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Abstract. We launch a systematic study of the refined Wilf-equivalences by
the statistics comp and iar, where comppπq and iarpπq are the number of com-

ponents and the length of the initial ascending run of a permutation π, respec-
tively. As Comtet was the first one to consider the statistic comp in his book

Analyse combinatoire, any statistic equidistributed with comp over a class of

permutations is called by us a Comtet statistic over such class. This work is
motivated by a triple equidistribution result of Rubey on 321-avoiding permu-

tations, and a recent result of the first and third authors that iar is a Comtet

statistic over separable permutations. Some highlights of our results are:
‚ Bijective proofs of the symmetry of the joint distribution pcomp, iarq over

several Catalan and Schröder classes, preserving the values of the left-to-

right maxima.
‚ A complete classification of comp- and iar-Wilf-equivalences for length 3

patterns and pairs of length 3 patterns. Calculations of the pdes, iar, compq
generating functions over these pattern avoiding classes and separable
permutations.

‚ A further refinement of Wang’s descent-double descent-Wilf equivalence

between separable permutations and p2413, 4213q-avoiding permutations
by the Comtet statistic iar.

1. Introduction. Let rns :“ t1, 2, . . . , nu be the set of the first n positive inte-
gers, and denote Sn the symmetric group consisting of all bijections from rns to
itself. A permutation π “ πp1q ¨ ¨ ¨πpnq P Sn is said to avoid the permutation (or
pattern) σ “ σp1q ¨ ¨ ¨σpkq P Sk, k ď n, if and only if there is no subsequence
πpj1qπpj2q ¨ ¨ ¨πpjkq with j1 ă j2 ă ¨ ¨ ¨ ă jk, such that πpjaq ă πpjbq if and only
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if σpaq ă σpbq for all 1 ď a ă b ď k. Otherwise, we say that the permutation π
contains the pattern σ.

The notion of permutation pattern was introduced by Knuth [21, pp. 242-243]
in 1968, but studied intensively and systematically for the first time by Simion and
Schmidt [28] in 1985. Ever since then, it has become an active and prosperous
research subject. The reader is referred to two book expositions, [5, Chapters 4 and
5] and [20], on this topic, as well as the numerous references therein. In the early
1980s, Herbert Wilf posed the problem of identifying equirestrictive sets of forbidden
patterns. Let P be a (finite) collection of patterns and W a set of permutations, we
write WpP q for the set of all permutations in W that avoid simultaneously every
pattern contained in P . We will say, as it has become a standard terminology,
that two sets of patterns, P and Q, are Wilf-equivalent, denoted by P „ Q, if
|SnpP q| “ |SnpQq| for all positive integers n.

In this paper, we will restrict ourselves to the case where |P | “ |Q| ď 2, and
the lengths of the patterns in P and Q are no greater than 4. Once two sets of
patterns P and Q are known to be Wilf-equivalent, a natural direction to go deeper,
is to make further restrictions on these P - or Q-avoiding permutations, and to see if
the equinumerosity still holds. One such restriction is to consider the enumeration
refined by various permutation statistics. In general, a statistic on a set of objects
S is simply a function from S to N :“ t0, 1, 2, . . .u. A set-valued statistic on S is a
function from S to the set of finite subsets of N. Given a permutation π P Sn, we
mainly consider the set-valued statistic

DESpπq :“ ti P rn´ 1s : πpiq ă πpi` 1qu,

called the descent set of π, and two statistics

despπq :“ |DESpπq| and iarpπq :“ minpDESpπq Y tnuq,

called the descent number and the initial ascending run of π, respectively. Clearly,
iarpπq can also be interpreted as the position of the leftmost descent of π, which
indicates that iar is determined by DES. It should be noted that iar was also called
lir, meaning “leftmost increasing run”, in the literature (see e.g. [7]). The statistic
des is known as an Eulerian statistic since its distribution over Sn is the n-th
Eulerian polynomial

Anptq :“
ÿ

πPSn

tdespπq.

Another statistic highlighted in our study is comppπq, which can be introduced
as

comppπq :“ |ti : @j ď i, πpjq ď iu|.

It is equal to the maximum number of components (see [1, 7, 8]) in an expression
of π as a direct sum of permutations. For instance, compp312465q “ 3, the three
components being 312, 4, and 65 and 312465 “ 312 ‘ 1 ‘ 21 (see Sect. 2.2 for the
definition of direct sum ‘). The statistic comp dates back at least to Comtet [9,
Ex. VI.14], who proved the generating function for the number fpnq of permutations
of length n with one component, also known as indecomposable permutations, to be

ÿ

ně1

fpnqzn “ 1´
1

ř

ně0 n!zn
.

Thus, any statistic equidistributed with comp over a class of restricted permuta-
tions will be called by us a Comtet statistic over such class. The enumeration of
pattern avoiding indecomposable permutations was carried out by Gao, Kitaev and
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Zhang [19]. It should be noted that iar and comp are not equidistributed over
S4. Nonetheless, two of the authors [18] proved that iar is a Comtet statistic over
separable permutations, the class of p2413, 3142q-avoiding permutations. It is this
result that motivates us to investigate systematically the refined Wilf-equivalences
by these two Comtet statistics, and sometimes jointly with other statistics.

For a (possibly set-valued) statistic st on Sn, we say two sets of patterns P and
Q are st-Wilf-equivalent, denoted as P „st Q, if for all positive integers n, we have

|SnpP q
st| “ |SnpQq

st|,

meaning that for a fixed value of st, there are as many preimages in SnpP q as those in
SnpQq. Note that by their definitions, P „DES Q immediately implies P „iar Q and
P „des Q, but not conversely. The above refined Wilf-equivalence by one statistic
can be naturally extended to the joint distribution of several permutation statistics,
regardless of numerical or set-valued types. So expression like P „pDES,compq Q

and |SnpP q
DES,comp| “ |SnpQq

DES,comp| should be understood well. It should be
noted that refined Wilf-equivalences have already been extensively studied during
the last two decades (see e.g. [7, 11, 13, 20, 24]). Especially, the focus of Dokos,
Dwyer, Johnson, Sagan and Selsor [11] was on the refined Wilf-equivalences by
Eulerian and Mahonian statistics. Hopefully with the results we present in this
paper, one is convinced that considering the refinements by Comtet statistics is
equally meaningful.

Some highlights of our results will be outlined below. Before stating them, we
need to recall some classical permutation statistics. For a permutation π P Sn, we
introduce

LMAXpπq :“ tπpiq P rns : πpjq ă πpiq, @1 ď j ă iu and

LMAXPpπq :“ ti P rns : πpjq ă πpiq, @1 ď j ă iu,

the set of values and positions of the left-to-right maxima of π, respectively. The
sets of values/positions of the left-to-right minima, the right-to-left maxima and the
right-to-left minima of π can be defined and denoted similarly if needed. We use
lowercase letters to denote the cardinality of these sets, so for example, LMINpπq
is the set of values of the left-to-right minima of π and lminpπq is the corresponding
numerical statistic. We will also consider the set of descent bottoms of π

DESBpπq :“ tπpi` 1q P rn´ 1s : i P DESpπqu,

which is another set-valued extension of des different from DES.
The first one of our main results concerns a single pattern of length 3.

Theorem 1.1. For every n ě 1,

(i) the two triples pLMAX, iar, compq and pLMAX, comp, iarq have the same dis-
tribution over Snp321q;

(ii) the two quadruples pLMAX,DESB, iar, compq and pLMAX,DESB, comp, iarq
have the same distribution over Snp312q;

(iii) the quadruples pLMAX,LMIN, iar, compq and pLMAX,LMIN, comp, iarq have
the same distribution over Snp132q.

The result on the symmetry of pcomp, iarq was inspired by several works in the lit-
erature. First of all, Theorem 1.1 (i) is essentially equivalent to a result of Rubey [27]
up to some elementary transformations on permutations. Details will be given in
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Sect. 3.1. Furthermore, Rubey’s result is a symmetric generalization of an equidis-
tribution due to Adin, Bagno and Roichman [1], which implies the Schur-positivity
of the class of 321-avoiding permutations with a prescribed number of components.

Next, Claesson, Kitaev and Steingŕımsson [20, Thm 2.2.48] constructed a bijec-
tion between separable permutations of length n ` 1 with k ` 1 components and
Schröder paths of order n with k horizontals at x-axis. Combining this bijection
with the work in [18] justifies iar being a Comtet statistic on separable permuta-
tions. It then follows from our Lemma 2.5, a general lemma proved in Sect. 2.2,
that we have the following symmetric double Comtet distribution.

Corollary 1.2. The double Comtet statistics pcomp, iarq is symmetric on separable
permutations.

We take the opportunity to announce the following refinement of Corollary 1.2,
which appears in a separate article.

Theorem 1.3 ([16]). There exists an involution on Snp2413, 3142q that preserves
the pair of set-valued statistics pLMAX,DESBq but exchanges the pair pcomp, iarq.
Consequently,

ÿ

πPSnp2413,3142q

scomppπqtiarpπqxLMAXpπqyDESBpπq

“
ÿ

πPSnp2413,3142q

siarpπqtcomppπqxLMAXpπqyDESBpπq,

where xS :“
ś

iPS xi and yS :“
ś

iPS yi for any subset S Ď rns.

The proof of Theorem 1.1 provided in Sect. 3 is via two involutions on permu-
tations that actually imply the even stronger symmetric phenomenon, namely the
corresponding distribution matrices are Hankel; see Theorems 3.13 and 4.2. The
proof of Theorem 1.3 is based on a combinatorial bijection on the so-called di-sk
trees introduced in [17]. This bijection will also provide an alternative approach to
Theorem 1.1(ii). The details will be given in [16].

Remark 1. Rubey’s bijective proof of a slight modification (see Theorem 3.1) of
Theorem 1.1(i) is via Dyck paths and the proof of Theorem 1.3 that will appear
in [16] is based on di-sk trees. Our bijective and unified proof of Theorem 1.1(i)(ii),
constructed directly on permutations, provides more insights into the symmetry of
the double Comtet statistics, and therefore, it seems more likely to be extended to
deal with such equidistributions over other classes of pattern-avoiding permutations.

Our third main result shows how iar, combined with des and the number of double
descents would refine known results and imply new ones concerning separable and
p2413, 4213q-avoiding permutations. Interestingly, it does refine a nice γ-positivity
interpretation for separable permutations [17, 23] due to Zeng and the first two
authors that we review below.

Recall that a polynomial in Rrts of degree n is said to be γ-positive if it can be
written as a linear combination of

ttkp1` tqn´2ku0ďkďn{2

with non-negative coefficients. Many polynomials arising from combinatorics and
discrete geometry have been shown to be γ-positive; see the comprehensive survey
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by Athanasiadis [2]. One typical example is the Eulerian polynomials

Anptq “
ÿ

πPSn

tdespπq “

t
n´1
2 u
ÿ

k“0

|Γn,k|t
kp1` tqn´1´2k,

where Γn,k is the set of permutations in Sn with k descents and without double
descents. Here an index i P rns is called a double descent of a permutation π P Sn

if πpi ´ 1q ą πpiq ą πpi ` 1q, where we use the convention πp0q “ πpn ` 1q “ 0.
The number of double descents of π will be denoted as ddpπq. This classical result
is due to Foata and Schützenberger [14, Theorem 5.6] and has been extended in
several different directions (cf. [2]) in recent years. In particular, the first two
authors together with Zeng [17, 23] proved an analog for the descent polynomial
over separable permutations

Snptq :“
ÿ

πPSnp2413,3142q

tdespπq “

t
n´1
2 u
ÿ

k“0

|Γn,kp2413, 3142q|tkp1` tqn´1´2k. (1)

In a recent work [24] of Lin and Kim, they proved that p2413, 3142q „des p2413, 4213q
(see [24, Thm. 5.1]), and that the γ-coefficient of the descent polynomial over
p2413, 4213q-avoiding permutations is similarly given by |Γn,kp2413, 4213q| (see [24,
Eq. (4.10)]). In view of (1), we see that the number of separable permutations of
rns with k descents and without double descents is the same as that of p2413, 4213q-
avoiding permutations of rns with k descents and without double descents. With
this in mind, our third main result given below can be viewed as a refinement.

Theorem 1.4. For n ě 1,
ÿ

πPSnp2413,3142q

tdespπqxddpπqyiarpπq “
ÿ

πPSnp2413,4213q

tdespπqxddpπqyiarpπq. (2)

Theorem 1.4 refines Wang’s equidistribution [30, Thm. 1.5] by the Comtet statis-
tic iar and has many interesting consequences which can be found in Sections 5 and 6.
More detailed motivation that led us to discover Theorem 1.4 will also be provided
in Section 6. Our proof of Theorem 1.4 in Section 6 is algebraic and finding a
bijective proof remains open.

Besides the above three main results, we will also calculate the joint distribution
of pdes, iar, compq over permutations avoiding a set P of patterns, where P is taken
to be a single pattern of length 3, a pair of patterns of length 3, as well as the
three pairs p2413, 3142q, p2413, 4213q, and p3412, 4312q, respectively. All the gen-
erating functions for these patterns turn out to be either algebraic or rational (see
Tables 1 and 2), and as applications, complete classification of the iar- or comp-Wilf
equivalences for these patterns is given. Moreover, our attempt to characterize the
pattern pairs of length 4 which are piar, compq-Wilf-equivalent to p2413, 3142q leads
to Conjecture 1, which we have verified in some important cases.

