Hence for any h, by
(22),

n∑
t=1

cjtλth =
n∑
t=1

(mo
t + apit)λth − λph =

n∑
t=1

mo
tλth + λiph − λph

=


n∑
t=1

mo
tλth 6= 0, if λiph = λph

n∑
t=1

mo
tλth − λph 6= 0, if λiph = 0.

So for any h, (0, · · · , 0) is the only (cj1, · · · , cjn) satisfying the equalities similar
to (20), (mo

1, · · · ,mo
n) is the only (c11, · · · , c1n) satisfying the equalities similar to

(18), while all of that

(mo
1 + api1, · · · ,m

o
p + apip − 1, · · · ,mo

n + apin)

satisfy the equalities similar to (19).
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Hence for any (cj1, · · · , cjn) 6= (0, · · · , 0) with 2 ≤ j ≤ l0, we have

cj1 = mo
1 + a1

j1 − 1= · · · = mo
1 + anj1

...
...

. . .
... (23)

cjn = mo
n + a1

jn = · · · = mo
1 + anjn − 1.

Then for any h1 6= h2, 
ah1

jh1
− 1 = ah2

jh1

ah1

jh2
= ah2

jh2
− 1

ah1

jh = ah2

jh, for any h 6= h1, h2

Therefore,
n∑
h=1

ah1

jhλhh1 = λjh1h1
= 0 = λh1h1

and
n∑
h=1

ah1

jhλhh2 =

n∑
h=1

ah2

jhλhh2 + λh1h2 = λjh2h2
+ λh1h2 = λh1h2 ,

for any h1, h2. Hence (ah1
j1 , · · · , a

h1
jn)Λ = (λh11, · · · , λh1n). Again because Λ is

invertible, we have (ah1
j1 , · · · , a

h1
jn) = eh1

. Therefore by (23) we get

(cj1, · · · , cjn) = (mo
1, · · · ,mo

n) + (ah1
j1 , · · · , a

h1
jn)− eh1 = (mo

1, · · · ,mo
n),

which contradicts to our assumption as j ≥ 2. Thus in conclusion, under the
condition (22), (cj1, · · · , cjn) with fj 6= 0 does not satisfy the equality similar to
(19) for any h.

Hence, indeed, the case satisfying the equality similar to (19) would not happen
under the assumption of (22). It means for any h, we only have (20) to hold for

2 ≤ i ≤ lh. Therefore,
n∑
s=1

λihsm
o
s = 0 for any h and 2 ≤ i ≤ lh according to (21).

Define sets:
Sih = {(m1, · · · ,mn) ∈ Zn≥0 | (m1, · · · ,mn)Λ = (t1, · · · , th−1, λih, th+1, · · · , tn)

∀t1, · · · , th−1, th+1, · · · , tn ∈ Z} for any i, h ∈ [1, n];
Th = {(m1, · · · ,mn) ∈ Zn≥0 | (m1, · · · ,mn)Λ = (t1, · · · , th−1, 0, th+1, · · · , tn)

∀t1, · · · , th−1, th+1, · · · , tn ∈ Z} for any h ∈ [1, n].
Then the set of positive integer vectors (m1, · · · ,mn) satisfying (22) is equal to

the set

Zn≥0\
⋃

i,h∈[1,n]

(Sih ∪ Ti).

For any i, h, the sets Sih, Ti lie discretely in their corresponding (n − 1)-dimen-
sional nonnegative cones Cih, Di in Qn respectively. All of Cih, Di are contained
in the n-dimensional nonnegative cone (or say, the first quadrant) Qn≥0 of Qn. Let

C ′ =
⋃

i,h∈[1,n]

(Cih ∪Di).

It is easy to see that every l-dimensional nonnegative cone included in Qn≥0 can
be seen uniquely as an intersection of an l-dimensional linear subspace and Qn≥0

for any l ≤ n. Denote by Pih the (n − 1)-dimensional linear subspace such that
Cih = Pih

⋂
Qn≥0 and by Qi the (n − 1)-dimensional linear subspace such that

Di = Qi
⋂
Qn≥0 for i, h ∈ [1, n].
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Let P ′ =
⋃

i,h∈[1,n]

Pih ∪Qi. Then, C ′ ⊆ P ′.

Assume there is at most p(< n) linearly independent vectors in Qn≥0 \ C ′. Let
P0 be the subspace spanned by these p linearly independent vectors. Then Qn≥0 ⊆
P0

⋃
C ′ ⊆ P0

⋃
P ′. But the standard basis {e1, · · · , en} ⊆ Qn≥0. It follows that

Qn ⊆ P0

⋃
P ′, which contradicts to the well-known fact that every finite n-dimen-

sional linear space can not be contained in a union of finitely many subspaces with
dimensions less than n.

Hence, we can find n linearly independent vectors in Qn≥0 \ C ′, say v1, · · · , vn ∈
Qn≥0, whose coordinates satisfy respectively the condition (22).

