

ON THE UNIVERSAL α -CENTRAL EXTENSIONS OF THE SEMI-DIRECT PRODUCT OF HOM-PRELIE ALGEBRAS

BING SUN

School of Mathematics, Changchun Normal University
Changchun 130032, China

LIANGYUN CHEN*

School of Mathematics and Statistics, Northeast Normal University
Changchun 130024, China

YAN CAO

Department of Mathematics, Harbin University of Science and Technology
Harbin 150080, China

(Communicated by Qiang Mu)

ABSTRACT. We study Hom-actions, semidirect product and describe the relation between semi-direct product extensions and split extensions of Hom-preLie algebras. We obtain the functorial properties of the universal α -central extensions of α -perfect Hom-preLie algebras. We give that a derivation or an automorphism can be lifted in an α -cover with certain constraints. We provide some necessary and sufficient conditions about the universal α -central extension of the semi-direct product of two α -perfect Hom-preLie algebras.

1. Introduction. A Hom-preLie algebra was introduced by Makhlouf-Silvestrov [11]. Specifically, for a vector space L over a field \mathbb{K} equipped with a bilinear map $\mu : L \times L \rightarrow L$ and a linear map $\alpha : L \rightarrow L$, we say that the triple (L, μ, α) is a *Hom-preLie algebra* if

$$\alpha(x)(yz) - (xy)\alpha(z) = \alpha(y)(xz) - (yx)\alpha(z).$$

for all $x, y, z \in L$. If the elements of L also satisfy the following equation

$$(xy)\alpha(z) = (xz)\alpha(y).$$

Then we call (L, μ, α) is a Hom-Novikov algebra. Clearly, a Hom-Novikov algebra is a Hom-preLie algebra. Moreover, Hom-preLie algebras generalizes the notation of pre-Lie algebras ($\alpha = \text{Id}_L$), which has been extensively studied in the construction and Classification of Hom-Novikov algebras (Yau [14])etc. Since Hom-preLie

2020 *Mathematics Subject Classification.* Primary: 17A30; Secondary: 16E40.

Key words and phrases. Hom-preLie algebra, Hom-action, universal central extension, universal α -central extension.

Supported by the National Natural Science Foundation of China (Nos. 11901057, 11771069, 12071405 and 11801121), Natural Science Foundation of Changchun Normal University, Natural Science Foundation of Heilongjiang Province of China (QC2018006) and the Fundamental Research Foundation for Universities of Heilongjiang Province (No. LGYC2018JC002).

* Corresponding author: chenly640@nenu.edu.cn.

algebras are a kind of Hom-Lie admissible algebras, there are some close connections between Hom-preLie algebra and Hom-Lie algebra theories. For example, a derivation of a Hom-preLie algebra with respect to a Hom-representation is an α -derivation which is introduced in [12].

In recent year, the universal central extension of a perfect Leibniz algebra was studied in several articles [2, 6, 3, 1, 8, 9, 10]. In [4, 5, 7], authors study universal (α) -central extension.

In [13], we study universal α -central extensions of Hom-preLie algebras. We define Hom-co-representations and low-dimensional chain complex, which derive a low-dimensional homology \mathbb{K} -vector space of a Hom-preLie algebra. We construct a right exact covariant functor uce_α of a Hom-preLie algebra which acts on a α -perfect Hom-preLie algebra L its universal α -central extension $\text{uce}_\alpha(L) = \frac{\alpha_L(L) \otimes \alpha_L(L)}{I_L}$, where $I_L = \langle \alpha_L(x_1) \otimes x_2 x_3 - x_1 x_2 \otimes \alpha_L(x_3) - \alpha_L(x_2) \otimes x_1 x_3 + x_2 x_1 \otimes \alpha_L(x_3) \rangle$.

The purpose of this paper is to study the universal α -central extension of semi-direct product of two α -perfect Hom-preLie algebras. We introduce a Hom-action between two perfect Hom-preLie algebras (Q, Id_Q) and (M, α_M) , giving a semi-direct product between two perfect Hom-preLie algebras. We use an associative Hom-action of (Q, Id_Q) on (M, α_M) to induce a Hom-action of $(\text{uce}(Q), \text{Id}_{\text{uce}(Q)})$ on $(\text{uce}_\alpha(M), \overline{\alpha_M})$. We obtain semi-direct product $(\text{uce}_\alpha(M), \overline{\alpha_M}) \rtimes (\text{uce}(Q), \text{Id}_{\text{uce}(Q)})$ and define a linear map $\tau \rtimes \sigma$ on the semi-direct product. Casas and Pacheco Rego gave the linear map $\tau \rtimes \sigma$ is a homomorphism of Hom-leibniz algebras in [5]. We add a condition that Hom-action of (Q, Id_Q) on (M, α_M) is uce -associative, that is, $\{mm', q\} = \{m, m' \cdot q\} \forall m, m' \in M, q \in Q$. We also obtain a linear map $\tau \rtimes \sigma$ is a homomorphism of Hom-preLie algebras. We give a couple of necessary and sufficient conditions for the universal α -central extension of semi-direct product of two α -perfect Hom-preLie algebras by the above results.

The paper is organized as follows. Section 2 a preliminary section which contains Hom-actions and semidirect product of Hom-preLie algebras. We describe the relation between the semi-direct product extension and split extensions of Hom-preLie algebras. In section 3 we analyzing the functorial properties of the universal (α) -central extensions of (α) -perfect Hom-preLie algebras. In section 4 we obtain that an automorphism or a derivation can be lifted in an α -cover with certain constraints. In the final section we give some necessary and sufficient conditions about the universal α -central extension of the semi-direct product of two α -perfect Hom-preLie algebras.

Throughout this paper \mathbb{K} denotes an arbitrary field.

2. Hom-action.

Definition 2.1. Let (M, α_M) and (L, α_L) be Hom-preLie algebras. A Hom-action of (L, α_L) over (M, α_M) consists of two bilinear maps, $\rho : M \otimes L \rightarrow M$, $\rho(m \otimes l) = m \cdot l$ and $\lambda : L \otimes M \rightarrow M$, $\lambda(l \otimes m) = l \cdot m$, the following identities hold.

- a) $(xy) \cdot \alpha_M(m) - \alpha_L(x) \cdot (y \cdot m) = (yx) \cdot \alpha_M(m) - \alpha_L(y) \cdot (x \cdot m)$,
- b) $(m \cdot x) \cdot \alpha_L(y) - \alpha_M(m) \cdot (xy) = (x \cdot m) \cdot \alpha_L(y) - \alpha_L(x) \cdot (m \cdot y)$,
- c) $(mm') \cdot \alpha_L(x) - \alpha_M(m)(m' \cdot x) = (m'm) \cdot \alpha_L(x) - \alpha_M(m')(m \cdot x)$,
- d) $(x \cdot m)\alpha_M(m') - \alpha_L(x) \cdot (mm') = (m \cdot x)\alpha_M(m') - \alpha_M(m)(x \cdot m')$,
- e) $\alpha_M(x \cdot m) = \alpha_L(x) \cdot \alpha_M(m)$,
- f) $\alpha_M(m \cdot x) = \alpha_M(m) \cdot \alpha_L(x)$,

for all $x, y \in L$ and $m, m' \in M$.

If (M, α_M) is an abelian Hom-preLie algebra, then the Hom-action is said to be a Hom-representation.

Example 1. a) Let (K, α_K) be a subalgebra of a Hom-preLie algebra (L, α_L) and (H, α_H) a Hom-ideal of (L, α_L) . There is a Hom-action of (K, α_K) over (H, α_H) by the multiplication in (L, α_L) .

b) Let $0 \rightarrow (M, \alpha_M) \xrightarrow{i} (K, \alpha_K) \xrightarrow{\pi} (L, \alpha_L) \rightarrow 0$ is an exact sequence of Hom-Lie algebras. If (M, α_M) is an abelian Hom-preLie algebra, then we call the sequence is abelian. An abelian sequence gives a Hom-representation of (L, α_L) over (M, α_M) by defining $\rho : M \otimes L \rightarrow M, \rho(m, l) = mk, \pi(k) = l, \lambda : L \otimes M \rightarrow M, \lambda(l, m) = km, \pi(k) = l$.

