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Abstract. Here we prove that under a lower sectional curvature bound, a se-

quence of Riemannian manifolds diffeomorphic to the standard m-dimensional
torus cannot converge in the Gromov–Hausdorff sense to a closed interval.

The proof is done by contradiction by analyzing suitable covers of a contra-

dicting sequence, obtained from the Burago–Gromov–Perelman generalization
of the Yamaguchi fibration theorem.

1. Introduction. The study of Riemannian manifolds with sectional curvature
bounded below naturally leads to the study of Alexandrov spaces in part due to the
following well known results.

Theorem 1.1. ([9], Theorem 5.3). Let Xn be a sequence of closed m-dimensional
Riemannian manifolds with sectional curvature ≥ c and diameter ≤ D. Then there
is a subsequence that converges in the Gromov–Hausdorff sense to a compact space
X.

Theorem 1.2. ([4], Section 8). Let Xn be a sequence of closed m-dimensional
Riemannian manifolds with sectional curvature ≥ c. If the sequence Xn converges
in the Gromov–Hausdorff sense to a compact space X, then X is an `-dimensional
Alexandrov space of curvature ≥ c with ` ≤ m.

In this situation, results by Perelman and Yamaguchi show that in many cases,
the topology of the limit is closely tied to the topology of the sequence.

Theorem 1.3. [15], [11]. Let Xn be a sequence of closed m-dimensional Riemann-
ian manifolds with sectional curvature ≥ c. If the sequence Xn converges in the
Gromov–Hausdorff sense to a compact m-dimensional Alexandrov space of curvature
≥ c, then there is a sequence fn : Xn → X of Gromov–Hausdorff approximations
such that fn is a homeomorphism for large enough n.

Theorem 1.4. ([16], Main Theorem). Let Xn be a sequence of closed m-dimensional
Riemannian manifolds with sectional curvature ≥ c. If the sequence converges in
the Gromov–Hausdorff sense to a closed Riemannian manifold X, then there is a
sequence of Gromov–Hausdorff approximations fn : Xn → X such that fn is a
locally trivial fibration for large enough n.
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Even with these two powerful theorems, collapsing under a lower curvature bound
is still far from being well understood, specially when the limit space has singular-
ities or boundary. At the local level, Vitali Kapovitch has successfully studied the
behaviour of collapse.

Theorem 1.5. [12]. Let Xn be a sequence of closed m-dimensional Riemannian
manifolds with sectional curvature ≥ c that converges in the Gromov–Hausdorff
sense to a compact Alexandrov space X of curvature ≥ c. Then for any x0 ∈ X,
any sequence of Gromov–Hausdorff approximations fn : Xn → X, and any sequence
of points xn ∈ f−1n (x0), there is an r0(x0) > 0 such that for large enough n, the
closed ball Br0(xn) is a manifold with boundary, simply homotopic to a finite CW-
complex of dimension ≤ m− `.

At the global level, Mikhail Katz recently proved that the 2-dimensional torus
cannot collapse to a segment.

Theorem 1.6. [14]. Let gn be a sequence of Riemannian metrics of sectional
curvature ≥ −1 in the 2-dimensional torus M . Then it cannot happen that the
sequence (M, gn) converges in the Gromov–Hausdorff sense to an interval [0, L].

The goal of this note is to prove the following generalization of Theorem 1.6.

Theorem 1.7. Let gn be a sequence of Riemannian metrics of sectional curvature
≥ −1 in the m-dimensional torus M . Then it cannot happen that the sequence
(M, gn) converges in the Gromov–Hausdorff sense to an interval [0, L].

Remark 1. Let Φn be the group of isometries of C generated by z → z + 2i and
z → z + 1

n . The quotient Wn = C/Φn is a flat Klein bottle and the sequence Wn

converges in the Gromov–Hausdorff sense to [0, 1] (see Figure 1), so Theorem 1.7 is
false if one replaces the m-dimensional torus by the Klein bottle.

Figure 1. Flat Klein bottles can converge to an interval

Theorem 1.7 represents a step towards the following conjecture. Theorem 1.3
implies the case ` = m, and Theorem 1.7 the case ` = 1.

Conjecture 1. Let gn be a sequence of Riemannian metrics of sectional curvature
≥ −1 in the m-dimensional torus M such that the sequence (M, gn) converges to
a compact `-dimensional Alexandrov space X. Then X is homeomorphic to an
`-dimensional torus.

Remark 2. Gromov and Lawson showed in [10] that if a Riemannian manifold
diffeomorphic to the m-dimensional torus has scalar curvature ≥ 0, then it is flat.
The Mahler compactness Theorem asserts that if gn is a sequence of flat Riemannian



TORI CAN’T COLLAPSE TO AN INTERVAL 2639

metrics in the m-dimensional torus M , such that the sequence (M, gn) converges in
the Gromov–Hausdorff sense to a compact space X, then X is a flat torus (see [5],
p.137). Therefore Conjecture 1 is known to be true if we replace sectional curvature
≥ −1 by scalar curvature ≥ 0.