The rest of this paper is organized as follows. In Section 2, we review some
notation and terminology and prove two general lemmas concerning the direct sum
operation of permutations. The classification of refined Wilf-equivalences for a single
pattern of length 3 is carried out in Section 3, where the proof of Theorem 1.1
is provided as well. Section 4 is devoted to the investigation of pattern pairs of
length 3, while Section 5 aims to characterize the pattern pairs of length 4 that are
piar, compq-Wilf-equivalent to p2413, 3142q. The proof of Theorem 1.4 is given in
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Section 6, where a new recurrence for the 021-avoiding inversion sequences is also
proved.

2. Notations and preliminaries.

2.1. Elementary operations. For a given permutation π P Sn, there are three
fundamental symmetry operations on π:

‚ its reversal πr P Sn is given by πrpiq “ πpn` 1´ iq;
‚ its complement πc P Sn is given by πcpiq “ n` 1´ πpiq;
‚ its inverse π´1 P Sn, is the usual group theoretic inverse permutation.

One thing we would like to point out, before we barge into classifying iar-Wilf-
equivalences for various patterns, is that by taking iar into consideration, we can
no longer utilize the above three standard symmetries for permutations, since none
of them preserves the length of the initial ascending run of π, when n ě 2. For the
classical Wilf-equivalence, these symmetries reduce the number of possible equiva-
lence classes considerably, since for example, π avoids 213 if and only if πr avoids
312. This fact about the statistic iar explains, at least partially, the following ob-
servations.

Observation 1. 1. The iar-Wilf-equivalence is less likely to be found than the
Wilf-equivalence.

2. When iar-Wilf-equivalence does hold, we cannot prove it using the three stan-
dard symmetries or their combinations. Usually we need to use new ideas
in constructing bijective proofs, or prove the equivalence recursively using
recurrence relations.

On the other hand, the statistic comp behaves better under these three elemen-
tary operations.

Observation 2. The two mappings π ÞÑ pπrqc and π ÞÑ π´1 both preserve the
statistic comp.

Let P be a collection of patterns. The following trivariate generating function
will be the focal point of our study.

SpP qdes,iar,comppt, r, p; zq :“
ÿ

ně0

ÿ

πPSnpP q

tdespπqriarpπqpcomppπqzn. (3)

Most of the time we suppress the superindices des, iar, comp, and variable z, and
when the pattern set P is clear from the context, we also suppress P to write
Spt, r, pq. In most cases the variant S̃pt, r, pq :“ pSpt, r, pq ´ 1q{rpz of this generat-
ing function yields more compact expressions (see Tables 1 and 2). Let MnpP q :“
MnpP ; iar, compq be the n ˆ n matrix, whose entry at the k-th row and the `-th
column is the number of permutations π in SnpP q with iarpπq “ k and comppπq “
`. Let st be a permutation statistic, we can then refine MnpP q as MnpP q “
ř

iM
st“i
n pP q, so that the pk, `q-entry of M st“i

n pP q counts permutations π such that
stpπq “ i for a fixed integer i. This definition extends to set-valued statistics and
multiple statistics in a natural way. So for instance, MLMAX“S,des“i

n pP q is the
n ˆ n matrix, whose pk, `q-entry is the number of permutations π in SnpP q with
LMAXpπq “ S, despπq “ i, iarpπq “ k and comppπq “ `.

We also need the following operations on permutations.
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Definition 2.1. For a word w over Z consisting of distinct letters, denote redpwq
the reduction of w (also called the “standardization” of w in the literature), which
is obtained from w by replacing the j-th smallest positive letter by j. For a given
permutation π P Sn, the deletion of i, for each i P rns, is the map that deletes i
from π, and reduces the derived word to a permutation, denoted as delipπq P Sn´1.
Similarly, the insertion of i at place k, for each i, k P rn ` 1s, is defined to be the
map that increases all letters j ě i in π by 1, and inserts i between πpk ´ 1q and
πpkq to get a new permutation, denoted as insi,kpπq P Sn`1.

2.2. The direct/skew sum operation and fundamental lemmas. There are
two fundamental operations, called direct sum and skew sum, to construct a bigger
permutation from two smaller ones. The direct sum π‘σ and the skew sum πaσ,
of π P Sk and σ P Sl, are permutations in Sk`l defined respectively as

pπ ‘ σqi “

#

πi, for i P r1, ks;

σi´k ` k, for i P rk ` 1, k ` ls

and

pπ a σqi “

#

πi ` l, for i P r1, ks;

σi´k, for i P rk ` 1, k ` ls.

For instance, we have 123 ‘ 21 “ 12354 and 123 a 21 “ 34521. The following
characterization of separable permutations is folkloric (see [20, pp. 57]) in pattern
avoidance.

Proposition 2.2. A permutation is separable if and only if it can be built from the
permutation 1 by applying the operations ‘ and a repeatedly.

Definition 2.3. A nonempty permutation which is not the direct sum of two
nonempty permutations is called indecomposable. Let In denote the set of all inde-
composable permutations of length n. Any permutation π with comppπq “ k can
be written uniquely as π “ τ1 ‘ τ2 ‘ ¨ ¨ ¨ ‘ τk, where each τi is indecomposable.
We call this decomposition the direct sum decomposition of π. Let idn denote the
identity permutation of length n. A statistic st is called totally ‘-compatible if

stpπq “
řk
i“1 stpτiq and is called partially ‘-compatible if stpπq “

řl
i“1 stpτiq, where

l “ minpti : τi ‰ id1u Y tkuq.

For instance, des and comp are totally ‘-compatible, while iar is partially ‘-
compatible. We emphasize here that total ‘-compatibility does not imply partial
‘-compatibility.

Let P be a collection of patterns and pst1, st2, . . .q be a sequence of permutation
statistics. Let us introduce two generating functions with respect to pst1, st2, . . .q as

FP pt1, t2, . . . ; zq :“ 1`
ÿ

ně1

zn
ÿ

πPSnpP q

ź

i

t
stipπq
i

and

IP pt1, t2, . . . ; zq :“
ÿ

ně1

zn
ÿ

πPInpP q

ź

i

t
stipπq
i .

We have the following general lemma regarding the direct sum decomposition of
permutations, which is useful when considering the refinement of Wilf-equivalence
by comp.
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Lemma 2.4. Let pst1, st2, . . . , st
1
1, st

1
2, . . .q be a sequence of statistics such that sti

is totally ‘-compatible and st1i is partially ‘-compatible for each i. Let P and Q be
two collections of indecomposable patterns.

1. We have the following functional equation:

FP pqq “
1

1´ qw
`

qpIP pt, t
1q ´ wq

p1´ qIP pt,1qqp1´ qwq
, (4)

where w “ zt
st1pid1q

1 t
st2pid1q

2 ¨ ¨ ¨ t11
st11pid1qt12

st12pid1q ¨ ¨ ¨ is the generating function
for id1, and

FP pqq :“ FP pq, t1, . . . , t
1
1, . . . ; zq and IP pt, t

1q :“ IP pt1, . . . , t
1
1, . . . ; zq

are the generating functions with respect to pcomp, st1, . . . , st
1
1, . . .q and

pst1, . . . , st
1
1, . . .q, respectively. In particular, IP pt,1q :“ IP pt1, . . . , 1, . . . ; zq.

2. If P „pst1,st2,...,st11,st12,...q Q, then P „pcomp,st1,st2,...,st11,st
1
2,...q

Q holds as well. In
particular, if P „ Q, then P „comp Q.

Proof. Note that if σ is an indecomposable pattern and π “ τ1‘ τ2‘ ¨ ¨ ¨ ‘ τk, then

π is σ-avoiding ðñ τi is σ-avoiding for each i.

Therefore, with respect to totally ‘-compatible statistics t, the weight of π that con-
tributes to the generating function FP pqq is the product of the weights of τ1, . . . , τk.
But when partially‘-compatible statistics t1 are involved, further analysis is needed.
Among these k indecomposable components, suppose the first i are trivial (i.e., id1)
with weight w, the pi`1q-th component is nontrivial thus generated by IP pt, t

1q´w,
and the remaining k´ i´ 1 components do not affect those partially ‘-compatible
statistics t1, thus each is generated by IP pt,1q. The discussion above amounts to

FP pqq “ 1`
ÿ

kě1

qkpwk `
k´1
ÿ

i“0

wipIP pt, t
1q ´ wqIP pt,1q

k´1´iq

“
1

1´ qw
`
IP pt, t

1q ´ w

IP pt,1q ´ w

ˆ

qIP pt,1q

1´ qIP pt,1q
´

qw

1´ qw

˙

,

which becomes 4 after simplification.
In view of 4, the following three statements are equivalent:

(i) FP p1q “ FQp1q, namely P „pst1,st2,...,st11,st12,...q Q.

(ii) IP pt, t
1q “ IQpt, t

1q.
(iii) FP pqq “ FQpqq.

For example, to see that (i) implies (ii), we first set t1i “ 1 for all i to obtain that
FP p1q “ FQp1q implies IP pt,1q “ IQpt,1q, which in turn implies (ii) via 4. Thus,
statement (i) is equivalent to its seemingly stronger form (iii), as desired.

The following general lemma indicates that for a collection of indecomposable
patterns, say P , the equidistribution of certain statistic st with comp over SnpP q,
implies the seemingly stronger result that the joint distribution pst, compq is sym-
metric over SnpP q. This result is somewhat surprising.

Lemma 2.5. Let P be a collection of indecomposable patterns. Let st1 be a partially
‘-compatible statistic such that st1pid1q “ 1 and pst1, st2, . . .q be a sequence of totally

‘-compatible statistics. If |SnpP q
st1,st1,st2,...| “ |SnpP q

comp,st1,st2,...|, then

|SnpP q
st1,comp,st1,st2,...| “ |SnpP q

comp,st1,st1,st2,...|.
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In particular, if st1 is a Comtet statistic over SnpP q, then pst1, compq is a symmetric
pair of Comtet statistics over SnpP q.

Proof. Let FP pr, sq :“ FP pr, s, t1, t2, . . . ; zq and IP psq :“ IP ps, t1, t2, . . . ; zq be the
generating functions with respect to pcomp, st1, st1, st2, . . .q and pst1, st1, st2, . . .q, re-
spectively. By the relationship 4, we have

FP pr, sq “
1

1´ rsw
`

rpIP psq ´ swq

p1´ rIP p1qqp1´ rswq
, (5)

where w “ zt
st1pid1q

1 t
st2pid1q

2 ¨ ¨ ¨ . Since FP p1, sq “ FP ps, 1q, it follows from the above
identity that

1

1´ sw
`

IP psq ´ sw

p1´ IP p1qqp1´ swq
“

1

1´ sw
`

sIP p1q ´ sw

p1´ sIP p1qqp1´ swq
.

Solving this equation gives

IP psq ´ sw “
sp1´ IP p1qqpIP p1q ´ wq

1´ sIP p1q
.

Plugging this into 5 results in

FP pr, sq “
1´ rsw ` prsw ` rs´ r ´ sqIP p1q

p1´ rIP p1qqp1´ sIP p1qqp1´ rswq
, (6)

which is symmetric in r and s. This completes the proof of the lemma.

3. A single pattern of length 3. In this section, we deal with all patterns τ of
length 3 and complete two tasks:

1) Show the symmetry of the Comtet pair piar, compq, jointly with some other
(set-valued) statistics, over certain class of pattern-avoiding permutations or
admissible words (see Theorem 3.6). In all cases the proofs are combinatorial.
We collect all the bijections here for easy reference: ξ (Theorem 3.2), α and
β (Theorem 3.4), ψ (Theorem 3.6), ϕ (Theorem 3.12), and θ (Theorem 3.14).

2) Compute the trivariate generating function Spτqdes,iar,comppt, r, pq, which leads
to the full iar- and comp-Wilf-equivalence classification. A snapshot of these
results is presented in Table 1, where MT stands for the transpose of the
matrix M . Putting t “ 1, and p “ 1 (or r “ 1) in the generating functions
listed in Table 1 and comparing the results, we can conclude that there are
three iar-Wilf-equivalence classes:

t213, 312, 321u, t132, 231u, and t123u.

While the comp-Wilf-equivalence classes are:

t231, 312, 321u, t132, 213u, and t123u.

3.1. Symmetric classes. For the three patterns 312, 321 and 132, the distribu-
tions of iar and comp are not only identical, but also jointly symmetric. For the two
indecomposable patterns 312 and 321, this stronger property can be deduced from
Lemma 2.5. But for the pattern 132 “ 1 ‘ 21, we need to construct an involution
ϕ on Snp132q, which actually enables us to derive a more refined equidistribution
(see Theorem 3.12). We begin with the patterns 321 and 312.

