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ABSTRACT. We launch a systematic study of the refined Wilf-equivalences by
the statistics comp and iar, where comp(7) and iar(7) are the number of com-
ponents and the length of the initial ascending run of a permutation m, respec-
tively. As Comtet was the first one to consider the statistic comp in his book
Analyse combinatoire, any statistic equidistributed with comp over a class of
permutations is called by us a Comtet statistic over such class. This work is
motivated by a triple equidistribution result of Rubey on 321-avoiding permu-
tations, and a recent result of the first and third authors that iar is a Comtet
statistic over separable permutations. Some highlights of our results are:

e Bijective proofs of the symmetry of the joint distribution (comp,iar) over
several Catalan and Schroder classes, preserving the values of the left-to-
right maxima.

e A complete classification of comp- and iar-Wilf-equivalences for length 3
patterns and pairs of length 3 patterns. Calculations of the (des, iar, comp)
generating functions over these pattern avoiding classes and separable
permutations.

e A further refinement of Wang’s descent-double descent-Wilf equivalence
between separable permutations and (2413, 4213)-avoiding permutations
by the Comtet statistic iar.

1. Introduction. Let [n] := {1,2,...,n} be the set of the first n positive inte-
gers, and denote &,, the symmetric group consisting of all bijections from [n] to
itself. A permutation 7 = 7(1)---7(n) € &, is said to avoid the permutation (or
pattern) o = o(1)---o(k) € &, k < n, if and only if there is no subsequence
m(j1)m(j2) - - w(Jx) with j1 < jo < -+ < jg, such that 7(j,) < 7(jp) if and only
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if o(a) < o(b) for all 1 < a < b < k. Otherwise, we say that the permutation 7
contains the pattern o.

The notion of permutation pattern was introduced by Knuth [21, pp. 242-243)
in 1968, but studied intensively and systematically for the first time by Simion and
Schmidt [28] in 1985. Ever since then, it has become an active and prosperous
research subject. The reader is referred to two book expositions, [5, Chapters 4 and
5] and [20], on this topic, as well as the numerous references therein. In the early
1980s, Herbert Wilf posed the problem of identifying equirestrictive sets of forbidden
patterns. Let P be a (finite) collection of patterns and W a set of permutations, we
write W(P) for the set of all permutations in W that avoid simultaneously every
pattern contained in P. We will say, as it has become a standard terminology,
that two sets of patterns, P and @, are Wilf-equivalent, denoted by P ~ @, if
|6, (P)] = |6,(Q)] for all positive integers n.

In this paper, we will restrict ourselves to the case where |P| = |Q| < 2, and
the lengths of the patterns in P and ) are no greater than 4. Once two sets of
patterns P and () are known to be Wilf-equivalent, a natural direction to go deeper,
is to make further restrictions on these P- or Q-avoiding permutations, and to see if
the equinumerosity still holds. One such restriction is to consider the enumeration
refined by various permutation statistics. In general, a statistic on a set of objects
S is simply a function from S to N := {0,1,2,...}. A set-valued statistic on S is a
function from S to the set of finite subsets of N. Given a permutation 7w € &,,, we
mainly consider the set-valued statistic

DES(m):={i€e[n—1]:7(i) < w(i + 1)},
called the descent set of w, and two statistics
des(w) := [DES(7)| and iar(n) := min(DES(7) U {n}),

called the descent number and the initial ascending run of m, respectively. Clearly,
iar(m) can also be interpreted as the position of the leftmost descent of 7, which
indicates that iar is determined by DES. It should be noted that iar was also called
lir, meaning “leftmost increasing run”, in the literature (see e.g. [7]). The statistic
des is known as an Fulerian statistic since its distribution over &,, is the n-th

FEulerian polynomial
An(t) = D) o),

€&,

Another statistic highlighted in our study is comp(7), which can be introduced

as
comp(m) = |{i : Vj <4, w(j) < i}

It is equal to the maximum number of components (see [1, 7, 8]) in an expression
of m as a direct sum of permutations. For instance, comp(312465) = 3, the three
components being 312, 4, and 65 and 312465 = 312@® 1 @ 21 (see Sect. 2.2 for the
definition of direct sum @). The statistic comp dates back at least to Comtet [9,
Ex. VI.14], who proved the generating function for the number f(n) of permutations
of length n with one component, also known as indecomposable permutations, to be

1
fn)z"=1—- =———.
;1 ano nlzn
Thus, any statistic equidistributed with comp over a class of restricted permuta-
tions will be called by us a Comtet statistic over such class. The enumeration of
pattern avoiding indecomposable permutations was carried out by Gao, Kitaev and
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Zhang [19]. It should be noted that iar and comp are not equidistributed over
G4. Nonetheless, two of the authors [18] proved that iar is a Comtet statistic over
separable permutations, the class of (2413,3142)-avoiding permutations. It is this
result that motivates us to investigate systematically the refined Wilf-equivalences
by these two Comtet statistics, and sometimes jointly with other statistics.

For a (possibly set-valued) statistic st on &,,, we say two sets of patterns P and
Q are st- Wilf-equivalent, denoted as P ~g @, if for all positive integers n, we have

6. (P)*| = 6, (Q),

meaning that for a fixed value of st, there are as many preimages in &,,(P) as those in
6,,(Q). Note that by their definitions, P ~pgs () immediately implies P ~i5, @ and
P ~ges Q, but not conversely. The above refined Wilf-equivalence by one statistic
can be naturally extended to the joint distribution of several permutation statistics,
regardless of numerical or set-valued types. So expression like P ~(pgs comp)y @
and |&,,(P)PEScomp| = |&,,(Q)PES:mP| should be understood well. It should be
noted that refined Wilf-equivalences have already been extensively studied during
the last two decades (see e.g. [7, 11, 13, 20, 24]). Especially, the focus of Dokos,
Dwyer, Johnson, Sagan and Selsor [11] was on the refined Wilf-equivalences by
Eulerian and Mahonian statistics. Hopefully with the results we present in this
paper, one is convinced that considering the refinements by Comtet statistics is
equally meaningful.

Some highlights of our results will be outlined below. Before stating them, we
need to recall some classical permutation statistics. For a permutation 7w € &,,, we
introduce

LMAX(7) :={n(i) € [n] : 7(j) < w(d), V1 < j < i} and
LMAXP(n) :={i e [n]:7(j) < w(i), VI < j < i},

the set of values and positions of the left-to-right maxima of 7, respectively. The
sets of values/positions of the left-to-right minima, the right-to-left mazima and the
right-to-left minima of w can be defined and denoted similarly if needed. We use
lowercase letters to denote the cardinality of these sets, so for example, LMIN ()
is the set of values of the left-to-right minima of 7 and Imin(7) is the corresponding
numerical statistic. We will also consider the set of descent bottoms of 7

DESB(7) := {m(i + 1) € [n — 1] : i € DES(7)},

which is another set-valued extension of des different from DES.
The first one of our main results concerns a single pattern of length 3.

Theorem 1.1. For everyn > 1,

(i) the two triples (LMAX,iar,comp) and (LMAX, comp,iar) have the same dis-
tribution over &, (321);
(ii) the two quadruples (LMAX, DESB, iar,comp) and (LMAX, DESB, comp, iar)
have the same distribution over &,,(312);
(#ii) the quadruples (LMAX, LMIN, iar,comp) and (LMAX, LMIN, comp,iar) have
the same distribution over &, (132).

The result on the symmetry of (comp, iar) was inspired by several works in the lit-
erature. First of all, Theorem 1.1 (i) is essentially equivalent to a result of Rubey [27]
up to some elementary transformations on permutations. Details will be given in
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Sect. 3.1. Furthermore, Rubey’s result is a symmetric generalization of an equidis-
tribution due to Adin, Bagno and Roichman [1], which implies the Schur-positivity
of the class of 321-avoiding permutations with a prescribed number of components.

Next, Claesson, Kitaev and Steingrimsson [20, Thm 2.2.48] constructed a bijec-
tion between separable permutations of length n + 1 with k£ + 1 components and
Schroder paths of order n with k horizontals at z-axis. Combining this bijection
with the work in [18] justifies iar being a Comtet statistic on separable permuta-
tions. It then follows from our Lemma 2.5, a general lemma proved in Sect. 2.2,
that we have the following symmetric double Comtet distribution.

Corollary 1.2. The double Comtet statistics (comp,iar) is symmetric on separable
permutations.

We take the opportunity to announce the following refinement of Corollary 1.2,
which appears in a separate article.

Theorem 1.3 ([16]). There exists an involution on &,(2413,3142) that preserves
the pair of set-valued statistics (LMAX, DESB) but exchanges the pair (comp, iar).
Consequently,
Z Scomp(ﬂ)tiar(ﬂ')XLMAX(ﬂ')yDESB(ﬂ)
7€6,,(2413,3142)
_ Z Sial’(T()tCOmp(ﬂ')xLMAX(T{')yDESB(ﬂ')

€&, (2413,3142)

)

where x% := [, xi and y® :=[],.qyi for any subset S < [n].

The proof of Theorem 1.1 provided in Sect. 3 is via two involutions on permu-
tations that actually imply the even stronger symmetric phenomenon, namely the
corresponding distribution matrices are Hankel; see Theorems 3.13 and 4.2. The
proof of Theorem 1.3 is based on a combinatorial bijection on the so-called di-sk
trees introduced in [17]. This bijection will also provide an alternative approach to
Theorem 1.1(ii). The details will be given in [16].

Remark 1. Rubey’s bijective proof of a slight modification (see Theorem 3.1) of
Theorem 1.1(i) is via Dyck paths and the proof of Theorem 1.3 that will appear
in [16] is based on di-sk trees. Our bijective and unified proof of Theorem 1.1(i)(ii),
constructed directly on permutations, provides more insights into the symmetry of
the double Comtet statistics, and therefore, it seems more likely to be extended to
deal with such equidistributions over other classes of pattern-avoiding permutations.

Our third main result shows how iar, combined with des and the number of double
descents would refine known results and imply new ones concerning separable and
(2413, 4213)-avoiding permutations. Interestingly, it does refine a nice vy-positivity
interpretation for separable permutations [17, 23] due to Zeng and the first two
authors that we review below.

Recall that a polynomial in R[t] of degree n is said to be ~y-positive if it can be
written as a linear combination of

{tF(1+8)"*}ochan2

with non-negative coefficients. Many polynomials arising from combinatorics and
discrete geometry have been shown to be ~-positive; see the comprehensive survey
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by Athanasiadis [2]. One typical example is the Eulerian polynomials

[27]
An(t) _ Z tdes(w) _ Z |Fn,k|tk(1+t)"_1_2k,

TeS, k=0

where I',, i, is the set of permutations in &,, with & descents and without double
descents. Here an index i € [n] is called a double descent of a permutation 7 € &,,
if (1 — 1) > w(i) > 7w(i + 1), where we use the convention 7(0) = w(n + 1) = 0.
The number of double descents of 7 will be denoted as dd(7). This classical result
is due to Foata and Schiitzenberger [14, Theorem 5.6] and has been extended in
several different directions (cf. [2]) in recent years. In particular, the first two
authors together with Zeng [17, 23] proved an analog for the descent polynomial
over separable permutations

15
S (t) = > 19 = N |T, (2413, 3142)[tF (1 + )" (1)
€6, (2413,3142) k=0

In a recent work [24] of Lin and Kim, they proved that (2413, 3142) ~ges (2413,4213)
(see [24, Thm. 5.1]), and that the 7-coefficient of the descent polynomial over
(2413, 4213)-avoiding permutations is similarly given by |I',, x (2413, 4213)| (see [24,
Eq. (4.10)]). In view of (1), we see that the number of separable permutations of
[n] with &k descents and without double descents is the same as that of (2413, 4213)-
avoiding permutations of [n] with & descents and without double descents. With
this in mind, our third main result given below can be viewed as a refinement.