Now, we can find an a ∈ Z+ such that avi ∈ Zn≥0. Without loss of generality,

we may think for each avi = (mo
1i, · · · ,mo

ni) (i = 1, · · · , n), the condition (22) still
is satisfied. Otherwise, the only possibility is that the first condition in (22) is not
satisfied, then we can always replace a by ra for certain r ∈ Z+ such that the first
condition in (22) is satisfied, too.

In summary, we can obtain Q-linearly independent vectors avi = (mo
1i, · · · ,mo

ni) ∈
Zn≥0 (i = 1, · · · , n) satisfying (22).

And as we discussed above, the following equation is satisfied:

(
λih1 · · · λihn

)m
o
11 · · · mo

1n
...

. . .
...

mo
n1 · · · mo

nn

 = 0

So (λih1, · · · , λihn) can only be (0, · · · , 0) for any h, 2 ≤ i ≤ l1. Then it follows from
Lemma 2.2 that for any h and 2 ≤ i ≤ l1,

(ahi1, · · · , ahin) = (0, · · · , 0). (24)

Then, we have g(Xh) = kh1Xh + kh2 where kh2 ∈ Z[q±
1
2 ].

For general (m1, · · · ,mn) ∈ Zn such that Xm1
1 · · ·Xmn

n is a Laurent monomial
in Aq. According to our above discussion and by (24), we have

k1
1(1− q

n∑
t=1

mtλt1

)Xm1+1
1 Xm2

2 · · ·Xmn
n = {X1, X

m1
1 · · ·Xmn

n }

=
∑
j

fj(1− q
n∑

t=1
cjtλt1

)X
cj1+1
1 X

cj2
2 · · ·Xcjn

n

So we have
n∑
t=1

cjtλt1 = 0 for any j ≥ 2. Replacing X1 by Xh, h ∈ [1, n], we

obtain that (cj1, · · · , cjn)Λ = 0 for any j ≥ 2. However, it contradicts to that Λ is
invertible since we have assumed (cj1, · · · , cjn) 6= (0, · · · , 0).

Hence (cj1, · · · , cjn) = (0, · · · , 0) for any j ≥ 2.
Then by (16), we get g(Xm1

1 · · ·Xmn
n ) = f1X

m1
1 · · ·Xmn

n + f2, where f1, f2 ∈
Z[q±

1
2 ]. That is, for any cluster Laurent monomial X in Aq,

g(X) = kXX + k′X , (25)

where kX , k
′
X ∈ Z[q±

1
2 ].

(b) For any g ∈ P(Aq), by (25), we define g′ to be the map satisfying g′(X) =

kXX for any cluster Laurent monomial X ∈ Aq and g′(a) = 0 for any a ∈ Z[q±
1
2 ].

Trivially, g′ ∈ P(Aq). Since Im(g − g′) ⊆ Z(Aq), we have g ∼ g′.
By Lemma 2.3, there is a scalar Z[q±

1
2 ]-transformation g0 ∈ P(Aq) such that

g0 ∼ g′. It follows that g0 ∼ g.
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Combining Lemma 2.3 and Lemma 2.4, we get our main result on inner Poisson
structures.

Theorem 2.5. Let Aq be a quantum cluster algebra without coefficients, any inner
Poisson structure on Aq must be a standard Poisson structure.

Proof. According to Theorem 2.1, any inner Poisson bracket on Aq corresponds to
a linear transformation g ∈ P(Aq) up to isomorphism. By Lemma 2.3 and Lemma
2.4, we can choose a scalar linear transformation g′ in the iso-class of g, that is,
g′(W ) = k0W for a fixed element k0 ∈ Z[q±

1
2 ] and for any W ∈ Aq. It follows

that ham(W ) = k0[W,−] for any W ∈ Aq, which means the Poisson structure is
standard.

3. On locally inner Poisson structures. First we introduce the following defi-
nitions and results in [7].

Definition 3.1. (a) For a quantum cluster algebra Aq, one of its extended cluster

X̃(t) = (X1, · · · , Xm) at t ∈ Tn is said to be log-canonical with respect to a

Poisson structure (Aq, ·, {−,−}) if {Xi, Xj} = ωijX
ei+ej , where ωij ∈ Z[q±

1
2 ] for

any i, j ∈ [1,m].
(b) A Poisson structure {−,−} on a quantum cluster algebra Aq is called com-

patible with Aq if all clusters in Aq are log-canonical with respect to {−,−}.