The structure of this note is as follows: In section 2, we give a consequence of
our main theorem. In section 3 we give the necessary definitions and preliminaries.
In section 4 we give the proof of Theorem 1.7.

2. Flat manifolds. A little bit more can be said about manifolds admitting flat
metrics. Recall Bieberbach Theorem and the definition of holonomy group. An
elegant proof can be found in [6].

Theorem 2.1. Let M be a flat closed m-dimensional manifold. Then its funda-
mental group fits in an exact sequence

0→ Zm → π1(M)→ HM → 0.

The group Zm is the only maximal abelian normal subgroup of π1(M). The group
HM is finite and it is called the holonomy group of M . The cover associated to
Zm ≤ π1(M) is a flat torus.

Theorem 2.2. Let M be a closed m-dimensional manifold that admits a flat metric.
If there is a sequence gn of Riemannian metrics with sec(M, gn) ≥ −1 such that
(M, gn) converges to an interval [0, L], then the holonomy group HM has a subgroup
of index 2.

For the proof of Theorem 2.2, we will need the following elementary result.

Lemma 2.3. ([8], Section 6) Let Γ be a finite group and Xn a sequence of compact
metric spaces converging in the Gromov–Hausdorff sense to the space X. Assume
we have a sequence of isometric group actions Γ → Iso(Xn). Then there is an
isometric group action Γ → Iso(X) such that a subsequence of Xn/Γ converges in
the Gromov–Hausdorff sense to X/Γ.

Proof of Theorem 2.2. Let Xn be the torus metric cover of (M, gn) with Xn/HM =
(M, gn). The diameter of Xn is bounded above by 2L|HM | for large enough n, hence
by Theorems 1.1 and 1.2, Xn converges up to subsequence to an Alexandrov space
X of dimension ≤ m. By Lemma 2.3, there is an isometric group action HM →
Iso(X) such that X/HM = [0, L]. The quotient of a compact finite dimensional
Alexandrov space by a finite group is another compact Alexandrov space with the
same dimension. This means that X is a compact 1-dimensional Alexandrov space,
so it is a circle or a closed interval. By Theorem 1.7, X is a circle, and the action
HM → Iso(X) is either cyclic or dyhedral. The quotient of X by a dihedral group
is an interval, and the quotient of X by a cyclic group is a shorter circle. Since
X/HM = [0, L], the image of HM in Iso(X) is a dihedral group, which has a
subgroup of index 2.

Theorem 2.2 implies in particular that if the holonomy group HM is simple,
or has odd order, then M cannot collapse to an interval under a lower sectional
curvature bound. The following Theorem by Auslander and Kuranishi tells us the
relevance of Theorem 2.2.

Theorem 2.4. ([1], Theorem 3). Let H be a finite group. Then there is a flat
manifold M with HM = H.
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3. Prerequisites.

3.1. Gromov–Hausdorff distance. Gromov–Hausdorff distance was introduced
to quantitatively measure how far two metric spaces are from being isometric.

Definition 3.1. Let A,B be two metric spaces. The Gromov–Hausdorff distance
dGH(A,B) between A and B is defined as

dGH(A,B) := inf
ϕ,ψ

dH(ϕ(A), ψ(B)),

where dH denotes the Hausdorff distance, and the infimum is taken over all isometric
embeddings ϕ : A→ C, ψ : B → C into a common metric space C.

We refer to ([3], Chapter 7) for the basic theory about Gromov–Hausdorff dis-
tance, including the following equivalence of convergence with respect to such met-
ric.

Theorem 3.2. Let Xn be a sequence of compact metric spaces. The sequence Xn

converges in the Gromov–Hausdorff sense to a compact metric space X if and only
if there is a sequence of maps fn : Xn → X such that

lim
n→∞

sup
x,y∈Xn

|d(fn(x), fn(y))− d(x, y)| = 0,

and
lim
n→∞

sup
x∈X

inf
y∈Xn

d(x, fn(y)) = 0.

A sequence of functions fn satisfying the above properties are called Gromov–
Hausdorff approximations.

3.2. Yamaguchi–Burago–Gromov–Perelman fibration. In a compact Alexan-
drov space X of dimension `, one can quantify how degenerate a point p ∈ X is by
studying the Gromov–Hausdorff distance between its space of directions ΣpX and
the standard sphere S`−1. To construct ΣpX, one needs to put a metric on the set of
geodesics in X emanating from p. Given two minimizing geodesics γi : [0, δi]→ X
parametrized by arc length with γi(0) = p for i = 1, 2, we define the angular distance
between them as

d(γ1, γ2) := lim
s,t→0+

cos−1
(
d(γ1(s), γ2(t))2 − s2 − t2

st

)
∈ [0, π].

