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ABSTRACT. We study Hom-actions, semidirect product and describe the re-
lation between semi-direct product extensions and split extensions of Hom-
preLie algebras. We obtain the functorial properties of the universal a-central
extensions of a-perfect Hom-preLie algebras. We give that a derivation or
an automorphism can be lifted in an a-cover with certain constraints. We
provide some necessary and sufficient conditions about the universal a-central
extension of the semi-direct product of two a-perfect Hom-preLie algebras.

1. Introduction. A Hom-preLie algebra was introduced by Makhlouf-Silvestrov
[11]. Specifically, for a vector space L over a field K equipped with a bilinear map
w: L xL— L and a linear map « : L — L, we say that the triple (L, u, ) is a
Hom-preLie algebra if

a(z)(yz) — (zy)a(z) = aly)(zz) — (yz)a(z).
for all x,y, 2z € L. If the elements of L also satisfy the following equation

(zy)a(z) = (z2)a(y).

Then we call (L, u, @) is a Hom-Novikov algebra. Clearly, a Hom-Novikov algebra
is a Hom-preLie algebra. Moreover, Hom-preLie algebras generalizes the notation
of pre-Lie algebras (o = Idy ), which has been extensively studied in the construc-
tion and Classification of Hom-Novikov algebras (Yau [14])etc. Since Hom-preLie
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algebras are a kind of Hom-Lie admissible algebras, there are some close connec-
tions between Hom-preLie algebra and Hom-Lie algebra theories. For example,
a derivation of a Hom-preLie algebra with respect to a Hom-representation is an
a-derivation which is introduced in[12].

In recent year, the universal central extension of a perfect Leibniz algebra was
studied in several articles[2, 6, 3, 1, 8, 9, 10]. In [4, 5, 7], authors study universal
(a)-central extension.

In [13], we study universal a-central extensions of Hom-prelie algebras. We
define Hom-co-representations and low-dimensional chain complex, which derive a
low-dimensional homology K-vector space of a Hom-preLie algebra. We construct a
right exact covariant functor uce,, of a Hom-preLie algebra which acts on a a-perfect
aL(L)}XWL(L) 7

L
where I, = (ap(21) ® xox3 — 2129 @ ap(x3) — ap(x2) ® x123 + X221 ® ap(x3)).

The purpose of this paper is to study the universal a-central extension of semi-
direct product of two a-perfect Hom-preLie algebras. We introduce a Hom-action
between two perfect Hom-preLie algebras (Q,Idg) and (M, ayps), giving a semi-
direct product between two perfect Hom-preLie algebras. We use an associative
Hom-action of (@, Idg) on (M, ays) to induce a Hom-action of (uce(Q), Id,ce(g)) on
(uceq (M), anr). We obtain semi-direct product (uceq (M), anr) 3 (uce(Q), Idyce())
and define a linear map 7 x ¢ on the semi-direct product. Casas and Pacheco Rego
gave the linear map 7 x ¢ is a homomorphism of Hom-leibniz algebras in [5]. We
add a condition that Hom-action of (Q,Idg) on (M, aps) is uce-associative, that is,
{mm/,;q} = {m,m’' .q} Ym,m' € M,q € Q. We also obtain a linear map 7 x o
is a homomorphism of Hom-preLie algebras. We give a couple of necessary and
sufficient conditions for the universal a-central extension of semi-direct product of
two a-perfect Hom-preLie algebras by the above results.

The paper is organized as follows. Section 2 a preliminary section which contains
Hom-actions and semidirect product of Hom-preLie algebras. We describe the rela-
tion between the semi-direct product extension and split extensions of Hom-preLie
algebras. In section 3 we analyzing the functorial properties of the universal («)-
central extensions of («)-perfect Hom-preLie algebras. In section 4 we obtain that
an automorphism or a derivation can be lifted in an a-cover with certain constraints.
In the final section we give some necessary and sufficient conditions about the uni-
versal a-central extension of the semi-direct product of two a-perfect Hom-preLie
algebras.

Throughout this paper K denotes an arbitrary field.

Hom-preLie algebra L its universal a-central extension uce,(L) =

2. Hom-action.

Definition 2.1. Let (M, ay) and (L, f,) be Hom-preLie algebras. A Hom-action
of (L,ay) over (M, ) consists of two bilinear maps, p: M @ L — M, p(m®1) =
maland A: L® M — M, A\(l ® m) =1 .m, the following identities hold.

a) (zy) . an(m) —ap(z). (y.m) = (yz).an(m) —ap(y) - (x.m),
b) (m.2)eap(y) —an(m). (zy) = (@.m) . arly) —ar@). (m.y),
c) (mm).ar(x) —ap(m)(m'.z) = (m'm).ap(x) — ay(m')(m.z),
d) (z.m)ay (m') —ar(z). (mm') s z)an (m') — oy (m) (. m’),
e) ay(z.m)=ay(z).ay(m),

f) apy(m.z) =ay(m).ar(z),

for all z,y € L and m,m’ € M.
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If (M, cps) is an abelian Hom-preLie algebra, then the Hom-action is said to be
a Hom-representation.

Example 1. a) Let (K, ax) be a subalgebra of a Hom-preLie algebra (L, ) and
(H,ap) a Hom-ideal of (L, a,). There is a Hom-action of (K, ax) over (H, ay) by
the multiplication in (L, ap,).

b) Let 0 — (M, an) - (K, ax) = (L,ar) — 0 is an exact sequence of Hom-Lie
algebras. If (M, a;y) is an abelian Hom-preLie algebra, then we call the sequence is
abelian. An abelian sequence gives a Hom-representation of (L, ay,) over (M, an)
by defining p : M @ L — M, p(m,l) = mk,n(k) =1, \: L& M — M,\(I,m) =
km,m(k) = 1.