Theorem 1.4. Forn > 1,
tdes('n’)xdd(ﬂ')yiar(ﬂ') _ Z tdes(ﬂ')xdd(ﬂ')yiar(w) ) (2)

€S, (2413,3142) €&, (2413,4213)

Theorem 1.4 refines Wang’s equidistribution [30, Thm. 1.5] by the Comtet statis-
tic iar and has many interesting consequences which can be found in Sections 5 and 6.
More detailed motivation that led us to discover Theorem 1.4 will also be provided
in Section 6. Our proof of Theorem 1.4 in Section 6 is algebraic and finding a
bijective proof remains open.

Besides the above three main results, we will also calculate the joint distribution
of (des, iar, comp) over permutations avoiding a set P of patterns, where P is taken
to be a single pattern of length 3, a pair of patterns of length 3, as well as the
three pairs (2413, 3142), (2413,4213), and (3412,4312), respectively. All the gen-
erating functions for these patterns turn out to be either algebraic or rational (see
Tables 1 and 2), and as applications, complete classification of the iar- or comp-Wilf
equivalences for these patterns is given. Moreover, our attempt to characterize the
pattern pairs of length 4 which are (iar, comp)-Wilf-equivalent to (2413, 3142) leads
to Conjecture 1, which we have verified in some important cases.

The rest of this paper is organized as follows. In Section 2, we review some
notation and terminology and prove two general lemmas concerning the direct sum
operation of permutations. The classification of refined Wilf-equivalences for a single
pattern of length 3 is carried out in Section 3, where the proof of Theorem 1.1
is provided as well. Section 4 is devoted to the investigation of pattern pairs of
length 3, while Section 5 aims to characterize the pattern pairs of length 4 that are
(iar, comp)-Wilf-equivalent to (2413,3142). The proof of Theorem 1.4 is given in
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Section 6, where a new recurrence for the 021-avoiding inversion sequences is also
proved.

2. Notations and preliminaries.

2.1. Elementary operations. For a given permutation m € &,,, there are three
fundamental symmetry operations on :

e its reversal ' € &,, is given by 7'(i) = w(n + 1 — i);

e its complement ¢ € &,, is given by 7¢(i) = n + 1 — 7(4);

e its inverse 7! € &,,, is the usual group theoretic inverse permutation.
One thing we would like to point out, before we barge into classifying iar-Wilf-
equivalences for various patterns, is that by taking iar into consideration, we can
no longer utilize the above three standard symmetries for permutations, since none
of them preserves the length of the initial ascending run of 7, when n > 2. For the
classical Wilf-equivalence, these symmetries reduce the number of possible equiva-
lence classes considerably, since for example, 7 avoids 213 if and only if 7" avoids
312. This fact about the statistic iar explains, at least partially, the following ob-
servations.

Observation 1. 1. The iar-Wilf-equivalence is less likely to be found than the
Wilf-equivalence.

2. When iar-Wilf-equivalence does hold, we cannot prove it using the three stan-
dard symmetries or their combinations. Usually we need to use new ideas
in constructing bijective proofs, or prove the equivalence recursively using
recurrence relations.

On the other hand, the statistic comp behaves better under these three elemen-
tary operations.

Observation 2. The two mappings m — (77)¢ and m — 7! both preserve the
statistic comp.

Let P be a collection of patterns. The following trivariate generating function
will be the focal point of our study.

6(P)des,iar,comp(t7 T, p; Z) = 2 2 tdes(w)riar(‘n‘)pcomp(ﬂ)zn' (3)
n=0re&,, (P)

Most of the time we suppress the superindices des, iar,comp, and variable z, and
when the pattern set P is clear from the context, we also suppress P to write
S(t,r,p). In most cases the variant S(t,r,p) = (S(t,r,p) — 1)/rpz of this generat-
ing function yields more compact expressions (see Tables 1 and 2). Let M, (P) :=
M, (P;iar,comp) be the n x n matrix, whose entry at the k-th row and the ¢-th
column is the number of permutations 7 in &, (P) with iar(7) = k and comp(w) =
£. Let st be a permutation statistic, we can then refine M, (P) as M, (P) =
> MS=U(P), so that the (k,¢)-entry of MS*=%(P) counts permutations 7 such that
st(m) = 4 for a fixed integer i. This definition extends to set-valued statistics and
multiple statistics in a natural way. So for instance, MLIMAX=Sdes=i(p) jg the
n x n matrix, whose (k,£)-entry is the number of permutations 7 in &, (P) with
LMAX(m) = S, des(m) = 4, iar(m) = k and comp(w) = £.
We also need the following operations on permutations.
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Definition 2.1. For a word w over Z consisting of distinct letters, denote red(w)
the reduction of w (also called the “standardization” of w in the literature), which
is obtained from w by replacing the j-th smallest positive letter by j. For a given
permutation 7 € &,,, the deletion of i, for each ¢ € [n], is the map that deletes 4
from 7, and reduces the derived word to a permutation, denoted as del;(7) € &,,_1.
Similarly, the insertion of i at place k, for each i,k € [n + 1], is defined to be the
map that increases all letters j > ¢ in 7 by 1, and inserts ¢ between 7(k — 1) and
7(k) to get a new permutation, denoted as ins; ;(7) € G, 41.

2.2. The direct/skew sum operation and fundamental lemmas. There are
two fundamental operations, called direct sum and skew sum, to construct a bigger
permutation from two smaller ones. The direct sum 7@ o and the skew sum TS0,
of m € 6 and o € G, are permutations in Sy; defined respectively as

T, for ¢ € [1, k];
oi—k+k, forielk+1,k+1]

(T®o) = {

and
m + 1, foriell,kl;
Oik, forielk+1,k+1].

(TOo);i = {

For instance, we have 123 @ 21 = 12354 and 123 © 21 = 34521. The following
characterization of separable permutations is folkloric (see [20, pp. 57]) in pattern
avoidance.

Proposition 2.2. A permutation is separable if and only if it can be built from the
permutation 1 by applying the operations @ and © repeatedly.

Definition 2.3. A nonempty permutation which is not the direct sum of two
nonempty permutations is called indecomposable. Let Z,, denote the set of all inde-
composable permutations of length n. Any permutation 7 with comp(w) = k can
be written uniquely as 7 = 11 @ o @ - - - D T, where each 7; is indecomposable.
We call this decomposition the direct sum decomposition of w. Let id,, denote the
identity permutation of length n. A statistic st is called totally @-compatible if
st(m) = Zle st(7;) and is called partially ®-compatible if st(r) = Zé:l st(7;), where
I =min({i: 7 #id1} U {k}).

For instance, des and comp are totally @®-compatible, while iar is partially ®-
compatible. We emphasize here that total @-compatibility does not imply partial
@-compatibility.

Let P be a collection of patterns and (sty,sts,...) be a sequence of permutation
statistics. Let us introduce two generating functions with respect to (sty,sto,...) as

Fp(tl,tg,...;z) =1+ Z o Z ntjtz(ﬂ)

n=1 €S, (P) 1

I(tasteys2)im Dy 2n 3 [,

nz=1 wel,(P) 1

and

We have the following general lemma regarding the direct sum decomposition of
permutations, which is useful when considering the refinement of Wilf-equivalence
by comp.
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Lemma 2.4. Let (sty,sta,...,st],sth,...) be a sequence of statistics such that st;
is totally @-compatible and st is partially ®-compatible for each i. Let P and Q be
two collections of indecomposable patterns.

1. We have the following functional equation:
L alip(et) —w)

l—quw (1—qlp(t,1))(1 - quw)’
id s’1 idq st (id1

t;t2( 1).”ﬁ/1 ] ( )t'2 ty(id1) |

Fp(q) = (4)

Stl(ldl)

where w = zt] is the generating function

foridy, and
Fp(q) == Fp(q,t1,...,t),...;2) and Ip(t,t') := Ip(t1,...,t},...;2)

are the generating functions with respect to (comp,sty,...,st},...) and
(sti,...,st],...), respectively. In particular, Ip(t,1) := Ip(t1,...,1,...;2).

2. If P " (sty,stg,...,st] ,sth,...) Q, then P "~ (comp,sty ,sta,...,st] ,sth,...) Q holds as well. In
particular, if P ~ Q, then P ~comp Q.

Proof. Note that if o is an indecomposable pattern and 7 = 71 @72 D - - - D 7%, then
7 is o-avoiding <= 7; is o-avoiding for each .

Therefore, with respect to totally @-compatible statistics t, the weight of 7 that con-
tributes to the generating function Fp(q) is the product of the weights of 7, ..., 7%.
But when partially @-compatible statistics t’ are involved, further analysis is needed.
Among these k indecomposable components, suppose the first ¢ are trivial (i.e., id;)
with weight w, the (i+ 1)-th component is nontrivial thus generated by Ip(t,t")—
and the remaining k — i — 1 components do not affect those partially ®-compatible
statistics t’, thus each is generated by Ip(t,1). The discussion above amounts to

Fp(g) =1+ ) ¢"(w +2 Ip(t,t)) —w)Ip(t,1)F19)
k=1

1 +Ip(t,t)—w( qlp(t,1)  quw )

1—qw Ip(t,1)— 1—gqlp(t,1) 1—qw)’

which becomes 4 after simplification.

In view of 4, the following three statements are equivalent:

(i) FP(l) = FQ(l)v namely P ™ (st1,sta,...,st] ,sth,...) Q.

(ii) Ip(t,t") = Io(t,t').

(iif) Fr(q) = Fo(q)-
For example, to see that (i) implies (ii), we first set t; = 1 for all ¢ to obtain that
Fp(1l) = Fo(1) implies Ip(t,1) = Ig(t, 1), which in turn implies (ii) via 4. Thus,
statement (i) is equivalent to its seemingly stronger form (iii), as desired. O

The following general lemma indicates that for a collection of indecomposable
patterns, say P, the equidistribution of certain statistic st with comp over &,,(P),
implies the seemingly stronger result that the joint distribution (st,comp) is sym-
metric over &,,(P). This result is somewhat surprising.

Lemma 2.5. Let P be a collection of indecomposable patterns. Let st’ be a partially
@®-compatible statistic such that st’(idy) = 1 and (sty,sta, ...) be a sequence of totally
@®-compatible statistics. If |S, (P)St Stistz| = |G, (P)mPstistze| - then

|6n(P)st/,comp,st1 sta,... | _ ‘GH(P)Comp’St/’Stl ,Sto,... |
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In particular, if st’ is a Comtet statistic over &,,(P), then (st’,comp) is a symmetric
pair of Comtet statistics over &, (P).

Proof. Let Fp(r,s) := Fp(r,s,t1,ta,...;2) and Ip(s) := Ip(s,t1,ta,...;2) be the
generating functions with respect to (comp,st’; sty,sta,...) and (st’,sty,sta, .. .), re-
spectively. By the relationship 4, we have

1 r(Ip(s) — sw)
F = , 5
p(r:s) = rsw (1 —rIp(1))(1—rsw) 5)
where w = ztitl(idl)t;tQ(idl) ---. Since Fp(1,s) = Fp(s,1), it follows from the above
identity that
1 Ip(s) — sw 1 sIp(1l) — sw

T—sw T 0=Tp() 0 —sw)  T—sw  (1=slp(){1—sw)

Solving this equation gives

s(1—1Ip(1))(Ip(1) —w)
Ip(s) — sw = f_ slpl(jl) .
Plugging this into 5 results in
1—rsw+ (rsw+rs—r—s)Ip(l) (6)
(1 —rIp(1))(1 —sIp(1))(1 —rsw)’

which is symmetric in 7 and s. This completes the proof of the lemma. O

Fp(r,s) =

3. A single pattern of length 3. In this section, we deal with all patterns 7 of
length 3 and complete two tasks:

1) Show the symmetry of the Comtet pair (iar,comp), jointly with some other
(set-valued) statistics, over certain class of pattern-avoiding permutations or
admissible words (see Theorem 3.6). In all cases the proofs are combinatorial.
We collect all the bijections here for easy reference: ¢ (Theorem 3.2), a and
B (Theorem 3.4), 1 (Theorem 3.6), ¢ (Theorem 3.12), and 6 (Theorem 3.14).

2) Compute the trivariate generating function &(7)des12°mp (¢ r p) which leads
to the full iar- and comp-Wilf-equivalence classification. A snapshot of these
results is presented in Table 1, where M7 stands for the transpose of the
matrix M. Putting t = 1, and p = 1 (or r = 1) in the generating functions
listed in Table 1 and comparing the results, we can conclude that there are
three iar-Wilf-equivalence classes:

{213,312, 321}, {132,231}, and {123}.
While the comp-Wilf-equivalence classes are:
{231, 312,321}, {132,213}, and {123}.

