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ABSTRACT. Here we prove that under a lower sectional curvature bound, a se-
quence of Riemannian manifolds diffeomorphic to the standard m-dimensional
torus cannot converge in the Gromov-Hausdorff sense to a closed interval.

The proof is done by contradiction by analyzing suitable covers of a contra-
dicting sequence, obtained from the Burago—Gromov—Perelman generalization
of the Yamaguchi fibration theorem.

1. Introduction. The study of Riemannian manifolds with sectional curvature
bounded below naturally leads to the study of Alexandrov spaces in part due to the
following well known results.

Theorem 1.1. ([9], Theorem 5.3). Let X,, be a sequence of closed m-dimensional
Riemannian manifolds with sectional curvature > ¢ and diameter < D. Then there

is a subsequence that converges in the Gromov-Hausdorff sense to a compact space
X.

Theorem 1.2. (4], Section 8). Let X, be a sequence of closed m-dimensional
Riemannian manifolds with sectional curvature > c. If the sequence X, converges
in the Gromov—Hausdorff sense to a compact space X, then X is an £-dimensional
Alexandrov space of curvature > ¢ with £ < m.

In this situation, results by Perelman and Yamaguchi show that in many cases,
the topology of the limit is closely tied to the topology of the sequence.

Theorem 1.3. [15], [11]. Let X,, be a sequence of closed m-dimensional Riemann-
ian manifolds with sectional curvature > c. If the sequence X,, converges in the
Gromov-Hausdorff sense to a compact m-dimensional Alexandrov space of curvature
> ¢, then there is a sequence f, : X,, = X of Gromov—Hausdorff approximations
such that f, is a homeomorphism for large enough n.

Theorem 1.4. ([16], Main Theorem). Let X,, be a sequence of closed m-dimensional
Riemannian manifolds with sectional curvature > c. If the sequence converges in
the Gromov-Hausdorff sense to a closed Riemannian manifold X, then there is a
sequence of Gromov-Hausdorff approzimations f, : X, — X such that f, is a
locally trivial fibration for large enough n.
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Even with these two powerful theorems, collapsing under a lower curvature bound
is still far from being well understood, specially when the limit space has singular-
ities or boundary. At the local level, Vitali Kapovitch has successfully studied the
behaviour of collapse.

Theorem 1.5. [12]. Let X,, be a sequence of closed m-dimensional Riemannian
manifolds with sectional curvature > c that converges in the Gromov-Hausdorff
sense to a compact Alexandrov space X of curvature > c. Then for any xg € X,
any sequence of Gromov—Hausdorff approximations f,, : X,, = X, and any sequence
of points x,, € f 1 (wg), there is an ro(xg) > 0 such that for large enough n, the
closed ball By, (xy,) is a manifold with boundary, simply homotopic to a finite CW-
complex of dimension < m — £.

At the global level, Mikhail Katz recently proved that the 2-dimensional torus
cannot collapse to a segment.

Theorem 1.6. [14]. Let g, be a sequence of Riemannian metrics of sectional
curvature > —1 in the 2-dimensional torus M. Then it cannot happen that the
sequence (M, g,) converges in the Gromov—Hausdorff sense to an interval [0, L].

The goal of this note is to prove the following generalization of Theorem 1.6.

Theorem 1.7. Let g, be a sequence of Riemannian metrics of sectional curvature
> —1 in the m-dimensional torus M. Then it cannot happen that the sequence
(M, gn) converges in the Gromov-Hausdorff sense to an interval [0, L].

Remark 1. Let ®,, be the group of isometries of C generated by z — z + 2¢ and
z—=>ZzZ+ % The quotient W,, = C/®,, is a flat Klein bottle and the sequence W,
converges in the Gromov—Hausdorff sense to [0, 1] (see Figure 1), so Theorem 1.7 is
false if one replaces the m-dimensional torus by the Klein bottle.

L)
F1GURE 1. Flat Klein bottles can converge to an interval

Theorem 1.7 represents a step towards the following conjecture. Theorem 1.3
implies the case £ = m, and Theorem 1.7 the case ¢ = 1.

Conjecture 1. Let g, be a sequence of Riemannian metrics of sectional curvature
> —1 in the m-dimensional torus M such that the sequence (M, g,) converges to
a compact £-dimensional Alexandrov space X. Then X is homeomorphic to an
£-dimensional torus.