Proposition 1. Let (M, α_M) and (L, α_L) be Hom-preLie algebras with a Hom-action of (L, α_L) over (M, α_M) . Then $(M \rtimes L, \tilde{\alpha})$ is a Hom-preLie algebra, where $\tilde{\alpha} : M \rtimes L \rightarrow M \rtimes L$ is defined by $\tilde{\alpha}(m, l) = (\alpha_M(m), \alpha_L(l))$ and multiplication

$$(m_1, l_1)(m_2, l_2) = (m_1m_2 + \alpha_L(l_1) \cdot m_2 + m_1 \cdot \alpha_L(l_2), l_1l_2).$$

Proof. It follows by the direct computation. \square

Definition 2.2. [13] A short exact sequence of Hom-preLie algebras $(K) : 0 \rightarrow (M, \alpha_M) \xrightarrow{i} (K, \alpha_K) \xrightarrow{\pi} (L, \alpha_L) \rightarrow 0$ is said to be split if there exists a Hom-preLie algebra homomorphism $\sigma : (L, \alpha_L) \rightarrow (K, \alpha_K)$ such that $\pi \circ \sigma = \text{Id}_L$.

Let (M, α_M) and (L, α_L) be Hom-preLie algebras with a Hom-action of (L, α_L) over (M, α_M) . We define two linear maps $i : M \rightarrow M \rtimes L, i(m) = (m, 0)$ and $\pi : M \rtimes L \rightarrow L, \pi(m, l) = l$. Then we obtain the following sequence

$$0 \rightarrow (M, \alpha_M) \xrightarrow{i} (M \rtimes L, \tilde{\alpha}) \xrightarrow{\pi} (L, \alpha_L) \rightarrow 0.$$

Furthermore, this sequence splits by $\sigma : L \rightarrow M \rtimes L, \sigma(l) = (0, l)$.

Definition 2.3. Let (M, α_M) and (L, α_L) be Hom-preLie algebras with a Hom-action of (L, α_L) over (M, α_M) . Two extensions of (L, α_L) by (M, α_M) , $0 \rightarrow (M, \alpha_M) \xrightarrow{i} (K, \alpha_K) \xrightarrow{\pi} (L, \alpha_L) \rightarrow 0$ and $0 \rightarrow (M, \alpha_M) \xrightarrow{i'} (K', \alpha_{K'}) \xrightarrow{\pi'} (L, \alpha_L) \rightarrow 0$, are equivalent if there is a homomorphism of Hom-preLie algebra $\varphi : (K, \alpha_K) \rightarrow (K', \alpha'_{K'})$ satisfies that the following commutative diagram

$$\begin{array}{ccccccc} 0 & \longrightarrow & (M, \alpha_M) & \xrightarrow{i} & (K, \alpha_K) & \xrightarrow{\pi} & (L, \alpha_L) \longrightarrow 0 \\ & & \parallel & & \downarrow \varphi & & \parallel \\ 0 & \longrightarrow & (M, \alpha_M) & \xrightarrow{i'} & (K', \alpha'_{K'}) & \xrightarrow{\pi'} & (L, \alpha_L) \longrightarrow 0. \end{array}$$

Lemma 2.4. Let (C, Id_C) and (A, α_A) be Hom-preLie algebras with a Hom-action of (C, Id_C) over (A, α_A) . A sequence of Hom-preLie algebras $0 \rightarrow (A, \alpha_A) \xrightarrow{i} (B, \alpha_B) \xrightarrow{\pi} (C, \text{Id}_C) \rightarrow 0$ is split if and only if it is equivalent to the semi-direct sequence $0 \rightarrow (A, \alpha_A) \xrightarrow{j} (A \rtimes C, \tilde{\alpha}) \xrightarrow{p} (C, \text{Id}_C) \rightarrow 0$.

Proof. If $0 \rightarrow (A, \alpha_A) \xrightarrow{i} (B, \alpha_B) \xrightarrow{\pi} (C, \text{Id}_C) \rightarrow 0$ is split by $t : (C, \text{Id}_C) \rightarrow (B, \alpha_B)$, then the Hom-action of (C, Id_C) over (A, α_A) is defined by

$$c \cdot a = t(c)i(a); \quad a \cdot c = i(a)t(c).$$

So we obtain the following split extension:

$$0 \longrightarrow (A, \alpha_A) \xrightarrow{k} (A \rtimes C, \tilde{\alpha}) \xrightleftharpoons[\tau]{q} (C, \text{Id}_C) \longrightarrow 0,$$

where $k : A \rightarrow A \rtimes C, k(a) = (a, 0), p : A \rtimes C \rightarrow C, p(a, c) = c$ and $\tau : C \rightarrow A \rtimes C, \tau(c) = (0, c)$. Furthermore the Hom-action of (C, Id_C) over (A, α_A) induced by this extension coincides with the initial one:

$$c \bullet a = \sigma(c)j(a) = (0, c)(a, 0) = (0a + \text{Id}_C(c) \cdot a + 0 \cdot 0, c0) \equiv c \bullet a.$$

Since $\varphi : (A \rtimes C, \tilde{\alpha}) \rightarrow (B, \alpha_B), \varphi(a, c) = i(a) + s(c)$ is a homomorphism of Hom-preLie algebras such that the following diagram commutative

$$\begin{array}{ccccccc} 0 & \longrightarrow & (A, \alpha_A) & \xrightarrow{j} & (A \rtimes C, \tilde{\alpha}) & \xrightleftharpoons[\sigma]{p} & (C, \text{Id}_C) \longrightarrow 0 \\ & & \parallel & & \downarrow \varphi & & \parallel \\ 0 & \longrightarrow & (A, \alpha_A) & \xrightarrow{i} & (B, \alpha_B) & \xrightleftharpoons[s]{\pi} & (C, \text{Id}_C) \longrightarrow 0, \end{array} \quad (1)$$

the extensions are equivalent.

Suppose that two extensions are equivalent, that is, there is a homomorphism of Hom-preLie algebras $\varphi : (A \rtimes C, \tilde{\alpha}) \rightarrow (B, \alpha_B)$ such that diagram (1) is commutative, then $t : (C, \text{Id}_C) \rightarrow (B, \alpha_B)$ given by $t(c) = \varphi(0, c)$, is a split extension. \square

Definition 2.5. [12] Let (M, α_M) be a Hom-representation of a Hom-preLie algebra (L, α_L) . A derivation of (L, α_L) over (M, α_M) is a \mathbb{K} -linear map $d : L \rightarrow M$ such that:

- a) $d(l_1 l_2) = \alpha_L(l_1) \bullet d(l_2) + d(l_1) \bullet \alpha_L(l_2),$
- b) $d \circ \alpha_L = \alpha_M \circ d,$

for all $l_1, l_2 \in L$.

Example 2. a) Let (M, α_M) be a Hom-representation of $(M \rtimes L, \tilde{\alpha})$ via π . Then the linear map $\theta : M \rtimes L \rightarrow M, \theta(m, l) = m$, is a derivation.

b) When $(M, \alpha_M) = (L, \alpha_L)$ is a representation follows from Example 1 a), then a derivation consists of a \mathbb{K} -linear map $d : L \rightarrow L$ such that $d(l_1 l_2) = \alpha_L(l_1)d(l_2) + d(l_1)\alpha_L(l_2)$ and $d \circ \alpha_L = \alpha_M \circ d$.

Proposition 2. Let (M, α_M) be a Hom-representation of a Hom-preLie algebra (L, α_L) . For every f -derivation $d : (X, \alpha_X) \rightarrow (M, \alpha_M)$ ($d(x_1 x_2) = d(x_1) \bullet \alpha_L(f(x_2)) + \alpha_L(f(x_1)) \bullet d(x_2) \forall x_1, x_2 \in X$) and every homomorphism of Hom-preLie algebras $f : (X, \alpha_X) \rightarrow (L, \alpha_L)$ there is a unique homomorphism of Hom-preLie algebras $h : (X, \alpha_X) \rightarrow (M \rtimes L, \tilde{\alpha})$, such that the following diagram commute.

$$\begin{array}{ccccc} & & (X, \alpha_X) & & \\ & \swarrow d & \downarrow h & \searrow f & \\ (M, \alpha_M) & \xrightleftharpoons[\theta]{i} & (M \rtimes L, \tilde{\alpha}) & \xrightleftharpoons{\pi} & (L, \alpha_L) \end{array}$$

Conversely, every homomorphism of Hom-preLie algebras $h : (X, \alpha_X) \rightarrow (M \rtimes L, \tilde{\alpha})$, decide a homomorphism of Hom-preLie algebras $f = \pi \circ h : (X, \alpha_X) \rightarrow (L, \alpha_L)$ and f -derivation $d = \theta \circ h : (X, \alpha_X) \rightarrow (M, \alpha_M)$, where $\theta(m, l) = x, \forall m \in M, l \in L$.

