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Abstract. In this paper we study ergodic measures of intermediate entropy
for affine transformations of nilmanifolds. We prove that if an affine transfor-

mation τ of nilmanifold has a periodic point, then for every a ∈ [0, htop(τ)]

there exists an ergodic measure µa of τ such that hµa (τ) = a.

1. Introduction. Throughout this paper, by a topological dynamical system (X,T )
(TDS for short) we mean a compact metric space (X, d) with a homeomorphism map
T from X onto itself, where d refers to the metric on X. By a measure preserving
system (MPS for short) we mean a quadruple (X,X , µ, T ), where (X,X , µ) is a
Borel probability space and T, T−1 : X → X are both measurable and measure
preserving, i.e. T−1X = X = TX and µ(A) = µ(T−1A) for each A ∈ X .

Given a TDS (X,T ), letM(X,T ) be the set of all T -invariant Borel probability
measures of X. In weak∗-topology,M(X,T ) is a compact convex space. By Krylov-
Bogolioubov Theorem M(X,T ) 6= ∅. For each µ ∈ M(X,T ), (X,BX , T, µ) can be
viewed as a MPS, where BX is the Borel σ-algebra of X. LetMe(X,T ) be the space
of all ergodic measures of (X,T ). Then Me(X,T ) is the set of extreme points of
M(X,T ).

Define
E(T ) = {hµ(T ) : µ ∈Me(X,T )}

where hµ(T ) denotes the measure-theoretic entropy of the measure preserving sys-
tem (X,BX , T, µ). By the variational principle of entropy sup E(T ) = htop(T ),
where htop(T ) is the topological entropy of (X,T ). The extreme case is that
Me(X,T ) consists of only one member, that is, (X,T ) is uniquely ergodic. When
(X,T ) is uniquely ergodic, E(T ) = {htop(T )}.

It is interesting to consider the case when E(T ) is big. As a direct corollary of
[7, Theorem 11], Katok showed that

[0, htop(f)) ⊂ E(f) (1.1)

for any C1+α diffeomorphism f on a two-dimensional surface, based on the fact that
every ergodic measure of positive metric entropy is hyperbolic. Katok conjectured
that (1.1) holds for any smooth system.

Conjecture 1.1 (Katok). Let f be a Cr (r > 1) diffeomorphism on a smooth
compact manifold M , then (1.1) holds, i.e. for every a ∈ [0, htop(f)), there is
µa ∈Me(M,f) such that hµa(f) = a.
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We need to point out that Katok’s conjecture implies that any positive entropy
smooth system is not uniquely ergodic, though whether or not a smooth diffeomor-
phism of positive topological entropy can be uniquely ergodic is still in question (see
[5] for Herman’s example: positive entropy minimal C∞-smooth diffeomorphisms).
In [13, 14], Quas and Soo showed that if a topological dynamical system satisfies
asymptotic entropy expansiveness, almost weak specification property and small
boundary property, then it is universal, which implies the conclusion of Katok’s
conjeture. Recently, Burguet [2], Chandgotia and Meyerovitch [4], extended the
result of Quas and Soo to request only the almost weak specification property.

In this paper, we study intermediate entropy for affine transformations of nil-
manifolds. Throughout this paper, by a nilmanifold G/Γ we mean that G is a
connected, simply connected nilpotent Lie group, and Γ is a cocompact discrete
subgroup of G. A homeomorphism τ of G/Γ is an affine transformation if there
exist a Γ-invariant automorphism A of G and a fixed element g0 ∈ G such that
τ(gΓ) = g0A(g)Γ for each g ∈ G. Our main result is the following.

Theorem 1.2. Let G/Γ be a nilmanifold and τ be an affine transformation of G/Γ.
If (G/Γ, τ) has a periodic point, then E(τ) = [0, htop(τ)].

Following Lind [11], we say that an affine transformation of a nilmanifold is
quasi-hyperbolic if its associated matrix has no eigenvalue 1. As an application of
Theorem 1.2, one has the following.

Theorem 1.3. Let G/Γ be a nilmanifold and τ be an affine transformation of G/Γ.
If τ is quasi-hyperbolic, then E(τ) = [0, htop(τ)].

The paper is organized as follows. In Section 2, we introduce some notions. In
Section 3, we prove Theorem 1.2 and Theorem 1.3.