Proposition 1. Let (M,an) and (L,ar) be Hom-preLie algebras with a Hom-

action of (L,ar) over (M,an). Then (M x L, &) is a Hom-preLie algebra, where
a:MxL— MxLis defined by a(m,l) = (ap(m), ar(l)) and multiplication

(ml,ll)(mg,lg) = (mlmg + OéL(ll) « Mo + My . OéL(lQ),lllQ).

Proof. Tt follows by the direct computation. O

Definition 2.2. [13] A short exact sequence of Hom-preLie algebras (K) : 0 —

(M, an) = (K,ax) = (L,ar) — 0 is said to be split if there exists a Hom-preLie
algebra homomorphism o : (L,ar) — (K, ak) such that 7 oo = Id.

Let (M, ap) and (L, ay) be Hom-preLie algebras with a Hom-action of (L, a,)
over (M, apr). We define two linear maps ¢ : M — M x L,i(m) = (m,0) and
m: M x L — L,w(m,l) =1. Then we obtain the following sequence

0— (M,an) - (M x L,a) 5 (L,ag) — 0.
Furthermore, this sequence splits by o : L — M x L,a(l) = (0,1).

Definition 2.3. Let (M, ays) and (L, ) be Hom-preLie algebras with a Hom-
action of (L,ar) over (M,ap). Two extensions of (L,ar) by (M,ap), 0 —

(M, anr) 5 (K ax) 5 (Lyaz) = 0 and 0 — (M, ax) = (K, o) 5 (Lyaz) =
0, are equivalent if there is a homomorphism of Hom-preLie algebra ¢ : (K, ax) —
(K', o) satisfies that the following commutative diagram

0—— (M, apy) —— (K,ax) —— (L,ar) —=0

itp
-/ ’

0——= (M, an) s (K', o) —~ > (L,ap) —0.

Lemma 2.4. Let (C,1d¢) and (A, a4) be Hom-preLie algebras with a Hom-action
of (C,Id¢) over (A, aa). A sequence of Hom-preLie algebras 0 — (A, aq) A
(B,ag) = (C,I1d¢) — 0 is split if and only if it is equivalent to the semi-direct
sequence 0 — (A, aa) EA (AxC,a) 5 (C,1de) — 0.

Proof. If 0 — (A, a4) A (B,ap) = (C,1d¢) — 0is split by ¢ : (C,1d¢) — (B, ag),
then the Hom-action of (C,Id¢) over (A, a4) is defined by

c.a=t(c)i(a); a.c=i(a)t(c).
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So we obtain the following split extension:
0—— (A,aA) (A X C a) (C Idc) —0,

where k : A - A x C,k(a) = (a,0),p: AxC — C,q(a,¢) = cand 7 : C —
AxC,7(c) = (0,¢). Furthermore the Hom-action of (C,Id¢) over (A, a4) induced
by this extension coincides with the initial one:

cea=o(c)jla) =(0,¢)(a,0) = (0a +Idc(c) va+0.0,c0) = c.a.

Since ¢ : (A x C,&) = (B,ap),¢(a,c) = i(a) + s(c) is a homomorphism of Hom-
preLie algebras such that the following diagram commutative

04>(A,Oé14) (AXICO() CIdC —0
| 0'
W v

A
04>(A, aA) (B,(XB) C Idc 07

the extensions are equivalent.

Suppose that two extensions are equivalent, that is, there is a homomorphism of
Hom-preLie algebras ¢ : (A x C,&) — (B, ap) such that diagram (1) is commuta-
tive, then ¢ : (C,1d¢) — (B, ap) given by t(c) = ¢(0,c¢), is a split extension. O

Definition 2.5. [12] Let (M, apr) be a Hom-representation of a Hom-preLie algebra
(L,ar). A derivation of (L,ayr) over (M, ay) is a K-linear map d : L — M such
that:

a) d(lllg) = OzL(ll) . d(lz) + d(ll) . CML(ZQ),

b) doay = ap od,
for all I,y € L.

Example 2. a) Let (M, ayr) be a Hom-representation of (M x L, &) via w. Then
the linear map 6 : M x L — M,0(m,l) = m, is a derivation.

b) When (M, apr) = (L, ) is a representation follows from Example 1 a), then
a derivation consists of a K-linear map d : L — L such that d(l1ls) = ar(l1)d(l2) +
d(ll)OéL(lQ) and d o oy, = Qpf © d.

Proposition 2. Let (M, aps) be a Hom-representation of a Hom-preLie algebra
(L,ar). Forevery f-derivationd : (X, ax) — (M, ay) (d(z122) = d(x1)ap (f(z2))
+ar(f(z1))-d(z2) V1,22 € X) and every homomorphism of Hom-preLie algebras
f: (X,ax) — (L,ar) there is a unique homomorphism of Hom-preLie algebras
h:(X,ax)— (M x L,&), such that the following diagram commute.

(M, app) —= 6 (M x L,&) —> (L,az)

Conversely, every homomorphism of Hom-preLie algebras h : (X, ax) — (M XL, &),
decide a homomorphism of Hom-preLie algebras f = woh: (X,ax) — (L,ar) and
f-derivation d=0oh: (X,ax) — (M, ay), where 8(m,l) = x,Ym € M,l € L.

Proof. Let h : X — M x L, h(z) = (d(z), f(z)) be a homomorphism. Then the
homomorphism / satisfies all the conditions. O
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Corollary 1. The set of all derivations from (L,ar) to (M, apr) is in one-to-one
correspondence with the set of Hom-preLie algebra homomorphisms h : (L,ay) —
(M x L,&), such that vmo h =1dy,.

Proof. Take (X,ax) = (L,ar) in Proposition 2. O
3. Functorial properties.