Proof. Let $h : X \rightarrow M \rtimes L, h(x) = (d(x), f(x))$ be a homomorphism. Then the homomorphism h satisfies all the conditions. \square

Corollary 1. *The set of all derivations from (L, α_L) to (M, α_M) is in one-to-one correspondence with the set of Hom-preLie algebra homomorphisms $h : (L, \alpha_L) \rightarrow (M \rtimes L, \tilde{\alpha})$, such that $\iota\pi \circ h = \text{Id}_L$.*

Proof. Take $(X, \alpha_X) = (L, \alpha_L)$ in Proposition 2. \square

3. Functorial properties.

Definition 3.1. Let (L, α_L) be a perfect Hom-preLie algebra. It is said to be centrally closed if its universal central extension is

$$0 \rightarrow 0 \rightarrow (L, \alpha_L) \xrightarrow{\sim} (L, \alpha_L) \rightarrow 0,$$

i.e., $HL_2^\alpha(L) = 0$ and $(\text{uce}(L), \tilde{\alpha}) \cong (L, \alpha_L)$.

Corollary 2. *Let (L, α_L) be a α -perfect Hom-preLie algebra. If $0 \rightarrow (\text{Ker}(U_\alpha), \alpha_{K|}) \rightarrow (K, \alpha_K) \xrightarrow{U_\alpha} (L, \alpha_L) \rightarrow 0$ is the universal α -central extension of (L, α_L) , then (L, α_L) is centrally closed.*

Proof. $HL_1^\alpha(K) = HL_2^\alpha(K) = 0$ thanks to Corollary 4.12 a) in [13]. By the proof of Corollary 4.12 b) in [13], $HL_1^\alpha(K) = 0$ if and only if (K, α_K) is perfect. By Theorem 4.11 c) in [13], there exists a universal central extension $0 \rightarrow (HL_2^\alpha(K), \tilde{\alpha}|) \rightarrow (\text{uce}(K), \tilde{\alpha}) \xrightarrow{u_K} (K, \alpha_K) \rightarrow 0$. Since $HL_2^\alpha(K) = 0$, u_K is an isomorphism. \square

Definition 3.2. A Hom-preLie algebra (L, α_L) is said to be simply connected if every central extension $\tau : (F, \alpha_F) \rightarrow (L, \alpha_L)$ splits uniquely as the product of Hom-preLie algebras $(F, \alpha_F) = (\text{Ker}(\tau), \alpha_{F|}) \times (L, \alpha_L)$.

Proposition 3. *Let (L, α_L) be a perfect Hom-preLie algebra. Then the following conditions are equivalent:*

- a) (L, α_L) is simply connected.
- b) (L, α_L) is centrally closed.

Proof. a) \Rightarrow b) Let $0 \rightarrow (HL_2^\alpha(L), \tilde{\alpha}|) \rightarrow (\text{uce}(L), \tilde{\alpha}) \xrightarrow{u_L} (L, \alpha_L) \rightarrow 0$ be the universal central extension of (L, α_L) , then it is split. Consequently $\text{uce}(L) \cong L$ and $HL_2^\alpha(L) = 0$.

b) \Rightarrow a) Let $0 \rightarrow 0 \rightarrow (L, \alpha_L) \xrightarrow{\sim} (L, \alpha_L) \rightarrow 0$ be a universal central extension of (L, α_L) . So every central extension splits uniquely follows from the universal property. \square

Proposition 4. *Let (L, α_L) be a perfect Hom-preLie algebra. If $\mu : (L, \alpha_L) \twoheadrightarrow (M, \alpha_M)$ is a central extension, then the following statements hold.*

- a) Proposition 3 a) implies that $\mu : (L, \alpha_L) \twoheadrightarrow (M, \alpha_M)$ is a universal central extension.
- b) If $\mu : (L, \alpha_L) \twoheadrightarrow (M, \alpha_M)$ is a universal α -central extension, then statements a) and b) hold in Proposition 3.

Proof. a) It follows from Theorem 4.11 b) in [13] that if (L, α_L) is perfect and every central extension splits, then $\mu : (L, \alpha_L) \twoheadrightarrow (M, \alpha_M)$ is a universal central extension. Note that every central extension of (L, α_L) splits by the simply connectivity and (L, α_L) is perfect by hypothesis. Then $\mu : (L, \alpha_L) \twoheadrightarrow (M, \alpha_M)$ is universal.

b) It follows from Lemma 4.10 in [13] that the composition of two central extensions is an α -central extension. Consider a central extension $0 \rightarrow (N, \alpha_N) \xrightarrow{j} (A, \alpha_A) \xrightarrow{\rho} (L, \alpha_L) \rightarrow 0$. Let (L, α_L) be perfect and $\mu : (L, \alpha_L) \twoheadrightarrow (M, \alpha_M)$ be

a central extension. Note that $0 \rightarrow \text{Ker}(\mu \circ \rho) \rightarrow (A, \alpha_A) \xrightarrow{\mu \circ \rho} (M, \alpha_M) \rightarrow 0$ is an α -central extension. Since $\mu : (L, \alpha_L) \twoheadrightarrow (M, \alpha_M)$ is a universal α -central extension, there exists a unique homomorphism of Hom-preLie algebras φ such that $\mu \circ \rho \circ \varphi = \mu$. By Lemma 4.7 in [13], we have $\rho \circ \varphi = \text{Id}$. So (L, α_L) is simply connected, that is, it is centrally closed. \square

Let $f : (L', \alpha_{L'}) \rightarrow (L, \alpha_L)$ be a homomorphism of perfect Hom-preLie algebras. It induces a linear map $f \otimes f : L' \otimes L' \rightarrow L \otimes L$ given by $(f \otimes f)(x_1 \otimes x_2) = f(x_1) \otimes f(x_2)$, which maps $I_{L'}$ to I_L . So $f \otimes f$ induces a homomorphism of Hom-preLie algebras $\text{uce}(f) : \text{uce}(L') \rightarrow \text{uce}(L)$, given by $\text{uce}(f)\{x_1, x_2\} = \{f(x_1), f(x_2)\}$. From the above conditions, the following diagram commutes.

$$\begin{array}{ccc}
 \text{HL}_2^\alpha(L') & & \text{HL}_2^\alpha(L) \\
 \downarrow & & \downarrow \\
 (\text{uce}(L'), \tilde{\alpha}') & \xrightarrow{\text{uce}(f)} & (\text{uce}(L), \tilde{\alpha}) \\
 \downarrow u_{L'} & & \downarrow u_L \\
 (L', \alpha_{L'}) & \xrightarrow{f} & (L, \alpha_L)
 \end{array} \tag{2}$$

From diagram (2), there exists a covariant right exact functor $\text{uce} : \text{Hom-preLie}^{\text{perf}} \rightarrow \text{Hom-preLie}^{\text{perf}}$ between the category of perfect Hom-preLie algebras. So an automorphism f of (L, α_L) induces an automorphism $\text{uce}(f)$ of $(\text{uce}(L), \tilde{\alpha})$. $\text{uce}(f)$ leaves $\text{HL}_2^\alpha(L)$ invariant since diagram (2) is commutative. Consequently, we obtain the Hom-group homomorphism

$$\begin{aligned}
 \text{Aut}(L, \alpha_L) &\rightarrow \{g \in \text{Aut}(\text{uce}(L), \tilde{\alpha}) : g(\text{HL}_2^\alpha(L)) = \text{HL}_2^\alpha(L)\}. \\
 f &\mapsto \text{uce}(f)
 \end{aligned}$$

Similar to the above discussion, we also obtain the functorial properties of α -perfect Hom-preLie algebras. In other words, consider a homomorphism of α -perfect Hom-preLie algebras $f : (L', \alpha_{L'}) \rightarrow (L, \alpha_L)$. Let I_L the vector subspace of $\alpha_L(L) \otimes \alpha_L(L)$ spanned by $\alpha_L(x_1) \otimes x_2 x_3 - x_1 x_2 \otimes \alpha_L(x_3) - \alpha_L(x_2) \otimes x_1 x_3 + x_2 x_1 \otimes \alpha_L(x_3)$, $x_1, x_2, x_3 \in L$, respectively $I_{L'}$. f induces a linear map $f \otimes f : (\alpha_{L'}(L') \otimes \alpha_{L'}(L'), \alpha_{L'} \otimes L') \rightarrow (\alpha_L(L) \otimes \alpha_L(L), \alpha_L \otimes L)$, given by $f \otimes f(\alpha_{L'}(x'_1) \otimes \alpha_{L'}(x'_2)) = \alpha_L(f(x'_1)) \otimes \alpha_L(f(x'_2))$ such that $f \otimes f(I_{L'}) \subseteq I_L$. Hence, it induces a homomorphism of Hom-preLie algebras $\text{uce}_\alpha(f) : (\text{uce}_\alpha(L'), \overline{\alpha}') \rightarrow (\text{uce}_\alpha(L), \overline{\alpha})$ given by $\text{uce}_\alpha(f)\{\alpha_{L'}(x'_1), \alpha_{L'}(x'_2)\} = \{\alpha_L(f(x'_1)), \alpha_L(f(x'_2))\}$ such that the following diagram

$$\begin{array}{ccc}
 \text{Ker}(U_{\alpha'}) & & \text{Ker}(U_\alpha) \\
 \downarrow & & \downarrow \\
 (\text{uce}_\alpha(L'), \overline{\alpha}') & \xrightarrow{\text{uce}_\alpha(f)} & (\text{uce}_\alpha(L), \overline{\alpha}) \\
 \downarrow U_{\alpha'} & & \downarrow U_\alpha \\
 (L', \alpha_{L'}) & \xrightarrow{f} & (L, \alpha_L)
 \end{array} \tag{3}$$

is commutative.