2. Preliminary. In this section, we recall some notions of entropy, nilmanifold
and upper semicontinuity of entropy map.

2.1. Entropy. We summarize some basic concepts and useful properties related to
topological entropy and measure-theoretic entropy here.

Let (X,T ) be a TDS. A cover of X is a family of subsets of X, whose union is
X. A partition of X is a cover of X whose elements are pairwise disjoint. Given two
covers U ,V of X, set U ∨V = {U ∩V : U ∈ U , V ∈ V} and T−iU = {T−iU : U ∈ U}
for i ∈ Z+. Denote by N(U) the minimal cardinality among all cardinalities of
subcovers of U .

Definition 2.1. Let (X,T ) be a TDS and U be a finite open cover of X. The
topological entropy of U is defined by

htop(T,U) = lim
n→+∞

1

n
logN(

n−1∨
i=0

T−iU),

where {logN(
∨n−1
i=0 T

−iU)}∞n=1 is a sub-additive sequence and hence htop(T,U) is
well defined. The topological entropy of (X,T ) is

htop(T ) = sup
U
htop(T,U),

where supremum is taken over all finite open covers of X.
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A subset E of X is an (n, ε)-separated set with respect to T provided that for
any distinct x, y ∈ E there is 0 ≤ j < n such that d(T jx, T jy) ≥ ε. Let K be a

compact subset of X. Let s
(T )
n (ε,K) be the largest cardinality of any subset E of K

which is an (n, ε)-separated set. Then the Bowen’s topological entropy of K with
respect to T [1] is defined by

hd(T,K) = lim
ε→0

lim sup
n→∞

log s
(T )
n (ε,K)

n
.

Let Z be a non-empty subset of X. The Bowen’s topological entropy of Z with
respect to T is defined by

hd(T,Z) = sup
K⊂Z

K is compact

hd(T,K).

And the Bowen’s topological entropy of a TDS (X,T ) is defined by hd(T ) =
hd(T,X) which happens to coincide with htop(T ).

Next we define measure-theoretic entropy. Let (X,X , µ, T ) be a MPS and PX
be the set of finite measurable partitions of X. Suppose ξ ∈ PX . The entropy of ξ
is defined by

hµ(T, ξ) = lim
n→+∞

1

n
Hµ(

n−1∨
i=0

T−iξ),

where Hµ(
∨n−1
i=0 T

−iξ) = −
∑
A∈

∨n−1
i=0 T−iξ µ(A) logµ(A) and {Hµ(

∨n−1
i=0 T

−iξ)}∞n=1

is a sub-additive sequence. The entropy of (X,X , T, µ) is defined by

hµ(T ) = sup
ξ∈PX

hµ(T, ξ).

The basic relationship between topological entropy and measure-theoretic en-
tropy is given by the variational principle [12].

Theorem 2.2 (The variational principle). Let (X,T ) be a TDS. Then

htop(T ) = sup{hµ(T ) : µ ∈M(X,T )} = sup{hµ(T ) : µ ∈Me(X,T )}.

A factor map π : (X,T ) → (Y, S) between the TDS (X,T ) and (Y, S) is a
continuous onto map with π ◦ T = S ◦ π; we say that (Y, S) is a factor of (X,T )
and that (X,T ) is an extension of (Y, S). The systems are said to be conjugate if π
is bijective. In [8], Ledrappier and Walters showed that if π : (X,T ) → (Y, S) is a
factor map and ν ∈M(Y, S), then

sup
µ∈M(X,T )
π(µ)=ν

hµ(T ) = hν(S) +

∫
Y

hd(T, π
−1(y))dν(y) (2.1)

where π(µ)(B) = µ(π−1(B)) for B ∈ BY .
Let G be a compact metric group and τ : G→ G be a continuous surjective map.

Let π : (X,T ) → (Y, S) be a factor map. We say that π is a (G, τ)-extension, if
there exists a continuous map P : X ×G→ X (we write P (x, g) = xg) such that:

(1) π−1(π(x)) = xG for x ∈ X,
(2) For any x ∈ X, g1, g2 ∈ G, xg1 = xg2 if and only if g1 = g2,
(3) T (xg) = T (x)τ(g) for x ∈ X and g ∈ G.

The following is from [1, Theorem 19].