Patterns 312 and 321

The pattern 321 seems to attract more attention than the other patterns in S3,
perhaps because of its role in Deodhar’s combinatorial framework for determining
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P S̃des,iar,comp
pt, r, pq MnpP ; iar, compq proved in

312
1´ pr ` p` tNqz ` prp` pr ` p´ 1qtNqz2

p1´ rpzqp1´ rz ´ tNzqp1´ pz ´ tNzq
Symmetric Thm. 3.9

321
prpz ´ rz ` tzqC2

´ prpz ` p´ 1qC ` p

p1´ rpzqp1´ rzCqpp` C ´ pCq
Mnp312q Thm. 3.10

132
1

1´ rpz
`

p1´ zqpN ´ 1qt

p1´ rzqp1´ pzqp1´ z ´ pN ´ 1qtzq
Hankel Thm. 3.13

213
p1´ rzqptN ´ t` 1q

p1´ rpzqp1´ rzptN ´ t` 1qq
Lower triangular Thm. 3.15

231
p1´ pzqptN ´ t` 1q

p1´ rpzqp1´ pzptN ´ t` 1qq
Mnp213q

T Thm. 3.15

123
p1´ pqzptrz ´ tz ´ rq

p1´ tzq2
`
p1` rz ´ tzqC˚

zp1` z ´ tzq
2ˆ 2 nonzero Thm. 3.16

Table 1. One pattern of length 3 (definitions of N , C and C˚ are
given in equations (12), (18) and (28), respectively)

the Kazhdan-Lusztig polynomials (see for instance [4]). Rubey [27] obtained an
equidistribution result over Snp321q by first mapping each 321-avoiding permuta-
tion, along with the statistics involved, to a Dyck path via Krattenthaler’s bijection
[22], and then constructing an involution on Dyck paths. We restate his result here
using 321-avoiding permutations rather than Dyck paths. For each π P Sn, let

ldespπq :“ maxpt0u YDESpπqq

be the position of the last descent of π. Recall the boldface notation xS defined in
Theorem 1.3.

Theorem 3.1 (Rubey [27]). There exists an involution on Snp321q which proves
the equidistribution

ÿ

πPSnp321q

scomppπqtn´ldespπ´1
qxLMAXPpπq “

ÿ

πPSnp321q

sn´ldespπ´1
qtcomppπqxLMAXPpπq.

(7)

We explain here why Theorem 3.1 is equivalent to our Theorem 1.1 (i) up to the
elementary transformation π ÞÑ pπ´1qrc. Notice that for each π P Sn, we have the
relationships

n´ ldespπrcq “ iarpπq and

LMAXPpπq “ LMINpπ´1q “ LMAXppπ´1qrcq,

where S̄ :“ tn` 1´ i : i P Su for any subset S Ď rns. In view of these relationships
and Observation 2, we have
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ÿ

πPSnp321q

scomppπqtn´ldespπ´1
qxLMAXPpπq

“
ÿ

pπ´1qrcPSnp321q

scompppπ´1
q
rc
qtn´ldespπrc

qxLMAXPppπ´1
q
rc
q

“
ÿ

pπ´1qrcPSnp321q

scomppπqtiarpπqxLMAXpπq

“
ÿ

πPSnp321q

scomppπqtiarpπqxLMAXpπq.

Therefore, equidistribution (7) is equivalent to Theorem 1.1 (i).
In Corollary 3.7 we present a bijection, say ω, on Snp321q that proves Theo-

rem 1.1 (i) directly. On the other hand, as we have explained above, when Rubey’s
bijection that proves (7) is composed with the map π ÞÑ pπ´1qrc, we obtain another
bijection on Snp321q, say ω̃, that yields Theorem 1.1 (i) as well. Interestingly, these
two bijections ω and ω̃ turn out to be different from each other, although they do
agree for permutations in Snp321q when n ď 5. The reader can check the following
example once he or she is familiar with both bijections.

π “ 251634 ÞÑ ωpπq “ 215634, but

π “ 251634 ÞÑ ω̃pπq “ 215364.

In view of Lemma 2.4 (2), 321 „comp 312 since 321 „ 312. We have the following
refinement.

Theorem 3.2. For each n ě 1, there exists a bijection ξ, mapping each π P Snp321q
onto σ :“ ξpπq P Snp312q, such that

pLMAX,LMAXP, iar, compq π “ pLMAX,LMAXP, iar, compq σ. (8)

Sitting in the heart of our proof of Theorem 3.2, is a certain word composed of
positive integers and a symbol ˛ that stands for an empty slot, which we introduce
now.

Definition 3.3. Given a nonempty set S “ ts1, . . . , sku Ď Zą0 with s1 ă ¨ ¨ ¨ ă sk,
and a weak composition c “ pc1, . . . , ckq of sk ´ k, we form the word

wS,c :“ s1 ˛ ¨ ¨ ¨ ˛loomoon

c1

s2 ˛ ¨ ¨ ¨ ˛loomoon

c2

s3 ¨ ¨ ¨ sk ˛ ¨ ¨ ¨ ˛loomoon

ck

.

It is said to be an admissible word with respect to S and c, if for 1 ď i ď k,

i
ÿ

j“1

cj ď si ´ i. (˚)

Let AWn denote the set of all admissible words of length n.

We also need to introduce the counterparts on AWn of the quadruple statistics in
(8). For each w :“ wS,c P AWn, let icspwq denote the number of initial consecutive
letters from S in w, equpwq denote the number of times the condition (˚) is satisfied
with an equal sign, and SPpwq denote the set of positions (in w) of letters from S.
For example, if w “ 2 3 5 ˛ 7 ˛ ˛10 12 ˛ 13 ˛ ˛ with S “ t2, 3, 5, 7, 10, 12, 13u, then
icspwq “ 3, equpwq “ 2, SPpwq “ t1, 2, 3, 5, 8, 9, 11u.
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Theorem 3.4. There exist two bijections α : Snp321q Ñ AWn and β : Snp312q Ñ
AWn, such that for any π P Snp321q and σ P Snp312q, we have

pLMAX,LMAXP, iar, compq π “ pS,SP, ics, equq wS,c, (9)

pLMAX,LMAXP, iar, compq σ “ pT, SP, ics, equq wT,d, (10)

where wS,c “ αpπq and wT,d “ βpσq.

Proof. Since the constructions for the two bijections α and β are almost the same
(the only difference lies in their inverses), we will give details mainly for α. For each
π P Snp321q, suppose

S :“ LMAXpπq “ tπpi1q “ πp1q, πpi2q, . . . , πpikqu.

Let c “ pc1, . . . , ckq, with ch “ ih`1´ ih´1, for 1 ď h ď k´1, ck “ n´ ik. In other
words, each part of the composition c records the number of letters between two left-
to-right maxima, after having appended n`1 to the permutation π. Now we define
αpπq :“ wS,c. Note that πpi1q, . . . , πpikq are the left-to-right maxima of π, so we can
verify the condition (˚) holds for S and c, therefore α is a well-defined map from
Snp321q to AWn. The map β is defined analogously, only that now the preimage is
a 312-avoiding, rather than 321-avoiding permutation. Now we show both α and β
are bijections by constructing their inverses. Take a word wS,c P AWn, we replace
all the ˛’s from left to right with the smallest unused letter in rnszS. This results
in a 321-avoiding permutation, say π̂. On the other hand, if we replace all the ˛’s
from left to right with the largest unused letter in rnszS, keeping letters from S the
left-to-right maxima, we will end up with a 312-avoiding permutation, say σ̂.

It should be clear that

LMAXpπ̂q “ S “ LMAXpσ̂q,

LMAXPpπ̂q “ SPpwS,cq “ LMAXPpσ̂q,

iarpπ̂q “ icspwS,cq “ iarpσ̂q,

comppπ̂q “ equpwS,cq “ comppσ̂q.

Now set α´1pwS,cq “ π̂ (resp. β´1pwS,cq “ σ̂). Evidently,

α´1pαpπqq “ π, β´1pβpσqq “ σ,

so α and β are indeed bijections that transform the quadruple statistics as shown
in (9) and (10).

Proof of Theorem 3.2. Simply set ξ “ β´1 ˝ α, and (8) follows immediately from
(9) and (10).

Remark 2. When composed with the complement map, our bijection ξ is equiva-
lent to Simion and Schmidt’s [28] bijection from Snp123q to Snp132q. This bijection
is also called the Knuth–Richards bijection by Claesson and Kitaev [7], see also [12].

In view of (9), the pair pics, equq on admissible words corresponds to the pair
piar, compq on 321-avoiding permutations, so Rubey’s Theorem 3.1 tells us that
their distributions are jointly symmetric over AWn. Note that Rubey’s proof was
via an involution on Dyck paths. We are able to construct an invertible map ψ over
the set of admissible words. To facilitate the description of ψ, we need the following
definition.
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Definition 3.5. Given an admissible word wS,c with S “ ts1, . . . , sku and c “
pc1, . . . , ckq, the index i, 1 ď i ă k is said to be critical for w, if

i
ÿ

j“1

cj ă si ´ i ď
i`1
ÿ

j“1

cj .

For the previous example w “ 235˛7˛˛1012˛13˛˛, we see the indices 2, 3 and 6
are critical for w. Let AWn,a,b denote the set of admissible words w :“ wS,c P AWn

such that icspwq “ a, equpwq “ b and s1 ą 1, where s1 is the smallest letter in S.

Theorem 3.6. For 1 ă a ď n and 1 ď b ă n, there exists a bijection ψ from
AWn,a,b to AWn,a´1,b`1, such that for each wS,c P AWn,a,b, if ψpwS,cq “ vT,d,
then we have S “ T .

Proof. Take any w :“ wS,c P AWn,a,b with S “ ts1, . . . , sku and c “ pc1, . . . , ckq, we
explain how to produce an admissible word v :“ vS,d such that icspvq “ icspwq ´ 1
and equpvq “ equpwq ` 1. Since icspwq “ a ě 2, we see c1 “ c2 “ ¨ ¨ ¨ “ ca´1 “ 0
and ca ą 0. Find the smallest ` ě a´ 1 such that the index ` is critical for w. Note
that s1 ą 1 guarantees the existence of such an `. Let d “ pd1, ¨ ¨ ¨ , dkq be defined
as

di “

$

’

’

’

&

’

’

’

%

ci`1 if a´ 1 ď i ď `´ 1,

si ´ i´
ři
h“1 ch if i “ `,

ři
h“1 ch ´

ři´1
h“1 dh if i “ `` 1,

ci otherwise.

We denote v :“ vS,d the admissible word with respect to S and d, and set ψpwq “ v.

It can be checked that
řk
i“1 ci “

řk
i“1 di “ sk ´ k and

ř`
i“1 di “ s` ´ `, hence

equpvq “ equpwq ` 1 as desired. Also icspvq “ icspwq ´ 1 “ a ´ 1 since now
d1 “ ¨ ¨ ¨ “ da´2 “ 0 and da´1 “ ca ą 0.

All it remains is to show that ψ is invertible. To this end, for each v :“ vS,d P

AWn,a´1,b`1, find the smallest integer ` such that
ř`
i“1 di “ s`´`. Note that since

equpvq “ b ` 1 ě 2, s1 ą 1 and d1 “ ¨ ¨ ¨ “ da´2 “ 0, we must have a ´ 1 ď ` ă k,
and ` being the smallest means d` ą 0. Now let c “ pc1, . . . , ckq be defined as

ci “

$

’

’

’

&

’

’

’

%

di´1 if a ď i ď `,

0 if i “ a´ 1,

di´1 ` di if i “ `` 1,

di otherwise.

It is routine to check that w :“ wS,c is the desired preimage so that ψpwq “ v,
icspwq “ icspvq ` 1, and equpwq “ equpvq ´ 1.

The following result is the restatement of Theorem 1.1 (i) and (ii).

Corollary 3.7. For n ě 1, the two triples pLMAX, iar, compq and pLMAX, comp, iarq
have the same distribution over Snp321q; while over Snp312q, the two quadru-
ples pLMAX,DESB, iar, compq and pLMAX,DESB, comp, iarq have the same distri-
bution.

Proof. For each permutation π P Snp321q with πp1q ą 1, we find a unique permu-
tation ρ P Snp321q such that

pLMAX, iar, compq π “ pLMAX, comp, iarq ρ.
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If iarpπq “ comppπq, then simply take ρ “ π. Otherwise we assume iarpπq “
comppπq ` k for some k ‰ 0, let

ρ “ α´1pψkpαpπqqq.

Combining Theorem 3.6 with (9), we verify that

LMAXpρq “ LMAXpπq,

iarpρq “ icspψkpαpπqqq “ icspαpπqq ´ k “ iarpπq ´ k “ comppπq, and

comppρq “ equpψkpαpπqqq “ equpαpπqq ` k “ comppπq ` k “ iarpπq,

as desired. Now both α and ψ are bijections, so π and ρ are in one-to-one cor-
respondence. On the other hand, for each π P Snp321q with πp1q “ 1, we see
ν :“ del1pπq P Sn´1p321q satisfies iarpνq “ iarpπq ´ 1, comppνq “ comppπq ´ 1, and
LMAXpνq is the set obtained from decreasing each number in LMAXpπqzt1u by 1.
This means we can use induction to finish the proof of the result for Snp321q.

Finally, applying the bijection β instead of α gives us the result for Snp312q. To
see why we can include DESB to have a quadruple in this case, simply observe that
for each permutation σ P Snp312q, LMAXpσq YDESBpσq “ rns.

For most of our calculations of the generating function SpP qpt, r, pq in this
and later sections, we use some kind of decomposition by considering the largest
(resp. smallest) letter n (resp. 1) in a permutation σ P Sn. A maximal consecutive
subset of rns, all of whose elements appear on the same side of n (resp. 1) in σ, is
called a block with respect to n (resp. 1). For example, the blocks with respect to 9
in 251986743 are t1, 2u, t3, 4u, t5u and t6, 7, 8u. For two blocks (or sets) A and B,
we write A ă B if the maximal element of A is smaller than the minimal element
of B. As usual, we use χpSq “ 1 if the statement S is true, and χpSq “ 0 otherwise.