From diagram (3), there exists a covariant right exact functor $\text{uce}_\alpha : \text{Hom-preLie}^{\alpha\text{-perf}} \rightarrow \text{Hom-preLie}^{\alpha\text{-perf}}$ between the category of α -perfect Hom-preLie

algebras. So an automorphism f of (L, α_L) induces an automorphism $\text{uce}_\alpha(f)$ of $(\text{uce}_\alpha(L), \bar{\alpha})$. $\text{uce}_\alpha(f)$ leaves $\text{Ker}(U_\alpha)$ invariant since diagram (3) is commutative. So we obtain the Hom-group homomorphism

$$\begin{aligned} \text{Aut}(L, \alpha_L) &\rightarrow \{g \in \text{Aut}(\text{uce}_\alpha(L), \bar{\alpha}) : g(\text{Ker}(U_\alpha)) = \text{Ker}(U_\alpha)\} \\ f &\mapsto \text{uce}_\alpha(f) \end{aligned}$$

Next we consider a derivation d of the α -perfect Hom-preLie algebra (L, α_L) . The linear map $d : \alpha_L(L) \otimes \alpha_L(L) \rightarrow \alpha_L(L) \otimes \alpha_L(L)$ given by $d(\alpha_L(x_1) \otimes \alpha_L(x_2)) = d(\alpha_L(x_1)) \otimes \alpha_L^2(x_2) + \alpha_L^2(x_1) \otimes d(\alpha_L(x_2))$, keeps invariant the subspace I_L of $\alpha_L(L) \otimes \alpha_L(L)$ spanned by $\alpha_L(x_1) \otimes x_2 x_3 - x_1 x_2 \otimes \alpha_L(x_3) - \alpha_L(x_2) \otimes x_1 x_3 + x_2 x_1 \otimes \alpha_L(x_3)$, $x_1, x_2, x_3 \in L$. Indeed,

$$\begin{aligned} &d(\alpha_L(x_1) \otimes x_2 x_3 - x_1 x_2 \otimes \alpha_L(x_3) - \alpha_L(x_2) \otimes x_1 x_3 + x_2 x_1 \otimes \alpha_L(x_3)) \\ &= d(\alpha_L(x_1)) \otimes \alpha_L(x_2 x_3) + \alpha_L^2(x_1) \otimes d(x_2 x_3) - d(x_1 x_2) \otimes \alpha_L^2(x_3) - \alpha_L(x_1 x_2) \otimes d(\alpha_L(x_3)) \\ &\quad - d(\alpha_L(x_2)) \otimes \alpha_L(x_1 x_3) - \alpha_L^2(x_2) \otimes d(x_1 x_3) + d(x_2 x_1) \otimes \alpha_L^2(x_3) + \alpha_L(x_2 x_1) \otimes d(\alpha_L(x_3)) \\ &= \alpha_L(d(x_1)) \otimes \alpha_L(x_2) \alpha_L(x_3) + \alpha_L^2(x_1) \otimes d(x_2) \alpha_L(x_3) + \alpha_L^2(x_1) \otimes \alpha_L(x_2) d(x_3) \\ &\quad - d(x_1) \alpha_L(x_2) \otimes \alpha_L^2(x_3) - \alpha_L(x_1) d(x_2) \otimes \alpha_L^2(x_3) - \alpha_L(x_1) \alpha_L(x_2) \otimes \alpha_L(d(x_3)) \\ &\quad - \alpha_L(d(x_2)) \otimes \alpha_L(x_1) \alpha_L(x_3) - \alpha_L^2(x_2) \otimes d(x_1) \alpha_L(x_3) - \alpha_L^2(x_2) \otimes \alpha_L(x_1) d(x_3) \\ &\quad + d(x_2) \alpha_L(x_1) \otimes \alpha_L^2(x_3) + \alpha_L(x_2) d(x_1) \otimes \alpha_L^2(x_3) + \alpha_L(x_2) \alpha_L(x_1) \otimes \alpha_L(d(x_3)) \\ &\in I_L. \end{aligned}$$

So it induces a linear map $\text{uce}_\alpha(d) : (\text{uce}_\alpha(L), \bar{\alpha}) \rightarrow (\text{uce}_\alpha(L), \bar{\alpha})$, given by

$$\text{uce}_\alpha(d)(\{\alpha_L(x_1), \alpha_L(x_1)\}) = \{d(\alpha_L(x_1)), \alpha_L^2(x_2)\} + \{\alpha_L^2(x_1), d(\alpha_L(x_2))\},$$

such that the following diagram

$$\begin{array}{ccc} (\text{uce}_\alpha(L), \bar{\alpha}) & \xrightarrow{\text{uce}_\alpha(d)} & (\text{uce}_\alpha(L), \bar{\alpha}) \\ \downarrow U_\alpha & & \downarrow U_\alpha \\ (L, \alpha_L) & \xrightarrow{d} & (L, \alpha_L) \end{array} \quad (4)$$

is commutative. Hence, a derivation d of (L, α_L) induces a derivation $\text{uce}_\alpha(d)$ of $(\text{uce}_\alpha(L), \bar{\alpha})$. $\text{uce}_\alpha(d)$ maps $\text{Ker}(U_\alpha)$ on itself since diagram (4) is commutative. Consequently, we obtain the homomorphism of Hom- \mathbb{K} -vector spaces

$$\begin{aligned} \text{uce}_\alpha : \text{Der}(L, \alpha_L) &\rightarrow \{\delta \in \text{Der}(\text{uce}_\alpha(L), \bar{\alpha}) : \delta(\text{Ker}(U_\alpha)) \subseteq \text{Ker}(U_\alpha)\} \\ d &\mapsto \text{uce}_\alpha(d), \end{aligned}$$

Lemma 3.3. *Let $f : (L', \alpha_{L'}) \rightarrow (L, \alpha_L)$ be a homomorphism of α -perfect Hom-preLie algebras. If $d, d' \in \text{Der}(L)$ satisfies $f \circ d' = d \circ f$, then $\text{uce}_\alpha(f) \circ \text{uce}_\alpha(d') = \text{uce}_\alpha(d) \circ \text{uce}_\alpha(f)$.*

Proof. For any $x'_1, x'_2 \in L'$, we have

$$\begin{aligned} &\text{uce}_\alpha(f) \circ \text{uce}_\alpha(d')(\{\alpha_{L'}(x_1), \alpha_{L'}(x_2)\}) \\ &= \text{uce}_\alpha(f)(\{d'(\alpha_{L'}(x_1)), \alpha_{L'}^2(x_2)\} + \{\alpha_{L'}^2(x_1), d'(\alpha_{L'}(x_2))\}) \\ &= \{\alpha_{L'}(d(f(x_1))), \alpha_{L'}^2(f(x_2))\} + \{\alpha_{L'}^2(f(x_1)), \alpha_{L'}(d(f(x_2)))\}. \end{aligned}$$

On the other hand

$$\begin{aligned}
& \mathbf{uce}_\alpha(d) \circ \mathbf{uce}_\alpha(f)(\{\alpha_{L'}(x_1), \alpha_{L'}(x_2)\}) \\
&= \mathbf{uce}_\alpha(d)(\{\alpha_{L'}(f(x_1)), \alpha_{L'}(f(x_2))\}) \\
&= \{\alpha_{L'}(d(f(x_1))), \alpha_{L'}^2(f(x_2))\} + \{\alpha_{L'}^2(f(x_1)), \alpha_{L'}(d(f(x_2)))\}.
\end{aligned}$$

Hence we prove the lemma. \square

4. Lifting automorphisms and derivations.

Definition 4.1. Let $(L', \alpha_{L'})$ be a Hom-preLie algebra. A central extension of Hom-preLie algebras $f : (L', \alpha_{L'}) \twoheadrightarrow (L, \alpha_L)$ is said to be an α -cover if $(L', \alpha_{L'})$ is α -perfect.

Lemma 4.2. Let $f : (L', \alpha_{L'}) \rightarrow (L, \alpha_L)$ be a surjective homomorphism of Hom-preLie algebras. If $(L', \alpha_{L'})$ is α -perfect, then (L, α_L) is also α -perfect.