Theorem 2.3. Let π : (X,T )→ (Y, S) be a factor map. If π is a (G, τ)-extension,
then htop(T ) = htop(S) + htop(τ).
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Remark 2.4. (1) In the above situation, Bowen shows that

hd(T, π
−1(y)) = htop(τ) for any y ∈ Y , (2.2)

where d is the metric on X. This fact is proved in the proof of [1, Theorem 19]. In
fact, (2.2) holds in the more general situation of actions of amenable groups. This
fact is given explicitly as Lemma 6.12 in the paper [10].

(2) If G is a Lie group, H and N are cocompact closed subgroups of G such
that N is a normal subgroup of H, then G/N and G/H are compact metric spaces
and H/N is a compact metric group. Given further g0 ∈ G and an automorphism
A of G preserving H and N , one has the affine maps T : G/N → G/N given by
T (gN) = g0A(g)N , and S : G/H → G/H given by S(gH) = g0A(g)H, and the
automorphism τ of H/N given by τ(hN) = A(h)N . Then there is a map π : G/N →
G/H given by π(gN) = gH for g ∈ G, and a map P : G/N ×H/N → G/N given
by P (gN, hN) = ghN for g, h ∈ G. These maps satisfy the conditions (1)− (3) in
the definition of (H/N, τ)-extension for the factor map π : (G/N, T ) → (G/H,S).
That is, (G/N, T ) is an (H/N, τ)-extension of (G/H,S). Hence one has by (2.2)
that

hd(T, π
−1(y)) = htop(τ) for any y ∈ G/H, (2.3)

where d is the metric on G/N .

2.2. Upper semicontinuity of entropy map. Given a TDS (X,T ), the entropy
map of (X,T ) is the map µ 7→ hµ(T ) which is defined on M(X,T ) and has value
in [0,∞]. For any invariant measure µ on X, there is a unique Borel probability
measure ρ on M(X,T ) with ρ(Me(X,T )) = 1 such that∫

Me(X,T )

∫
X

f(x)dm(x)dρ(m) =

∫
X

f(x)dµ(x) for all f ∈ C(X).

We write µ =
∫
Me(X,T )

mdρ(m) and call it the ergodic decomposition of µ. The

following is standard.

Theorem 2.5. Let (X,T ) be a TDS. If µ ∈ M(X,T ) and µ =
∫
Me(X,T )

mdρ(m)

is the ergodic decomposition of µ. Then

hµ(T ) =

∫
Me(X,T )

hm(T )dρ(m).

We say that the entropy map of (X,T ) is upper semicontinuous if for µn, µ ∈
M(X,T )

lim
n→∞

µn = µ implies lim sup
n→∞

hµn(T ) ≤ hµ(T ).

We say that a TDS (X,T ) satisfies asymptotic entropy expansiveness if

lim
δ→0

sup
x∈X

hd(T,Γδ(x)) = 0.

Here for each δ > 0,

Γδ(x) := {y ∈ X : d(T jx, T jy) < δ for all j ≥ 0}.

The result of Misiurewicz [12, Corollary 4.1] gives a sufficient condition for upper
semicontinuity of the entropy map.

Theorem 2.6. Let (X,T ) be a TDS. If (X,T ) satisfies asymptotic entropy expan-
siveness. Then the entropy map of (X,T ) is upper semicontinuous.
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The result of Buzzi [3] gives a sufficient condition for asymptotic entropy expan-
siveness.

Theorem 2.7. Let f be a C∞ diffeomorphism on a smooth compact manifold M ,
then (M,f) satisfies asymptotic entropy expansiveness. Especially, the entropy map
of (M,f) is upper semicontinuous.

3. Proof of Theorem 1.2 and Theorem 1.3. In this section, we prove our main
results. In the first subsection, we prove that Katok’s conjecture holds for affine
transformations of torus. In the second subsection, we show some properties of
metrics on nilmanifolds. In the last subsection, we prove Theorem 1.2 and Theorem
1.3.

3.1. Intermediate entropy for affine transformations of torus. We say that a
topological dynamical system (Y, S) is universal if for every invertible non-atomic er-
godic measure preserving system (X,X , µ, T ) with measure-theoretic entropy strictly
less than the topological entropy of S there exists ν ∈Me(Y, S) such that (X,X , µ, T )
is isomorphic to (Y,BY , ν, S). In [14], Quas and Soo show that toral automorphisms
are universal, which implies the conclusion of Katok’s conjeture. By using Quas and
Soo’s result, we have the following.