In [7], we define the cluster decomposition of a quantum cluster algebra as follow-

ing. Let Aq,I1 , Aq,I2 be two quantum cluster algebras with initial seeds (X̃I1 , B̃I1 ,

ΛI1) and (X̃I2 , B̃I2 ,ΛI2) respectively, and let Θ be an |I1| × |I2| integer matrix
satisfying {

B̃>I1Θ = O

ΘB̃I2 = O.
(26)

DefineAq,I1
⊔

ΘAq,I2 to be the algebra equivalent toAq,I1
⊗

Z[q±
1
2 ]
Aq,I2 as a Z[q±

1
2 ]-

module with twist multiplication:

(a⊗ b)(c⊗ d) =
∑
i,j

kiljq
1
2 r̄
>
i Θs̄jaX̃

s̄j
I1
⊗ X̃ r̄i

I2
d (27)

for b =
∑
i

kiX̃
r̄i
I2
, c =

∑
j

ljX̃
s̄j
I1

, where r̄i, s̄j are exponential column vectors.

Let Aq,Ii be quantum cluster algebras with initial seeds (X̃Ii , B̃Ii ,ΛIi) for i ∈
[1, r].

⊔
is associative in the sense that

(Aq,I1
⊔

Θ1
Aq,I2)

⊔
Θ′ Aq,I3 = Aq,I1

⊔
Θ′′(Aq,I2

⊔
Θ3
Aq,I3),

where

Θ′ =

(
Θ2

Θ3

)
, Θ′′ =

(
Θ1 Θ2

)
.

Theorem 3.2. [7] Let Aq be a quantum cluster algebra with initial seed (X̃, B̃,Λ)
and {−,−} a compatible Poisson bracket on Aq. Assume Ω is the Poisson matrix of

the initial cluster with respect to {−,−}, B̃ has the decomposition B̃ =
r⊕
i=1

B̃Ii with

indecomposables B̃Ii for i ∈ [1, r], and Aq,Ii is the quantum cluster indecomposable

subalgebra of Aq determined by (B̃Ii ,ΛIi). Then Aq ∼=
⊔
i

Aq,Ii .
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We call Aq ∼=
r⊔
i=1

Aq,Ii a cluster decomposition of Aq.

In particular, when Aq is a quantum cluster algebra without coefficients, B is
invertible. Hence by (26), we have Θ = O. So, from (27), we also obtain (a⊗ b)(c⊗
d) = ac ⊗ bd in this case, which means the cluster decomposition is exactly tensor
decomposition Aq =

⊗r
i=1Aq,Ii .

We generalize inner Poisson structures to locally inner structures in the sense of
cluster decomposition.

Definition 3.3. Let Aq be a quantum cluster algebra with the cluster decomposi-
tion Aq =

⊔r
i=1Aq,Ii .

(a) A Poisson structure {−,−} on Aq is said to be locally inner if for any
a ∈ Aq and i ∈ [1, r], there is ai ∈ Aq,Ii such that ham(a)|Aq,Ii

= [ai,−].

(b) A Poisson structure {−,−} on Aq is a locally standard Poisson structure
if {Xi, Xj} = 0 when i and j are from different Ir and {−,−} is of standard poisson

structure on each XIr , i.e, {Xi, Xj} = ar[Xi, Xj ], where i, j ∈ Ir, ar ∈ Z[q±
1
2 ].

Proposition 1. Let Aq be a quantum cluster algebra without coefficients, any locally
inner Poisson structure on Aq is locally standard.

Proof. Assume Aq has the cluster decomposition Aq =
⊗r

i=1Aq,Ii and {−,−} is a
locally inner Poisson bracket on Aq. According to the definition, {−,−} is inner
when restricted on each Aq,Ii . Hence by Theorem 2.5, ham(a) |Aq,Ii

= λi[a,−] for

some λi ∈ Z[q±
1
2 ] and any a ∈ Aq,Ii . Moreover, for any a ∈ Aq,Ii , a′ ∈ Aq,Ij and

i 6= j,

{a, a′} = [aj , a
′] ∈ Aq,Ij , and {a, a′} = [a, a′i] ∈ Aq,Ii .

So, {a, a′} ∈ Aq,Ii
⋂
Aq,Ij = Z[q±

1
2 ] according to the independence of cluster vari-

ables and Ii ∩ Ij = ∅. And, note that the expansions of [aj , a
′] and [a, a′i] will not

contain non-zero constant terms in Z[q±
1
2 ] due to the definitions of the operation

[ , ] and quantum torus. Thus, {a, a′} = 0.
Therefore, for any a ∈ Aq,Ii ,

ham(a) |Aq,Ij
=

{
λi[a,−] i = j;

0 i 6= j.

Then the Poisson structure is exactly locally standard.

Theorem 3.4. [7] Let Aq be a quantum cluster algebra without coefficients. Then
a Poisson structure {−,−} on Aq is compatible with Aq if and only if it is locally
standard on Aq.

Since a locally standard Poisson structure is evidently locally inner, combining
Proposition 1 and Theorem 3.4, we have the final conclusion:

Theorem 3.5. Let Aq be a quantum cluster algebra without coefficients and {−,−}
a Poisson structure on Aq. The following statements are equivalent:

(a) {−,−} is locally standard.
(b) {−,−} is locally inner.
(c) {−,−} is compatible with Aq.
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