Remark 2. Gromov and Lawson showed in [10] that if a Riemannian manifold
diffeomorphic to the m-dimensional torus has scalar curvature > 0, then it is flat.
The Mahler compactness Theorem asserts that if g, is a sequence of flat Riemannian
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metrics in the m-dimensional torus M, such that the sequence (M, g,,) converges in
the Gromov-Hausdorff sense to a compact space X, then X is a flat torus (see [5],
p.137). Therefore Conjecture 1 is known to be true if we replace sectional curvature
> —1 by scalar curvature > 0.

The structure of this note is as follows: In section 2, we give a consequence of
our main theorem. In section 3 we give the necessary definitions and preliminaries.
In section 4 we give the proof of Theorem 1.7.

2. Flat manifolds. A little bit more can be said about manifolds admitting flat
metrics. Recall Bieberbach Theorem and the definition of holonomy group. An
elegant proof can be found in [6].

Theorem 2.1. Let M be a flat closed m-dimensional manifold. Then its funda-
mental group fits in an exact sequence

0—>2Z™ = m (M) — Hy — 0.

The group Z™ is the only maximal abelian normal subgroup of w1 (M). The group
Hyy is finite and it is called the holonomy group of M. The cover associated to
7™ < m (M) is a flat torus.

Theorem 2.2. Let M be a closed m-dimensional manifold that admits a flat metric.
If there is a sequence g, of Riemannian metrics with sec(M, g,) > —1 such that
(M, gp,) converges to an interval [0, L], then the holonomy group Hp; has a subgroup
of index 2.

For the proof of Theorem 2.2, we will need the following elementary result.

Lemma 2.3. ([8], Section 6) Let ' be a finite group and X,, a sequence of compact
metric spaces converging in the Gromov—Hausdorff sense to the space X. Assume
we have a sequence of isometric group actions I' — Iso(X,). Then there is an
isometric group action T' — Iso(X) such that a subsequence of X,, /T converges in
the Gromov-Hausdorff sense to X/T .

Proof of Theorem 2.2. Let X, be the torus metric cover of (M, g,,) with X,,/Hys =
(M, g5,). The diameter of X, is bounded above by 2L|H | for large enough n, hence
by Theorems 1.1 and 1.2, X, converges up to subsequence to an Alexandrov space
X of dimension < m. By Lemma 2.3, there is an isometric group action Hy; —
Iso(X) such that X/Hy = [0,L]. The quotient of a compact finite dimensional
Alexandrov space by a finite group is another compact Alexandrov space with the
same dimension. This means that X is a compact 1-dimensional Alexandrov space,
so it is a circle or a closed interval. By Theorem 1.7, X is a circle, and the action
Hy; — Iso(X) is either cyclic or dyhedral. The quotient of X by a dihedral group
is an interval, and the quotient of X by a cyclic group is a shorter circle. Since
X/Hy = [0, L], the image of Hy in Iso(X) is a dihedral group, which has a
subgroup of index 2. O

Theorem 2.2 implies in particular that if the holonomy group Hjs is simple,
or has odd order, then M cannot collapse to an interval under a lower sectional
curvature bound. The following Theorem by Auslander and Kuranishi tells us the
relevance of Theorem 2.2.

Theorem 2.4. ([1], Theorem 8). Let H be a finite group. Then there is a flat
manifold M with Hy = H.
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3. Prerequisites.

3.1. Gromov—Hausdorff distance. Gromov—Hausdorff distance was introduced
to quantitatively measure how far two metric spaces are from being isometric.

Definition 3.1. Let A, B be two metric spaces. The Gromov—Hausdorff distance
dcu (A, B) between A and B is defined as
dan(A, B) = inf du(¢(4), v(B)).

s

where dy denotes the Hausdorff distance, and the infimum is taken over all isometric
embeddings ¢ : A — C, ¥ : B — C into a common metric space C.

We refer to ([3], Chapter 7) for the basic theory about Gromov-Hausdorff dis-
tance, including the following equivalence of convergence with respect to such met-
ric.

Theorem 3.2. Let X,, be a sequence of compact metric spaces. The sequence X,
converges in the Gromov—Hausdorff sense to a compact metric space X if and only
if there is a sequence of maps f, : X,, — X such that

lim  sup |d(fn(m)7fn(y)) —d(l',y)| =0,

oo z,yeXn

and
lim sup inf d(z, f,(y)) =0.

n—00 pcx yeXn
A sequence of functions f, satisfying the above properties are called Gromov—
Hausdorff approximations.