The set of all minimizing geodesics in X starting from p equipped with the
angular metric form a semi-metric space SpX. The space ΣpX is defined as the
metric completion of the metric space asociated to SpX.

For δ > 0, we say that a point p is δ-regular if dGH(ΣpX,S`−1) < δ. The set
of δ-regular points Uδ(X) ⊂ X form an open dense set, and for small enough δ,
they form an `-dimensional (topological) manifold. Burago, Gromov, and Perelman
noticed that Theorem 1.4 has a version for when X is singular.

Theorem 3.3. ([4], Section 9). For small enough δ(m, c) the following holds. Let
Xn be a sequence of closed m-dimensional Riemannian manifolds with sectional cur-
vature ≥ c converging in the Gromov–Hausdorff sense to a compact space X. Then
for any compact K ⊂ Uδ(X) there is a sequence of Gromov–Hausdorff approxi-
mations fn : Xn → X such that for large enough n, fn|f−1

n (K) is continuous and

morover, it is a locally trivial fibration with fiber Fn, a compact almost nonnegatively
curved manifold in the generalized sense of dimension m−` (ANNCGS(m−`)) (see
[13], Definition 1.4.1).



TORI CAN’T COLLAPSE TO AN INTERVAL 2641

Since the definition of an almost non-negatively curved manifold in the general-
ized sense is technical and we will not use it, we will omit it. The only result we
will need regarding such manifolds is the following.

Theorem 3.4. ([16], Pinching Theorem). The first Betti number of an ANNCGS
(d) is ≤ d.

3.3. Comparison geometry. We will use two elementary facts about comparison
geometry. The first one is called the four point Alexandrov condition.

Lemma 3.5. ([4], Section 2). Let N be an m-dimensional Riemannian man-
ifold with sectional curvature ≥ c and Mm(c) be the simply connected complete
m-dimensional Riemannian manifold of constant curvature c. For distinct points
p, a1, a2, a3 ∈ N and i ∈ {1, 2, 3}, we set a4 = a1 and call θi the angle at p̃
of a triangle ãip̃ãi+1 in Mm(c) with d(p̃, ãi) = d(p, ai), d(p̃, ãi+1) = d(p, ai+1),
d(ãi, ãi+1) = d(ai, ai+1). Then

θ1 + θ2 + θ3 ≤ 2π.

This condition is called the Alexandrov condition for the quadruple (p; a1, a2, a3).

Another ingredient is the Bishop–Gromov inequality.

Theorem 3.6. ([2], p. 253). Let Z be an m-dimensional Alexandrov space of
curvature ≥ c, and Mm(c) be the simply connected complete m-dimensional Rie-
mannian manifold of constant curvature c. Then for 0 < r < R, p ∈ Z, q ∈Mm(c),
we have

V ol(BR(p))

V ol(Br(p))
≤ V ol(BR(q))

V ol(Br(q))
.

3.4. Miscelaneus results.

Lemma 3.7. ([9], Proposition 5.28) Let Z be a compact semilocally simply con-
nected length space, z0 ∈ Z, η > 0, and r = supz∈Z d(z, z0). Then π1(Z, z0) is
generated by the loops of length ≤ 2r + η.

We will also use a simple version of Gromov’s systolic inequality.

Theorem 3.8. ([7], Section 1). Let N be a smooth closed aspherical manifold, and
gn a sequence of Riemannian metrics on N such that the volumes of the spaces
Zn = (N, gn) go to 0 as n→∞. Then there is a sequence of noncontractible loops
γn : S1 → Zn with lengths going to 0 as n→∞

4. Proof of Theorem 1.7. Assume by contradiction, that there is a sequence
Xn = (M, gn) as in Theorem 1.7 converging to an interval [0, L]. Applied to the
limit space [0, L], Theorem 3.3 takes the following form.

Lemma 4.1. For any ε > 0, and large enough n(ε), there are continuous Gromov–
Hausdorff approximations fn : Xn → [0, L] such that f−1n ([ε, L−ε]) is homeomorphic
to the product [ε, L−ε]×Fn, with Fn an ANNCGS(m−1), and fn|f−1

n ([ε,L−ε]) being

the projection onto the first factor.
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4.1. 2-dimensional case. Proving Theorem 1.7 for m = 2 is easier and gives
an idea on how to get the general case. Fix a small ε (say, ε = L/100) and use
Lemma 4.1. We see that the fibers Fn are homeomorphic to S1 (the only compact
1-dimensional manifold), exhibiting Xn as the connected sum of two surfaces S1#S2

(see Figure 2). Since the 2-dimensional torus is undecomposable, one of the surfaces,
say S1, is homeomorphic to S2. This would imply that Yn := f−1n ([0, L − ε]) is
homeomorphic to a disk, meaning that the inclusion Yn → Xn is trivial at the
level of fundamental groups. Therefore, when we take the universal covering X̃n →
Xn, the preimage of Yn consists of disjoint copies of Yn (one for each element of
π1(Xn) = Z2).