A square matrix is said to be Hankel if it has constant skew-diagonals. For
the next theorem and Theorems 3.13 and 4.2, a key fact utilized by us is that
MnpP q or M st“i

n pP q is a Hankel matrix. This not only implies that piar, compq is
symmetric over SnpP q, but also facilitates our calculation of the generating function
SpP qdes,iar,comppt, r, p; zq. We elaborate on the latter point with the next lemma.

Lemma 3.8. Suppose M “ pmijq1ďi,jďn is a Hankel matrix such that mij “ 0

when i ` j ě n ` 2. Let Mpx, yq :“
ř

1ďi,jďnmijx
iyj and N pxq :“ BM

By |y“0 “
ř

1ďiďnmi1x
i be the generating functions of M and its first column, respectively. It

holds that

Mpx, yq “
xy

x´ y
pN pxq ´N pyqq. (11)

Proof. The Hankel condition enables us to group together terms along the same
skew-diagonal. Noting that xiy ` xi´1y2 ` ¨ ¨ ¨ ` xyi “ xypxi ´ yiq{px´ yq for each
1 ď i ď n, we have

Mpx, yq “
n
ÿ

i“1

pmi1x
iy `mi´1 2x

i´2y2 ` ¨ ¨ ¨ `m1ixy
iq “

n
ÿ

i“1

mi1px
iy ` ¨ ¨ ¨ ` xyiq

“
xy

x´ y

n
ÿ

i“1

mi1px
i ´ yiq “

xy

x´ y
pN pxq ´N pyqq,

as desired.
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Recall the Narayana polynomial Nnptq :“
ř

πPSnpτq
tdespπq (τ “ 312, 213, 132 or

231) and its generating function (see e.g. [26, Eq. 2.6])

N :“ Npt; zq :“
ÿ

ně0

Nnptqz
n “

1` pt´ 1qz ´
a

1´ 2pt` 1qz ` pt´ 1q2z2

2tz
. (12)

Theorem 3.9. The generating function of the triple statistic pdes, iar, compq over
Snp312q is given by

S̃p312qdes,iar,comppt, r, pq “
1´ pr ` p` tNqz ` prp` pr ` p´ 1qtNqz2

p1´ rpzqp1´ rz ´ tNzqp1´ pz ´ tNzq
. (13)

Proof. Conditioning on πp1q, we claim that (abbreviating Sp312qdes,iar,comppt, r, pq
to Spt, r, pq)

Spt, r, pq “ 1` rpzSpt, r, pq `
rp

r ´ p
pĨpt, rq ´ Ĩpt, pqq, (14)

where

Ĩpt, rq :“
ÿ

ně1

zn
ÿ

πPSnp312q
πp1qą1, comppπq“1

tdespπqriarpπq “
Spt, r, pq ´ 1´ rpzSpt, r, pq

p

ˇ

ˇ

ˇ

ˇ

p“0

(15)

“ rzpS̃pt, r, 0q ´ 1q.

Indeed, the first summand 1 in (14) corresponds to the empty permutation, and the
second to those with πp1q “ 1. As for the third summand, we consider permutations
π with πp1q ą 1. Now Eq. (10) and Theorem 3.6 tell us that for a given 1 R S Ď rns,
the matrix MLMAX“S

n p312q :“ pmijq1ďi,jďn is Hankel. Note that iarpπq “ n only for
π “ idn but we require that πp1q ą 1, so using the fact that the matrix is Hankel, we
see mij “ 0 when i` j ě n` 1. Consequently, Lemma 3.8 is applicable. Lastly, as
we have already noted in the proof of Corollary 3.7, each permutation σ P Snp312q
satisfies LMAXpσqYDESBpσq “ rns. This means in particular that the statistic des
takes the same value for all permutations enumerated by MLMAX“S

n p312q, justifying
the variable t in (15).

Next, plugging (15) into (14) yields

pr ´ pqp1´ rpzqS̃pt, r, pq “ rS̃pt, r, 0q ´ pS̃pt, p, 0q. (16)

Setting p “ 1 in (16), solving for S̃pt, r, 0q and then plugging back into (16) gives
us

pr ´ pqp1´ rpzqS̃pt, r, pq “ pr ´ 1qp1´ rzqS̃pt, r, 1q ´ pp´ 1qp1´ pzqS̃pt, p, 1q.
(17)

It remains to calculate S̃pt, r, 1q. Every nonempty 312-avoiding permutation π has
the block decomposition π “ A1B such that A and B are both 312-avoiding blocks
with A ă B. We consider the following two cases:

‚ A “ H, i.e. πp1q “ 1. This case contributes the generating function rzSpt, r,
1q.

‚ A ‰ H. This case contributes the generating function pSpt, r, 1q ´ 1qtzSpt, 1,
1q.
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Summing up these two cases and noting that Spt, 1, 1q “ N , we deduce that

rzS̃pt, r, 1q “ rzSpt, r, 1q ` pSpt, r, 1q ´ 1qtzN.

Solving for S̃pt, r, 1q we get

S̃pt, r, 1q “
1

1´ rz ´ tNz
.

Plugging this back into (17), we establish (13) after simplification.

Recall that

C :“ Sp321qdes,iar,comppt, 1, 1q “
1´

?
1´ 4tz2 ` 4z2 ´ 4z

2zptz ´ z ` 1q
, (18)

which is the generating function of the descent polynomials on 321-avoiding permu-
tations, first derived by Barnabei, Bonetti and Silimbani [3].

Theorem 3.10. The generating function of the triple statistic pdes, iar, compq over
Snp321q is given by

S̃p321qdes,iar,comppt, r, pq “
prpz ´ rz ` tzqC2 ´ prpz ` p´ 1qC ` p

p1´ rpzqp1´ rzCqpp` C ´ pCq
. (19)

Proof. Recently, Fu, Han and Lin [15, Lemma 4.5] generalized (18) to

H :“ Sp321qdes,iar,comppt, r, 1q “
1´ rzC ` trz2C2

p1´ rzqp1´ rzCq
.

For convenience, let Iprq :“ I321pt, rq be the generating function over Inp321q with
respect to pdes, iarq. Since 321 is indecomposable, des is totally ‘-compatible and
iar is partially ‘-compatible, Eq. (4) gives

Sp321qdes,iar,comppt, r, pq “
1

1´ rpz
`

ppIprq ´ rzq

p1´ pIp1qqp1´ rpzq

“
1´ ppIp1q ´ Iprqq ´ rpz

p1´ pIp1qqp1´ rpzq
. (20)

It follows that

Ip1q “ 1´ 1{C and Iprq ´ Ip1q “ pH{C ´ 1qp1´ rzq.

Substituting these back to (20) yields (19).

Pattern 132

Now we move onto the class of 132-avoiding permutations, on which the joint
distribution of piar, compq is symmetric as well. We collect in the following proposi-
tion some nice features of 132-avoiding permutations. All of the statements should
be clear from the 132-avoiding restriction, thus the proof is omitted.

Proposition 3.11. For any permutation π P Snp132q, we have

1. For 2 ď i ď n, πpiq is a descent bottom of π if and only if it is a left-to-right
minimum of π, i.e., LMINpπq “ DESBpπq Y tπp1qu.

2. When read from left to right, the values of the left-to-right maxima of π form
a sequence of consecutive integers πp1q, πp1q ` 1, πp1q ` 2, . . . , n.

3. The first k “ iarpπq letters of π equal πp1q, πp1q ` 1, . . . , πp1q ` k ´ 1.
4. Provided k “ comppπq ě 2, the last k ´ 1 letters of π equal n´ k ` 2, . . . , n.

The next theorem strengthens Theorem 1.1 (iii).
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Theorem 3.12. For all positive integers n, given any two subsets S, T Ď rns,
the matrix MLMAX“S,LMIN“T

n p132q is Hankel. Consequently, the distribution of the
quadruple pLMAX,LMIN, iar, compq is equal to that of pLMAX,LMIN, comp, iarq
over Snp132q. In terms of generating function, we have

ÿ

πPSnp132q

xLMAXpπqyLMINpπqriarpπqpcomppπq

“
ÿ

πPSnp132q

xLMAXpπqyLMINpπqrcomppπqpiarpπq. (21)

In particular, we have
ÿ

πPSnp132q

tdespπqriarpπqpcomppπq “
ÿ

πPSnp132q

tdespπqrcomppπqpiarpπq. (22)

Proof. We begin by noting that for each π P Snp132q, its initial ascending run
consists of consecutive numbers, and, unless π is indecomposable, we have πpnq “ n.
Now if iarpπq “ comppπq “ 1, i.e., π is an indecomposable 132-avoiding permutation
with πp1q ą πp2q, then it is counted by the top-left entry of MLMAX“S,LMIN“T

n p132q
for certain S and T . Similarly, if iarpπq “ comppπq “ n, then we must have π “

idn and it corresponds to the bottom-right entry 1 of M
LMAX“rns,LMIN“t1u
n p132q.

Otherwise, for the given subsets S, T Ď rns, take any permutation π P Snp132q such
that LMAXpπq “ S, LMINpπq “ T , 2 ď iarpπq ď n´ 1, and 1 ď comppπq ď n´ 2.
We are going to pair π with a permutation σ P Snp132q via a bijective map ϕ, such
that

i. πpiq “ σpiq for 1 ď i ď iarpπq ´ 1.
ii. LMAXpσq “ LMAXpπq “ S, and LMINpσq “ LMINpπq “ T .
iii. iarpσq “ iarpπq ´ 1, and comppσq “ comppπq ` 1.

In terms of the two operations deletion and insertion that we introduce in Defini-
tion 2.1, we let

σ “ ϕpπq :“ insn,npdelπp1qpπqq,

with

π “ ϕ´1pσq :“ insσp1q,1pdelnpσqq

being the inverse map. We illustrate this definition by giving an example, where
the letters affected by this map have been overlined.

π “ 5̄ 6̄ 7̄ 3 4 8̄ 2 9̄ Ď10 1 Ď11
σ “ 5̄ 6̄ 3 4 7̄ 2 8̄ 9̄ 1 Ď10 Ď11

Applying Proposition 3.11, it is rountine to verify i, ii, and iii, and we leave the
details to the reader. Items ii and iii ensure that MLMAX“S,LMIN“T

n p132q is Hankel
as claimed. Now for any permutation π P Snp132q with iarpπq “ j ą comppπq “ k,
we see τ :“ ϕj´kpπq is a permutation in Snp132q with

pLMAX,LMIN, iar, compq τ “ pLMAX,LMIN, comp, iarq π.

Pairing permutations in this way leads to (21).
Finally, by Proposition 3.11 (1) we have LMINpπqztπp1qu “ DESBpπq. Further-

more, item i above implies in particular that πp1q “ σp1q, combining this with
LMINpπq “ LMINpσq we obtain (22).
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Theorem 3.13. We have

S̃p132qdes,iar,comppt, r, pq “
1

1´ rpz
`

p1´ zqpN ´ 1qt

p1´ rzqp1´ pzqp1´ z ´ pN ´ 1qtzq
. (23)

Proof. The proof is analogous to that of Theorem 3.9. Noting that Mdes“k
n p132q is

Hankel for any fixed integer 0 ď k ď n´1 by Theorem 3.12, we begin by interpreting
this in terms of generating function. Empty permutation and identity permutations
of all lengths contribute 1{p1 ´ rpzq, while the remaining permutations are taken
care of by Lemma 3.8, yielding

Spt, r, pq “
1

1´ rpz
`

rp

r ´ p

ÿ

ně2

zn
ÿ

πPInp132q

tdespπqpriarpπq ´ piarpπqq

“ 1`
prpzq2

1´ rpz
`

rp

r ´ p

ÿ

ně1

zn
ÿ

πPInp132q

tdespπqpriarpπq ´ piarpπqq.

Converting to S̃pt, r, pq we have

S̃pt, r, pq “
rpz

1´ rpz
`
rS̃pt, r, 0q ´ pS̃pt, p, 0q

r ´ p
. (24)

Plugging in p “ 1 we have

S̃pt, r, 1q “
rz

1´ rz
`
rS̃pt, r, 0q ´ S̃pt, 1, 0q

r ´ 1
.

Now solve for S̃pt, r, 0q and substitute the result back in (24) we get

S̃pt, r, pq “
rpz

1´ rpz
`
pr ´ 1qpS̃pt, r, 1q ´ rz

1´rz q ´ pp´ 1qpS̃pt, p, 1q ´ pz
1´pz q

r ´ p
. (25)

Next, we decompose each 132-avoiding permutation π as π “ AnB, where A and B
are blocks with A ą B. In the same vein as with 312-avoiding class, the discussion
by two cases leads us to

S̃pt, r, 1q “
p1´ zqp1` tpN ´ 1qq

p1´ rzqp1´ z ´ tzpN ´ 1qq
.

We plug this back into (25) and simplify to arrive at (23).

3.2. Asymmetric classes. We deal with the three remaining classes, namely,
213-, 231-, and 123-avoiding permutations. The distributions of iar and comp on
each of these classes are different. We are content with deriving their joint generat-
ing functions with des, and addressing a conjugate relation between Mnp213q and
Mnp231q.