3.2. Yamaguchi—-Burago—Gromov—Perelman fibration. In a compact Alexan-
drov space X of dimension ¢, one can quantify how degenerate a point p € X is by
studying the Gromov-Hausdorff distance between its space of directions ¥, X and
the standard sphere S¢=1. To construct >¥pX, one needs to put a metric on the set of
geodesics in X emanating from p. Given two minimizing geodesics v; : [0,d;] = X
parametrized by arc length with ;(0) = p for i = 1,2, we define the angular distance
between them as

d(y1,72) := lim cos™? (d(’yl(s),'yg(t))2 s _t2> € [0, .

s,t—0t st

The set of all minimizing geodesics in X starting from p equipped with the
angular metric form a semi-metric space S,X. The space ¥,X is defined as the
metric completion of the metric space asociated to S, X.

For § > 0, we say that a point p is d-regular if dgp(X,X,S"1) < 5. The set
of d-regular points Us(X) C X form an open dense set, and for small enough 6,
they form an ¢-dimensional (topological) manifold. Burago, Gromov, and Perelman
noticed that Theorem 1.4 has a version for when X is singular.

Theorem 3.3. ([4], Section 9). For small enough §(m,c) the following holds. Let
X, be a sequence of closed m-dimensional Riemannian manifolds with sectional cur-
vature > ¢ converging in the Gromov-Hausdorff sense to a compact space X. Then
for any compact K C Us(X) there is a sequence of Gromov—Hausdorff approzi-
mations fn : X, — X such that for large enough n, fn|f;1(K) 18 continuous and
morover, it is a locally trivial fibration with fiber F,,, a compact almost nonnegatively
curved manifold in the generalized sense of dimension m—¢ (ANNCGS(m—{)) (see
[13], Definition 1.4.1).
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Since the definition of an almost non-negatively curved manifold in the general-
ized sense is technical and we will not use it, we will omit it. The only result we
will need regarding such manifolds is the following.

Theorem 3.4. ([16], Pinching Theorem). The first Betti number of an ANNCGS
(d) is < d.

3.3. Comparison geometry. We will use two elementary facts about comparison
geometry. The first one is called the four point Alexandrov condition.

Lemma 3.5. (4], Section 2). Let N be an m-dimensional Riemannian man-
ifold with sectional curvature > ¢ and M™(c) be the simply connected complete
m-dimensional Riemannian manifold of constant curvature c. For distinct points
p,ai,az,a3 € N and i € {1,2,3}, we set ay = ay and call 0; the angle at p
of a triangle a;pa;+1 in M™(c) with d(p,a;) = d(p,a;), d(p,air1) = d(p,ait1),
d(ai7di+1) = d(ai, ai+1)- Then

01+ 05 + 65 < 27
This condition is called the Alezandrov condition for the quadruple (p; a1, az,as).
Another ingredient is the Bishop—Gromov inequality.

Theorem 3.6. ([2], p. 253). Let Z be an m-dimensional Alexandrov space of
curvature > ¢, and M™(c) be the simply connected complete m-dimensional Rie-
mannian manifold of constant curvature c. Then for 0 <r < R, p € Z, g € M™(c),
we have

Vol(Br(p)) < Vol(Br(q))
Vol(By(p)) — Vol(B.(q))

3.4. Miscelaneus results.

Lemma 3.7. ([9], Proposition 5.28) Let Z be a compact semilocally simply con-
nected length space, zo € Z, n > 0, and r = sup,c, d(z,20). Then m(Z,2) is
generated by the loops of length < 2r + 1.

We will also use a simple version of Gromov’s systolic inequality.

Theorem 3.8. ([7], Section 1). Let N be a smooth closed aspherical manifold, and
gn a sequence of Riemannian metrics on N such that the volumes of the spaces
Zn = (N,gn) go to 0 as n — co. Then there is a sequence of noncontractible loops
Yo+ SY = Z,, with lengths going to 0 as n — oo

4. Proof of Theorem 1.7. Assume by contradiction, that there is a sequence
X, = (M,g,) as in Theorem 1.7 converging to an interval [0, L]. Applied to the
limit space [0, L], Theorem 3.3 takes the following form.