3.1. Symmetric classes. For the three patterns 312, 321 and 132, the distribu-
tions of iar and comp are not only identical, but also jointly symmetric. For the two
indecomposable patterns 312 and 321, this stronger property can be deduced from
Lemma 2.5. But for the pattern 132 = 1 @ 21, we need to construct an involution
¢ on 6,(132), which actually enables us to derive a more refined equidistribution
(see Theorem 3.12). We begin with the patterns 321 and 312.

Patterns 312 and 321

The pattern 321 seems to attract more attention than the other patterns in &3,
perhaps because of its role in Deodhar’s combinatorial framework for determining



2886 SHISHUO FU, ZHICONG LIN AND YALING WANG

P (/‘%des’iar’“’"“’(157 7, D) M, (P;iar,comp) proved in

1—(r+p+tN)z+ (rp+ (r+p—1)tN)2?

312 (1 —rpz)(1 —rz —tN2)(1 —pz —tNz) Symmetric Thm. 3.9
321 (sz(l_jjpz)t(zl)cjr;é’)“i);:g:;g+p M, (312) Thm. 3.10
132 < _1sz o rz)(l(i ;Z’j)(gj\i; i)t(N N Hankel Thm. 3.13
213 = (7’1pz_) znf)_(tg(t_]\f —_i_ 1)_’_ ) Lower triangular Thm. 3.15
231 = S;;)g)f)_(g(;é i ?+ ) M,(213)T  Thm. 3.15
123 (L=p)altre —tz—r) (1472 —t2)CF 2 x 2 nonzero  Thm. 3.16

(1 —tz)? * z(14 2z —tz)

TABLE 1. One pattern of length 3 (definitions of N, C' and C* are
given in equations (12), (18) and (28), respectively)

the Kazhdan-Lusztig polynomials (see for instance [4]). Rubey [27] obtained an
equidistribution result over &,,(321) by first mapping each 321-avoiding permuta-
tion, along with the statistics involved, to a Dyck path via Krattenthaler’s bijection
[22], and then constructing an involution on Dyck paths. We restate his result here
using 321-avoiding permutations rather than Dyck paths. For each w € G,,, let

Ides(7) := max({0} u DES(7))

be the position of the last descent of m. Recall the boldface notation x° defined in
Theorem 1.3.

Theorem 3.1 (Rubey [27]). There exists an involution on &,,(321) which proves
the equidistribution

Z Scomp(7r)tnfldes(ﬂ_l)XLMAXP(7r) _ Z Snfldes(ﬂ_l)tcomp(w)XLMAXP(w).
€6, (321) e, (321)

(7)
We explain here why Theorem 3.1 is equivalent to our Theorem 1.1 (i) up to the
elementary transformation 7 — (771)™. Notice that for each 7 € &,,, we have the
relationships
n — ldes(7™) = iar(r) and
LMAXP(7r) = LMIN(7~ 1) = LMAX((7—1)r¢),

where S := {n+1—i:i€ S} for any subset S < [n]. In view of these relationships
and Observation 2, we have
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Z gcomp(m) gn—ldes(m ) LMAXP ()
€6, (321)
= Z geomp((m 1)) gn—Ides(n") L LMAXP (7~ 1)™)
(m=1)rce6, (321)
= 2 gcomp () giar () L LMAX ()
(r=1)r°e&,, (321)
= Z geomp () giar(m)  LMAX ()

7€S,, (321)

Therefore, equidistribution (7) is equivalent to Theorem 1.1 (i).

In Corollary 3.7 we present a bijection, say w, on &,,(321) that proves Theo-
rem 1.1 (i) directly. On the other hand, as we have explained above, when Rubey’s
bijection that proves (7) is composed with the map 7 — (771)™, we obtain another
bijection on &,,(321), say @, that yields Theorem 1.1 (i) as well. Interestingly, these
two bijections w and @ turn out to be different from each other, although they do
agree for permutations in &,,(321) when n < 5. The reader can check the following
example once he or she is familiar with both bijections.

™ = 251634 — w(m) = 215634, but
T = 251634 — @&(7) = 215364.

In view of Lemma 2.4 (2), 321 ~comp 312 since 321 ~ 312. We have the following
refinement.

Theorem 3.2. For eachn > 1, there exists a bijection &, mapping each w € &,,(321)
onto o = () € 6,(312), such that

(LMAX, LMAXP, iar,comp) 7 = (LMAX, LMAXP, iar, comp) o. (8)

Sitting in the heart of our proof of Theorem 3.2, is a certain word composed of
positive integers and a symbol ¢ that stands for an empty slot, which we introduce
now.

Definition 3.3. Given a nonempty set S = {s1,...,8x} S Z=o with s < -+ < sy,
and a weak composition ¢ = (c1,...,¢c;) of s — k, we form the word
WG e =810 "0830 083 SO0
S,c 1 2 3 k

C1 Cc2 Ck

It is said to be an admissible word with respect to S and ¢, if for 1 < i < k,
Z Cj < 8 — 1. (*)
j=1

Let AW,, denote the set of all admissible words of length n.

We also need to introduce the counterparts on AW,, of the quadruple statistics in
(8). For each w := wg, € AW, let ics(w) denote the number of initial consecutive
letters from S in w, equ(w) denote the number of times the condition (x) is satisfied
with an equal sign, and SP(w) denote the set of positions (in w) of letters from S.
For example, if w = 235070010120 1300 with S = {2,3,5,7,10,12,13}, then
ics(w) = 3, equ(w) = 2, SP(w) = {1,2,3,5,8,9,11}.
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Theorem 3.4. There exist two bijections o : 6,(321) - AW,, and 8 : 6,(312) —
AW,,, such that for any m € 6,,(321) and o € 6,,(312), we have

(LMAX,LMAXP, iar,comp) m = (5, SP, ics, equ) wg,c, (9)
(LMAX, LMAXP, iar,comp) o = (T, SP, ics, equ) wr 4, (10)

where wg,. = a(m) and wrqg = B(0).

Proof. Since the constructions for the two bijections o and  are almost the same
(the only difference lies in their inverses), we will give details mainly for .. For each
7 € 6,(321), suppose

S = LMAX(7) = {n(i1) = w(1),7(i2),...,7(ix)}.

Let ¢ = (c1,...,ck), with ¢p, = ip41 —ip,— 1, for 1 < h < k—1, ¢x =n—1i. In other
words, each part of the composition ¢ records the number of letters between two left-
to-right maxima, after having appended n + 1 to the permutation 7. Now we define
a(m) := wg,c. Note that 7(i1),...,7(ix) are the left-to-right maxima of 7, so we can
verify the condition () holds for S and ¢, therefore « is a well-defined map from
6,.(321) to AW,,. The map S is defined analogously, only that now the preimage is
a 312-avoiding, rather than 321-avoiding permutation. Now we show both « and
are bijections by constructing their inverses. Take a word wg . € AW,,, we replace
all the ¢’s from left to right with the smallest unused letter in [n]\S. This results
in a 321-avoiding permutation, say 7. On the other hand, if we replace all the ¢’s
from left to right with the largest unused letter in [n]\S, keeping letters from S the
left-to-right maxima, we will end up with a 312-avoiding permutation, say &.
It should be clear that

LMAX(#) = S = LMAX(5),
LMAXP(#) = SP(wg,.) = LMAXP(5),
iar(t) = ics(ws,c) = iar(4),

comp(7) = equ(wg,.) = comp(d).
Now set o (wg,.) = 7 (resp. 7' (ws,.) = 6). Evidently,

a~Ha(m)=m, B7(B(0)) =0,

so a and (8 are indeed bijections that transform the quadruple statistics as shown
in (9) and (10). O

Proof of Theorem 5.2. Simply set £ = 37! o a, and (8) follows immediately from
(9) and (10). O

Remark 2. When composed with the complement map, our bijection £ is equiva-
lent to Simion and Schmidt’s [28] bijection from &,,(123) to &,,(132). This bijection
is also called the Knuth—Richards bijection by Claesson and Kitaev [7], see also [12].

In view of (9), the pair (ics,equ) on admissible words corresponds to the pair
(iar,comp) on 321-avoiding permutations, so Rubey’s Theorem 3.1 tells us that
their distributions are jointly symmetric over AW,,. Note that Rubey’s proof was
via an involution on Dyck paths. We are able to construct an invertible map ¢ over
the set of admissible words. To facilitate the description of ¢, we need the following
definition.
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Definition 3.5. Given an admissible word wg,. with § = {s1,...,s¢} and ¢ =
(c1y...,¢k), the index i, 1 < i < k is said to be critical for w, if

i+1

7
20j<8i—i<20j.
Jj=1 Jj=1

For the previous example w = 235¢70¢1012¢13¢¢, we see the indices 2,3 and 6
are critical for w. Let AW,, , 1 denote the set of admissible words w := wg . € AW,
such that ics(w) = a, equ(w) = b and s; > 1, where s; is the smallest letter in S.

Theorem 3.6. For 1 < a < n and 1 < b < n, there exists a bijection v from
AW, b t0 AWy, o—1p41, such that for each wge € AWy op, if Y(wse) = vrd,
then we have S =T.

Proof. Take any w := wg. € AW, o p With S = {s1,...,sg} and ¢ = (¢1,...,¢x), we
explain how to produce an admissible word v := vg 4 such that ics(v) = ics(w) — 1
and equ(v) = equ(w) + 1. Since ics(w) =a > 2, wesee ¢; = cg = -+ =41 =0
and ¢, > 0. Find the smallest £ > a — 1 such that the index £ is critical for w. Note
that s; > 1 guarantees the existence of such an ¢. Let d = (dy,--- ,d) be defined
as

Cit1 ifa—lgiﬁ@—l,

d, — siv—i—Zﬁl:lc{L ifi=24¢,

22:1 Cp — ;L_Zl dp, 1if1 =€+1,

G otherwise.
We denote v := vg 4 the admissible word with respect to S and d, and set ¢ (w) = v.
It can be checked that 22;1 c = Zf=1 d; = s, — k and Zf=1 d; = sy — /£, hence
equ(v) = equ(w) + 1 as desired. Also ics(v) = ics(w) — 1 = a — 1 since now
d1 = =da_2 =0 and da—l = Cq > 0.

All it remains is to show that ¢ is invertible. To this end, for each v := vgq €

AWy, a—1,p+1, find the smallest integer ¢ such that Zle d; = sy —{. Note that since

equ(v) =b+1>22 59 >1landdy = - =dy—2 =0, we must have a — 1 < ¢ < k,
and £ being the smallest means dy > 0. Now let ¢ = (¢1,...,ci) be defined as

di,1 lf a < Z < E,

0 ifi=a-—1,

C; =

di_1+d; ifi=~0+1,

d; otherwise.
It is routine to check that w := wg, is the desired preimage so that ¢ (w) =

DJ@

ics(w) = ics(v) + 1, and equ(w) = equ(v) — 1.
The following result is the restatement of Theorem 1.1 (i) and (ii).

Corollary 3.7. Forn > 1, the two triples (LMAX, iar,comp) and (LMAX, comp, iar)
have the same distribution over &,(321); while over &,(312), the two quadru-
ples (LMAX, DESB, iar,comp) and (LMAX, DESB, comp, iar) have the same distri-
bution.