Definition 3.1. Let (L,«r) be a perfect Hom-preLie algebra. It is said to be
centrally closed if its universal central extension is

0—0— (L,ar) > (L,ar) =0,
ie., HLY(L) =0 and (uce(L), &) = (L, ar).
Corollary 2. Let (L,ar) be a a-perfect Hom-preLie algebra. If0 — (Ker(Uy), ax,)

- (K, ak) s (L,ar) — 0 is the universal a-central extension of (L,ay), then
(L,ar) is centrally closed.

Proof. HLY(K) = HL$(K) = 0 thanks to Corollary 4.12 a) in [13]. By the proof of
Corollary 4.12 b) in [13], HLY(K) = 0 if and only if (K, ak) is perfect. By Theorem
4.11 c) in [13], there exists a universal central extension 0 — (HL§(K),q)) —
(uce(K),a) S (K,ar) — 0. Since HLS(K) = 0, ug is an isomorphism. O

Definition 3.2. A Hom-preLie algebra (L, «y) is said to be simply connected if
every central extension 7 : (F,ar) — (L,«ar) splits uniquely as the product of
Hom-preLie algebras (F,ar) = (Ker(7),ap|) x (L,ar).

Proposition 3. Let (L,ayr) be a perfect Hom-preLie algebra. Then the following
conditions are equivalent:

a) (L,ay) is simply connected.

b) (L,ar) is centrally closed.

Proof. a) = b) Let 0 — (HL$(L),q|) — (uce(L), @) “5 (L,ar) — 0 be the uni-
versal central extension of (L, «y), then it is split. Consequently uce(L) = L and
HLS(L) = 0.

b) = a) Let 0 = 0 = (L,ar) = (L,ar) — 0 be a universal central extension
of (L,ayr). So every central extension splits uniquely follows from the universal
property. O

Proposition 4. Let (L,ayr) be a perfect Hom-preLie algebra. If p : (L,ap) —»
(M, apr) is a central extension, then the following statements hold.
a) Proposition 3 a) implies that p : (L,ar) — (M,an) is a universal central
extension.
b) If p: (Lyar) — (M, ap) is a universal a-central extension, then statements
a) and b) hold in Proposition 5.

Proof. a) It follows from Theorem 4.11 b) in [13] that if (L, o) is perfect and every
central extension splits, then u : (L, ar,) — (M, ps) is a universal central extension.
Note that every central extension of (L, ay,) splits by the simply connectivity and
(L, ayp) is perfect by hypothesis. Then p: (L, ar) — (M, apr) is universal.

b) It follows from Lemma 4.10 in [13] that the composition of two central ex-

tensions is an a-central extensionon. Consider a central extension 0 — (N, an) 2
(A,aq) & (L,ar) — 0. Let (L,ar) be perfect and p : (L,ar) — (M, ay) be
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a central extension. Note that 0 — Ker(u o p) — (A, aa) ¥ (M,an) — 0 is
an a-central extension. Since u : (L,ar) — (M, aps) is a universal a-central ex-
tension, there exists a unique homomorphism of Hom-preLie algebras ¢ such that
popow = p By Lemma 4.7 in [13], we have po ¢ = Id. So (L, «y) is simply
connected, that is, it is centrally closed. O

Let f: (L',ar) — (L,ar) be a homomorphism of perfect Hom-preLie algebras.
It induces a linear map f® f : L'’ ® L' — L ® L given by (f ® f)(z1 ® z3) =
f(z1) ® f(x2), which maps I, to Ir,. So f ® f induces a homomorphism of Hom-
preLie algebras uce(f) : uce(L') — uce(L), given by uce(f){x1, 22} = {f(z1), f(z2)}.
From the above conditions, the following diagram commutate.

HLS(L') HLT(L)

(uce(L'), o) YL (uce(L), G) (2)

iuL/ iuL
!

(LlaaL’) > (L7O‘L)

From diagram (2), there exists a covariant right exact functor uce: Hom-preLieP®™
— Hom-preLieP®™ between the category of perfect Hom-preLie algebras. So an
automorphism f of (L, ar) induces an automorphism uce(f) of (uce(L), &). uce(f)
leaves H LS (L) invariant since diagram (2) is commutative. Consequently, we obtain
the Hom-group homomorphism

Aut(L, o) — {g € Aut(uce(L), &) : g(HLS (L)) = HLS(L)}.
[ uce(f)

Similar to the above discussion, we also obtain the functorial properties of a-
perfect Hom-preLie algebras. In other words, consider a homomorphism of a-
perfect Hom-preLie algebras f : (L', «r) — (L,ar). Let Iy, the vector subspace
of ar (L) ® ar (L) spanned by ar(z1) ® woxs — 122 @ ar(rs) — an(xs) ® v1x3 +
xox1 ® ar(xs),1,29,x3 € L, respectively I,. f induces a linear map f ® f :
(ap/ (L) @ ap (L), aper) = (an(L) ® ap(L),arer), given by f® f(ap (z}) ®
ap(xh)) = ap(f(z})) ® ap(f(z})) such that f ® f(Ir.) C Ir. Hence, it induces
a homomorphism of Hom-preLie algebras uce,(f) : (uceqs (L'), /) — (ucey (L), @)
given by ucea(f){ar(21), arr(2h)} = {ar(f(z])), ar(f(z4))} such that the follow-
ing diagram

Ker(Uy ) Ker(U,)

(ucea (L), @)L (ueen (1), @) (3)

U

(L/,O(L/) —_—> (L,OéL)

is commutative.
From diagram (3), there exists a covariant right exact functor uce,: Hom-
preLie® Pef 5 Hom-preLie® Pf between the category of a-perfect Hom-preLie
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algebras. So an automorphism f of (L, «y) induces an automorphism uce, (f) of
(uceq (L), @). ucey(f) leaves Ker(U,) invariant since diagram (3) is commutative.
So we obtain the Hom-group homomorphism