Theorem 3.1. Let m ∈ N, Tm = Rm/Zm and τ be an affine transformation of
Tm. Then E(τ) = [0, htop(τ)].

Proof. We think of Tm as a group. Then there exist an element b ∈ Tm and a toral
automorphism A of Tm such that

τ(x) = A(x) + b for each x ∈ Tm.

Let µh be the Haar measure. Then hµh(τ) = htop(τ). Let µh =
∫
Me(Tm,τ)

νdρ(ν)

be the ergodic decomposition of µh. Then by Theorem 2.5, one has

htop(τ) =

∫
Me(Tm,τ)

hν(τ)dρ(ν).

By variational principle, there exists µ ∈ Me(Tm, τ) such that hµ(τ) = htop(τ).
Now we assume that a ∈ [0, htop(τ)). We have two cases.

Case 1. A is quasi-hyperbolic. In this case, there is q ∈ Tm such that A(q) = q− b.
We let

π(x) = x− q for each x ∈ Tm.
Then π is a self homeomorphism of Tm and π ◦ τ = A ◦ π. That is, (Tm, τ)
topologically conjugates to a torus automorphism. By Quas and Soo’s result [14,
Theorem 1], there exists µa ∈Me(Tm, τ) such that hµa(τ) = a.

Case 2. A is not quasi-hyperbolic. In this case, we put

H = {x ∈ Tm : (A− id)mx = 0}.
Then H is a compact subgroup of Tm and Tm/H is a torus. We let Y = Tm/H
and πY be the natural projection from Tm to Y . The induced map τY on Y is a
quasi-hyperbolic affine transformation and the extension πY is distal. Therefore,
htop(τY ) = htop(τ) and by Case 1 there exists µYa ∈Me(Y, τY ) such that hµYa (τY ) =

a. There is µa ∈ Me(Tm, τ) such that πY (µa) = µYa . Since the extension πY is
distal, one has hµa(τ) = hµYa (τY ) = a (see [6, Theorem 4.4]).

This ends the proof of Theorem 3.1.
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3.2. Proof of Theorem 1.2 and Theorem 1.3. Let G be a group. For g, h ∈ G,
we write [g, h] = ghg−1h−1 for the commutator of g and h and we write [B1, B2] for
the subgroup spanned by {[b1, b2] : b1 ∈ B1, b2 ∈ B2}. The commutator subgroups
Gj , j ≥ 1, are defined inductively by setting G0 = G1 = G and Gj+1 = [Gj , G].
Let s ≥ 1 be an integer. We say that G is s-step nilpotent if Gs+1 is the trivial
subgroup. Recall that an s-step nilmanifold is a manifold of the form G/Γ where G
is a connected, simply connected s-step nilpotent Lie group, and Γ is a cocompact
discrete subgroup of G.

If G/Γ is an s-step nilmanifold, then for each j = 1, · · · , s, GjΓ and Gj are closed
subgroups of G and GjΓ/Γ is a closed submanifold of G/Γ (see Subsection 2.11 in
[9]).

We fix an s-step nilmanifold of the form G/Γ and an affine transformation τ of
G/Γ such that

τ(gΓ) = g0A(g)Γ for each g ∈ G
where g0 ∈ G and A is a Γ-invariant automorphism of G. For each j ≥ 1, we let

Aj : Gj−1Γ/GjΓ→ Gj−1Γ/GjΓ : Aj(hGjΓ) = A(h)GjΓ for each h ∈ Gj−1

and

τj : G/GjΓ→ G/GjΓ : τj(hGjΓ) = g0A(h)GjΓ for each h ∈ G.
It is easy to see that {Aj}j∈N and {τj}j∈N are well defined since A(Gj) ⊂ Gj for
each j ≥ 1.

For each j ≥ 1, define the map πj+1 from G/Gj+1Γ to G/GjΓ by

πj+1(gGj+1Γ) = gGjΓ for each g ∈ G. (3.1)

It is easy to see that πj+1 is continuous and onto, and satisfies πj+1◦τj+1 = τj◦πj+1.
Hence, for each j ≥ 1, πj+1 : G/Gj+1Γ → G/GjΓ is a factor map. We let bj =
htop(Aj) for each j ≥ 1. Then we have the following.