Patterns 213 and 231

Theorem 3.14. For every n ě 0, there exists a bijection θ : Snp213q Ñ Snp231q,
such that for π P Snp213q and σ :“ θpπq P Snp231q, we have πp1q “ σp1q and

pdes, iar, compq π “ pdes, comp, iarq σ.

In particular, the matrices Mnp213q and Mnp231q are conjugation of each other.
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Proof. We define θ recursively. For n “ 0, 1, 2, θ : Snp213q Ñ Snp231q is taken to
be the identity map. Now suppose θ has been defined for all k ă n pn ě 3q, then
take any π P Snp213q, we can uniquely decompose π “ πp1qAB with A ą πp1q ą B.
Let µ “ redpAq and ν “ B, then we see that delπp1qpπq “ µa ν, where both µ and
ν are 213-avoiding, possibly empty permutations. Let

σ :“ θpπq :“ insπp1q,1pθpνq ‘ θpµqq.

The following facts can be readily verified.

1. σ P Snp231q;
2. σp1q “ πp1q;
3. despσq “ χpν ‰ Hq ` despθpνqq ` despθpµqq “ despπq;
4. comppσq “ 1` comppθpµqq “ 1` iarpµq “ iarpπq;
5. iarpσq “ 1` χpν “ Hq ¨ iarpθpµqq “ 1` χpν “ Hq ¨ comppµq “ comppπq.

So we see σ is the desired image of π, and the proof is now completed by induction.

The equidistribution between pdes, iar, compq over Snp213q and pdes, comp, iarq
over Snp231q could also be drawn from comparing the following generating func-
tions.

Theorem 3.15. We have

S̃p213qdes,iar,comppt, r, pq “
p1´ rzqptN ´ t` 1q

p1´ rpzqp1´ rzptN ´ t` 1qq
and (26)

S̃p231qdes,iar,comppt, r, pq “
p1´ pzqptN ´ t` 1q

p1´ rpzqp1´ pzptN ´ t` 1qq
. (27)

Proof. We begin with the calculation of S̃p213qdes,iar,comppt, r, pq. Each π P Snp213q
can be decomposed as π “ πp1qAB, where A ą πp1q ą B are 213-avoiding blocks,
possibly empty. For n ě 2, we consider the following three cases:

‚ A “ H, B ‰ H, contributing the generating function trpzpSpt, 1, 1q ´ 1q.
‚ A ‰ H, B “ H, contributing rpzpSpt, r, pq ´ 1q.
‚ A ‰ H, B ‰ H, contributing trpzpSpt, r, 1q ´ 1qpSpt, 1, 1q ´ 1q.

Summing up these three cases and noting that Spt, 1, 1q “ N , we deduce that

Spt, r, pq “ 1` rpz ` trpzpN ´ 1q

` rpzpSpt, r, pq ´ 1q ` trpzpSpt, r, 1q ´ 1qpN ´ 1q.

Now we plug in p “ 1 and solve for Spt, r, 1q, then plug it back to deduce (26) after
simplification.

Decomposing each π P Snp231q as π “ πp1q A B with A ă πp1q ă B, and
calculating along the same line, we can establish (27) as well.

Pattern 123

For π P Snp123q, clearly iarpπq ď 2 and comppπq ď 2. We aim to calculate

S̃p123qdes,iar,comppt, r, pq “ Apt, pq ` rBpt, pq,
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where

pzApt, pq :“
ÿ

ně1

zn
ÿ

πPSnp123q, iarpπq“1

tdespπqpcomppπq

“ pz ` tpz2 ` ptp` t2p` tp2qz3 ` ¨ ¨ ¨ ,

pzBpt, pq :“
ÿ

ně2

zn
ÿ

πPSnp123q, iarpπq“2

tdespπqpcomppπq “ p2z2 ` ptp` tp2qz3 ` ¨ ¨ ¨ .

By (18), the generating function for the descent polynomials on 123-avoiding
permutations is

C˚ :“ Sp123qdes,iar,comppt, 1, 1q ´ 1 “
Sp321qdes,iar,comppt´1, 1, 1; tzq ´ 1

t
(28)

“
´1` 2tz ` 2tz2 ´ 2t2z2 `

?
1´ 4tz ´ 4tz2 ` 4t2z2

2t2zptz ´ z ´ 1q
.

Theorem 3.16. We have

Apt, pq “
pp´ 1qtz2

p1´ tzq2
`

p1´ tzqC˚

p1´ tz ` zqz
, (29)

Bpt, pq “
pp´ 1qz

1´ tz
`

C˚

1´ tz ` z
. (30)

Thus,

S̃p123qdes,iar,comppt, r, pq “
p1´ pqzptrz ´ tz ´ rq

p1´ tzq2
`
p1` rz ´ tzqC˚

zp1` z ´ tzq
.

Proof. For π P Snp123q with iarpπq “ 1 and comppπq “ 2, we can decompose it as
π “ AB, where A ă B are both decreasing subsequences with |A| ě 2 and |B| ě 1.
On the other hand, if π P Snp123q and iarpπq “ 2, then we must have πp2q “ n,
and we calculate the two cases πp1q ą πp3q and πp1q ă πp3q separately. All these
amount to give us the functional equations:

#

Apt, pq “ tpz2

p1´tzq2 `
C˚

z ´Bpt, 1q ´ tz2

p1´tzq2 ,

Bpt, pq “ pz ` zpApt, 1q ´ 1q ` tzBpt, pq.

Solving this system of equations gives rise to (29) and (30).

The following corollary can be proved combinatorially from analyzing the desig-
nated 123-avoiding permutations. But we prove it here algebraically relying on the
generating function derived in Theorem 3.16.

Corollary 3.17. For n ě 2, let S˚np123q :“ tπ P Snp123q : despπq “ n ´ 2u, then
we have

ÿ

ně2

zn
ÿ

πPS˚n p123q

riarpπqpcomppπq “
r2p2z2

1´ z
`
pr ` pqrpz3

p1´ zq2
`

pz3 ` 2z4qrp

p1´ zq2p1´ 2zq
. (31)

In particular, the distribution of piar, compq is symmetric over S˚np123q, and the
number of permutations π P S˚np123q with iarpπq “ comppπq “ 1 is the sequence
A095264 in [25].

Proof. To calculate the generating function in (31), we need to extract the coeffi-
cients of tn´2zn in Sp123qdes,iar,comppt, r, pq for each n ě 2. For rpzApt, pq, the term
pp´1qtrpz3

p1´tzq2 expands to terms all of the form tn´2zn, so we simply set t “ 1 to get
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pp´1qrpz3

p1´zq2 , while for the term rpp1´tzqpSpt,1,1q´1q
1´tz`z , we substitute tz for z, and 1{t for

t in
rptp1´ tzqC˚

1´ tz ` z
,

then take partial derivative B{Bt and let t “ 0 to obtain 2rpz3

p1´zq2p1´2zq . A similar

approach yields the coefficients from r2pzBpt, pq and establishes (31). The claim
about the symmetric distribution is evident from checking the variables r and p in
(31).

4. Two patterns of length 3. In this section, we let P “ pτ1, τ2q be a pair of
patterns of length 3, so there are

`

6
2

˘

“ 15 different pairs to consider. Once again,
we accomplish two tasks as in Section 3 and assemble our results in Table 2.

The Wilf-classification of pairs of length 3 patterns was done by Simion and
Schmidt [28]. There are three Wilf-equivalent classes, which further split into eleven
iar-Wilf-equivalent subclasses: the class enumerated by 2n´1 splits into 6 classes

tp132, 213q, p132, 312q, p213, 231q, p231, 312q, p231, 321qu,

tp132, 231qu, tp213, 312qu, tp312, 321qu, tp123, 132qu, tp123, 213qu;

the class enumerated by 1`
`

n
2

˘

splits into 4 classes

tp132, 321qu, tp123, 231qu, tp213, 321qu, tp123, 312qu;

and the terminating (i.e., enumerated by 0 when n ě 5) class tp123, 321qu stays as
a single class. For comp-Wilf-equivalences, the class enumerated by 2n´1 splits into
4 classes

tp132, 231q, p132, 312q, p213, 231q, p213, 312qu, tp132, 213qu

tp123, 132q, p123, 213qu, tp231, 312q, p231, 321q, p312, 321qu

and the class enumerated by 1`
`

n
2

˘

splits into 2 classes

tp132, 321q, p213, 321qu, tp123, 231q, p123, 312qu.

All the above refined Wilf-equivalences can be easily proven by setting t “ 1, and
p “ 1 (or r “ 1) in the generating functions listed in Table 2.

4.1. Symmetric classes. For P P tp132, 312q, p132, 321q, p213, 231q, p123, 312qu,
the joint distribution of pdes, iar, compq is symmetric for iar and comp over SnpP q.
We consider these four classes in this subsection.

Pattern pairs p132, 312q and p132, 321q

First note that if the pattern 312 (resp. 321) occurs in a permutation π, then we
can always find an occurrence of 312 (resp. 321) in π with the role of “3” played by
a left-to-right maximum of π. Now recall the bijection ϕ we construct in the proof
of Theorem 3.12. For each π P Snp132q, observe that π P Snp132, 312q (resp. π P
Snp132, 321q) if and only if ϕpπq P Snp132, 312q (resp. ϕpπq P Snp132, 321q). This
fact, combined with Theorem 3.12, immediately yields the following theorem.

Theorem 4.1. For all positive integers n, given any two subsets S, T Ď rns, the
matrix MLMAX“S,LMIN“T

n pP q is Hankel, for P P tp132, 312q, p132, 321qu. Conse-
quently, the distribution of the quadruple pLMAX,LMIN, iar, compq is equal to that
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P “ pτ1, τ2q S̃des,iar,comp
pt, r, pq MnpP ; iar, compq proved in

p132, 312q
1

1´ rpz
`

p1´ zqtz

p1´ rzqp1´ pzqp1´ z ´ tzq
Hankel Thm. 4.2

p132, 321q
1

1´ rpz
`

tz

p1´ rzqp1´ pzqp1´ zq
0-1 Hankel Thm. 4.2

p213, 231q
1´ z

p1´ rpzqp1´ z ´ tzq
Diagonal Thm. 4.3

p123, 312q
1` rpz

1´ tz
`
pr ` pqtz2

p1´ tzq2
`

t2z3

p1´ tzq3
2ˆ 2 Hankel Thm. 4.4

p213, 312q
1´ rz

p1´ rpzqp1´ pr ` tqzq
Lower triangular Thm. 4.6

p231, 312q
1´ pz

p1´ rpzqp1´ pp` tqzq
Mnp213, 312q

T Thm. 4.6

p231, 321q
1´ p1` p´ tqz ` p1´ tqpz2

p1´ rpzqp1´ pp` 1qz ` p1´ tqpz2q
Upper triangular Thm. 4.6

p132, 213q
1

1´ rpz
`

tz

p1´ rzqp1´ z ´ tzq
Lower triangular Thm. 4.8

p132, 231q
1

1´ rpz
`

tz

p1´ pzqp1´ z ´ tzq
Mnp132, 213q

T Thm. 4.8

p213, 321q
1

1´ rpz
`

tz

p1´ zqp1´ rzqp1´ rpzq
Lower triangular Thm. 4.9

p312, 321q 1
1´rpz

`
p1´zqtz

p1´rpzqp1´rzqp1´p1`pqz`p1´tqpz2q
No pattern Thm. 4.10

p123, 132q 1` rpz ` tpz2

1´tz
`

tzp1`z´tzqp1`pr´tqz`p1´rqtz2q

p1´tzqpp1´tzq2´tz2q
2ˆ 2 nonzero Thm. 4.11

p123, 213q 1`
rpz

1´ tz
`
tzp1´ tz ` rzqp1´ tz ` zq

p1´ tzqpp1´ tzq2 ´ tz2q
2ˆ 2 nonzero Thm. 4.11

p123, 231q
1` rpz

1´ tz
`
p1` p´ tpzqtz2

p1´ tzq3
2ˆ 2 nonzero Thm. 4.11

p123, 321q
1` pt` rpqz ` p1` rqp1` pqtz2

`p2r ` t` ptqtz3
Ultimately zero Thm. 4.11

Table 2. Two patterns of length 3

of pLMAX,LMIN, comp, iarq over SnpP q. In terms of generating function, we have

ÿ

πPSnpP q

xLMAXpπqyLMINpπqriarpπqpcomppπq “
ÿ

πPSnpP q

xLMAXpπqyLMINpπqrcomppπqpiarpπq.
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In particular, we have
ÿ

πPSnpP q

tdespπqriarpπqpcomppπq “
ÿ

πPSnpP q

tdespπqrcomppπqpiarpπq.

This symmetry can also be seen directly from the following generating functions.