Lemma 4.1. For any e > 0, and large enough n(e), there are continuous Gromov—
Hausdorff approzimations f,, : X, — [0, L] such that f; 1 ([e, L—¢]) is homeomorphic
to the product [e, L — ] X Fy,, with F,, an ANNCGS(m—1), and fn|f,,71([s,L—e]) being
the projection onto the first factor.
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4.1. 2-dimensional case. Proving Theorem 1.7 for m = 2 is easier and gives
an idea on how to get the general case. Fix a small € (say, ¢ = L/100) and use
Lemma 4.1. We see that the fibers F}, are homeomorphic to S (the only compact
1-dimensional manifold), exhibiting X, as the connected sum of two surfaces S;#5
(see Figure 2). Since the 2-dimensional torus is undecomposable, one of the surfaces,
say Si, is homeomorphic to S?. This would imply that Y,, := f,, ([0, L — ¢]) is
homeomorphic to a disk, meaning that the inclusion Y,, — X,, is trivial at the
level of fundamental groups. Therefore, when we take the universal covering X, —
X, the preimage of Y,, consists of disjoint copies of Y;, (one for each element of
T (X)) = Z2).

e 0 =)

Jfn

FIGURE 2. The Fibration Theorem gives us a decomposition X,, = S1#.55

The sequence X,, collapses to a lower dimensional object, so the volume of X,
goes to 0 as m — oo. Since the torus is aspherical, by Theorem 3.8 for any C' € N,
and large enough n(C), there are non contractible loops 7, : S — X,, of length
< L/C. Since Y, is contractible and v, is noncontractible, we have ~,, (S')\Y;, # 0.
Let z,, = y,(1), and Z, one of its preimages in X,,. Since Z2 = m (X,) has no
torsion, there are at least C'/3 elements of the orbit of &,, in the ball By, /o(%,).

Let g, € f.1([0,¢]), and ¢, € X,, its preimage closest to Z,. The ball B;_3.(Gn)
is isometric to By _3c(¢n). However, the ball B3y (§,) contains at least C'/3 disjoint
isometric copies of By,_3:(gn).

By Theorem 3.6, applied to Z = Xn, c=-1,p=¢q,, r=L—3, R=3L, we
get for any ¢ € M™(—1),

C < Vol(Bsr.(Gn)) < Vol(Bsr(q))
3 = Vol(Br-3:(Gn)) — Vol(Br—3:(q))

The right hand side only depends on m, L, €, so the above inequality cannot hold
if C is large enough, which is a contradiction.

4.2. General case. Fix a small ¢ (to be chosen later) and use Lemma 4.1. By
Theorem 3.4 we have that for large n, the image of the morphism i, : m1(F,) —
m1(Xy) induced by the inclusion ¢ : F,, — X, has corank at least 1. Let X,
be the cover of X,, with Galois group Ty, := 71 (X,,)/ixm1(Fy). Observe that by
construction, the preimage of f;'([e, L — ¢]) in X,, consists of disjoint copies of
itself.

Let p, be a point in f,1(L/2) and p, a lift in X,,. Let S be the set of loops
in X,, based at p, of length < L + 10s. By Lemma 3.7, for large enough n, S
generates 71 (X,,, p,). The elements of S whose image is contained in f,,([e, L —¢])
are homotopic to elements of i, (F,) and lift to loops in X,,. Let S be the subset
of S not homotopic to elements in i, (F,). S’ generates I'), and consists of loops
that go to one of f,1([0,¢]) or f;1([L — ¢, L]), but not both. We will call them
Type I or Type II depending on whether they visit f,1([0,¢]) or f;1([L — &, L]).
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First assume that there are no loops of Type I. This would mean that the inclusion
3o £ (0, L —e]) = X
induces a map at the level of fundamental groups such that
Jue(m (£ (10, L — €])) C iu(mi(Fn)).

This implies that the preimage of ([0, L —¢]) in X,, consists of infinitely many
disjoint copies of itself. Also, since I';, is abelian of positive rank, any set of genera-
tors contains an element of infinite order. Then there is a loop of Type II of infinite
order and we can conclude identically as in the 2-dimensional case.

Now assume that there are two loops «, 8 of Type I not equivalent in I',,. This
means that they lift as paths &, § in X,, with startpoint p,,, but distinct endpoints
ap, by, respectively. Letting g, be an approximate midpoint of a,, and p, in the
image of & we see that

d(ﬁna an) ~ d(ﬁn7 bn) ~ d(ana bn) ~ L

where the error in the above approximations is of the order of €. This violates
the Alexandrov condition for the quadruple (g, ; pn, an, b,) if €(L) was chosen small
enough (see Figure 3).

FIGURE 3. The configuration (gn;pn, an,by) violates the Alexan-
drov condition

With this, we see that in S’ there is exactly one loop of Type I and one loop
of Type II modulo i, (F},). Observe that the inverse in T',, of the loop of Type
I is also a loop of Type I, but there is only one loop of Type I in I';,, so it is its
own inverse, same for the loop of Type II. But I',, is abelian of positive rank, so it
cannot be generated by two elements of order 2.
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