Lemma 3.2. For each j ≥ 1 and y ∈ G/GjΓ, hdj+1(τj+1, π
−1
j+1(y)) = bj+1 where

dj+1 is the metric on G/Gj+1Γ.

Proof. In Remark 2.4 (2), we let N = Gj+1Γ and H = GjΓ. Then both N and
H are cocompact subgroup of G. Moreover, N is a normal subgroup of H. Hence
(G/N = G/Gj+1Γ, τj+1) is an (H/N = GjΓ/Gj+1Γ, Aj+1)-extension of (G/H =
G/GjΓ, τj). By (2.3), one has

hdj+1
(τj+1, π

−1
j+1(y)) = htop(Aj+1) = bj+1 for every y ∈ G/GjΓ.

This ends the proof of Lemma 3.2.

The following result is immediately from Lemma 3.2, (2.1) and Theorem 2.7.

Lemma 3.3. For j ≥ 1 and νj ∈ M(G/GjΓ, τj), there exists µ ∈ M(G/Gj+1Γ,
τj+1) such that hµ(τj+1) = hνj (τj) + bj+1.

We have the following.

Corollary 3.4. htop(τj) =
∑j
i=1 bi for j ≥ 1. Especially, htop(τ) =

∑s+1
i=1 bi.

Proof. We prove the corollary by induction on j. In the case j = 1, it is obviously
true. Now we assume that the corollary is valid for some j ∈ N. Then for j + 1,
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let πj+1 be defined as in (3.1). Then by Ledrappier and Walters’s result (2.1) and
variational principle Theorem 2.2, we have

htop(τj+1) = sup
µ∈M(G/Gj+1Γ,τj+1)

hµ(τj+1)

≤ sup
µ∈M(G/GjΓ,τj)

(
hµ(τj) +

∫
G/GjΓ

hdj+1
(τj+1, π

−1
j+1(y))dµ(y)

)

≤ htop(τj) + sup
µ∈M(G/GjΓ,τj)

∫
G/GjΓ

hdj+1
(τj+1, π

−1
j+1(y))dµ(y)

=

j∑
i=1

bi + bj+1 =

j+1∑
i=1

bi,

where we used Lemma 3.2. On the other hand, by Lemma 3.3 there exists µ ∈
M(G/Gj+1Γ, τj+1) such that hµ(τj+1) =

∑j+1
i=1 bi. Therefore htop(τj+1) =

∑j+1
i=1 bi.

By induction, this ends the proof of Corollary 3.4.

Remark 3.5. We remark that the topological entropy of (G/Γ, τ) is determined
by the associated matrix of τ [1]. That is

htop(τ) = hd(τ) =
∑
|λi|>1

log |λi|

where λ1, λ2, · · · , λm are the eigenvalues of the associated matrix of τ .

Lemma 3.6. For j ≥ 1 and νj ∈ Me(G/GjΓ, τj), there is νj+1 ∈ Me(G/Gj+1Γ,
τj+1) such that hνj+1

(τj+1) = hνj (τj) + bj+1.

Proof. We fix νj ∈ Me(G/GjΓ, τj). Let πj+1 be defined as in (3.1). By Lemma
3.3, there exists ν ∈M(G/Gj+1Γ, τj+1) such that

hν(τj+1) = sup
µ∈M(G/Gj+1Γ,τj+1)

πj+1(µ)=νj

hµ(τj+1) = hνj (τj) + bj+1.

We fix such ν and assume that the ergodic decomposition of ν is

ν =

∫
Me(G/Gj+1Γ,τj+1)

mdρ(m).

Then by property of ergodic decomposition, one has

ρ({m ∈Me(G/Gj+1Γ, τj+1) : πj+1(m) = νj}) = 1.

Therefore, for ρ-a.e. m ∈Me(G/Gj+1Γ, τj+1),

hm(τj+1) ≤ hν(τj+1) = hνj (τj) + bj+1.

Hence by Theorem 2.5, one has

hνj (τj) + bj+1 = hν(τj+1) =

∫
Me(G/Gj+1Γ,τj+1)

hm(τj+1)dρ(m) ≤ hνj (τj) + bj+1.