Proof. Routine checking. \square

Let $f : (L', \alpha_{L'}) \twoheadrightarrow (L, \alpha_L)$ be an α -cover. By Lemma 4.2, (L, α_L) is an α -perfect Hom-preLie algebra. By Theorem 4.19 in [13], it has a universal α -central extension. By means of diagram (3), we obtain the following diagram:

$$\begin{array}{ccc}
\text{Ker}(U_{\alpha'}) & & \text{Ker}(U_\alpha) \\
\downarrow & & \downarrow \\
(\mathbf{uce}_{\alpha'}(L'), \bar{\alpha}') & \xrightarrow{\mathbf{uce}_{\alpha'}(f)} & (\mathbf{uce}_\alpha(L), \bar{\alpha}) \\
\downarrow U_{\alpha'} & & \downarrow U_\alpha \\
(L', \alpha_{L'}) & \xrightarrow{f} & (L, \alpha_L)
\end{array}$$

By Remark 4.4 in [13], $U_{\alpha'} : (\mathbf{uce}_{\alpha'}(L'), \bar{\alpha}') \twoheadrightarrow (L', \alpha_{L'})$ is a universal central extension. Since $f : (L', \alpha_{L'}) \twoheadrightarrow (L, \alpha_L)$ is a central extension and $U_{\alpha'} : (\mathbf{uce}_{\alpha'}(L'), \bar{\alpha}') \twoheadrightarrow (L', \alpha_{L'})$ is a universal central extension, by Proposition 4.15 a) in [13], the extension $f \circ U_{\alpha'} : (\mathbf{uce}_{\alpha'}(L'), \bar{\alpha}') \rightarrow (L, \alpha_L)$ is α -central which is universal in the sense of Definition 4.13 in [13].

In addition, since $U_\alpha : (\mathbf{uce}_\alpha(L), \bar{\alpha}) \twoheadrightarrow (L, \alpha_L)$ is a universal α -central extension, there is a unique homomorphism $\varphi : (\mathbf{uce}_\alpha(L), \bar{\alpha}) \rightarrow (\mathbf{uce}_{\alpha'}(L'), \bar{\alpha}')$ satisfies $f \circ U_{\alpha'} \circ \varphi = U_\alpha$. So we have

$$f \circ U_{\alpha'} \circ \varphi \circ \mathbf{uce}_\alpha(f) = U_\alpha \circ \mathbf{uce}_\alpha(f) = f \circ U_{\alpha'},$$

that is to say the following diagram

$$\begin{array}{ccccccc}
0 & \longrightarrow & (\text{Ker}(f \circ U_{\alpha'}), \bar{\alpha}') & \longrightarrow & (\mathbf{uce}_{\alpha'}(L'), \bar{\alpha}') & \xrightarrow{f \circ U_{\alpha'}} & (L, \alpha_L) \longrightarrow 0 \\
& & \varphi \circ \mathbf{uce}_\alpha(f) \downarrow \text{Id} & & & & \parallel \\
0 & \longrightarrow & (\text{Ker}(f \circ U_{\alpha'}), \bar{\alpha}') & \longrightarrow & (\mathbf{uce}_{\alpha'}(L'), \bar{\alpha}') & \xrightarrow{f \circ U_{\alpha'}} & (L, \alpha_L) \longrightarrow 0
\end{array}$$

is commutative. Since $f \circ U_{\alpha'}$ is an α -central extension which is universal in the sense of Definition 4.13 in [13], we have $\varphi \circ \mathbf{uce}_\alpha(f) = \text{Id}$.

Conversely, $\text{uce}_\alpha(f) \circ \varphi = \text{Id}$ since the following diagram commute.

$$\begin{array}{ccccccc} 0 & \longrightarrow & (\text{Ker}(U_\alpha), \bar{\alpha}|) & \longrightarrow & (\text{uce}_\alpha(L), \bar{\alpha}) & \xrightarrow{U_\alpha} & (L, \alpha_L) \longrightarrow 0 \\ & & \text{uce}_\alpha(f) \circ \varphi \downarrow \downarrow \text{Id} & & & & \parallel \\ 0 & \longrightarrow & (\text{Ker}(U_\alpha), \bar{\alpha}|) & \longrightarrow & (\text{uce}_\alpha(L), \bar{\alpha}) & \xrightarrow{U_\alpha} & (L, \alpha_L) \longrightarrow 0 \end{array}$$

whose horizontal rows are central extensions and $(\text{uce}_\alpha(L), \bar{\alpha})$ is α -perfect, the uniqueness of the vertical homomorphism is guaranteed by Lemma 4.18 in [13]. Consequently $\text{uce}_\alpha(f)$ is an isomorphism and we will denote the notation $\text{uce}_\alpha(f)^{-1}$ by φ .

Moreover, $U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1} : (\text{uce}_\alpha(L), \bar{\alpha}) \rightarrow (L', \alpha_{L'})$ is an α -cover. In the sequel, we will denote its kernel by

$$C := \text{Ker}(U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1}) = \text{uce}_\alpha(f)(\text{Ker}(U_{\alpha'})).$$

In fact, for any $x \in \text{Ker}(U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1})$, we have $U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1}(x) = 0$. Hence $x \in \text{uce}_\alpha(f)(\text{Ker}(U_{\alpha'}))$.

Conversely, for any $x \in \text{uce}_\alpha(f)(\text{Ker}(U_{\alpha'}))$, there exists a $y \in \text{Ker}(U_{\alpha'})$ such that $x = \text{uce}_\alpha(f)(y)$. So $U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1}(x) = U_{\alpha'}(y) = 0$.

Theorem 4.3. *Let $f : (L', \alpha_{L'}) \rightarrow (L, \alpha_L)$ be an α -cover. For any automorphism h on (L, α_L) , there is a unique $\theta_h \in \text{Aut}(L', \alpha'_{L'})$ such that the following diagram is commutative:*

$$\begin{array}{ccc} (L', \alpha_{L'}) & \xrightarrow{f} & (L, \alpha_L) \\ \theta_h \downarrow & & \downarrow h \\ (L', \alpha_{L'}) & \xrightarrow{f} & (L, \alpha_L) \end{array} \quad (5)$$

if and only if the automorphism $\text{uce}_\alpha(h)$ of $(\text{uce}_\alpha(L), \bar{\alpha})$ such that $\text{uce}_\alpha(h)(C) = C$. Furthermore, we obtain a group isomorphism:

$$\begin{aligned} \Theta : \{h \in \text{Aut}(L, \alpha_L) : \text{uce}_\alpha(h)(C) = C\} &\rightarrow \{g \in \text{Aut}(L', \alpha'_{L'}) : g(\text{Ker}(f)) = \text{Ker}(f)\}. \\ h &\mapsto \theta_h \end{aligned}$$

Proof. Let $h \in \text{Aut}(L, \alpha_L)$. Suppose that there is an automorphism θ_h on $(L', \alpha_{L'})$ such that diagram (5) commute. Apply the functor $\text{uce}_\alpha(-)$ to diagram (5), the following commutative diagram holds:

$$\begin{array}{ccc} (\text{uce}_\alpha(L'), \bar{\alpha}_{L'}) & \xrightarrow{\text{uce}_\alpha(f)} & (\text{uce}_\alpha(L), \bar{\alpha}_L) \\ \text{uce}_\alpha(\theta_h) \downarrow & & \downarrow \text{uce}_\alpha(h) \\ (\text{uce}_\alpha(L'), \bar{\alpha}_{L'}) & \xrightarrow{\text{uce}_\alpha(f)} & (\text{uce}_\alpha(L), \bar{\alpha}_L). \end{array}$$

So $\text{uce}_\alpha(h)(C) = \text{uce}_\alpha(h) \circ \text{uce}_\alpha(f)(\text{Ker}(U_{\alpha'})) = \text{uce}_\alpha(f) \circ \text{uce}_\alpha(\theta_h)(\text{Ker}(U_{\alpha'})) = \text{uce}_\alpha(f)(\text{Ker}(U_{\alpha'})) = C$.

Conversely, diagram (3) implies that $U_\alpha = f \circ U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1}$, so we have the following diagram:

$$\begin{array}{ccccccc}
 C & \xrightarrow{\quad} & (\text{uce}_\alpha(L), \bar{\alpha}) & \xrightarrow{U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1}} & (L', \alpha_{L'}) & \xrightarrow{f} & (L, \alpha_L) \\
 \downarrow & & \downarrow \text{uce}_\alpha(h) & & \downarrow \theta_h & & \downarrow h \\
 C & \xrightarrow{\quad} & (\text{uce}_\alpha(L), \bar{\alpha}) & \xrightarrow{U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1}} & (L', \alpha_{L'}) & \xrightarrow{f} & (L, \alpha_L).
 \end{array}$$

If $\text{uce}_\alpha(h)(C) = C$, then $U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1} \circ \text{uce}_\alpha(h)(C) = U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1}(C) = 0$, so there is a unique $\theta_h : (L', \alpha_{L'}) \rightarrow (L', \alpha_{L'})$ satisfies $\theta_h \circ U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1} = U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1} \circ \text{uce}_\alpha(h)$.