Figure 2. The Fibration Theorem gives us a decomposition Xn = S1#S2

The sequence Xn collapses to a lower dimensional object, so the volume of Xn

goes to 0 as n→∞. Since the torus is aspherical, by Theorem 3.8 for any C ∈ N,
and large enough n(C), there are non contractible loops γn : S1 → Xn of length
≤ L/C. Since Yn is contractible and γn is noncontractible, we have γn(S1)\Yn 6= ∅.
Let xn = γn(1), and x̃n one of its preimages in X̃n. Since Z2 = π1(Xn) has no
torsion, there are at least C/3 elements of the orbit of x̃n in the ball BL/2(x̃n).

Let qn ∈ f−1n ([0, ε]), and q̃n ∈ X̃n its preimage closest to x̃n. The ball BL−3ε(q̃n)
is isometric to BL−3ε(qn). However, the ball B3L(q̃n) contains at least C/3 disjoint
isometric copies of BL−3ε(qn).

By Theorem 3.6, applied to Z = X̃n, c = −1, p = q̃n, r = L − 3ε, R = 3L, we
get for any q ∈Mm(−1),

C

3
≤ V ol(B3L(q̃n))

V ol(BL−3ε(q̃n))
≤ V ol(B3L(q))

V ol(BL−3ε(q))
.

The right hand side only depends on m,L, ε, so the above inequality cannot hold
if C is large enough, which is a contradiction.

4.2. General case. Fix a small ε (to be chosen later) and use Lemma 4.1. By
Theorem 3.4 we have that for large n, the image of the morphism i∗ : π1(Fn) →
π1(Xn) induced by the inclusion i : Fn → Xn has corank at least 1. Let X̃n

be the cover of Xn with Galois group Γn := π1(Xn)/i∗π1(Fn). Observe that by

construction, the preimage of f−1n ([ε, L − ε]) in X̃n consists of disjoint copies of
itself.

Let pn be a point in f−1n (L/2) and p̃n a lift in X̃n. Let S be the set of loops
in Xn based at pn of length ≤ L + 10ε. By Lemma 3.7, for large enough n, S
generates π1(Xn, pn). The elements of S whose image is contained in f−1n ([ε, L−ε])
are homotopic to elements of i∗π1(Fn) and lift to loops in X̃n. Let S′ be the subset
of S not homotopic to elements in i∗π1(Fn). S′ generates Γn and consists of loops
that go to one of f−1n ([0, ε]) or f−1n ([L − ε, L]), but not both. We will call them
Type I or Type II depending on whether they visit f−1n ([0, ε]) or f−1n ([L− ε, L]).
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First assume that there are no loops of Type I. This would mean that the inclusion

j : f−1n ([0, L− ε])→ Xn

induces a map at the level of fundamental groups such that

j∗(π1(f−1n ([0, L− ε]))) ⊂ i∗(π1(Fn)).

This implies that the preimage of f−1n ([0, L− ε]) in X̃n consists of infinitely many
disjoint copies of itself. Also, since Γn is abelian of positive rank, any set of genera-
tors contains an element of infinite order. Then there is a loop of Type II of infinite
order and we can conclude identically as in the 2-dimensional case.

Now assume that there are two loops α, β of Type I not equivalent in Γn. This
means that they lift as paths α̃, β̃ in X̃n with startpoint p̃n, but distinct endpoints
an, bn, respectively. Letting qn be an approximate midpoint of an and p̃n in the
image of α̃ we see that

d(p̃n, an) ≈ d(p̃n, bn) ≈ d(an, bn) ≈ L

d(qn, p̃n) ≈ d(qn, an) ≈ d(qn, bn) ≈ L/2,
where the error in the above approximations is of the order of ε. This violates
the Alexandrov condition for the quadruple (qn; p̃n, an, bn) if ε(L) was chosen small
enough (see Figure 3).

Figure 3. The configuration (qn; p̃n, an, bn) violates the Alexan-
drov condition

With this, we see that in S′ there is exactly one loop of Type I and one loop
of Type II modulo i∗π1(Fn). Observe that the inverse in Γn of the loop of Type
I is also a loop of Type I, but there is only one loop of Type I in Γn, so it is its
own inverse, same for the loop of Type II. But Γn is abelian of positive rank, so it
cannot be generated by two elements of order 2.
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