Proof. For each permutation 7 € 6,,(321) with m(1) > 1, we find a unique permu-
tation p € 6,,(321) such that

(LMAX, iar,comp) 7 = (LMAX, comp, iar) p.
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If iar(m) = comp(w), then simply take p = m. Otherwise we assume iar(m) =
comp(m) + k for some k # 0, let

p=a ' (P*(a(n).
Combining Theorem 3.6 with (9), we verify that
LMAX(p) = LMAX(r),
iar(p) = ics(y*(a(n))) = ics(a(m)) — k = iar(7) — k = comp(x), and
comp(p) = equ(¢*(a(r))) = equ(a(r)) + k = comp(n) + k = iar(),

as desired. Now both a and ¢ are bijections, so m and p are in one-to-one cor-
respondence. On the other hand, for each 7 € &,(321) with «(1) = 1, we see
v:=del;(n) € &,_1(321) satisfies iar(v) = iar(7) — 1, comp(v) = comp(w) — 1, and
LMAX(v) is the set obtained from decreasing each number in LMAX(m)\{1} by 1.
This means we can use induction to finish the proof of the result for &,,(321).
Finally, applying the bijection £ instead of « gives us the result for &,,(312). To
see why we can include DESB to have a quadruple in this case, simply observe that
for each permutation o € 6,,(312), LMAX(0o) u DESB(0) = [n]. O

For most of our calculations of the generating function &G(P)(¢,r,p) in this
and later sections, we use some kind of decomposition by considering the largest
(resp. smallest) letter n (resp. 1) in a permutation o € &,,. A maximal consecutive
subset of [n], all of whose elements appear on the same side of n (resp. 1) in o, is
called a block with respect to n (resp. 1). For example, the blocks with respect to 9
in 251986743 are {1,2}, {3,4}, {5} and {6,7,8}. For two blocks (or sets) A and B,
we write A < B if the maximal element of A is smaller than the minimal element
of B. As usual, we use x(S) = 1 if the statement S is true, and x(S) = 0 otherwise.

A square matrix is said to be Hankel if it has constant skew-diagonals. For
the next theorem and Theorems 3.13 and 4.2, a key fact utilized by us is that
M,,(P) or M=%(P) is a Hankel matrix. This not only implies that (iar,comp) is
symmetric over &, (P), but also facilitates our calculation of the generating function
G&(P)desiarcomp (g - p: 2). We elaborate on the latter point with the next lemma.

Lemma 3.8. Suppose M = (m;j)i<ij<n S a Hankel matriz such that m;; = 0
when i + j >n+ 2. Let M(z,y) := X1, j<n™ij?'y’ and N(z) 1= %—Aﬂy:() =
Di<icn Mi1x" be the generating functions of M and its first column, respectively. It
holds that

Yy
M(z,y) = gj_y(/\f(w)—/\/(y)) (11)
Proof. The Hankel condition enables us to group together terms along the same
skew-diagonal. Noting that x'y + 2~ 1y% + - -+ + 2y’ = ay(2' — y')/(x — y) for each
1 < i < n, we have

n n
M(z,y) = E(milmly +mi197 Yt 4+ myy’) = Z mi(z'y + -+ 2y’)
i=1 i=1
TY o xy
= a(2t —yh) = N(z)-N
22y Rl =) = N -V W)

as desired. ]



REFINED WILF-EQUIVALENCES 2891

Recall the Narayana polynomial Ny (t) := X s, (r) tdes(m) (7 = 312,213,132 or
231) and its generating function (see e.g. [26, Eq. 2.6])

:1+@—1V—Vﬂ—2@+nz+@—lﬁﬁ

N :=N(t;2) := Z N (t)z" 2tz

n=0

(12)
Theorem 3.9. The generating function of the triple statistic (des,iar,comp) over
6,,(312) is given by

L—(r+p+tN)z+ (rp+ (r+p—1)tN)z?
(1 —=rpz)(1 =1z —tNz)(1 —pz—tNz)

&(312) oM (1,1, p) (13)

Proof. Conditioning on 7(1), we claim that (abbreviating &(312)des:iar.comp (¢ s p)
to &(t,r,p))

S(t,r,p) = 1+ rpe(t,r,p) + - (I(t,r) ~ I(1p)), (14)
where
j(t,’l") = Z P Z tdes('lr),,,iar(ﬂ) _ 6(t7T7 p) —1- szg(t,’f‘, p)
n>1 €6 (312) p p=0

7(1)>1, comp(m)=1
(15)

=rz(6(t,r0) —1).

Indeed, the first summand 1 in (14) corresponds to the empty permutation, and the
second to those with (1) = 1. As for the third summand, we consider permutations
7 with (1) > 1. Now Eq. (10) and Theorem 3.6 tell us that for a given 1 ¢ S < [n],
the matrix MIMAX=5(312) := (m;;)1<i j<n is Hankel. Note that iar(7) = n only for
7 = id,, but we require that w(1) > 1, so using the fact that the matrix is Hankel, we
see m;; = 0 when ¢ + j > n + 1. Consequently, Lemma 3.8 is applicable. Lastly, as
we have already noted in the proof of Corollary 3.7, each permutation o € &,(312)
satisfies LMAX(0) UDESB(o) = [n]. This means in particular that the statistic des
takes the same value for all permutations enumerated by MIMAX=5(312) justifying
the variable ¢ in (15).
Next, plugging (15) into (14) yields

(r—p)(1— sz)é(t, r,p) = ré(t,r, 0) — pé(t,p7 0). (16)

Setting p = 1 in (16), solving for &(t,r,0) and then plugging back into (16) gives
us

(r—p)(1— sz)(%(t,r,p) =(r-1)01- rz)é(t,r, H—-@p-1)01- pz)é(t,p, 1(). :
17

It remains to calculate é(t7 r,1). Every nonempty 312-avoiding permutation 7 has
the block decomposition m = A1 B such that A and B are both 312-avoiding blocks
with A < B. We consider the following two cases:

e A=, ie mw(1l) = 1. This case contributes the generating function rz&(¢,r,
1).

e A # (. This case contributes the generating function (&(t,r, 1) — 1)tz6(t, 1,
1).
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Summing up these two cases and noting that &(¢,1,1) = N, we deduce that
r26(t,r,1) = r2&(t,r,1) + (&(t,r,1) — 1)tzN.
Solving for &(t,r,1) we get
~ 1
t,r,l) = ———.
St.r1) 1—rz—tNz
Plugging this back into (17), we establish (13) after simplification. O

Recall that

1—/1—4t22 + 422 — 42
22(tz —z+1)
which is the generating function of the descent polynomials on 321-avoiding permu-

tations, first derived by Barnabei, Bonetti and Silimbani [3].

C = &(321)desiancomp (¢ 1 1) = ; (18)

Theorem 3.10. The generating function of the triple statistic (des,iar,comp) over

G,.(321) is given by

(rpz —rz +t2)C? — (rpz +p—1)C +p
(1 —=rpz)(1 —rzC)(p+ C —pC)

Proof. Recently, Fu, Han and Lin [15, Lemma 4.5] generalized (18) to

es,iar,com 1—rC + tTZ202
H = §@1) (e 1) = e

For convenience, let I(r) := I321(t,7) be the generating function over Z,,(321) with
respect to (des,iar). Since 321 is indecomposable, des is totally @-compatible and
iar is partially @-compatible, Eq. (4) gives

é(321)des,iar,comp(t’ r, p) _

(19)

1 N p(I(r) —rz)
1—rpz  (1—pI(1)(1—rpz)
1—p((1) = I(r)) —rpz

6(321)des,iar,comp(t7 r, p) _

- : 20
(1 =pI(1))(1 —rpz) (20)
It follows that
I1)=1-1/C and I(r)—I(1)=(H/C—-1)(1—-rz).
Substituting these back to (20) yields (19). 0

Pattern 132

Now we move onto the class of 132-avoiding permutations, on which the joint
distribution of (iar,comp) is symmetric as well. We collect in the following proposi-
tion some nice features of 132-avoiding permutations. All of the statements should
be clear from the 132-avoiding restriction, thus the proof is omitted.

Proposition 3.11. For any permutation m € 6,,(132), we have
1. For2 <i<mn, n(i) is a descent bottom of 7 if and only if it is a left-to-right
minimum of w, i.e., LMIN(7) = DESB(7) u {m(1)}.
2. When read from left to right, the values of the left-to-right maxima of ™ form
a sequence of consecutive integers m(1),m(1) + 1,7(1) +2,...,n.
3. The first k = iar(n) letters of m equal w(1),w(1) +1,...,7(1) + k — 1.
4. Provided k = comp(w) = 2, the last k — 1 letters of m equal n — k + 2,...,n.

The next theorem strengthens Theorem 1.1 (iii).
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Theorem 3.12. For all positive integers m, given any two subsets S,T < [n],
the matriz MIMAX=SLMIN=T (139} 4s Hankel. Consequently, the distribution of the
quadruple (LMAX, LMIN, iar,comp) is equal to that of (LMAX, LMIN, comp,iar)
over 6,,(132). In terms of generating function, we have

Z XLMAX(ﬂ)yLMIN(w)Tiar(rr)pcomp(rr)
€S, (132)
_ Z XLMAX(TI’)yLMIN(W)TCC)mp(TF)piaY(TF). (21)
€6, (132)
In particular, we have
Z tdes(ﬂ)riar(ﬂ')pcomp(ﬂ') _ Z tdes(ﬂ)rcomp(w)piar(ﬂ). (22)
€6, (132) €6, (132)

Proof. We begin by noting that for each m € &,(132), its initial ascending run
consists of consecutive numbers, and, unless 7 is indecomposable, we have 7(n) = n.
Now if iar(7) = comp(w) = 1, i.e., 7 is an indecomposable 132-avoiding permutation
with (1) > m(2), then it is counted by the top-left entry of MLMAX=SLMIN=T'(139)
for certain S and 7. Similarly, if iar(7) = comp(w) = n, then we must have m =
id,, and it corresponds to the bottom-right entry 1 of M,I;MAXz[n]’LMIN:{l}(132).
Otherwise, for the given subsets S, T € [n], take any permutation = € &,,(132) such
that LMAX(7) = S, LMIN(7) =T, 2 < iar(7) < n—1, and 1 < comp(w) < n — 2.
We are going to pair 7 with a permutation o € &,,(132) via a bijective map ¢, such
that

i (i) = o(i) for 1 < i <iar(m) — 1.

ii. LMAX(0) = LMAX(r) = S, and LMIN(¢’) = LMIN(r) = T.

iii. iar(o) = iar(m) — 1, and comp(o) = comp(mw) + 1.
In terms of the two operations deletion and insertion that we introduce in Defini-
tion 2.1, we let

o = @(m) 1= ins, p(dely ) (7)),
with
T = 90_1(0) = insg(l)vl(deln(a))

being the inverse map. We illustrate this definition by giving an example, where
the letters affected by this map have been overlined.

mT =56 7348 29 10 1 11

—_

o =56 3 47 2389 1 10

—_

Applying Proposition 3.11, it is rountine to verify i, ii, and iii, and we leave the
details to the reader. Items ii and iii ensure that MIMAX=5LMIN=T(139) is Hankel
as claimed. Now for any permutation w € &,,(132) with iar(7) = j > comp(n) = k,
we see T := ¢/ ~*(7) is a permutation in &,,(132) with

(LMAX, LMIN, iar,comp) 7 = (LMAX, LMIN, comp, iar) .

Pairing permutations in this way leads to (21).

Finally, by Proposition 3.11 (1) we have LMIN(7)\{7 (1)} = DESB(7). Further-
more, item i above implies in particular that m(1) = o(1), combining this with
LMIN(7) = LMIN(o) we obtain (22). O
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Theorem 3.13. We have
1 (1—2)(N—1)t
1—rpz * (1—r2)(1—p2)(1—2z— (N —1)tz) (23)

6(132)des,iar,comp(t7 r, p) _

Proof. The proof is analogous to that of Theorem 3.9. Noting that Mdes=*(132) is
Hankel for any fixed integer 0 < k < n—1 by Theorem 3.12, we begin by interpreting
this in terms of generating function. Empty permutation and identity permutations
of all lengths contribute 1/(1 — rpz), while the remaining permutations are taken
care of by Lemma 3.8, yielding

G(t, r, p) _ rp Z Z tdes(ﬂ')( jar(m) _ |ar(7r))

1—1r z r—
p P> mel, (132)

=1+ YL 7”]9 2 Z tdes( )( iar () _piar(fr)).
TTPE L TTPAEY ref,(132)

Converting to &(t,r, p) we have
rpz + Té(t,?", 0) _pé(tap, 0)

S(t = 24
(trp) = T2 - (24)
Plugging in p = 1 we have
< rz r&(t,r,0) — &(t,1,0)
t,r,1) = .
St 1) 1—rz * r—1
Now solve for G(t,r,0) and substitute the result back in (24) we get
- r—1)(&(t,r1 —~ S(t,p, Pz
Stngy 5 DO ) D@ )

J’_
1—rpz r—p

Next, we decompose each 132-avoiding permutation 7 as m = An B, where A and B
are blocks with A > B. In the same vein as with 312-avoiding class, the discussion
by two cases leads us to

1-2)(1+tN-1))

S(t,r,1) = (I—rz)(1—z—tz(N —1))

We plug this back into (25) and simplify to arrive at (23). O

3.2. Asymmetric classes. We deal with the three remaining classes, namely,
213-, 231-, and 123-avoiding permutations. The distributions of iar and comp on
each of these classes are different. We are content with deriving their joint generat-
ing functions with des, and addressing a conjugate relation between M, (213) and
M, (231).