Theorem 4.2. We have

S̃p132, 312qdes,iar,comppt, r, pq “
1

1´ rpz
`

p1´ zqtz

p1´ rzqp1´ pzqp1´ z ´ tzq
, (32)

S̃p132, 321qdes,iar,comppt, r, pq “
1

1´ rpz
`

tz

p1´ rzqp1´ pzqp1´ zq
. (33)

Proof. The proof is quite analogous to that of Theorem 3.13. First for (32), Theo-
rem 4.1 tells us that MLMAX“S,LMIN“T

n p132, 312q is Hankel. Relying on Lemma 3.8
again, we reinterpret this in terms of generating function (details left to the readers):

S̃pt, r, pq “
rpz

1´ rpz
`
pr ´ 1qpS̃pt, r, 1q ´ rz

1´rz q ´ pp´ 1qpS̃pt, p, 1q ´ pz
1´pz q

r ´ p
. (34)

Next, note that all idn :“ 12 ¨ ¨ ¨n with n ě 0 contribute collectively 1{p1 ´ rpzq
to Sp132, 312qdes,iar,comppt, r, pq. On the other hand, every π P Snp132, 312q with
despπq ą 0 can be uniquely decomposed as π “ A n B, where A ą B are two
(possibly empty) blocks such that B is decreasing and A is 132- and 312-avoiding.
We consider the following two cases.

‚ B “ H. This case contributes the generating function pzpSpt, r, pq ´ 1
1´rpz q.

‚ B ‰ H. This case contributes tz
1´tz ¨

rpz
1´rz `

tpz2

1´tz pSpt, r, 1q ´
1

1´rz q.

Summing up all cases gives us

Spt, r, pq “
1

1´ rpz
` pzpSpt, r, pq ´

1

1´ rpz
q

`
trpz2

p1´ tzqp1´ rzq
`

tpz2

1´ tz
pSpt, r, 1q ´

1

1´ rz
q.

Set p “ 1 and solve to get

S̃p132, 312qdes,iar,comppt, r, 1q “
1´ z

p1´ rzqp1´ z ´ tzq
,

then plug this back into (34) and simplify, we get (32). The proof of (33) is simpler
noting that for π P Snp132, 321q with the decomposition π “ AnB, both A and B
are increasing if B ‰ H. The details are omitted.

Pattern pair p213, 231q

The first thing to notice is that for every π P Snp213, 231q, we must have πp1q “ 1
or n, and iarpπq “ comppπq. The latter can be proved by induction relying on the
former. In terms of generating function, this means

Spt, r, pq “ Spt, rp, 1q, and

Spt, r, pq “ 1` rpzSpt, r, pq ` trpzpSpt, 1, 1q ´ 1q.

Solving these two functional equations gives us

Theorem 4.3.

S̃p213, 231qdes,iar,comppt, r, pq “
1´ z

p1´ rpzqp1´ z ´ tzq
.
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Pattern pair p123, 312q

For every permutation π P Snp123, 312q, there are only five possible values for the
triple pdespπq, iarpπq, comppπqq, since 123-avoiding implies iarpπq ď 2 and comppπq ď
2, while both 312- and 123-avoiding forces despπq ě n ´ 2. Now it suffices to
enumerate each case separately.

‚ pdespπq, iarpπq, comppπqq “ pn´ 1, 1, 1q. There is a unique permutation idr
n “

n ¨ ¨ ¨ 21 for this case, which contributes rpz
1´tz to the generating function.

‚ pdespπq, iarpπq, comppπqq “ pn ´ 2, 2, 2q. There is a unique permutation 1 ‘

idr
n´1 for this case, which contributes r2p2z2

1´tz to the generating function.

‚ pdespπq, iarpπq, comppπqq “ pn ´ 2, 1, 1q. Permutations in this case are of the
form π “ a a ´ 1 ¨ ¨ ¨ b n ¨ ¨ ¨ a ` 1 b ´ 1 ¨ ¨ ¨ 1, where 1 ă b ă a ă n. Therefore

this case contributes t2rpz4

p1´tzq3 to the generating function.

‚ pdespπq, iarpπq, comppπqq “ pn ´ 2, 2, 1q or pn ´ 2, 1, 2q. These two cases can

be discussed similarly as the last case, and the contributions are tr2pz3

p1´tzq2 and
trp2z3

p1´tzq2 .

Summing up all cases above gives rise to

Theorem 4.4.

S̃p123, 312qdes,iar,comppt, r, pq “
1` rpz

1´ tz
`
pr ` pqtz2

p1´ tzq2
`

t2z3

p1´ tzq3
.

4.2. Asymmetric classes. For the remaining choices of P , the distribution of
piar, compq over SnpP q is not symmetric. However, we still observe some conjugative
pairs as in Section 3.

Pattern pairs p213, 312q, p231, 312q and p231, 321q

Recall the two bijections, ξ from Theorem 3.2, and θ from Theorem 3.14. Observe
that

‚ π P Snp231, 321q if and only if ξpπq P Snp231, 312q.
‚ π P Snp213, 312q if and only if θpπq P Snp231, 312q.

Then the following theorem is a quick corollary of Theorems 3.2 and 3.14.

Theorem 4.5. For each n ě 1, the quadruple pLMAX,LMAXP, iar, compq has the
same distribution over Snp231, 321q and Snp231, 312q; the distribution of the triple
pdes, iar, compq over Snp213, 312q is equal to that of pdes, comp, iarq over Snp231,
312q.

Next, we compute the generating functions for these three pairs.

Theorem 4.6. We have

S̃p213, 312qdes,iar,comppt, r, pq “
1´ rz

p1´ rpzqp1´ pr ` tqzq
, (35)

S̃p231, 312qdes,iar,comppt, r, pq “
1´ pz

p1´ rpzqp1´ pp` tqzq
, (36)

S̃p231, 321qdes,iar,comppt, r, pq “
1´ p1` p´ tqz ` p1´ tqpz2

p1´ rpzqp1´ pp` 1qz ` p1´ tqpz2q
. (37)

Proof. In view of Theorem 4.5, (35) follows from (36) by switching variables r and
p. To prove (36), note that both patterns 231 and 312 are indecomposable, thus we
can apply Lemma 2.4 to reduce the calculation to that of the generating function of
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pdes, iarq over Inp231, 312q. But the indecomposable permutations in Snp231, 312q
are precisely idr

n “ n n ´ 1 ¨ ¨ ¨ 1, thus I231,312pt, rq “
rz

1´tz . Plugging this back into

(4) gives us (36). Finally, every permutation in Inp231, 321q must be of the form

1a idn´1 “ n 1 2 ¨ ¨ ¨n´ 1, yeilding the generating function I231,321pr, tq “ rz` trz2

1´z .

Applying (4) from Lemma 2.4 again, we derive (37) and complete the proof.

Pattern pairs p132, 213q and p132, 231q

For the same reason that the bijection θ from Theorem 3.14 preserves 132-
avoidance, we have the following conjugate relation.

Theorem 4.7. For each n ě 1, the distribution of the triple pdes, iar, compq over
Snp132, 213q is equal to that of pdes, comp, iarq over Snp132, 231q.

Next, note that each permutation π P Snp132, 231q either begins with πp1q “ n,
or ends with πpnq “ n. Calculating these two cases separately we have

Spt, r, pq “
1

1´ rpz
` pzpSpt, r, pq ´

1

1´ rpz
q ` trpzpSpt, 1, 1q ´ 1q.

Solving this and applying Theorem 4.7, we can deduce the following theorem.

Theorem 4.8. We have

S̃p132, 213qdes,iar,comppt, r, pq “
1

1´ rpz
`

tz

p1´ rzqp1´ z ´ tzq
,

S̃p132, 231qdes,iar,comppt, r, pq “
1

1´ rpz
`

tz

p1´ pzqp1´ z ´ tzq
.

Pattern pair p213, 321q

Note that each permutation π P Snp213, 321q can be decomposed as π “ A nB,
where A and B are both increasing blocks, and B is consisted of consecutive integers.
Calculating the two cases 1 P A and 1 P B separately, we obtain the following
theorem.

Theorem 4.9. We have

S̃p213, 321qdes,iar,comppt, r, pq “
1

1´ rpz
`

tz

p1´ zqp1´ rzqp1´ rpzq
.

Pattern pair p312, 321q

Noting that both 312 and 321 are indecomposable patterns, we apply (4)

FP pqq “
1

1´ qw
`

qpIP pt, t
1q ´ wq

p1´ qIP pt,1qqp1´ qwq

from Lemma 2.4 (1) to reduce the calculation to

I312,321pt, rq :“
ÿ

ně1

zn
ÿ

πPSnp312,321q
comppπq“1

tdespπqriarpπq.

Now any indecomposable π P Snp312, 321q must be of the form π “ 2 3 ¨ ¨ ¨n 1.
Hence

I312,321pt, rq “ rz `
trz2

1´ rz
,

with which we can deduce
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Theorem 4.10.

S̃p312, 321qdes,iar,comp
pt, r, pq “

1

1´ rpz
`

p1´ zqtz

p1´ rpzqp1´ rzqp1´ p1` pqz ` p1´ tqpz2q
.

Pattern pairs p123, 132q, p123, 213q, p123, 231q and p123, 321q

These four pattern sets all contain the pattern 123, hence iarpπq ď 2 and comppπq
ď 2 for each permutation π in SnpP q. We take similar approach as Theorem 3.16,
or analyze the position of 1 or n in π, to calculate their generating functions. We
collect the results in the following theorem but omit the proof.

Theorem 4.11. We have

S̃p123, 132qdes,iar,comppt, r, pq “ 1` rpz `
tpz2

1´ tz

`
tzp1` z ´ tzqp1` pr ´ tqz ` p1´ rqtz2q

p1´ tzqpp1´ tzq2 ´ tz2q
,

S̃p123, 213qdes,iar,comppt, r, pq “ 1`
rpz

1´ tz
`
tzp1´ tz ` rzqp1´ tz ` zq

p1´ tzqpp1´ tzq2 ´ tz2q
,

S̃p123, 231qdes,iar,comppt, r, pq “
1` rpz

1´ tz
`
p1` p´ tpzqtz2

p1´ tzq3
,

S̃p123, 321qdes,iar,comppt, r, pq “ 1` pt` rpqz ` p1` rqp1` pqtz2 ` p2r ` t` ptqtz3.

5. Schröder classes: Two patterns of length 4. This section aims to char-
acterize the pattern pair P of length 4 whose distribution matrix MnpP q equals
Mnp2413, 3142q. The first few values of the symmetric matrices Mnp2413, 3142q
are:

„

1 0
0 1



,

»

–

2 1 0
1 1 0
0 0 1

fi

fl ,

»

—

—

–

7 3 1 0
3 3 1 0
1 1 1 0
0 0 0 1

fi

ffi

ffi

fl

,

»

—

—

—

—

–

28 12 4 1 0
12 11 4 1 0
4 4 3 1 0
1 1 1 1 0
0 0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

–

121 52 18 5 1 0
52 46 17 5 1 0
18 17 12 4 1 0
5 5 4 3 1 0
1 1 1 1 1 0
0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The integer sequence formed by the entries in the upper-left corner ofMnp2413, 3142q
begins with

1, 1, 2, 7, 28, 121, 550, 2591, . . . .

This sequence matches A010683 in the OEIS [25], a sequence that counts, among
many combinatorial objects, dissections of a convex polygon with n`3 sides having
a triangle over a fixed side (the base) of the polygon. This coincidence can be proved

by comparing S̃pSqp1, 0, 0q from the expression (41) with the generating function
supplied in the entry A010683.

The first result in this section is a consequence of Theorems 1.3 and 1.4.

Corollary 5.1. For n ě 1,
ÿ

πPSnp2413,3142q

tdespπqxcomppπqyiarpπq “
ÿ

πPSnp2413,4213q

tdespπqxcomppπqyiarpπq. (38)
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Consequently,
ÿ

πPSnp2413,4213q

tdespπqxcomppπqyiarpπq “
ÿ

πPSnp2413,4213q

tdespπqxiarpπqycomppπq (39)

Proof. Since the patterns 2413, 4213 and 3142 are indecomposable, the equidistri-
bution (38) is a consequence of Theorem 1.4 (with x “ 1) and Lemma 2.4.

The identity (39) follows directly from (38) and Theorem 1.3.

Remark 3. In view of Corollary 5.1, one may wonder that if (2) can be further
refined by comp. This is not true and it turns out that even pdd, compq is not
equidistributed over S5p2413, 3142q and S5p2413, 4213q. Can Theorem 1.4 be fur-
ther refined by other classical permutation statistics (cf. [20])?

Lin and Kim [24, Theorem 5.1] showed that, among all permutation classes
avoiding two patterns of length 4, the three classes below are the only nontrivial
classes which are des-Wilf equivalent to the class of separable permutations.

Theorem 5.2 ([24]). We have the refined Wilf-equivalences:

p2413, 3142q „des p2413, 4213q „DES p2314, 3214q „DES p3412, 4312q.

It should be noted that iar is not a Comtet statistic over Snp2314, 3214q. Com-
puter program indicates that, among all permutation classes avoiding two patterns
of length 4, the classes of p2413, 4213q and p3412, 4312q are the only two that are
pdes, iar, compq-Wilf equivalent to the class of separable permutations.

Theorem 5.3. We have p2413, 4213q „pDES,compq p3412, 4312q. In particular,

p2413, 3142q „pdes,iar,compq p2413, 4213q „pdes,iar,compq p3412, 4312q.