On the other side, $h \circ f \circ U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1} = f \circ U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1} \circ \text{uce}_\alpha(h) = f \circ \theta_h \circ U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1}$. Since $(L', \alpha_{L'})$ is an α -perfect Hom-preLie algebra and $\text{uce}_\alpha(f)^{-1}$ is an isomorphism, we have $h \circ f = f \circ \theta_h$. Moreover, $h \circ f$ is an α -cover since $\text{Ker}(h \circ f) \subseteq \text{Ker}(f) \subseteq Z(L')$. Hence, θ_h is uniquely by Lemma 4.18 in [13]. Finally, $\theta_h(\text{Ker}(f)) = \text{Ker}(f)$. Indeed, we have $f \circ \theta_h(\text{Ker}(f)) = h \circ f(\text{Ker}(f)) = 0$. Conversely, for $x \in \text{Ker}(f)$, there exists a $y \in L'$ such that $x = \theta_h(y)$. Hence, $f(y) \in \text{Ker}(h) = 0$.

We know that Θ is well-defined, it is a monomorphism follows from the uniqueness of θ_h . Θ is an epimorphism, since any $g \in \text{Aut}(L', \alpha_{L'})$ with $g(\text{Ker}(f)) = \text{Ker}(f)$, gives rise to a unique homomorphism $h : (L, \alpha_L) \rightarrow (L, \alpha_L)$ satisfies $h \circ f = f \circ g$. Consequently, $g = \theta_h$ and $\text{uce}_\alpha(h)(C) = C$. \square

Corollary 3. *Let (L, α_L) be an α -perfect Hom-preLie algebra. Then there exists a group isomorphism:*

$$\begin{aligned}
 \text{Aut}(L, \alpha_L) &\rightarrow \{g \in \text{Aut}(\text{uce}_\alpha(L), \bar{\alpha}) : g(\text{Ker}(U_\alpha)) = \text{Ker}(U_\alpha)\}. \\
 h &\mapsto \text{uce}_\alpha(h)
 \end{aligned}$$

Proof. By Theorem 4.3, $U_\alpha : (\text{uce}_\alpha(L), \bar{\alpha}) \rightarrow (L, \alpha_L)$ is an α -cover. Let $C = 0$ and $\text{uce}_\alpha(f)(0) = 0$ in Theorem 4.3. \square

Theorem 4.4. *Let $f : (L', \alpha_{L'}) \rightarrow (L, \alpha_L)$ be an α -cover. Denote $C = \text{uce}_\alpha(f)$ $\text{Ker}(U_{\alpha'}) \subseteq \text{Ker}(U_\alpha)$. Then the following statements hold:*

a) For any $d \in \text{Der}(L, \alpha_L)$, there exists a $\delta_d \in \text{Der}(L', \alpha_{L'})$ such that the following diagram is commutative

$$\begin{array}{ccc}
 (L', \alpha_{L'}) & \xrightarrow{f} & (L, \alpha_L) \\
 \delta_d \downarrow & & \downarrow d \\
 (L', \alpha_{L'}) & \xrightarrow{f} & (L, \alpha_L)
 \end{array} \tag{6}$$

if and only if the derivation $\text{uce}_\alpha(d)$ of $(\text{uce}_\alpha(L), \bar{\alpha}_L)$ satisfies $\text{uce}_\alpha(d)(C) \subseteq C$.

b) There exists an isomorphism of Hom-vector spaces

$$\begin{aligned}
 \Delta : \{d \in \text{Der}(L, \alpha_L) : \text{uce}_\alpha(d)(C) \subseteq C\} &\rightarrow \{\rho \in \text{Der}(L', \alpha_{L'}) : \rho(\text{Ker}(f)) \subseteq \text{Ker}(f)\}. \\
 d &\mapsto \delta_d
 \end{aligned}$$

c) Let $U_\alpha : (\text{uce}_\alpha(L), \bar{\alpha}_L) \rightarrow (L, \alpha_L)$ be an α -cover. Then there exists an isomorphism of Hom-vector spaces

$$\text{uce}_\alpha : \text{Der}(L, \alpha_L) \rightarrow \{\delta \in \text{Der}(\text{uce}_\alpha(L), \bar{\alpha}_L) : \delta(\text{Ker}(U_\alpha)) \subseteq \text{Ker}(U_\alpha)\}.$$

Proof. a) Let $d \in \text{Der}(L, \alpha_L)$. Suppose that there exists a $\delta_d \in \text{Der}(L', \alpha_{L'})$, which makes diagram (6) commute. We have that the following diagram is commutative thanks to Lemma 3.3.

$$\begin{array}{ccc} (\text{uce}_\alpha(L'), \overline{\alpha_{L'}}) & \xrightarrow{\text{uce}_\alpha(f)} & (\text{uce}_\alpha(L), \overline{\alpha_L}) \\ \text{uce}_\alpha(\delta_d) \downarrow & & \downarrow \text{uce}_\alpha(d) \\ (\text{uce}_\alpha(L'), \overline{\alpha_{L'}}) & \xrightarrow{\text{uce}_\alpha(f)} & (\text{uce}_\alpha(L), \overline{\alpha_L}). \end{array}$$

Hence, by diagram (4), we obtain $\text{uce}_\alpha(d)(C) = \text{uce}_\alpha(d) \circ \text{uce}_\alpha(f)(\text{Ker}(U_{\alpha'})) = \text{uce}_\alpha(f) \circ \text{uce}_\alpha(\delta_d)(\text{Ker}(U_{\alpha'})) \subseteq \text{uce}_\alpha(f)(\text{Ker}(U_{\alpha'})) = C$.

Conversely, we have that $U_\alpha = f \circ U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1}$ follows from diagram (3), hence we obtain the following diagram:

$$\begin{array}{ccccccc} C & \longrightarrow & (\text{uce}_\alpha(L), \overline{\alpha}) & \xrightarrow{U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1}} & (L', \alpha_{L'}) & \xrightarrow{f} & (L, \alpha_L) \\ \downarrow & & \downarrow \text{uce}_\alpha(h) & & \downarrow \theta_h & & \downarrow h \\ C & \longrightarrow & (\text{uce}_\alpha(L), \overline{\alpha}) & \xrightarrow{U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1}} & (L', \alpha_{L'}) & \xrightarrow{f} & (L, \alpha_L). \end{array}$$

If $\text{uce}_\alpha(d)(C) \subseteq C$, then $U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1} \circ \text{uce}_\alpha(d)(C) \subseteq U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1}(C) = 0$, so there exists a unique $\delta_d : (L', \alpha_{L'}) \rightarrow (L', \alpha_{L'})$ such that $\delta_d \circ U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1} = U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1} \circ \text{uce}_\alpha(d)$.

On the other side, $d \circ f \circ U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1} = d \circ U_\alpha = U_\alpha \circ \text{uce}_\alpha(d) = f \circ U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1} \circ \text{uce}_\alpha(d) = f \circ \delta_d \circ U_{\alpha'} \circ \text{uce}_\alpha(f)^{-1}$. Since $(L', \alpha_{L'})$ is an α -perfect Hom-preLie algebra and $\text{uce}_\alpha(f)^{-1}$ is an isomorphism, we have $d \circ f = f \circ \delta_d$. Moreover, $d \circ f$ is an α -cover since $\text{Ker}(d \circ f) \subseteq \text{Ker}(f) \subseteq Z(L')$. Hence, δ_d is uniquely determined by Lemma 4.2. At last, we have that δ_d is a derivation of L' a direct verify.