Aut(L,ar) — {g € Aut(uce, (L), @) : g(Ker(Uy)) = Ker(Uy,)}
f = uceq(f)

Next we consider a derivation d of the a-perfect Hom-preLie algebra (L, oy,). The
linear map d : ar(L) ® ar(L) = ar(L) ® ar(L) given by d(ar(z1) ® ap(zs)) =
d(ar(z1))®a? () +a (z1)®d(ar(xs)), keeps invariant the subspace Iy, of ar,(L)®
ar (L) spanned by arp(x1) ® xors — 2122 @ ar(rs) — ap(xs) ® r1xs + Tox; ®
ar(zs), z1, 2,23 € L. Indeed,

d(ap(x1) ® vows — x122 @ ap(x3) — ar(x2) @ x123 + T2z @ ar(x3))
=d(ap(z1))@ar(zazs)tad (21) @d(waws)—d(x129) ® T (w3)—ar (2122) @d(ar (x3))

—d(ag(z2)) @ (e123)—0F (22) ©d(z123)+d(2201) @0 (v3)+ar (ror1) @d(ar (23))
=ap(d(z1)) © ar(ze)ar(rs) + af (v1) © d(za)ar(s) + of (21) ® ar(vz)d(xs)

— d(z1)ar(22) ® of (x3) — ar(z1)d(z) @ of (x3) — ap(z1)ar(r2) @ ap(d(zs))

— ap(d(x2)) ® ar(e)ar(s) — of (22) ® d(z1)ar(vs) — of (z2) @ ap(z1)d(z3)

+d(z9)ar (x1) ® of (x3) + ap(z2)d(z1) © o (23) + ar(z2)ar (1) © ag(d(z3))
ely.

So it induces a linear map uce, (d) : (ucey (L), @) — (ucey (L), @), given by

uceq (d)({ar(z1), ar(z1)}) = {d(ar(z1)),af (x2)} + {af (21), d(ar(22))},
such that the following diagram

(ucea (L), @) "2 (uceo (1), @)

iUQ iUQ (4)

(Lyap) —2— (L,ar)

is commutative. Hence, a derivation d of (L, ar) induces a derivation uce,(d) of
(uceq (L), @). ucey(d) maps Ker(U,) on itself since diagram (4) is commutative.
Consequently, we obtain the homomorphism of Hom-K-vector spaces

ucey : Der(L, o) — {§ € Der(uce, (L), @) : §(Ker(Uy)) C Ker(Uy,)}
d — ucey(d),
Lemma 3.3. Let f : (I',ar) — (L,ar) be a homomorphism of a-perfect Hom-

preLie algebras. If d, d' € Der(L) satisfies fod = do f, then uce,(f) oucey(d') =
uceq(d) o uce,(f).

Proof. For any ', x5 € L', we have

uceq (f) o uceq (d')({ar (x1), ps (22)})
=uceo (f)({d' (ar (21)), 07/ (22)} + {ai, (x1), d (o (22))})
={ap (d(f(x1))), aF, (f(22)} + {af (f(x1)), ar (d(f(22)))}
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On the other hand

uceq (d) o ucey (f)({ar (1), ar (x2)})
=uceq (d)({ar (f(21)), ar (f(22))})
={ap (d(f(x1))), oL (f(x2))} + {oF, (f(z1)), ap (d(f(22)))}.

Hence we prove the lemma. O

4. Lifting automorphisms and derivations.

Definition 4.1. Let (L', «ar/) be a Hom-preLie algebra. A central extension of
Hom-preLie algebras f : (L', ar) — (L,ar) is said to be an a-cover if (L', ay/) is
a-perfect.

Lemma 4.2. Let f: (I',ar) — (L,ar) be a surjective homomorphism of Hom-
preLie algebras. If (L', ay) is a-perfect, then (L,ay) is also a-perfect.

Proof. Routine checking. O

Let f: (L',ap) - (L,ar) be an a-cover. By Lemma 4.2, (L, a) is an a-perfect
Hom-preLie algebra. By Theorem 4.19 in [13], it has a universal a-central extension.
By means of diagram (3), we obtain the following diagram:

Ker(Uy) Ker(U,)

(uceq (L), o?’)ui(l;) (uceq (L), @)

LUQ, LUQ
f

(L/,aL/) > (L7O‘L)

By Remark 4.4 in [13], Uy @ (uceq(L'),0’) — (L',ays) is a universal cen-
tral extension. Since f : (L',ar) — (L,ar) is a central extension and Uy, :

(ucey (L), ') — (L', aur) is a universal central extension, by Proposition 4.15 a) in
[13], the extension fo U, : (uceq (L'),a’) = (L, ) is a-central which is universal
in the sense of Definition 4.13 in [13].

In addition, since U, : (uceq (L), @) — (L, ar,) is a universal a-central extension,
there is a unique homomorphism ¢ : (ucey (L), @) — (ucen (L), /) satifies fo Uy o
@ = U,. So we have

foUy opouce,(f) =Uyoucey(f) = foUy,
that is to say the following diagram

0 —> (Ker(f 0 Us), @) —> (uceqr (L), ") 2% (L ) —0

i
fOUa/

0—— (Ker(fo Ua:),ozT') — (uce (L'),0') — (L,ar) —=0

is commutative. Since f o U, is an a-central extension which is universal in the
sense of Definition 4.13 in [13], we have ¢ o uce, (f) = Id.
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Conversely, uce,(f) o ¢ = Id since the following diagram commute.

0 — (Ker(Uy), ) — (uceq(L), @) —— (L, o) —= 0

ucea(f)osould

0 — (Ker(Uy), &) — (uceq(L), @) —=— (L, o) —= 0

whose horizontal rows are central extensions and (uce,(L),@) is a-perfect, the
uniqueness of the vertical homomorphism is guaranteed by Lemma 4.18 in [13].
Consequently uce, (f) is an isomorphism and we will denote the notation uce, (f) ™!
by .