Consequently,
ÿ

πPSnp3412,4312q

tdespπqxcomppπqyiarpπq “
ÿ

πPSnp3412,4312q

tdespπqxiarpπqycomppπq. (40)

In order to prove Theorem 5.3, we need a set-valued version of Lemma 2.4. For
an integer ` and a set S “ ts1, s2, . . .u, let ``S :“ t`` s1, `` s2, . . .u. A set-valued
statistic ST is called totally ‘-compatible if for each π “ τ1‘ τ2‘¨ ¨ ¨‘ τk with each
τi an indecomposable permutation of length `i,

STpπq “
k
ď

i“1

ci ` STpτiq,

where ci “
ři´1
j“1 `j . Note that the set-valued statistics DES, DESB, LMAX and

LMAXP are all totally ‘-compatible.

Lemma 5.4. Let pST1,ST2, . . .q be a sequence of totally ‘-compatible set-valued
statistics. Let P and Q be two collections of indecomposable patterns. For n ě 1,
if pST1,ST2, . . .q has the same distribution over SnpP q and SnpQq, then so does
pcomp,ST1,ST2, . . .q.

Proof. Since P {Q (meaning P or Q) is a collection of indecomposable patterns, each
P {Q-avoiding permutation is a direct sum of some smaller P {Q-avoiding permuta-
tions. Thus, it is sufficient to show that if pST1,ST2, . . .q is equidistributed over
SnpP q and SnpQq for n ě 1, then pST1,ST2, . . .q is equidistributed over InpP q and
InpQq. We aim to prove this by induction on n.
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Obviously, the assertion is true for n “ 1. Suppose that pST1,ST2, . . .q is
equidistributed over InpP q and InpQq for n ď m. It follows that pST1,ST2, . . .q is
equidistributed over Sm`1pP qzIm`1pP q and Sm`1pQqzIm`1pQq, as pST1,ST2, . . .q
is a sequence of totally ‘-compatible set-valued statistics. Now pST1,ST2, . . .q is
also equidistributed over Sm`1pP q and Sm`1pQq and so pST1,ST2, . . .q is equidis-
tributed over Im`1pP q and Im`1pQq. This completes the proof by induction.

Proof of Theorem 5.3. The refined Wilf-equivalence

p2413, 4213q „pDES,compq p3412, 4312q

is a direct consequence of Theorem 5.2 and Lemma 5.4, as the set-valued statistic
DES is totally ‘-compatible. The other two statements then follow immediately
from Corollary 5.1.

Next we compute the generating function S̃pSqpt, r, pq “ pSpSqpt, r, p; zq´1q{rpz
with respect to pdes, iar, compq, where S is a pattern pair in

tp2413, 3142q, p2413, 4213q, p3412, 4312qu.

Theorem 5.5. Let Sptq :“ SpSqpt, 1, 1; zq ´ 1. Then,

S̃pSqpt, r, pq “ p1{z ` 1´ r ´ pqSptq ` p1´ rqp1´ pqSptq2

p1´ rpzqp1` p1´ pqSptqqp1` p1´ rqSptqq
, (41)

where Sptq satisfies the algebraic functional equation

Sptq “ z ` p1` tqzSptq ` tzSptq2 ` tSptq3. (42)

Proof. The functional equation (42) for the generating function Sptq of the descent
polynomials over separable permutations was proved in [17]. Since the patterns
2413 and 3142 are indecomposable, des is totally ‘-compatible and iar is partially
‘-compatible, Eq. (6) gives

SpSqpt, r, p; zq “ 1´ rpz ` prpz ` rp´ r ´ pqIS
p1´ rISqp1´ pISqp1´ rpzq

, (43)

where IS :“ ISpt; zq is the generating function with respect to des. Since Sptq “
IS

1´IS
, we have

IS “
Sptq

1` Sptq
.

Substitute this into (43) and simplify, we get (41).

Aided by the computer program, we make the following conjecture, whose validity
will complete the characterization of pattern pairs of length 4 that are iar-Wilf
equivalent to the class of separable permutations.

Conjecture 1. Let P R tp2413, 3142q, p2413, 4213q, p3412, 4312qu be a pair of pat-
terns of length 4. Then, P is iar-Wilf equivalent to p2413, 4213q if and only if P is
one of the following eleven pairs:

p1324, 2134q, p1324, 3124q, p1423, 4123q, p1432, 4132q, p2134, 2314q, p2314, 3124q

p2431, 4231q, p2431, 3241q, p3241, 3421q, p3421, 4231q, p3421, 4321q.

Moreover, if P is one of the last five pairs (i.e., those in the second line above),
then P is piar, compq-Wilf equivalent to p2413, 4213q.
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Remark 4. In view of Lemma 2.4, the second assertion for the piar, compq-Wilf
equivalences in Conjecture 1 follows automatically from the first assertion, as all
the patterns appear in the last five pairs are indecomposable.

In the rest of this section, we aim to confirm Conjecture 1 for the pattern pair P “
p2431, 4231q using the technique of generating trees, which was originally employed
to study the Baxter permutations by Chung, Graham, Hoggatt and Kleiman [6], see
also [28, 31].

Theorem 5.6. We have the refined Wilf equivalence

p2413, 4213q „pLMAXP,compq p2431, 4231q.

In particular, p2413, 4213q „plmax,iar,compq p2431, 4231q and Conjecture 1 is true for
P “ p2431, 4231q.

In view of Lemma 5.4, to prove Theorem 5.6, it is sufficient to prove the refined
Wilf-equivalence p2413, 4213q „LMAXP p2431, 4231q. We will prove this by showing
a growth rule for p2431, 4231q-avoiding permutations and then comparing it with
that of p2413, 4213q-avoiding permutations.

For π P Sn´1 and i P rns, let insipπq :“ insi,npπq P Sn. Thus for example,
ins3p14532q “ 156423. If π P Sn´1p2431, 4231q, then introduce the set of available
inserting values of π as

AVApπq :“ tk P rns : inskpπq P Snp2431, 4231qu “ tk1 ą k2 ą ¨ ¨ ¨ u.

Clearly, if i P AVApπq, then k P AVApπq for any i ď k ď n, since the newly inserted
letter, which appears at the end, can only play the role of ‘1’ in a pattern 2431 or
4231. Thus, AVApπq “ rm,ns :“ tm,m` 1, . . . , nu for some m ă n. We will call m
the critical value of π in the sequel. For example, we have AVAp14523q “ r3, 6s.

We have the following growth rule for p2431, 4231q-avoiding permutations.

Lemma 5.7. Suppose π P Sn´1p2431, 4231q with AVApπq “ rm,ns. Then,

AVApinsjpπqq “

#

rj, n` 1s, if m ď j ď n´ 1;

rm,n` 1s, if j “ n.

Proof. For m ď j ď n´ 1, the letters j ´ 1 (if j ě 2) and j ` 1 appear before j in
insjpπq and these three letters form a pattern 132 or 312. Thus, j´1 R AVApinsjpπqq.
On the other hand, suppose π̂ :“ insjpinsjpπqq “ π̂p1q ¨ ¨ ¨ π̂pnqπ̂pn ` 1q, then we
see π̂paq, π̂pbq, π̂pcq and π̂pnq “ j ` 1 form a pattern 2431 or 4231, if and only
if π̂paq, π̂pbq, π̂pcq and π̂pn ` 1q “ j do. This means we have j P AVApinsjpπqq.
Therefore j is the critical value of insjpπq and AVApinsjpπqq “ rj, n ` 1s. Clearly,
AVApinsnpπqq “ rm,n` 1s. This completes the proof of the lemma.

The definition of AVApπq for a p2413, 4213q-avoiding permutation π was intro-
duced similarly in [24], where they proved the following growth rule. Note that for
any π P Sn´1p2413, 4213q, AVApπq always contains 1 and n.

Lemma 5.8 (Lin and Kim [24, Lemma 5.3]). Suppose π P Sn´1p2413, 4213q with

AVApπq “ tn “ k1 ą k2 ą ¨ ¨ ¨ ą km “ 1u.

Then, for 1 ď j ď m,

AVApinskj pπqq “ tn` 1 ě kj ` 1 ą kj ą kj`1 ą ¨ ¨ ¨ ą km “ 1u.
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p2q˚
�����
PPPPP

p3q˚ p3q

�
��

@
@@

p4q˚ p4q p3q

�
��

@
@@

p4q˚ p4q p3q

Figure 1. First three levels of the generating tree for Yně1Snp2431, 4231q.

We are ready to prove Theorem 5.6 by constructing the generating trees for both
classes.

Proof of Theorem 5.6. Label each π P Snp2431, 4231q by |AVApπq|, Lemma 5.7
then produces the rewriting rule:

ΩSch “

#

p2q

pkq pk ` 1q, pk ` 1q, pkq, pk ´ 1q, . . . , p3q.
(44)

This means that the initial permutation id1 has label p2q and all the p2431, 4231q-
avoiding permutations derived from inserting a letter at the end of a p2431, 4231q-
avoiding permutation labeled by pkq, are exactly those with labels pk ` 1q, pk `
1q, pkq, pk ´ 1q, . . . , p3q.

We can construct a generating tree (an infinite rooted and labeled tree) for
p2431, 4231q-avoiding permutations by representing each permutation as a node on
the tree using its label. More precisely, the root is labeled p2q, and the children of
a node labeled pkq are those generated according to the rewriting rule ΩSch in (44).
In addition, the labels for those permutations ending with their greatest letter will
have an extra ‘˚’, and we will call the corresponding nodes the star nodes. So in this
generating tree, every node has precisely one child being a star node. See Fig. 1
for the first few levels of this generating tree. Note that the nodes at the n-th
level of this tree are in one-to-one correspondence with elements of Snp2431, 4231q.
Moreover, if a permutation π P Snp2431, 4231q is labeled by `pπq, and the unique
path from the root p2q˚ to `pπq goes through p1 “ p2q

˚, p2, . . . , pn “ `pπq, then

LMAXPpπq “ ti : pi is a star nodeu.

For instance, the second p4q˚ appearing in level 3 corresponds to 213 and we
have LMAXPp213q “ t1, 3u. In other words, the distribution of LMAXP over
p2431, 4231q-avoiding permutations is completely determined by this generating
tree.

It can be readily checked that Lemma 5.8 gives the same rewriting rule ΩSch

for p2413, 4213q-avoiding permutations, which in turn, produces for p2413, 4213q-
avoiding permutations the identical generating tree as p2431, 4231q-avoiding per-
mutations. This proves p2413, 4213q „LMAXP p2431, 4231q, as desired.

6. Revisiting separable and (2413,4213)-avoiding permutations. The main
purpose of this section is to prove Theorem 1.4. We begin with the motivation that
leads to the discovery of Theorem 1.4.

Recall that a sequence e “ pe1, e2, . . . , enq P Nn is an inversion sequence of length
n if ei ă i for each i P rns. An inversion sequence is 021-avoiding if its positive
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entries are weakly increasing. Denote by Inp021q the set of 021-avoiding inversion
sequences of length n. Kim and Lin [24]

‚ constructed a bijection Ψ : Inp021q Ñ Snp2413, 4213q which transforms the
set-valued statistic ASC to DES, where ASCpeq :“ ti P rn´ 1s : ei ă ei`1u is
the set of ascents of e. In particular, together with the works in [10, 17, 23]
we know

Snptq “
ÿ

πPSnp2413,3142q

tdespπq “
ÿ

ePInp021q

tascpeq “
ÿ

πPSnp2413,4213q

tdespπq, (45)

where ascpeq :“ |ASCpeq|;
‚ proved combinatorially via the so-called modified Foata–Strehl action that

ÿ

πPSnp2413,4213q

tdespπq “

t
n´1
2 u
ÿ

k“0

|Γn,kp2413, 4213q|tkp1` tqn´1´2k. (46)

Recall that Γn,kp2413, 4213q is the set of permutations in Snp2413, 4213q with k
descents and without double descents. Combining (1), (45) and (46) yields

|Γn,kp2413, 3142q| “ |Γn,kp2413, 4213q| (47)

for all 0 ď k ď n´ 1. This identity was refined recently by Wang [30] as

ÿ

πPSnp2413,3142q

tdespπqxddpπq “
ÿ

πPSnp2413,4213q

tdespπqxddpπq, (48)

where ddpπq denotes the number of double descents of π. Setting x “ 0 in (48) we
recover (47).

Theorem 1.4 is a refinement of Wang’s equidistribution (48) by the Comtet statis-
tic iar. The three numerical statistics des, dd and iar are all determined by the set-
valued statistic DES, but p2413, 4213q is not DES-Wilf equivalent to p2413, 3142q.
In spite of that, we still have the refined Wilf-equivalence p2413, 4213q „pdes,dd,iarq
p2413, 3142q, to our surprise. Our proof of Theorem 1.4 is purely algebraic, bas-
ing on Kim–Lin’s bijection Ψ, a decomposition of 021-avoiding inversion sequences
and Stankova’s block decomposition of separable permutations [29]. It would be
interesting to construct a bijective proof of this equidistribution.

As we will see, some easy combinatorial arguments on 021-avoiding inversion
sequences (see Theorem 6.1) together with Theorem 1.4 provide an alternative ap-
proach to a recent result of the first and third authors [18, Theorem 3.2].