Patterns 213 and 231

Theorem 3.14. For every n = 0, there exists a bijection 6 : 6,(213) — &,(231),
such that for 7 € 6,(213) and o := 6(7) € 6,,(231), we have (1) = o(1) and

(des, iar, comp) 7 = (des, comp, iar) o

In particular, the matrices M, (213) and M, (231) are conjugation of each other.
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Proof. We define 6 recursively. For n =0,1,2, 6§ : 6,,(213) —» 6&,(231) is taken to
be the identity map. Now suppose 6 has been defined for all k¥ < n (n > 3), then
take any 7 € 6,,(213), we can uniquely decompose 7 = w(1) AB with A > 7(1) > B.
Let 4 = red(A) and v = B, then we see that del.(;)(7) = p © v, where both y and
v are 213-avoiding, possibly empty permutations. Let

0= 0(7) 1= ins(1),1(0(v) ® (1))

The following facts can be readily verified.

1. 0 € 6,(231);

o(1) = 7(1);

des(0) = x(v # ) + des(0(v)) + des(8(1)) — des(r);

comp(c) = 1+ comp(0(u)) = 1+ iar(u) = iar(nw);

iar(o) =14 x(v = &) -iar(8(n)) = 1 + x(v = &) - comp(p) = comp(r).

So we see o is the desired image of 7, and the proof is now completed by induction.
O

AN

The equidistribution between (des,iar,comp) over &,,(213) and (des, comp, iar)
over &,(231) could also be drawn from comparing the following generating func-
tions.

Theorem 3.15. We have
(I—rz)(tN —t+1)
(I—=rpz)(1 —rz(tN —t + 1))
(1—p2)tN —t+1)
(1 —rpz)(1 —p2(tN —t + 1))

é(z:l_?))des,iar,comp(t7 r, p) _

and (26)

&(231)%5 <o (1,1, p) = (27)

Proof. We begin with the calculation of G(213)des2om (¢ 1 p). Each 7 € &,,(213)
can be decomposed as 7 = 7(1) A B, where A > 7(1) > B are 213-avoiding blocks,
possibly empty. For n > 2, we consider the following three cases:

e A= B # (J, contributing the generating function trpz(&(¢,1,1) — 1).
o A# &, B =, contributing rpz(&(t,r,p) — 1).
o A+# &, B # &, contributing trpz(&(t,r,1) — 1)(&(¢,1,1) — 1).

Summing up these three cases and noting that &(¢,1,1) = N, we deduce that

&(t,r,p) =1+ rpz +trpz(N — 1)
+ rpz(6(t,r,p) — 1) + trpz(&(t,r, 1) — 1)(N —1).

Now we plug in p = 1 and solve for &(¢,, 1), then plug it back to deduce (26) after
simplification.

Decomposing each m € 6,(231) as 7 = w(1) A B with A < 7(1) < B, and
calculating along the same line, we can establish (27) as well. O

Pattern 123
For 7 € 6,,(123), clearly iar(m) < 2 and comp(7) < 2. We aim to calculate

S (123)desiarcomp (4 - ) — A(t, p) + rB(t, p),
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where
pzA(t,p) := Z z" Z gdes(m) pycomp(m)
n=1 €S, (123), iar(m)=1
=pz+itpz* + (tp+t*p+tp?)2d + -+,
pzB(t,p) == Z z" Z gdes(mpeomp(m) — 222 4 (tp 4+ tp®)2° + -+ - .
n=2 €S, (123), iar(mw)=2

By (18), the generating function for the descent polynomials on 123-avoiding
permutations is

S(321)desiancomp (=1 1 1:42) — 1

C* 1= G(123)desiarcomp (4 1 1) — | = ; (28)
=14 2tz + 227 — 26727 + V1 — Atz — 4tz + 4222
B 222(tz — 2 — 1) '
Theorem 3.16. We have
(p— 1)tz2 (1—tz)C*
A(t,p) = 29
S Ty e P (29)
p—1)z C*
B(t,p) = L= (30)

1—tz  1—tz+2z

Thus,

1—p)z(trz —tz—r) N (I+rz—tz)C*
(1—t2)? z(1+ 2z —tz)

é(123)des,iar,comp(t’ r,p) _ (

Proof. For m € &,(123) with iar(7) = 1 and comp(7) = 2, we can decompose it as
m = A B, where A < B are both decreasing subsequences with |A| > 2 and |B| > 1.
On the other hand, if 7 € 6,(123) and iar(7) = 2, then we must have 7(2) = n,
and we calculate the two cases 7(1) > 7(3) and 7(1) < 7(3) separately. All these
amount to give us the functional equations:

22 * 22
At,p) = g%z + S = Bt 1) — 7855,
B(t,p) = pz + z(A(t,1) — 1) + tzB(t, p).
Solving this system of equations gives rise to (29) and (30). O
The following corollary can be proved combinatorially from analyzing the desig-

nated 123-avoiding permutations. But we prove it here algebraically relying on the
generating function derived in Theorem 3.16.

Corollary 3.17. Forn > 2, let 6%(123) := {w € 6,,(123) : des(7) = n — 2}, then
we have

2,22 3 3 4

Z P Z ,riar(ﬂ')pcomp(ﬂ-) _ rlp < + (T(j p)rf); + (1(2 4)*22(,;‘ )rg ) (31)
n=2  re&¥(123) z * z &
In particular, the distribution of (iar,comp) is symmetric over &%(123), and the
number of permutations m € &% (123) with iar(w) = comp(m) = 1 is the sequence
A095264 in [25).

Proof. To calculate the generating function in (31), we need to extract the coeffi-
cients of t" 722" in &(123)des:iarcomp (¢ 4 ) for each n > 2. For rpzA(t, p), the term

(p—l)trpz3

(=L expands to terms all of the form t"22", so we simply set t = 1 to get
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%, while for the term Tp(l_tﬁgij’l)_l), we substitute ¢tz for z, and 1/t for
t in
rpt(1 —tz)C*
1—tz+z
then take partial derivative /0t and let ¢ = 0 to obtain %. A similar

approach yields the coefficients from r2pzB(t,p) and establishes (31). The claim
about the symmetric distribution is evident from checking the variables r and p in
(31). O

4. Two patterns of length 3. In this section, we let P = (71,72) be a pair of

patterns of length 3, so there are (g) = 15 different pairs to consider. Once again,

we accomplish two tasks as in Section 3 and assemble our results in Table 2.

The Wilf-classification of pairs of length 3 patterns was done by Simion and
Schmidt [28]. There are three Wilf-equivalent classes, which further split into eleven
iar-Wilf-equivalent subclasses: the class enumerated by 2"~! splits into 6 classes

{(132,213), (132, 312), (213, 231), (231, 312), (231, 321)},
{(132,231)}, {(213,312)}, {(312,321)}, {(123,132)}, {(123,213)};

the class enumerated by 1 + (Z) splits into 4 classes
{(132,321)}, {(123,231)}, {(213,321)}, {(123,312)};

and the terminating (i.e., enumerated by 0 when n > 5) class {(123,321)} stays as
a single class. For comp-Wilf-equivalences, the class enumerated by 2"~ ! splits into
4 classes

{(132,231), (132,312), (213,231), (213, 312)}, {(132,213)}
{(123,132), (123,213)}, {(231,312), (231, 321),(312,321)}
and the class enumerated by 1 + (g‘) splits into 2 classes
{(132,321), (213,321)}, {(123,231),(123,312)}.

All the above refined Wilf-equivalences can be easily proven by setting ¢ = 1, and
p =1 (or r = 1) in the generating functions listed in Table 2.

4.1. Symmetric classes. For P e {(132,312),(132,321),(213,231), (123,312)},
the joint distribution of (des, iar,comp) is symmetric for iar and comp over &,,(P).
We consider these four classes in this subsection.

Pattern pairs (132,312) and (132, 321)

First note that if the pattern 312 (resp. 321) occurs in a permutation 7, then we
can always find an occurrence of 312 (resp. 321) in 7 with the role of “3” played by
a left-to-right maximum of 7. Now recall the bijection ¢ we construct in the proof
of Theorem 3.12. For each m € 6,(132), observe that 7 € &,,(132,312) (resp. w €
6,(132,321)) if and only if p(7) € 6,(132,312) (resp. ¢(7) € 6,(132,321)). This
fact, combined with Theorem 3.12, immediately yields the following theorem.

Theorem 4.1. For all positive integers n, given any two subsets S,T < [n], the
matriz MEPMAX=SIMIN=T (D) s Hankel, for P e {(132,312),(132,321)}. Conse-
quently, the distribution of the quadruple (LMAX, LMIN, iar,comp) is equal to that
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P=(r,72) édes’ia"“mp(t, r,p) M., (P;iar,comp) proved in
(132,312) L, (1= =)tz Hankel ~ Thm. 4.2
’ 1—rpz  (1—r2)(1—p2)(1—2z—t2) Y
(132,321) LI tz 0-1 Hankel ~ Thm. 4.2
’ 1—rpz (1—r2)(1—p2z)(1—2) Y
(213,231) 1-z Diagonal ~ Thm. 4.3
’ (1—rpz)(1 — 2 —tz) & o
2 2.3
(123,312) L+rpz  (r+p)tz vz 2 x 2 Hankel  Thm. 4.4
1—tz (1—t2)?2  (1—tz)3
(213, 312) 1=rz Lower triangular Thm. 4.6
: (1 —rp2)(1— (r +1)2) & o
1—pz T
231,312 M, (213,312 Thm. 4.6
(21,312) (=)0 - (7 07) (2133127
1—(1+p—t)z+ (1 —t)p2? . X
231,321 U t lar Thm. 4.6
(231,321) (I—rpz)(1—(p+1)z+ (1 —1t)pz?) pper transtiar 2
(132,213) ! + tz Lower triangular Thm. 4.8
’ 1—rpz (1—r2)(1—2z—t2) & o
(132,231) L tz M, (132,213)7 Thm. 4.8
’ 1—rpz (1—p2)(1—2z—tz2) " ’ o
(213, 321) ! + tz Lower triangular Thm. 4.9
1—rpz (1—2)(1—=7r2)(1—rpz)
1 (1—2)tz y
(312,321) jpr i MG w6 e Y6 i ey o g e No pattern ~ Thm. 4.10
2 z zZ—1lz T— z —7 22
(123,132) 1+ rpz + {25 4 EUEECRUUEEA ) 9 % 2 nonzero Thm. 4.11
rpz tz(1—tz+rz)(1 —tz + 2)
123,213 1 2x2 Thm. 4.11
(123,213) et U=t =29 X ¢ nonzero Thm
1 _ 2
(123,231) +rpz | (L+p—tpz)tz 2 x 2 nonzero Thm. 4.11
1—tz (1—t2)3
2
(123,321) L+ (E+rp)z+ (L+ ) +pjtz Ultimately zero Thm. 4.11

+(2r 4t + pt)ts®

TABLE 2. Two patterns of length 3

of (LMAX, LMIN, comp, iar) over &, (P). In terms of generating function, we have

Z XLMAX(w)yLMIN(ﬂ')riar(‘n‘)pcomp(ﬂ') _

€S, (P)

Z XLMAX(7r)yLMIN(ﬂ')Tcomp(ﬂ')piar(w).