Moreover, U, ouces (f) ™1 @ (ucen (L), @) — (L', az/) is an a-cover. In the sequel,
we will denote its kernel by

C :=Ker(Uy oucen(f)™1) = uceq (f)(Ker(Uy)).

In fact, for any = € Ker(Uy o uceo(f)~ 1), we have U, o uceo(f) " (x) = 0. Hence
x € uce, (f)(Ker(Uy)).

Conversely, for any z € ucea(f)( er(Uy )) there exists a y € Ker(Uy) such that
x = ucen(f)(y). So Uy ouce,(f) 1 (z) = Uy (y) = 0.

Theorem 4.3. Let f: (L',ar) - (L,ar) be an a-cover. For any automorphism
h on (L,ar), there is a unique 0), € Aut(L’, o) such that the following diagram is
commutative:

(L', ap) — (L,az)

L :

(L/,OéL/) —_— (L,OzL)

~

if and only if the automorphism uce,(h) of (uces (L), @) such that uce,(h)(C) = C.
Futhermore, we obtain a group isomorphism:
O :{h € Aut(L,ar) : uceq (R)(C) = C} — {g € Aut(L',ar/) : g(Ker(f)) = Ker(f)}.
h— 0h

Proof. Let h € Aut(L,«y). Suppose that there is an automorphism 6, on (L', ay)
such that diagram (5) commute. Apply the functor uce,(—) to diagram (5), the
following commutative diagram holds:

(ucea (L), a5) 2 (ucen (L), o)

ucea((?h)i iucea(h)
uceq (f)

(uceq (L), ar7) — (uceq (L), ).

So ucey (h)(C) = ucey(h) o uce,(f)(Ker(Uy)) = uceq(f) o uceq(0r)(Ker(Uy))
= ucey(f)(Ker(Uy)) = C.
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Conversely, diagram (3) implies that U, = f o U, o uce,(f) ™1, so we have the
following diagram:
U0 o -1
s (ucea (L) @) D 1 ) T (Lay)
|
\
uceq (h) | On h
|

-1 Y
o (ucea(L), @) 2L o) (L, az).
If uce, (h)(C) = C, then Uy o ucey(f) ™1 o ucey (h)(C) = Uy o ucey(f)~1H(C) =
so there is a unique 0 : (L',ar/) — (L', ar/) satisfies 6, o Uy o uceq (f) ™1
Uy ouceq(f) L oucey(h).

On the other side, h o f o Uy o uces(f)™! = f o Uy oucen(f)™! ouceq(h) =
fobyoUy ouces(f)~ . Since (L',ar/) is an a-perfect Hom-preLie algebra and
uce,(f)~! is an isomorphism, we have ho f = f o 6. Moreover, ho f is an a-cover
since Ker(h o f) C Ker(f) C Z(L'). Hence, 6}, is uniquely by Lemma 4.18 in [13].
Finally, 0, (Ker(f)) = Ker(f). Indeed, we have f o6, (Ker(f)) = ho f(Ker(f)) = 0.
Conversely, for © € Ker(f), there exists a y € L’ such that © = 6,(y). Hence,
f(y) € Ker(h) = 0.

We know that © is well-defined, it is a monomorphism follows from the uniqueness
of 65,. © is an epimorphism, since any g € Aut(L’, ay ) with g(Ker(f)) = Ker(f),
gives rise to a unique homomorphism h : (L,ar) — (L, «r) satisfies ho f = fog.
Consequently, g = 0}, and uce, (h)(C) = C. O

0,

Corollary 3. Let (L,ay) be an a-perfect Hom-preLie algebra. Then there exists a
group isomorphism:

Aut(L,ar) — {g € Aut(uce, (L), @) : g(Ker(U,)) = Ker(Uy)}.

h — uce, (h)
Proof. By Theorem 4.3, U, : (uceo (L), @) — (L, ar) is an a-cover. Let C' = 0 and
uce,(f)(0) = 0 in Theorem 4.3. O

Theorem 4.4. Let f : (L',ap) — (L,ar) be an a-cover. Denote C' = ucey(f)
Ker(Uy) C Ker(U,). Then the following statements hold:

a) For any d € Der(L, ay,), there exists a 4 € Der(L’, o) such that the following
diagram is commutative

(L) an) —L= (L,ar)

5di id (6

(L', ap) —— (L,az)

if and only if the derivation uce,(d) of (uceq (L), @) satisfies uce,(d)(C) C C.
b) There exists an isomorphism of Hom-vector spaces
A :{d € Der(L,ar) : uce,(d)(C) C C} — {p € Der(L',ar/) : p(Ker(f)) C Ker(f)}.
d 5d

~

¢) Let Uy, : (uce, (L), ar) — (L,ar) be an a-cover. Then there exists an isomor-
phism of Hom-vector spaces

uce,, : Der(L,ar) — {§ € Der(uce, (L), ar) : §(Ker(Uy)) C Ker(U,)}-
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Proof. a) Let d € Der(L, a,). Suppose that there exists a 64 € Der(L', ay/) , which
makes diagram (6) commute. We have that the following diagram is commutative
thanks to Lemma 3.3.

(ucea (L), a5) 22 (ucen (L), o)

iucea(d)
uceq (f)

(uceo (L), ar) — (ucen (L), ar).

ucca(Ed)i

Hence, by diagram (4), we obtain uce,(d)(C) = uce,(d) o uceq(f)(Ker(Uy)) =
uceq(f) o uceq(da)(Ker(Uar)) € uceq(f)(Ker(Ua)) = C.
Conversely, we have that U, = f o Uy o uce,(f)~! follows from diagram (3),
hence we obtain the following diagram:
o o -1
s (ucea(L),) =D (1 ag) L (L)
|
|
uceq (h) | 6, h
|

-1 Y
o (ueea (L)) 22D 0y — L (La).