6.1. A recurrence for 021-avoiding inversion sequences. For each inversion
sequence e “ pe1, . . . , enq, let izeropeq :“ minpASCpeqYtnuq be the number of initial
zeros of e. It follows from the aforementioned bijection Ψ that for 1 ď k ď n,

In,k :“ |te P Inp021q : izeropeq “ ku| “ |tπ P Snp2413, 4213q : iarpπq “ ku|. (49)

Thus,

In,k “ |tπ P Snp2413, 3142q : iarpπq “ ku|

by Theorem 1.4. We have the following recurrence relation for In,k.
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Theorem 6.1. We have I1,1 “ 1 and

In,1 “
n´1
ÿ

k“1

2k´1In´1,k for n ě 2, (50)

In,i “ In´1,i´1 `

n´1
ÿ

k“i

2k´iIn´1,k for 2 ď i ď n. (51)

Proof. Let In,k :“ te P Inp021q : izeropeq “ ku. For each inversion sequence
e P Inp021q, let δpeq “ pē2, ē3, . . . , ēnq P In´1p021q with ēi “ ei ´ χpei ą 0q for
2 ď i ď n. The mapping δ : Inp021q Ñ In´1p021q is surjective. To see (50), for
any e P In´1p021q with izeropeq “ k, there are exactly 2k´1 preimages of e in In,1
under δ, because

‚ each of the k initial zeros of e, except for the first zero, can be either 0 or 1
in its preimages;

‚ but all zeros after the first positive entry of e, must remain zeros in its preim-
ages, to guarantee that they are 021-avoiding.

Recursion (51) follows from similar reasoning.

6.2. Proof of Theorem 1.4. We will prove Theorem 1.4 by showing that the gen-
erating functions for both sides of (2) satisfy the same algebraic functional equa-
tion. We begin with the calculation of the generating function for the right-hand
side of (2):

Gpt, x, y; zq :“
ÿ

ně1

zn
ÿ

πPSnp2413,4213q

tdespπqxddpπqyiarpπq

“ yz ` py2 ` txyqz2 ` py3 ` 2txy2 ` 2ty ` t2x2yqz3 ` ¨ ¨ ¨ .

For any e “ pe1, e2, . . . , enq P Inp021q, we always attach en`1 “ n to the end of
e. Let dapeq :“ |t1 ă i ď n : ei´1 ă ei ă ei`1u| be the number of double ascents
of e. Since the bijection Ψ : Inp021q Ñ Snp2413, 4213q transforms the set-valued
statistics ASC to DES, we have

Gpt, x, y; zq “
ÿ

ně1

zn
ÿ

ePInp021q

tascpeqxdapeqyizeropeq.

Lemma 6.2. We have the algebraic functional equation for G :“ Gpt, x, y; zq:

y3z ` ptxy2z ` 3y3z ´ 2y2z ´ y2qG` c2G
2 ` c3G

3 “ 0, (52)

where

c2 :“ 2txy2z ´ 2txyz ` 3y3z ` tyz ´ 4y2z ´ 2y2 ` yz ` 2y and

c3 :“ txy2z ´ 2txyz ` y3z ` txz ` tyz ´ 2y2z ´ tz ´ y2 ` yz ` t` 2y ´ 1.

Proof. Let Ĩnp021q be the set of pairs a “ pe, φq, where e P Inp021q and φ is an

arbitrary function from rrs to t0, 1u when izeropeq “ r. So Ĩnp021q can be viewed as
021-avoiding inversion sequences of length n whose initial zeros are 2-colored. Let

Ĩp0qn p021q :“ tpe, φq P Ĩnp021q : φp1q “ 0u and Ĩp1qn p021q :“ Ĩnp021qzĨp0qn p021q.

For each a “ pe, φq P Ĩnp021q with izeropeq “ r, if a P Ĩ
p0q
n p021q, then define

ascpaq :“ ascpeq ` |ti P rr ´ 1s : φpiq ă φpi` 1qu|
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and

dapaq :“ dapeq ` χpφpr ´ 1q ă φprqq;

otherwise, a P Ĩ
p1q
n p021q and we define

ascpaq :“ ascpeq ` |ti P rr ´ 1s : φpiq ă φpi` 1qu| ` 1

and

dapaq :“ dapeq ` χpφpr ´ 1q ă φprqq ` χpe2 “ 1q.

The reason of defining these two statistics in this way will become transparent when
we decompose 021-avoiding inversion sequences. Let us introduce two generating
functions

G̃0pt, x; zq :“
ÿ

ně1

zn
ÿ

aPĨ
p0q
n p021q

tascpaqxdapaq, and

G̃1pt, x; zq :“
ÿ

ně1

zn
ÿ

aPĨ
p1q
n p021q

tascpaqxdapaq.

For convenience, we use the convention that Ĩ
p0q
0 p021q, Ĩ

p1q
0 p021q and I0p021q contain

only the empty inversion sequence.
Each e “ pe1, . . . , enq P Inp021q with k “ minti P rns : ei`1 “ iu can be

decomposed into a pair pê, aq, where ê :“ pe2, e3, . . . , ekq P Ik´1p021q and a :“

pẽ, φq P Ĩ
p1q
n´kp021q such that

‚ ẽ “ pẽ1, ẽ2, . . . ẽn´kq with ẽ` “ ek`` ´ k ¨ χpek`` ą 0q for 1 ď ` ď n´ k;
‚ and φpiq “ χpek`i ą 0q for 1 ď i ď izeropẽq.

This decomposition is reversible and satisfies

ascpeq “ ascpêq ` ascpaq,

dapeq “ dapêq ` dapaq, and

izeropeq “ izeropêq ` 1.

Turning the above decomposition into generating function yields

G “ yzp1`Gqp1` G̃1q. (53)

Similar decomposition as above for 2-colored 021-avoiding inversion sequences
gives the system of functional equations

#

G̃0 “ zp1` G̃0 ` G̃1qp1` G̃1q,

G̃1 “ zptx` tG̃0 ` tzp1´ xqp1` G̃1q ` G̃1qp1` G̃1q.

Eliminating G̃0 gives the functional equation for Ḡ1 :“ 1` G̃1:

Ḡ1 “ 1` ptxz ´ 2zqḠ1 ` ptz
2 ´ 2txz2 ` z2 ` 2zqḠ2

1 ` ptxz
3 ´ tz3 ` tz2 ´ z2qḠ3

1.

On the other hand, solving (53) gives Ḡ1 “
G

yzp1`Gq . Substituting this expression

into the above equation for Ḡ1 results in (52).

Next, we continue to compute the generating function for the left-hand side
of (2):

S “ Spt, x, y; zq :“
ÿ

ně1

zn
ÿ

πPSnp2413,3142q

tdespπqxddpπqyiarpπq

“ yz ` py2 ` txyqz2 ` py3 ` 2txy2 ` 2ty ` t2x2yqz3 ` ¨ ¨ ¨ .
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A1

A2

¨ ¨ ¨

Ak

n

B1

B2

¨ ¨ ¨

Bl

Figure 2. The block decomposition of separable permutations

This will be accomplished by applying Stankova’s block decomposition [29] (see
also [23]) of separable permutations that we now recall.

Lemma 6.3 (Stankova [29]). A permutation σ P Sn is a separable permutation
(i.e. avoids 2413 and 3142) if and only if:

(i) σ is of the form (positions of the blocks)

A1, A2, . . . , Ak, n,B1, B2, . . . , Bl, p|k ´ l| ď 1q,

where A1 ă A2 ă ¨ ¨ ¨ ă Ak and B1 ą B2 ą ¨ ¨ ¨ ą Bl are blocks with respect to
n.

(ii) The elements in any block form a permutation that avoids both 2413 and 3142.

See Fig. 2 for a transparent illustration of this lemma. Condition (ii) is clear,
while condition (i) is equivalent to saying that n is not an element of any subsequence
of σ that is order isomorphic to 2413 or 3142. Note that in the block decomposition,
the minimal block can appear on either side of n. For example, compare the block
decompositions of 259867431 and 143867952.

For convenience, we need to introduce two variants of the double descents. Let

dd0pπq :“ |ti P rns : πpi´ 1q ą πpiq ą πpi` 1qu|,

where πp0q “ 0 and πpn` 1q “ `8, and

dd8pπq :“ |ti P rns : πpi´ 1q ą πpiq ą πpi` 1qu|,

where πp0q “ `8 and πpn` 1q “ 0. Let us introduce

L “ Lpt, x, y; zq :“
ÿ

ně1

zn
ÿ

πPSnp2413,3142q

tdespπqxdd0pπqyiarpπq “ yz`pty` y2qz2` ¨ ¨ ¨

and

R “ Rpt, x; zq :“
ÿ

ně1

zn
ÿ

πPSnp2413,3142q

tdespπqxdd8pπq “ xz ` p1` tx2qz2 ` ¨ ¨ ¨ .

Set B “ Bpy; zq :“ yz
1´yz and L̃ :“ L ´ B, where Bpy; zq enumerates identity

permutations by length and iar.
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Lemma 6.4. Let S1 “ S|y“1 and L1 “ L|y“1. We have the system of functional
equations

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

L1 “
S1p1`tS1q

1`txS1
,

R “ S1pS1`xq
1`S1

,

S1 “ tS3
1 ` tzS

2
1 ` pz ` txzqS1 ` z,

p1´ zqL̃ “ tS1Bp1`Bq
1´tRB `

tzS1L̃p2`L1`B`tR´tRL1Bq
p1´tRBqp1´tRL1q

,

S “ Bp1`tRq
1´tRB `

zL̃p1`tRq2

p1´tRBqp1´tRL1q
.

(54)

Proof. The first three equations of (54) were proved by Wang [30]. We begin with
the proof of the fifth equation in (54) by writing S as an expression in L and R.
By Lemma 6.3, every permutation π P Snp2413, 3142q has block decomposition

A1, A2, . . . , Ak, n,B1, B2, . . . , Bl, p|k ´ l| ď 1q,

where A1 ă A2 ă ¨ ¨ ¨ ă Ak and B1 ą B2 ą ¨ ¨ ¨ ą Bl are blocks with respect to n.
We distinguish three cases according to the pair pk, lq:

1) pk, lq “ pj, jq (j ě 1). Permutations in this case contribute to S the generating
function

2yzBjptRqj ` 2
j
ÿ

i“1

zBi´1L̃Lj´i1 ptRqj .

2) pk, lq “ pj`1, jq (j ě 0), and thus 1 P A1. Permutations in this case contribute
to S the generating function

yzBj`1ptRqj `
j`1
ÿ

i“1

zBi´1L̃Lj`1´i
1 ptRqj .

3) pk, lq “ pj, j`1q (j ě 0), and thus 1 P Bl. Permutations in this case contribute
to S the generating function

yzBjptRqj`1 `

j
ÿ

i“1

zBi´1L̃Lj´i1 ptRqj`1.

Summing over all the above cases gives the fifth equation of (54). The fourth
equation of (54) is obtained by writing L as an expression of L, R and S1 via the
same block decomposition, the details of which are omitted due to the similarity.

We are ready to verify Theorem 1.4.

Proof of Theorem 1.4. We aim to verify that S satisfies the same functional equa-
tion as G in (52). From the first two equations of (54) we see that L1 and R are

rational fractions in S1. Thus, in view of the fourth equation of (54), L̃ is also a
rational fraction in S1. Consequently, by the fifth equation of (54), S is a ratio-

nal fraction in S1 as well. Plugging the expressions for L1, R and L̃ into the fifth
equation of (54) for S and factoring out (using Maple) the rational fraction

y3z ` ptxy2z ` 3y3z ´ 2y2z ´ y2qS ` c2S
2 ` c3S

3,

where c2 and c3 are defined in Lemma 6.2, we see the factor tS3
1 ` tzS

2
1 `pz` txz´

1qS1`z appears in the denominator (the resulting rational fraction is too long to be
included here). This factor is zero due to the third equation of (54), which proves
that S satisfies the same functional equation as G in (52). This completes the proof
of Theorem 1.4.
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7. Conclusion. In this paper, we launch a systematic study of the Wilf-equivalence
refined by two permutation statistics, namely comp, the number of components, and
iar, the length of the initial ascending run, for all patterns (resp. pairs of patterns) of
length 3. The results are summarized in Table 1 (resp. Table 2), where the trivariate
generating functions SpP qdes,iar,comppt, r, p; zq are supplied as well. In the cases where
the pair piar, compq, together with other set-valued statistics, is symmetric over
certain class of pattern-avoiding permutations, we construct various bijections to
prove them (see e.g. Theorems 3.2, 3.12, 3.14, and 4.1). On the other hand, our
proof of the result concerning separable permutations (see Theorem 1.4) is algebraic,
and can hardly be called simple. Therefore, a direct bijection from Snp2413, 3142q
to Snp2413, 4213q that preserves the statistics des, dd and iar is much desired.

In view of Lemmas 2.5 and 5.4, we pose the following open problem about a
set-valued extension of Lemma 2.5 for further investigation.

Problem. Let ST be a totally ‘-compatible set-valued statistic. Let P be a set of
indecomposable patterns. Is it true that

|SnpP q
ST,iar| “ |SnpP q

ST,comp| ðñ |SnpP q
ST,iar,comp| “ |SnpP q

ST,comp,iar|?

In particular, we suspect that the equivalence above holds when ST is the statistic
LMAX.

Conjecture 2. Let P be a set of indecomposable patterns. Then

|SnpP q
LMAX,iar| “ |SnpP q

LMAX,comp|

ðñ |SnpP q
LMAX,iar,comp| “ |SnpP q

LMAX,comp,iar|.

It is our hope, that the results presented and conceived (see also Conjecture 1)
here, would attract more people to work on Wilf-equivalences refined by Comtet
statistics, or to unearth and study new Comtet statistics in general.
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