We notice that the equality holds only in the case hm(τj+1) = hνj (τj) + bj+1 for ρ-
a.e. m ∈ Me(G/Gj+1Γ, τj+1). Therefore, there exists νj+1 ∈ Me(G/Gj+1Γ, τj+1)
such that

hνj+1
(τj+1) = hνj (τj) + bj+1 and πj+1(νj+1) = νj .

This ends the proof of Lemma 3.6.

Now we are ready to prove our main results.
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Proof of Theorem 1.2. Firstly we assume that (G/Γ, τ) has a fixed point pΓ. We
fix a real number a ∈ [0, htop(τ)]. We are going to show that there exists µa ∈
Me(G/Γ, τ) such that hµa(τ) = a. By Corollary 3.4, we can find an i ∈ {1, 2, · · · , s,
s+ 1} such that

s+1∑
j=i+1

bj ≤ a ≤
s+1∑
j=i

bj .

Since pΓ is a fixed point of (G/Γ, τ), there exists γ ∈ Γ such that g0A(p) = pγ.
Therefore,

τi(pGi−1Γ/GiΓ) = pγGi−1Γ/GiΓ ⊂ p[γ,Gi−1]Gi−1γΓ/GiΓ ⊂ pGi−1Γ/GiΓ,

where we used the fact [γ,Gi−1] ⊂ Gi−1. That is, (pGi−1Γ/GiΓ, τi) is a TDS. We
let

π(phGiΓ) = hGiΓ for each h ∈ Gi−1.

Then for each h ∈ Gi−1, one has

π ◦ τi(phGiΓ) = p−1g0A(p)A(h)GiΓ = γA(h)GiΓ = A(h)γ[γ,A(h)]GiΓ = A(h)GiΓ

where we used the fact [γ,A(h)] ∈ Gi since h ∈ Gi−1. Therefore π ◦ τi(phGiΓ) =
Ai ◦ τi(phGiΓ) for each h ∈ Gi−1. That is π ◦ τi = Ai ◦ π. Hence,

(pGi−1Γ/GiΓ, τi) topologically conjugates to (Gi−1Γ/GiΓ, Ai).

Notice that (Gi−1Γ/GiΓ, Ai) is a toral automarphism and htop(Ai) = bi. By The-

orem 3.1, there exists νi ∈ Me(G/GiΓ, τi) such that hνi(τi) = a −
∑s+1
j=i+1 bj .

Combining this with Lemma 3.6, there exists an ergodic measure µa = νs+1 ∈
Me(G/Gs+1Γ, τs+1) =Me(G/Γ, τ) such that

hµa(τ) = hνs+1
(τs+1) = hνi(τi) +

s+1∑
j=i+1

bj = a.

Thus µa is the ergodic measure as required.
Now we assume that (G/Γ, τ) has a periodic point. By assumption, there exists

m ∈ N such that (G/Γ, τm) has a fixed point. Since τm is an affine transformation
of G/Γ, by argument above, there exists µ ∈Me(G/Γ, τm) such that hµ(τm) = ma.

Put µa = 1
m

∑m−1
j=0 τ j(µ). It is easy to see that µa ∈ Me(G/Γ, τ) and hµa(τ) =

hµ(τm)
m = a. Thus µa is the ergodic measure as required.
This ends the proof of Theorem 1.2.

Proposition 3.7. Let G be an s-step nilpotent Lie group and A be a quasi-hyperbolic
automorphism of G. Then for g ∈ G, there exists p ∈ G such that gA(p) = p.

Proof. We prove the proposition by induction on s. In the case s = 1, it is obviously
true. Now we assume that the Proposition is valid in the case s = k. Then in the
case s = k + 1, we fix g ∈ G. Notice that G/Gk+1 is a k-step nilpotent Lie group.
There exists p̃ ∈ G such that gA(p̃)Gk+1 = p̃Gk+1. There exists ḡ ∈ Gk+1 such
that gA(p̃)ḡ = p̃. There exists p′ ∈ Gk+1 such that ḡ−1A(p′) = p′. In the end, we
let p = p̃p′. Then

gA(p) = gA(p̃)A(p′) = p̃ḡ−1ḡp′ = p̃p′ = p.

By induction, we end the proof of Proposition 3.7.

Proof of Theorem 1.3. This comes immediately from Proposition 3.7 and Theorem
1.2.
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