€S, (P)
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In particular, we have
Z 2fdes(7r),,“iar(ﬂ')pcomp(ﬂ') _ Z tdes(ﬂ')rcomp(ﬂ')piar(ﬂ).
€S, (P) €S, (P)
This symmetry can also be seen directly from the following generating functions.

Theorem 4.2. We have

. . 1 (1—2)tz

S(132,312)9CMP (¢ 1 p) = »o (32
( ) (t,r,p) 1—rpz+(1—7‘z)(1—pz)(1—z—tz) (32)

~ . 1 t

6(132, 321)des,|ar,comp(t7 r, p) _ z (33)

1—rpz * (1—r2)(1—p2)(1—2)

Proof. The proof is quite analogous to that of Theorem 3.13. First for (32), Theo-
rem 4.1 tells us that MIMAX=S.LMIN=T (139 319) is Hankel. Relying on Lemma 3.8
again, we reinterpret this in terms of generating function (details left to the readers):

é(t,?",p) _ rpz I (7“ - 1)(6(t,7", 1) - 1iiz) - (p - 1)(6(t,p, 1) - 1322)

. (34
1—1rpz r—op (34)

Next, note that all id,, := 12---n with n > 0 contribute collectively 1/(1 — rpz)
to &(132,312)desi@acomP (¢ p). On the other hand, every m € &,,(132,312) with
des(m) > 0 can be uniquely decomposed as m = An B, where A > B are two
(possibly empty) blocks such that B is decreasing and A is 132- and 312-avoiding,.
We consider the following two cases.

e B = (J. This case contributes the generating function pz(&(t,r, p) — —=—).

1—rpz
2
e B # . This case contributes IZZ T+ f’jz (S(t,r, 1) — lfrz).

Summing up all cases gives us

1
S(t = S(t —
(t,r,p) 1_rpz+p2( (t,r,p) 1_rpz)
trpz> tpz? 1
+ + S(t,r,1) — .
(I—t2)(1—rz2) 1—tz( (t:r1) l—rz)
Set p = 1 and solve to get
1—=2

&(132, 312)RremP (g, 1, 1) = 1-rz)1—z—tz)’

then plug this back into (34) and simplify, we get (32). The proof of (33) is simpler
noting that for 7 € &,,(132,321) with the decomposition # = An B, both A and B
are increasing if B # ¢J. The details are omitted. O

Pattern pair (213,231)

The first thing to notice is that for every 7 € 6,,(213,231), we must have w(1) = 1
or n, and iar(w) = comp(w). The latter can be proved by induction relying on the
former. In terms of generating function, this means

S(t,r,p) = &(t,rp,1), and
S(t,r,p) =14 rpz6&(t,r,p) + trpz(&(t,1,1) — 1).
Solving these two functional equations gives us

Theorem 4.3.
6(213, 231)des’iar’°°mp(t, r,p) =

1-=2
(1—rpz)(1 —2—tz)
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Pattern pair (123,312)

For every permutation 7 € &,,(123, 312), there are only five possible values for the
triple (des(r), iar(7), comp(m)), since 123-avoiding implies iar(7) < 2 and comp(7) <
2, while both 312- and 123-avoiding forces des(w) > n — 2. Now it suffices to
enumerate each case separately.

e (des(m),iar(m),comp(w)) = (n — 1,1,1). There is a unique permutation id}, =
n---21 for this case, which contributes %7 to the generating function.
o (des(m),iar(m),comp(w)) = (n — 2,2,2). There is a unique permutation 1 @

2,2 2
id;,_, for this case, which contributes ‘722~ to the generating function.

o (des(m),iar(m),comp(m)) = (n — 2,1,1). Permutations in this case are of the

foomnm=aa—1---bn--ra+1b—1---1, where 1 < b < a < n. Therefore
t2rpzt
(1—?,2)3
o (des(w),iar(m),comp(w)) = (n —2,2,1) or (n — 2,1,2). These two cases can

this case contributes

to the generating function.

be discussed similarly as the last case, and the contributions are % and

trp2z3
(1—tz)2"

Summing up all cases above gives rise to

Theorem 4.4.

1+rpz  (r+p)tz? N 223
1—tz (1—1t2)2  (1—t2)3"
4.2. Asymmetric classes. For the remaining choices of P, the distribution of

(iar, comp) over &,,(P) is not symmetric. However, we still observe some conjugative
pairs as in Section 3.

Pattern pairs (213,312), (231,312) and (231, 321)

(123, 312)%% < (1 1. p) —

Recall the two bijections, £ from Theorem 3.2, and 6 from Theorem 3.14. Observe
that

o 7€ 6,(231,321) if and only if £(r) € 6, (231, 312).

o 7€ 6,(213,312) if and only if 6(r) € &,,(231, 312).
Then the following theorem is a quick corollary of Theorems 3.2 and 3.14.
Theorem 4.5. For each n = 1, the quadruple (LMAX, LMAXP, iar,comp) has the
same distribution over &,,(231,321) and 6,(231,312); the distribution of the triple

(des, iar, comp) over &,,(213,312) is equal to that of (des,comp,iar) over &,(231,
312).

Next, we compute the generating functions for these three pairs.

Theorem 4.6. We have

- . 1—rz

S(213,312)" S 1) = T ST ) )
~ ar 1—pz

B33 ) - ST o
N . 1—(1 —t 1 —t)pz?

6(231, 321)des,lar,comp(t, r, p) _ ( +p )Z + ( )pZ (37)

(1—rpz)(1—(p+ 1)z + (1 —t)p2?)
Proof. In view of Theorem 4.5, (35) follows from (36) by switching variables r and
p. To prove (36), note that both patterns 231 and 312 are indecomposable, thus we
can apply Lemma 2.4 to reduce the calculation to that of the generating function of
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(des, iar) over Z,,(231,312). But the indecomposable permutations in &,(231, 312)
are precisely id;, = nn —1---1, thus I3 312(¢,7) = 7=-. Plugging this back into
(4) gives us (36). Finally, every permutation in Z,,(231,321) must be of the form

trz?

1©id,—1 =n12---n—1, yeilding the generating function I3 301 (7, t) = 72 4+ 7=
Applying (4) from Lemma 2.4 again, we derive (37) and complete the proof. O

Pattern pairs (132,213) and (132,231)

For the same reason that the bijection 6 from Theorem 3.14 preserves 132-
avoidance, we have the following conjugate relation.

Theorem 4.7. For each n = 1, the distribution of the triple (des,iar,comp) over
6,(132,213) is equal to that of (des,comp,iar) over &,(132,231).

Next, note that each permutation 7 € &,,(132,231) either begins with (1) = n,
or ends with 7(n) = n. Calculating these two cases separately we have

6(ta Tap) = +p2(6(t,7',p) -

t 6(t,1,1) —1).
— o) (S 1) - )

Solving this and applying Theorem 4.7, we can deduce the following theorem.

Theorem 4.8. We have

: . 1 tz
6 132.213 des,iar,comp ¢ _

( ’ ) (7T7p) 1—sz+(1_7~z)(1_z_tz)7
: . 1 tz
S&(132,231 des, iar,comp t.r.p) = . |

( ) (t,r,p) 1—rpz (1 —p2)(1—2—t2)

Pattern pair (213,321)

Note that each permutation 7 € &,,(213,321) can be decomposed as m = An B,
where A and B are both increasing blocks, and B is consisted of consecutive integers.
Calculating the two cases 1 € A and 1 € B separately, we obtain the following
theorem.

Theorem 4.9. We have
1 tz

é 213. 321 des,iar,comp t — .
(213,321) (t,r,p) 1_sz+ (1—=2)(1=r2)(1—r1rpz2)

Pattern pair (312,321)

Noting that both 312 and 321 are indecomposable patterns, we apply (4)
1 q(p(t,t') —w)

S l-qw  (1-qlp(t,1))(1 —quw)

from Lemma 2.4 (1) to reduce the calculation to

1312’321(15’7,,) = Z g Z tdes(‘/r),r,iar(fr).

n>=1 €&, (312,321)
comp(m)=1

Fp(q)

Now any indecomposable m € &,(312,321) must be of the form 7 = 23---n 1.

Hence
trz?

I tr) =rz+ :
312,321( 7”) rz 1— 712

with which we can deduce
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Theorem 4.10.
1 (1—2)tz

= des,iar,comp _
6(312,321) (t,r,p) = Um0 -ra) (- (At pz+ (1 pa2)

1—rpz

Pattern pairs (123,132), (123,213), (123,231) and (123,321)

These four pattern sets all contain the pattern 123, hence iar(m) < 2 and comp()
< 2 for each permutation 7 in &, (P). We take similar approach as Theorem 3.16,
or analyze the position of 1 or n in 7, to calculate their generating functions. We
collect the results in the following theorem but omit the proof.

Theorem 4.11. We have
2

R . t
&(123, 182)* P (¢, p) = 1+ rpz + P Zt
— 1z

(R p
N | rpz | t(l-tz+r)(1—tz+2)
S(123,213 des, iar,comp tr _ |
- . 1+rmpz (1 +P*tpz)tz2
S(123.231 des,iar,comp ; _
( ) ) ( ,T,p) 1 t2 (1 _tz)g ’

S(123,321)des8romP (¢ p) = 14 (t +7p)z + (1 + ) (1 + p)tz + (2r + t + pt)tz>.

5. Schroder classes: Two patterns of length 4. This section aims to char-
acterize the pattern pair P of length 4 whose distribution matrix M, (P) equals
M, (2413,3142). The first few values of the symmetric matrices M, (2413,3142)

are:
7310
[1 0 318 3310
KUY B Il I U S T
0001
o8 19 4 1 o] [121 52 18 5 1 0
> 11 4 1 ol |52 46 17 5 1 0
18 17 12 4 1 0
4 4 3 1 0f,
5 5 4 310
1 1 110
0 0 001 1 1 1 110
L 0 0 0 001

The integer sequence formed by the entries in the upper-left corner of M,, (2413, 3142)
begins with
1,1,2,7,28,121,550, 2591, .. ..
This sequence matches A010683 in the OEIS [25], a sequence that counts, among
many combinatorial objects, dissections of a convex polygon with n + 3 sides having
a triangle over a fixed side (the base) of the polygon. This coincidence can be proved
by comparing &(S)(1,0,0) from the expression (41) with the generating function
supplied in the entry A010683.
The first result in this section is a consequence of Theorems 1.3 and 1.4.

Corollary 5.1. Forn > 1,

Z tdes(w)zcomp(ﬂ')yiar(w) _ Z tdes(ﬂ')xcomp(ﬂ')yiar(ﬂ). (38)
€6, (2413,3142) €6, (2413,4213)
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Consequently,
7fdes(ﬂ')xcomp(ﬂ')yiar(fr) _ Z tdes(w)xiar(w)ycomp(w) (39)
€6, (2413,4213) €6, (2413,4213)
Proof. Since the patterns 2413,4213 and 3142 are indecomposable, the equidistri-

bution (38) is a consequence of Theorem 1.4 (with = 1) and Lemma 2.4.
The identity (39) follows directly from (38) and Theorem 1.3. O

Remark 3. In view of Corollary 5.1, one may wonder that if (2) can be further
refined by comp. This is not true and it turns out that even (dd,comp) is not
equidistributed over &5(2413,3142) and 65(2413,4213). Can Theorem 1.4 be fur-
ther refined by other classical permutation statistics (cf. [20])?

Lin and Kim [24, Theorem 5.1] showed that, among all permutation classes
avoiding two patterns of length 4, the three classes below are the only nontrivial
classes which are des-Wilf equivalent to the class of separable permutations.

Theorem 5.2 ([24]). We have the refined Wilf-equivalences:
(2413, 3142) ~ges (2413,4213) ~pps (2314, 3214) ~pgs (3412, 4312).

It should be noted that iar is not a Comtet statistic over &,,(2314,3214). Com-
puter program indicates that, among all permutation classes avoiding two patterns
of length 4, the classes of (2413,4213) and (3412,4312) are the only two that are
(des, iar, comp)-Wilf equivalent to the class of separable permutations.