b) It well known that the map Δ is a homomorphism of Hom-vector spaces, it is a monomorphism thanks to the uniqueness of δ_d and it is an epimorphism, since any $\rho \in \text{Der}(L', \alpha_{L'})$ with $\rho(\text{Ker}(f)) \subseteq \text{Ker}(f)$, gives rise to a unique homomorphism $d : (L, \alpha_L) \rightarrow (L, \alpha_L)$ satisfies the following diagram

$$\begin{array}{ccc} \text{Ker}(f) & \longrightarrow & (L', \alpha_{L'}) & \xrightarrow{f} & (L, \alpha_L) \\ \downarrow & & \downarrow \rho & & \downarrow d \\ \text{Ker}(f) & \longrightarrow & (L', \alpha_{L'}) & \xrightarrow{f} & (L, \alpha_L) \end{array}$$

is commutative, where $d : (L, \alpha_L) \rightarrow (L, \alpha_L)$ is a derivation such that $\text{uce}_\alpha(d)(C) = \text{uce}_\alpha(d) \circ \text{uce}_\alpha(f)(\text{Ker}(U_{\alpha'})) = \text{uce}_\alpha(f) \circ \text{uce}_\alpha(\rho)(\text{Ker}(U_{\alpha'})) \subseteq \text{uce}_\alpha(f)(\text{Ker}(U_{\alpha'})) = C$.

c) Let $C = \text{uce}_\alpha(U_\alpha)(\text{Ker}(U_\alpha)) = 0$ in statement b). \square

5. Universal α -central extension of a semi-direct product. Now, we give a split extension of α -perfect Hom-preLie algebras as follow

$$0 \longrightarrow (M, \alpha_M) \xrightarrow{t} (G, \alpha_G) \xleftarrow[s]{p} (Q, \text{Id}_Q) \longrightarrow 0.$$

By Lemma 2.4, $(G, \alpha_G) \cong (M, \alpha_M) \rtimes (Q, \text{Id}_Q)$, where the Hom-action of (Q, Id_Q) on (M, α_M) is given by $q \cdot m = s(q)t(m)$ and $m \cdot q = t(m)s(q)$, $q \in Q, m \in M$. Sometimes, it is necessary to assume that the previous action is associative, i.e., $(mm') \cdot q = m(m' \cdot q)$, $q \in Q, m, m' \in M$.

If (M, α_M) is an α -perfect Hom-preLie algebra and Q is a Hom-preLie algebra (Q, Id_Q) . Then the direct product $(G, \alpha_G) = (M, \alpha_M) \times (Q, \text{Id}_Q) = (M \times Q, \alpha_M \times \text{Id}_Q)$ satisfies the above situation. Applying the functorial properties of $\text{uce}_\alpha(-)$ given by diagram (3) and (Q, Id_Q) is perfect, we obtain that the following diagram

$$\begin{array}{ccccc}
 \text{Ker}(U_\alpha^M) & & \text{Ker}(U_\alpha^G) & & \text{HL}_2(Q) \\
 \downarrow & & \downarrow & & \downarrow \\
 (\text{uce}_\alpha(M), \overline{\alpha_M}) & \xrightarrow{\tau} & (\text{uce}_\alpha(G), \overline{\alpha_G}) & \xrightleftharpoons[\sigma]{\pi} & (\text{uce}(Q), \text{Id}_{\text{uce}(Q)}) \\
 \downarrow U_\alpha^M & & \downarrow U_\alpha^G & & \downarrow u_Q \\
 0 & \longrightarrow & (M, \alpha_M) & \xrightarrow{t} & (G, \alpha_G) & \xrightleftharpoons[s]{p} & (Q, \text{Id}_Q) & \longrightarrow & 0
 \end{array}$$

is commutative. Here $\tau = \text{uce}_\alpha(t)$, $\pi = \text{uce}_\alpha(p)$, $\sigma = \text{uce}_\alpha(s)$. Since $p \circ s = \text{Id}_Q$, the sequence

$$(\text{uce}_\alpha(M), \overline{\alpha_M}) \xrightarrow{\tau} (\text{uce}_\alpha(G), \overline{\alpha_G}) \xrightleftharpoons[\sigma]{\pi} (\text{uce}(Q), \text{Id}_{\text{uce}(Q)})$$

is split. So $\text{uce}_\alpha(p) \circ \text{uce}_\alpha(s) = \text{uce}_\alpha(\text{Id}_Q)$, i.e., $\pi \circ \sigma = \text{Id}_{\text{uce}(Q)}$. Hence π is an epimorphism and there is a Hom-action of $(\text{uce}(Q), \text{Id}_{\text{uce}(Q)})$ on $(\text{Ker}(\pi), \alpha_{G|})$ given by:

$$\lambda : \text{uce}(Q) \otimes \text{Ker}(\pi) \rightarrow \text{Ker}(\pi),$$

$$\begin{aligned}
 & \lambda(\{q_1, q_2\} \otimes \{\alpha_G(g_1), \alpha_G(g_2)\}) \\
 &= \{q_1, q_2\} \cdot \{\alpha_G(g_1), \alpha_G(g_2)\} = \sigma(\{q_1, q_2\})i(\{\alpha_G(g_1), \alpha_G(g_2)\}) \\
 &= \{s(q_1), s(q_2)\}\{\alpha_G(g_1), \alpha_G(g_2)\} = \{s(q_1q_2), \alpha_G(g_1g_2)\}
 \end{aligned}$$

and $\rho : \text{Ker}(\pi) \otimes \text{uce}(Q) \rightarrow \text{Ker}(\pi)$,

$$\begin{aligned}
 & \rho(\{\alpha_G(g_1), \alpha_G(g_2)\} \otimes \{q_1, q_2\}) \\
 &= \{\alpha_G(g_1), \alpha_G(g_2)\} \cdot \{q_1, q_2\} = (\{\alpha_G(g_1), \alpha_G(g_2)\})\sigma(\{q_1, q_2\}) \\
 &= \{\alpha_G(g_1), \alpha_G(g_2)\}\{s(q_1), s(q_2)\} = \{\alpha_G(g_1g_2), s(q_1q_2)\}.
 \end{aligned}$$

By Lemma 2.4, the split sequence

$$0 \longrightarrow (\text{Ker}(\pi), \overline{\alpha_{G|}}) \xrightarrow{i} (\text{uce}_\alpha(G), \overline{\alpha_G}) \xrightleftharpoons[\sigma]{\pi} (\text{uce}(Q), \text{Id}_{\text{uce}(Q)}) \longrightarrow 0$$

is equivalent to the semi-direct product sequence, i.e.,

$$(\text{uce}_\alpha(G), \overline{\alpha_G}) \cong (\text{Ker}(\pi), \overline{\alpha_{G|}}) \rtimes (\text{uce}(Q), \text{Id}_{\text{uce}(Q)}).$$

Let $q \in Q$ and $\alpha_M(m_1), \alpha_M(m_2) \in \alpha_M(M)$. In $(\text{uce}_\alpha(G), \overline{\alpha_G})$, we have

$$\begin{aligned}
 & \{\alpha_G(s(q)), t(\alpha_M(m_1))t(\alpha_M(m_2))\} = \{s(q)t(\alpha_M(m_1)), \alpha_G(t(\alpha_M(m_2)))\} \\
 &+ \{\alpha_G(t(\alpha_M(m_1))), s(q)t(\alpha_M(m_2))\} - \{t(\alpha_M(m_1))s(q), \alpha_G(t(\alpha_M(m_2)))\}
 \end{aligned}$$

and

$$\begin{aligned} & \{t(\alpha_M(m_1))t(\alpha_M(m_2)), \alpha_G(s(q))\} = \{\alpha_G(t(\alpha_M(m_1))), t(\alpha_M(m_2))s(q)\} \\ & - \{\alpha_G(t(\alpha_M(m_2))), t(\alpha_M(m_1))s(q)\} + \{t(\alpha_M(m_2))t(\alpha_M(m_1)), \alpha_G(s(q))\}. \end{aligned}$$

These above equalities and the α -perfection of (M, α_M) imply:

$$\begin{aligned} \{s(Q), M\} &= \{s \circ \text{Id}_Q(Q), M\} = \{\alpha_G \circ s(Q), \alpha_M(M)\alpha_M(M)\} \\ &\subseteq \{s(Q)\alpha_M(M), \alpha_G(\alpha_M(M))\} + \{\alpha_G(\alpha_M(M)), s(Q)\alpha_M(M)\} - \{\alpha_M(M)s(Q), \alpha_G(\alpha_M(M))\} \\ &\subseteq \{\alpha_G(M), \alpha_G^2(M)\} + \{\alpha_G^2(M), \alpha_G(M)\} - \{\alpha_G(M), \alpha_G^2(M)\} \\ &\subseteq \{\alpha_M(M), \alpha_M(M)\} \end{aligned}$$

and

$$\begin{aligned} \{M, s(Q)\} &= \{\alpha_M(M)\alpha_M(M), \alpha_G \circ s(Q)\} \subseteq \{\alpha_G(\alpha_M(M)), \alpha_M(M)s(Q)\} \\ &\subseteq \{\alpha_M(M), \alpha_M(M)\}. \end{aligned}$$

Furthermore,

$$\tau(\mathbf{ucc}_\alpha(M), \overline{\alpha_M}) \equiv (\{\alpha_M(M), \alpha_M(M)\}, \alpha_{G|}) \quad (7)$$

and

$$\sigma(\mathbf{ucc}(Q)) = \{s(Q), s(Q)\} = \{\alpha_G(s(Q)), \alpha_G(s(Q))\}$$

since $\tau\{\alpha_M(m_1), \alpha_M(m_2)\} = \{t(\alpha_M(m_1)), t(\alpha_M(m_2))\} \equiv \{\alpha_M(m_1), \alpha_M(m_2)\}$, and $\sigma(\{q_1, q_2\}) = \{s(q_1), s(q_2)\} = \{\alpha_G(s(q_1)), \alpha_G(s(q_2))\}$.