If uce,,(d)(C) C C, then Uy o uceq(f) ™! o uceq(d)(C) C Uy o uce,(f)~1H(C) = 0,

so there exists a unique 84 : (L', /) — (L', aps) such that §g 0 Uy o uceo (f) ™1 =

Uy ouceq(f) ™1 oucey(d).

On the other side, d o f o Uy ouceq(f) ™t =do U,y = Uy oucey(d) = foUy o
ucey (f) " toucen(d) = fodg0Uq ouces(f)~ L. Since (L', ars) is an a-perfect Hom-
preLie algebra and uce, (f)~! is an isomorphism, we have d o f = f o §4. Moreover,
do f is an a-cover since Ker(d o f) C Ker(f) C Z(L'). Hence, 4 is uniquely
determined by Lemma 4.2. At last, we have that d4 is a derivation of L’ a direct
verify.

b) It well known that the map A is a homomorphism of Hom-vector spaces, it is
a monomorphism thanks to the uniqueness of §4 and it is an epimorphism, since any
p € Der(L/, o) with p(Ker(f)) C Ker(f), gives rise to a unique homomorphism
d:(L,ar) — (L,ar) satisfies the following diagram

Ker(f) (L, ap) —— (L,az)
|
lp Id
¥ \
Ker(f) (L'yap) ——(L,ar)

is commutative, where d : (L, ar) — (L, ar) is a derivation such that uce,(d)(C) =
ucey (d) o uce, (f)(Ker(Uyr)) = ucey (f) o uceq (p)(Ker(Uy)) C uceq(f)(Ker(Uy ) =
C

¢) Let C' = uce,(Uy)(Ker(Uy,)) = 0 in statement b). O

5. Universal a-central extension of a semi-direct product. Now, we give a
split extension of a-perfect Hom-preLie algebras as follow

0——= (M, apn) s (G, aq) _%411> (Q,Idg) ——0.
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By Lemma 2.4, (G,aq) = (M, am) % (Q,Idg), where the Hom-action of (Q,Idg)
n (M, ayr) is given by ¢.m = s(g)t(m) and m.q = t(m)s(q), ¢ € Q,m € M.
Sometimes, it is necessary to assume that the previous action is associative, i.e.,
(mm).qg=m(m’'.q), g€ Q,m,m' € M.

If (M, aypy) is an a-perfect Hom-preLie algebra and @ is a Hom-prelie algebra
(Q,Idg). Then the direct product (G, ag) = (M, an) x (Q,1dg) = (M x Q, am X
Idg) satisfies the above situation. Applying the functorial properties of uceq(—)
given by diagram (3) and (Q,Idq) is perfect, we obtain that the following diagram

Ker(UM) Ker(U%) HLy(Q)

[e3

(uceq (M), @ar) —— (uceq(G), @) =—= (uce(Q), Idyee(q)

o
p

0 —— M, ay) —— (G,a6) ———= (Q,1dg) ——=0

is commutative. Here 7 = uceq(t), m = uceq(p), o = uce,(s). Since po s =1Idg, the
sequence

(ucea (M), @a1) — > (ucea(G), @) == (uee(Q), Muce(q))

is split. So uceq(p) o uceq(s) = uceqy(Idg), ie., mo o = Idye(g). Hence 7 is an
epimorphism and there is a Hom-action of (uce(Q), Idyce(g)) on (Ker(m), o) given
by:

A uce(Q) ® Ker(m) — Ker(w),

A{aq1, 2} ® {ag(91), ac(g2)})
={q1, 02} - {ac(g1), ac(92)} = o({q1,¢2})i({ac(91), ac(g2)})
={s(q1),s(q2) Hac(g1), ac(92)} = {s(q142), ac(9192)}

and p : Ker(m) ® uce(Q) — Ker(n),

r({ac(g1), ac(g2)} ® {q1,92})
={ac(91),ac(92)} - {q1, 2} = ({ac(91), ac(92)})o({a1, g2})
={aa(g1), ac(g2) Hs(qr), s(q2)} = {ac(9192), s(q1q2) }-

By Lemma 2.4, the split sequence

0 —— (Ker(m), @) —— (ucea(G),7G) == (uce(Q), yee(q)) — 0

is equivalent to the semi-direct product sequence, i.e.,
(uceq(G),ac) = (Ker( )s aGI) (uce(Q), Iduce(Q))
Let ¢ € Q and aps(my), apr(me) € ap(M). In (ucen(G), a@g), we have

{ac(s(q)), tlan(ma))t(an (m2))} = {s(q)t(an (m1)), ac(t(an(m2)))}
+ {ac(t(an(mi))), s(g)t(an (m2))} — {t(an (m1))s(q), ac(t(an (m2)))}
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and

{t(aar(m1))t(enr(m2)), ac(s(9))} = {ac(t(arm(m))), tan (ms))s(q)}
—{ac(t(an(m2))), tan(mi))s(q)} + {t(anr(m2))t(an (m1)), ac(s(q))}-

These above equalities and the a-perfection of (M, ) imply:

{s(Q), M} ={s01dg(Q), M} = {ag o s(Q), an(M)an (M)}
s@an M), o (an (M) H{ ac (o M)),s@ons M)}~ cnr (M) Q) v (ons (M) }
Clag(M),ag(M)} +{ag (M), ac(M)} —{ag(M), a,(M)}
S (M), opr (M)}
and
{M,s(Q)} ={anm (M)an (M), aq o s(Q)} € {ag(anm(M)), an (M)s(Q)}
C{am (M), an(M)}.
Futhermore,
(ucea (M), @x7) = ({aar(M), arr (M)}, ag) (7)
and
o(uce(Q)) = {s(Q),s(Q)} = {aa(s(Q)), ac(s(Q))}
) =

since ~{ans (m1), ans(m2)} = {Haar(m1)), s (m2))} = faar(my), ans(mz)}, and

o({q1,g2}) = {s(q1), s(a2)} = {ac(s(a1)), ac(s(g2))}-

Lemma 5.1. With the above notations, we have
(ucea (@), aq) = ({s(Q), s(Q)} + {an (M), ans (M)}, 0G). (8)
Proof. For any ag(g) € G, there exists an ap(m) € ap (M) such that ag(g) =
s(p(ac(9))) + anr(m). Hence
{ac(g1), ac(g2)} ={s(p(ac(g1))) + anr(mi), s(plac(gz))) + an(ms)}
={s(p(ac(g1))), s(p(ac(92)))} +{s(plac(91))), ar(m2)}
+ {on (ma), s(p(ac(g2)))} + {an(ma), an (ms)}
C{s(Q),s(Q)} + {s(Q), M} +{M, s(Q)} + {ans (M), ps (M)}
S{s(Q), s(@)} + {an (M), anr (M)}
Conversely,
{s(Q), s(@)} + {am (M), an (M)} € {ag(G), ac(G)} = ucea(G).
Hence, we prove the lemma. O
Proposition 5. With the above notations, we have
(Ker(m), agy) = {am (M), an (M)}, ag)) = 7(ucea (M), ar).
Proof. Let {g1, g2} € Ker(m). Then by Eq.(8), we have
{91,921 = {s(q1), s(q2)} + {aar(m1), anr(m2)} € ucea(G).

Hence 0 = 7m{g1, 92} = {p(s(q1)),p(s(q2))} + {p(ars(m1)), plan(m2))} = {aq1, ¢z},
ie, 1 ® q2 € Ig. So o{qi,q2} = {s(q1),s(q2)} = 0. Consequently, Ker(m) has
elements of the form {aps(my), apr(ma)}. It is easy to prove the reverse inclusion.
Eq.(7) gives a proof of the second equality. O
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Theorem 5.2. Consider a split extension of a-perfect Hom-preLie algebras
P
0—— (M,aM) s (G,Oz(;) S —— (Q,IdQ) —0.
S

Then the following statements hold
1) (ucea(G) aG) = T(ucea(M),aM) X U(uce(Q)vlduce(Q))'
2) (U.CB( ) Iduce(Q)) = (uce(Q)vIduce(Q))'
3) (Ker( o )aTG\) &= T(KEI‘(UO{W),W) 2] U(HLZ(Q)a Iduce(Q))‘

Proof. 1) and 2) Since 7 o o = Id, we have

(ucea( ) G) = (Ker(ﬂ)aﬁ) X a(uce(Q), Iduce(Q))'

Moreover, (uce(Q), Idyce(q)) = o(uce(Q), Idyce(g))- By proposition 5, 1) and 2) hold.
) Let (7(m),o(q)) € (ucea(G)7@) from 1), where m € (uceq (M), aps) and
(uce(Q)aIduce(Q)) So (r(m),0(q)) € Ker(US) < US(r(m),0(q)) = 0 &
tOUéW( ) = Ug(r(m)) = 0,5 0uq(q) = U (0(q)) = 0 & m € Ker(U3'),q €
HL(Q). O

Suppose that there is an associative Hom-action of (Q,Idg) on (M, apr), we have
a Hom-action of (uce(Q), Idyce(q)) on (uceq (M), ans) given by:
Az uce(Q) @ uce, (M) —uce, (M)
{a1, 2} {anm(mi), an(m2)—{aq1, g2}« {anr (ma), anr(m2)}
={(q12) » arr(ma), af(m2)}
—{anr(m1) . (%%)ﬂ?w(mﬂ}
+{ads(m1), (q1g2) - anr (m2)}
and
puces (M) ® uce(Q) —uce, (M)
{an(m1), an(ma)} @ {q1, g2} —{an(m1), an(ma)} {1, g2}
:{a?w(ml)vaM(mﬂ'((h(D)}'

When it is need, the Hom-action of (Q,Idg) on (M, ans) is uce-associative, i.e.,

{mm/,q} = {m,m' . q}.
So we define the following homomorphism of Hom-preLie algebras

T x 0@ (uceq (M), anr) @ (uce(Q), Idyce(g)) — (uceq(G),ag) =
T(uceq (M), anr) x o(uce(Q), Idyce(o))
({oas (ma),anr (ma)}Aa1,q28) =({E (eas (ma)) (s (m2))} 45 (q1)5(g2)}),

where the Hom-action of (Q,Idg) on (M, aar) is uce-associative.
We obtain that 7 x ¢ is an epimorphism since

(uceq (G), @) = 7(uceq (M), anr) X o(uce(Q), Idyee(q))-
Next we define a surjective homomorphism of Hom-prelLie algebras

:=(toUL )x(souq):(uceq (M)xuce(Q) @nrxldyce(q)) G aa)
({oaa(ma),cna(ma)} {q1 g2 }) ~t(anr(ma) ani(ms)),s(q1q2)),
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such that the following diagram

TXO

(ucea<M) A uce(Q%W X Iduce(Q)) (UCQQ(G),@)

T e - 9)

(Gv aG)
is commutative. We have that
uce(Q) « Ker(UM) @ Ker(UM) . uce(Q) € Ker(r) C Ker(UM).