Theorem 5.3. We have (2413,4213) ~(pES comp) (3412,4312). In particular,
(2413a3142) " (des,iar,comp) (2413a4213) " (des,iar,comp) (341274312)

Consequently,
Z tdes(ﬂ')xcomp(ﬂ') yiar(ﬂ) _ Z tdes(‘n’)xiar(ﬂ)ycomp(ﬂ) ) (40)
€6, (3412,4312) €6, (3412,4312)

In order to prove Theorem 5.3, we need a set-valued version of Lemma 2.4. For
an integer £ and a set S = {s1,82,...}, let £+ S5 :={€+ 1,0+ s9,...}. A set-valued
statistic ST is called totally ®-compatible if for each 7 = 1 @2 @ - - - @ 7, With each
7; an indecomposable permutation of length ¢;,

k
ST(w) = | J e +ST(m),
i=1
where ¢; = 23;11 £;. Note that the set-valued statistics DES, DESB, LMAX and
LMAXP are all totally ®-compatible.

Lemma 5.4. Let (ST1,STs,...) be a sequence of totally @®-compatible set-valued
statistics. Let P and Q be two collections of indecomposable patterns. For n = 1,
if (ST1,STa,...) has the same distribution over &,(P) and &,(Q), then so does
(comp, ST4,STs,...).

Proof. Since P/@ (meaning P or Q) is a collection of indecomposable patterns, each
P/Q-avoiding permutation is a direct sum of some smaller P/Q-avoiding permuta-
tions. Thus, it is sufficient to show that if (ST;,STs,...) is equidistributed over
S, (P) and 6,(Q) for n = 1, then (ST1,STs,...) is equidistributed over Z, (P) and
Z,(Q). We aim to prove this by induction on n.
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Obviously, the assertion is true for n = 1. Suppose that (ST1,STo,...) is
equidistributed over Z,,(P) and Z,(Q) for n < m. It follows that (STy,STs,...) is
equidistributed over &,,4+1(P)\Zyn+1(P) and S, 4+1(Q)\Zin+1(Q), as (ST1,STs, .. .)
is a sequence of totally @-compatible set-valued statistics. Now (STy,STs,...) is
also equidistributed over &,,,.1(P) and &,,+1(Q) and so (ST1,STs,...) is equidis-
tributed over Z,,,+1(P) and Z,,11(Q). This completes the proof by induction. [J

Proof of Theorem 5.3. The refined Wilf-equivalence
(2413,4213) ~(DES,comp) (3412,4312)

is a direct consequence of Theorem 5.2 and Lemma 5.4, as the set-valued statistic
DES is totally @-compatible. The other two statements then follow immediately
from Corollary 5.1. 0

Next we compute the generating function &(8)(t,7,p) = (S(S)(t,r, p; 2)—1)/rpz
with respect to (des, iar,comp), where S is a pattern pair in

((2413,3142), (2413, 4213), (3412, 4312)}.
Theorem 5.5. Let S(t) := &(S)(t,1,1;2) — 1. Then,
~ (1)z+1—=r—=p)SEH) + (1 —7)(1 —p)S(t)?

SO = G paa a-psma s a-nsey W
where S(t) satisfies the algebraic functional equation
S(t) =z + (1 +)2S(t) + t2S(t)* + tS(t)>. (42)

Proof. The functional equation (42) for the generating function S(t) of the descent
polynomials over separable permutations was proved in [17]. Since the patterns
2413 and 3142 are indecomposable, des is totally @-compatible and iar is partially
@-compatible, Eq. (6) gives

v L—rpz+(rpzt+rp—1r—p)ls
6(8)(2‘:,7",]), Z) - (1 _ 7"[3)(1 _pIS)(]- _ ’l"pZ)

where Is := Is(t;2) is the generating function with respect to des. Since S(t) =

(43)

T isls, we have
1+ 5()
Substitute this into (43) and simplify, we get (41). O

Aided by the computer program, we make the following conjecture, whose validity
will complete the characterization of pattern pairs of length 4 that are iar-Wilf
equivalent to the class of separable permutations.

Conjecture 1. Let P ¢ {(2413,3142), (2413,4213), (3412,4312)} be a pair of pat-
terns of length 4. Then, P is iar-Wilf equivalent to (2413,4213) if and only if P is
one of the following eleven pairs:
(1324,2134), (1324, 3124), (1423, 4123), (1432, 4132), (2134, 2314), (2314, 3124)
(2431,4231), (2431, 3241), (3241, 3421), (3421, 4231), (3421, 4321).

Moreover, if P is one of the last five pairs (i.e., those in the second line above),
then P is (iar,comp)- Wilf equivalent to (2413,4213).
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Remark 4. In view of Lemma 2.4, the second assertion for the (iar,comp)-Wilf
equivalences in Conjecture 1 follows automatically from the first assertion, as all
the patterns appear in the last five pairs are indecomposable.

In the rest of this section, we aim to confirm Conjecture 1 for the pattern pair P =
(2431,4231) using the technique of generating trees, which was originally employed
to study the Bazter permutations by Chung, Graham, Hoggatt and Kleiman [6], see
also [28, 31].

Theorem 5.6. We have the refined Wilf equivalence
(2413,4213) ~(1.MAXP comp) (2431,4231).

In particular, (2413,4213) ~ (imax,iar,comp) (2431,4231) and Conjecture 1 is true for
P = (2431,4231).

In view of Lemma 5.4, to prove Theorem 5.6, it is sufficient to prove the refined
Wilf-equivalence (2413,4213) ~pymaxp (2431,4231). We will prove this by showing
a growth rule for (2431,4231)-avoiding permutations and then comparing it with
that of (2413,4213)-avoiding permutations.

For m € 6,1 and i € [n], let ins;(w) := ins;,(7) € &,. Thus for example,
ins3(14532) = 156423. If 7 € &,,_1(2431,4231), then introduce the set of available
inserting values of m as

AVA(m) :={k € [n] : ins(7) € 6,,(2431,4231)} = {ky > ko2 > --- }.

Clearly, if i € AVA(7), then k € AVA(r) for any i < k < n, since the newly inserted

letter, which appears at the end, can only play the role of ‘1’ in a pattern 2431 or

4231. Thus, AVA(7) = [m,n] := {m,m+1,...,n} for some m < n. We will call m

the critical value of 7 in the sequel. For example, we have AVA(14523) = [3, 6].
We have the following growth rule for (2431, 4231)-avoiding permutations.

Lemma 5.7. Suppose m € &,,_1(2431,4231) with AVA(w) = [m,n]. Then,

[m,n+1], ifj=n.

AVA (ins; (7)) = {

Proof. For m < j <n —1, the letters j — 1 (if j = 2) and j + 1 appear before j in
ins;(m) and these three letters form a pattern 132 or 312. Thus, j—1 ¢ AVA(ins;(7)).
On the other hand, suppose @ := ins;(ins;(7)) = #(1)---&(n)7(n + 1), then we
see 7(a),w(b),7(c) and #(n) = j + 1 form a pattern 2431 or 4231, if and only
if 7(a),w(b),7(c) and 7(n + 1) = j do. This means we have j € AVA(ins;(m)).
Therefore j is the critical value of ins;(7) and AVA(ins;(7)) = [j,n + 1]. Clearly,
AVA (ins,, (7)) = [m,n + 1]. This completes the proof of the lemma. O

The definition of AVA(r) for a (2413, 4213)-avoiding permutation 7 was intro-
duced similarly in [24], where they proved the following growth rule. Note that for
any 7 € &,,_1(2413,4213), AVA(x) always contains 1 and n.

Lemma 5.8 (Lin and Kim [24, Lemma 5.3]). Suppose m € &,,_1(2413,4213) with
AVA(m)={n=Fk1 > ko> - >k, = 1}.
Then, for 1 < j <m,

J
AVA(iHSkj<7T)) = {n+1 Zk‘j +1> k‘j >kj+1 > >k = 1}.
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(2)*
/(3)*\ /(3)\
@ 4) ) @ @) )
FIGURE 1. First three levels of the generating tree for u,>16,(2431,4231).

We are ready to prove Theorem 5.6 by constructing the generating trees for both
classes.

Proof of Theorem 5.6. Label each m € &,,(2431,4231) by |AVA(x)|, Lemma 5.7
then produces the rewriting rule:

@
fhsen = {(k) o k1), (k+ 1), (B), (k—1),....(3). (44)

This means that the initial permutation id; has label (2) and all the (2431,4231)-
avoiding permutations derived from inserting a letter at the end of a (2431, 4231)-
avoiding permutation labeled by (k), are exactly those with labels (k + 1), (k +
1), (k),(k—=1),...,(3).

We can construct a generating tree (an infinite rooted and labeled tree) for
(2431,4231)-avoiding permutations by representing each permutation as a node on
the tree using its label. More precisely, the root is labeled (2), and the children of
a node labeled (k) are those generated according to the rewriting rule Qgp, in (44).
In addition, the labels for those permutations ending with their greatest letter will
have an extra ‘*’; and we will call the corresponding nodes the star nodes. So in this
generating tree, every node has precisely one child being a star node. See Fig. 1
for the first few levels of this generating tree. Note that the nodes at the n-th
level of this tree are in one-to-one correspondence with elements of &,,(2431, 4231).
Moreover, if a permutation 7 € &,,(2431,4231) is labeled by ¢(n), and the unique
path from the root (2)* to ¢(m) goes through p; = (2)*,pa,...,pn = £(7), then

LMAXP(7) = {i : p; is a star node}.

For instance, the second (4)* appearing in level 3 corresponds to 213 and we
have LMAXP(213) = {1,3}. In other words, the distribution of LMAXP over
(2431, 4231)-avoiding permutations is completely determined by this generating
tree.

It can be readily checked that Lemma 5.8 gives the same rewriting rule Qgcp
for (2413,4213)-avoiding permutations, which in turn, produces for (2413,4213)-
avoiding permutations the identical generating tree as (2431,4231)-avoiding per-
mutations. This proves (2413,4213) ~maxp (2431, 4231), as desired. O

6. Revisiting separable and (2413,4213)-avoiding permutations. The main
purpose of this section is to prove Theorem 1.4. We begin with the motivation that
leads to the discovery of Theorem 1.4.

Recall that a sequence e = (eq, €, ..., e,) € N is an inversion sequence of length
n if e; < i for each i € [n]. An inversion sequence is 021-avoiding if its positive
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entries are weakly increasing. Denote by J,,(021) the set of 021-avoiding inversion
sequences of length n. Kim and Lin [24]

e constructed a bijection ¥ : J,,(021) — &,,(2413,4213) which transforms the
set-valued statistic ASC to DES, where ASC(e) :={ie€[n—1]:e; <e;j41}is
the set of ascents of e. In particular, together with the works in [10, 17, 23]
we know

Sn(t) _ Z tdes(w) _ Z 7fasc(e) _ Z tdes(w), (45)

e, (2413,3142) e€J,, (021) e, (2413,4213)

where asc(e) := |ASC(e)|;
e proved combinatorially via the so-called modified Foata—Strehl action that

ln;lj
> 1950 — N |0, 5(2413,4213)[tF (1 + ¢)" 2R (46)
€6, (2413,4213) k=0

Recall that T, ;(2413,4213) is the set of permutations in &,,(2413,4213) with k
descents and without double descents. Combining (1), (45) and (46) yields

T, (2413,3142)] = [T, (2413, 4213))| (47)
for all 0 < k < n — 1. This identity was refined recently by Wang [30] as

Z tdes(ﬂ)xdd(ﬂ') _ Z tdes(ﬂ')xdd(ﬂ')7 (48)
€6, (2413,3142) 7e6, (2413,4213)

where dd(7) denotes the number of double descents of w. Setting x = 0 in (48) we
recover (47).

Theorem 1.4 is a refinement of Wang’s equidistribution (48) by the Comtet statis-
tic iar. The three numerical statistics des, dd and iar are all determined by the set-
valued statistic DES, but (2413, 4213) is not DES-Wilf equivalent to (2413,3142).
In spite of that, we still have the refined Wilf-equivalence (2413,4213) ~ (des dd,iar)
(2413, 3142), to our surprise. Our proof of Theorem 1.4 is purely algebraic, bas-
ing on Kim—Lin’s bijection ¥, a decomposition of 021-avoiding inversion sequences
and Stankova’s block decomposition of separable permutations [29]. It would be
interesting to construct a bijective proof of this equidistribution.