Second inclusion holds since t o UM = U o 7 and t is injective. Since the following
diagram is commutative

(Ker(Uz)), onq) — — = (Ker(U3)), o)

-
-
-~
P
~
~

Ker (1 ——= (uceq (M), @ar) —— (uceo (G), ag)

LUgf iUf

(Mv aM) —t> (GaaG)7

US o 1(Ker(UM)) = t o UM (Ker(UM)) = 0, then 7(Ker(UM)) C Ker(US) C
Z(ucen(G)), so
7(uce(Q) « Ker(UM)) = o (uce(Q))7(Ker(UM)) = 0
and
7(Ker(UM) cuce(Q)) = 7(Ker(UM))o (uce(Q)) = 0.
Consequently, uce(Q) . Ker(UM) @ Ker(UM) . uce(Q) C Ker(7).
On the other side, we have that uce(Q).Ker(UM)@Ker(UM).uce(Q) is an ideal of

(uceq (M), aps). Then the Hom-action of (uce(Q), Idyce(g)) on (uceq (M), ans) gives
rise to a Hom-action of (uce(Q),Idg) on

.\ ucey, (M) T
(ucea(M),aM> = <uce(Q) .Ker(UM) @Ker(Ué”).uce(Q)yaM> .

Since 7 vanishes on uce(Q) . Ker(UM) @ Ker(UM) . uce(Q), it gives rise to 7 :
ucey (M) — T(uceo(M)). Put I = uce(Q) . Ker(UM) @ Ker(UM) . uce(Q), we have
the following diagram

(I, anr)

(uceq (M), anr) \ a (uceo (@), ag)

7(ucen (M), anr)
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We obtain the following commutative diagram:

1 T 0
Ker(7 x o p——— (uceq (M) x uce(Q), ans » Idyee(q)) % (uceq (G

| |

KLr(}Nu')>—> (ucea(M) X uce(Q), anr X Iduce(Q)) ~ ¥ o (ucen (G

whose bottom row is a central extension. Since (uce,(G),a@g) is an a-perfect Hom-
preLie algebra, by Theorem 4.19 in [13], it has a universal a-central extension. So
uce, (G) is centrally closed by Corollary 2, that is, uce(uce,(G)) = uce,(G). Hence,
we have the following diagram

(ucea(M) x uce(Q), ans Iduce(Q)) —\P» (uce, (G
I

H

(ucea(M) x uce(Q), aar X Iduw(Q)) l» (uceq (G

Since (uce, (G), @) is centrally closed and U is a central extension, Id : (ucea (G), @)
— (uceq (@), @) is a universal central extension. Then there is a unique homomor-

phism of Hom-preLie algebras u : (uceq(G),ag) — (ucea(M) X uce(Q),anr ¥ Idm(@)
satisfies Wopu = Id. Since WopuoW=IdoW=Wold and (ucea(M) x uce(Q),anr Idm(Q))
is a-perfect, then o ¥ = Id follows from Lemma 4.18 in [13]. Hence, ¥ is an iso-

Ker(tx0)
1

morphism, then Ker(¥) = = 0. Consequently, Ker(r x o) C I.
The above discussion can be summarized in:

Ker(1 x o) = uce(Q) « Ker(UM) @ Ker(UM) . uce(Q).
We can obtain the following theorem from the above results.

Theorem 5.3. Let the Hom-action of (Q,1dg) on (M, anr) be uce-associative and
the extension

p
0 —— (M, ans) —— (G, a6) === (Q,1dg) —0
split. Then the following conditions hold
1) The homomorphism of Hom-preLie algebras
O (uceq (M) x uce(Q), anr * Idyee(g)) — (G, aq)

defined by ®({ans(ma), anr(ma)} {q1,q2}) = (tlan(mi)on(ms)), s(q1g2)) is an
epimorphism whose kernel is Ker(UM) @ HLo(Q). Moreover, diagram (9) is com-
mutative.

2) Ker(1 x o) = uce(Q) « Ker(UM) @ Ker(UM) . uce(Q).
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Theorem 5.4. The following statements are equivalent:

a) ®:= (toUM) x (sougq) : (uceq (M) x uce(Q),ans x Idyee(q)) = (G, aq) is a
central extension. So it is an «-cover.

b) The Hom-action of (uce(Q), Idyce(q)) on (Ker(UA),any)) is trivial.

¢) T X o is an isomorphism. Hence uce, (M) x uce(Q) is the universal a-central
extension of (G, aq).

d) T is injective. In particular,

(uceq (M x Q),an x Idg) = (uceq (M) x uce(Q), @nr X Idyce(q))-

Proof. a) < b) If ® := (to UM) x (soug) : (uceq (M) x uce(Q), anr » Idyee(q)) —
(G,ag) is a central extension and Ker(®) = Ker(UM) & HL2(Q), then the Hom-
action of (uce(Q),Idyce(g)) on (Ker(UM),any)) is trivial. It is easy to prove the
converse. Furthermore, the Hom-action is trivial, we have (uce, (M) 3 uce(Q), @as ¥
Idyce(q)) is a-perfect. Consequently, the extension is an a-cover.

b) < ¢) By Theorem 5.3, we have that Ker(7x0) 2 uce(Q).Ker(UM)@Ker(UM).
uce(Q), then 7 o o is injective if and only if the Hom-action is trivial.

By diagram (9), we have that uce, (M) x uce(Q) is the universal a-central exten-
sion of (G, ag).

¢) < d) It suffices to verify that 7{ap(mq), apdma)}=(r o o) ({an(mi), ap(msa)},
0), since Ker(7)=Ker(7 o o). So the conclusion holds.

Since the Hom-action of (Q),Idg) on (M, aar) is trivial, the Hom-action of (uce(Q),
Idyce(q)) on (uceq (M), anr) is also trivial. Consequently, (uceq (M) x uce(Q),ans x
Idyce(q)) = (uceq (M) x uce(Q), @nr x Idyce(g)). The proof of the particular case is
completed by statement c). O
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