As we will see, some easy combinatorial arguments on 021-avoiding inversion
sequences (see Theorem 6.1) together with Theorem 1.4 provide an alternative ap-
proach to a recent result of the first and third authors [18, Theorem 3.2].

6.1. A recurrence for 021-avoiding inversion sequences. For each inversion
sequence e = (eq,...,ey), let izero(e) := min(ASC(e) u{n}) be the number of initial
zeros of e. It follows from the aforementioned bijection ¥ that for 1 < k < n,

I, = |{e€3,(021) : izero(e) = k}| = |{m € 6,,(2413,4213) : iar(7) = k}|. (49)

Thus,
I, = {7 € 6,,(2413,3142) : iar(w) = k}|

by Theorem 1.4. We have the following recurrence relation for I, j.
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Theorem 6.1. We have I1; =1 and

n—1
I, = Z kL, 1k forn =2, (50)
k=1
n—1
Ini=1In 151+ Z 2K, 1k for2<i<n, (51)
k=i
Proof. Let T, = {e € J,(021) : izero(e) = k}. For each inversion sequence

e € J,(021), let d(e) = (&2,€3,...,8n) € Tp—1(021) with &; = e; — x(e; > 0) for
2 < i < n. The mapping d : J,(021) — J,,_1(021) is surjective. To see (50), for
any e € J,_1(021) with izero(e) = k, there are exactly 28! preimages of e in J,,
under d, because

e cach of the k initial zeros of e, except for the first zero, can be either 0 or 1
in its preimages;

e but all zeros after the first positive entry of e, must remain zeros in its preim-
ages, to guarantee that they are 021-avoiding.

Recursion (51) follows from similar reasoning. O

6.2. Proof of Theorem 1.4. We will prove Theorem 1.4 by showing that the gen-
erating functions for both sides of (2) satisfy the same algebraic functional equa-
tion. We begin with the calculation of the generating function for the right-hand
side of (2):
G t o,y 2 Z g Z tdes(ﬂ)xdd(w)yiar(ﬂ')
n=l 76, (2413,4213)
=yz + (y* + toy)2? + (v + 2tay® + 2ty + t22%y) 2> + - -

For any e = (e1,ea,...,e,) € J,(021), we always attach e,1 = n to the end of
e. Let da(e) := {1 <i < n:e_1 <e < e} bethe number of double ascents
of e. Since the bijection ¥ : 7,(021) — &,,(2413,4213) transforms the set-valued
statistics ASC to DES, we have

t T,y 2 Z Z tasc(e)xda(e)yizero(e)'

n>1  eeJ,(021)
Lemma 6.2. We have the algebraic functional equation for G := G(t, x,y; z):
V32 + (twy?z + 3%z — 2022 — )G + 2G? + 3G =0, (52)
where
o i= 2w’z — 2txyz + 332 + tyz — Ay?2 — 22 +yz + 2y and
= tay?z — Atwyz + Y3z + tez + tyz — 202 —tz —yP +yz +t 4+ 2y — 1.
Proof. Let J,,(021) be the set of pairs a = (e, $), where e € J,(021) and ¢ is an

arbitrary function from [r] to {0,1} when izero(e) = r. So J,,(021) can be viewed as
021-avoiding inversion sequences of length n whose initial zeros are 2-colored. Let

39(021) := {(e,¢) € 7,,(021) : ¢(1) = 0} and I (021) := 7,,(021)\T (021).
For each a = (e, ¢) € J,,(021) with izero(e) = r, if a € 3(0)(021), then define
asc(a) :=asc(e) + |{i e [r—1]: ¢(i) < o(i + 1)}
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and
da(a) := da(e) + x(¢(r — 1) < ¢(r));
otherwise, a € 3 )(021) and we define
asc(a) :=asc(e) + [{ie[r—1]:¢() <p(i + 1)} +1
and
da(a) :=da(e) + x(o(r — 1) < ¢(r)) + x(e2 = 1).
The reason of defining these two statistics in this way will become transparent when

we decompose 021-avoiding inversion sequences. Let us introduce two generating
functions

olt, x; 2) Z z" Z gase(@)gdaa) - and
n=l 4500 (p21)

t ; Z Z Py Z tasc(a)xda(a).

n=l qe5(D(021)

For convenience, we use the convention that ﬁ((JO) (021), ﬁél) (021) and J¢(021) contain
only the empty inversion sequence.

Each e = (e1,...,e,) € J,(021) with & = min{i € [n] : e;41 = i} can be
decomposed into a pair (é,a), where é := (eg,e3,...,er) € Tp_1(021) and a :=
(&¢) €3, (021) such that

o &= (€1,69,...6n_k) with €y = eg¢ — k- x(€pe > 0) for 1 <€ <n—k;

e and ¢(i) = x(ex+; > 0) for 1 < i < izero(é).

This decomposition is reversible and satisfies
asc(e) = asc(é) + asc(a),
da(e) = da(é) + da(a), and
izero(e) = izero(é) + 1.
Turning the above decomposition into generating function yields
G =yz(1+G)(1+Gy). (53)

Similar decomposition as above for 2-colored 021-avoiding inversion sequences

gives the system of functional equations
é[) = Z(l + éo + él)(l + él),
él = Z(t:L' + téo + tz(l - :L')(]. + Gl) + él)(l + él)

Eliminating Go gives the functional equation for G; := 1 + Gy
Gi1 =1+ (tez — 22)Gy + (t2% — 2txz® + 22 + 22)@2 (twz® —t2° + 2% — 2G5,

On the other hand, solving (53) gives G; = W
into the above equation for G results in (52). O

Substituting this expression

Next, we continue to compute the generating function for the left-hand side
of (2):
S = S tx, ;2 Z Py Z tdes(ﬂ)xdd(w)yiar(ﬂ)

n=l  7e@,(2413,3142)

=yz + (y? + toy)2® + (y° + 2tay® + 2ty + t2?y) 2B
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n

]

[ ]

F1GURE 2. The block decomposition of separable permutations

This will be accomplished by applying Stankova’s block decomposition [29] (see
also [23]) of separable permutations that we now recall.

Lemma 6.3 (Stankova [29]). A permutation o € &,, is a separable permutation
(i.e. avoids 2413 and 3142) if and only if:

(i) o is of the form (positions of the blocks)
A13A27---aAkan7B1aB27"'7Bl? (|kil| < 1)’

where Ay < Ay < --- < Ap, and By > By > --- > By are blocks with respect to
n.
(i) The elements in any block form a permutation that avoids both 2413 and 3142.

See Fig. 2 for a transparent illustration of this lemma. Condition (ii) is clear,
while condition (i) is equivalent to saying that n is not an element of any subsequence
of o that is order isomorphic to 2413 or 3142. Note that in the block decomposition,
the minimal block can appear on either side of n. For example, compare the block
decompositions of 259867431 and 143867952.

For convenience, we need to introduce two variants of the double descents. Let

ddo(m):=|{ie[n] :w(i —1) > 7(i) > w(i + 1)},
where 7(0) = 0 and 7(n + 1) = +o0, and

dd(m) :=|{ie[n] :w(i — 1) > 7 (i) > w(i + 1)},
where 7(0) = 400 and w(n + 1) = 0. Let us introduce

L = L(t,x,y; Z) = Z P Z tdes(ﬂ')xddo(ﬂ')yiar(ﬂ') =yz+ (ty+y2)z2 +...
n=l  7e@, (2413,3142)

and
R = R(t,z;z) := Z 2" Z tdes(m) gpddoe (M) — o 4 (1 + ta?)2% + - - - .
n>1  7e6,(2413,3142)
Set B = B(y;z) := 13; and L := L — B, where B(y; z) enumerates identity

permutations by length and iar.
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Lemma 6.4. Let S1 = S|y,—1 and L1 = L|,—1. We have the system of functional
equations

Ll _ S1(1+t51)

sitats |
T
R= 11-"-15'1 ’
Sy =tS} + 287 + (2 + txz) S + 2, (54)
¥ _ t$1B(1+B) |, tz81L(2+L,+B+tR—tRL,B)
(1-2)L =z + = GiRB) =R

_ B(1+tR) 2L(1+tR)?
S = F5rE T GoRB—RL
Proof. The first three equations of (54) were proved by Wang [30]. We begin with
the proof of the fifth equation in (54) by writing S as an expression in L and R.
By Lemma 6.3, every permutation 7 € &,,(2413,3142) has block decomposition

A17A2a"'7Ak7naBl7BQ7"'?Bl7 (|k_”<1)’

where A1 < Ay < --- < A and By > By > --- > B, are blocks with respect to n.
We distinguish three cases according to the pair (k,1):
1) (k,1) = (j,4) (4 = 1). Permutations in this case contribute to S the generating
function _
J
2yzBI (tR)) + 2 2B 'LL]"'(tR)’.
i=1
2) (k1) = (j+1,7) ( = 0), and thus 1 € A;. Permutations in this case contribute
to S the generating function
yzB7 TN (tR) + ) 2B LI (tR).
i=1
3) (k,1) = (j,7+1) ( = 0), and thus 1 € B;. Permutations in this case contribute
to S the generating function

J
yzBI (LR + > 2B LI (tR)T
i=1
Summing over all the above cases gives the fifth equation of (54). The fourth
equation of (54) is obtained by writing L as an expression of L, R and S; via the
same block decomposition, the details of which are omitted due to the similarity. [

We are ready to verify Theorem 1.4.

Proof of Theorem 1.4. We aim to verify that S satisfies the same functional equa-
tion as G in (52). From the first two equations of (54) we see that Ly and R are
rational fractions in S;. Thus, in view of the fourth equation of (54), L is also a
rational fraction in S;. Consequently, by the fifth equation of (54), S is a ratio-
nal fraction in S; as well. Plugging the expressions for Ly, R and L into the fifth
equation of (54) for S and factoring out (using Maple) the rational fraction

yPz + (tey?z + 3y°2 — 222 — y*)S + 25% + ¢35°,

where ¢, and c3 are defined in Lemma 6.2, we see the factor tS3 + 257 + (z + txz —
1)S1 + z appears in the denominator (the resulting rational fraction is too long to be
included here). This factor is zero due to the third equation of (54), which proves
that .S satisfies the same functional equation as G in (52). This completes the proof
of Theorem 1.4. O
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7. Conclusion. In this paper, we launch a systematic study of the Wilf-equivalence
refined by two permutation statistics, namely comp, the number of components, and
iar, the length of the initial ascending run, for all patterns (resp. pairs of patterns) of
length 3. The results are summarized in Table 1 (resp. Table 2), where the trivariate
generating functions &(P)des:iarcomp (¢ 4 g 2) are supplied as well. In the cases where
the pair (iar,comp), together with other set-valued statistics, is symmetric over
certain class of pattern-avoiding permutations, we construct various bijections to
prove them (see e.g. Theorems 3.2, 3.12, 3.14, and 4.1). On the other hand, our
proof of the result concerning separable permutations (see Theorem 1.4) is algebraic,
and can hardly be called simple. Therefore, a direct bijection from &,,(2413,3142)
to 6,,(2413,4213) that preserves the statistics des, dd and iar is much desired.

In view of Lemmas 2.5 and 5.4, we pose the following open problem about a
set-valued extension of Lemma 2.5 for further investigation.

Problem. Let ST be a totally @-compatible set-valued statistic. Let P be a set of
indecomposable patterns. Is it true that

|6n(P)ST,iar| — |6n(P)ST,comp| — |6n(P)ST,iar,comp| — ‘Gn(P)ST,comp,iar‘ 92

In particular, we suspect that the equivalence above holds when ST is the statistic
LMAX.

Conjecture 2. Let P be a set of indecomposable patterns. Then
|6n(P)LMAX"iar‘ _ ‘6n(P)LMAX’c°mP‘

— |6n(P)LMAX,iar7comp| _ |Gn(P)LMAX7C°mp’ia'|,

It is our hope, that the results presented and conceived (see also Conjecture 1)
here, would attract more people to work on Wilf-equivalences refined by Comtet
statistics, or to unearth and study new Comtet statistics in general.
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