Lemma 5.1. *With the above notations, we have*

$$(\mathbf{ucc}_\alpha(G), \overline{\alpha_G}) = (\{s(Q), s(Q)\} + \{\alpha_M(M), \alpha_M(M)\}, \overline{\alpha_G}). \quad (8)$$

Proof. For any $\alpha_G(g) \in G$, there exists an $\alpha_M(m) \in \alpha_M(M)$ such that $\alpha_G(g) = s(p(\alpha_G(g))) + \alpha_M(m)$. Hence

$$\begin{aligned} \{\alpha_G(g_1), \alpha_G(g_2)\} &= \{s(p(\alpha_G(g_1))) + \alpha_M(m_1), s(p(\alpha_G(g_2))) + \alpha_M(m_2)\} \\ &= \{s(p(\alpha_G(g_1))), s(p(\alpha_G(g_2)))\} + \{s(p(\alpha_G(g_1))), \alpha_M(m_2)\} \\ &\quad + \{\alpha_M(m_1), s(p(\alpha_G(g_2)))\} + \{\alpha_M(m_1), \alpha_M(m_2)\} \\ &\subseteq \{s(Q), s(Q)\} + \{s(Q), M\} + \{M, s(Q)\} + \{\alpha_M(M), \alpha_M(M)\} \\ &\subseteq \{s(Q), s(Q)\} + \{\alpha_M(M), \alpha_M(M)\}. \end{aligned}$$

Conversely,

$$\{s(Q), s(Q)\} + \{\alpha_M(M), \alpha_M(M)\} \subseteq \{\alpha_G(G), \alpha_G(G)\} = \mathbf{ucc}_\alpha(G).$$

Hence, we prove the lemma. \square

Proposition 5. *With the above notations, we have*

$$(\text{Ker}(\pi), \overline{\alpha_{G|}}) = (\{\alpha_M(M), \alpha_M(M)\}, \overline{\alpha_{G|}}) = \tau(\mathbf{ucc}_\alpha(M), \overline{\alpha_M}).$$

Proof. Let $\{g_1, g_2\} \in \text{Ker}(\pi)$. Then by Eq.(8), we have

$$\{g_1, g_2\} = \{s(q_1), s(q_2)\} + \{\alpha_M(m_1), \alpha_M(m_2)\} \in \mathbf{ucc}_\alpha(G).$$

Hence $0 = \pi\{g_1, g_2\} = \{p(s(q_1)), p(s(q_2))\} + \{p(\alpha_M(m_1)), p(\alpha_M(m_2))\} = \{q_1, q_2\}$, i.e., $q_1 \otimes q_2 \in I_Q$. So $\sigma\{q_1, q_2\} = \{s(q_1), s(q_2)\} = 0$. Consequently, $\text{Ker}(\pi)$ has elements of the form $\{\alpha_M(m_1), \alpha_M(m_2)\}$. It is easy to prove the reverse inclusion. Eq.(7) gives a proof of the second equality. \square

Theorem 5.2. Consider a split extension of α -perfect Hom-preLie algebras

$$0 \longrightarrow (M, \alpha_M) \xrightarrow{t} (G, \alpha_G) \xrightleftharpoons[s]{p} (Q, \text{Id}_Q) \longrightarrow 0.$$

Then the following statements hold

- 1) $(\text{uce}_\alpha(G), \alpha_G) = \tau(\text{uce}_\alpha(M), \alpha_M) \rtimes \sigma(\text{uce}(Q), \text{Id}_{\text{uce}(Q)})$.
- 2) $\sigma(\text{uce}(Q), \text{Id}_{\text{uce}(Q)}) \cong (\text{uce}(Q), \text{Id}_{\text{uce}(Q)})$.
- 3) $(\text{Ker}(U_\alpha^G), \overline{\alpha_G}) \cong \tau(\text{Ker}(U_\alpha^M), \overline{\alpha_M}) \oplus \sigma(HL_2(Q), \text{Id}_{\text{uce}(Q)})$.

Proof. 1) and 2) Since $\pi \circ \sigma = \text{Id}$, we have

$$(\text{uce}_\alpha(G), \alpha_G) = (\text{Ker}(\pi), \overline{\alpha_G}) \rtimes \sigma(\text{uce}(Q), \text{Id}_{\text{uce}(Q)}).$$

Moreover, $(\text{uce}(Q), \text{Id}_{\text{uce}(Q)}) \cong \sigma(\text{uce}(Q), \text{Id}_{\text{uce}(Q)})$. By proposition 5, 1) and 2) hold.

3) Let $(\tau(m), \sigma(q)) \in (\text{uce}_\alpha(G), \overline{\alpha_G})$ from 1), where $m \in (\text{uce}_\alpha(M), \alpha_M)$ and $q \in (\text{uce}(Q), \text{Id}_{\text{uce}(Q)})$. So $(\tau(m), \sigma(q)) \in \text{Ker}(U_\alpha^G) \Leftrightarrow U_\alpha^G(\tau(m), \sigma(q)) = 0 \Leftrightarrow t \circ U_\alpha^M(m) = U_\alpha^G(\tau(m)) = 0, s \circ u_Q(q) = U_\alpha^G(\sigma(q)) = 0 \Leftrightarrow m \in \text{Ker}(U_\alpha^M), q \in HL_2(Q)$. \square

Suppose that there is an associative Hom-action of (Q, Id_Q) on (M, α_M) , we have a Hom-action of $(\text{uce}(Q), \text{Id}_{\text{uce}(Q)})$ on $(\text{uce}_\alpha(M), \alpha_M)$ given by:

$$\begin{aligned} \lambda : \text{uce}(Q) \otimes \text{uce}_\alpha(M) &\rightarrow \text{uce}_\alpha(M) \\ \{q_1, q_2\} \otimes \{\alpha_M(m_1), \alpha_M(m_2)\} &\mapsto \{q_1, q_2\} \bullet \{\alpha_M(m_1), \alpha_M(m_2)\} \\ &= \{(q_1 q_2) \bullet \alpha_M(m_1), \alpha_M^2(m_2)\} \\ &\quad - \{\alpha_M(m_1) \bullet (q_1 q_2), \alpha_M^2(m_2)\} \\ &\quad + \{\alpha_M^2(m_1), (q_1 q_2) \bullet \alpha_M(m_2)\} \end{aligned}$$

and

$$\begin{aligned} \rho : \text{uce}_\alpha(M) \otimes \text{uce}(Q) &\rightarrow \text{uce}_\alpha(M) \\ \{\alpha_M(m_1), \alpha_M(m_2)\} \otimes \{q_1, q_2\} &\mapsto \{\alpha_M(m_1), \alpha_M(m_2)\} \bullet \{q_1, q_2\} \\ &= \{\alpha_M^2(m_1), \alpha_M(m_2) \bullet (q_1 q_2)\}. \end{aligned}$$

When it is need, the Hom-action of (Q, Id_Q) on (M, α_M) is uce -associative, i.e., $\{mm', q\} = \{m, m' \bullet q\}$.

So we define the following homomorphism of Hom-preLie algebras

$$\begin{aligned} \tau \rtimes \sigma : (\text{uce}_\alpha(M), \overline{\alpha_M}) \rtimes (\text{uce}(Q), \text{Id}_{\text{uce}(Q)}) &\rightarrow (\text{uce}_\alpha(G), \overline{\alpha_G}) \cong \\ &\quad \tau(\text{uce}_\alpha(M), \alpha_M) \rtimes \sigma(\text{uce}(Q), \text{Id}_{\text{uce}(Q)}) \\ (\{\alpha_M(m_1), \alpha_M(m_2)\}, \{q_1, q_2\}) &\mapsto (\{t(\alpha_M(m_1)), t(\alpha_M(m_2))\}, \{s(q_1), s(q_2)\}), \end{aligned}$$

where the Hom-action of (Q, Id_Q) on (M, α_M) is uce -associative.

We obtain that $\tau \rtimes \sigma$ is an epimorphism since

$$(\text{uce}_\alpha(G), \overline{\alpha_G}) \cong \tau(\text{uce}_\alpha(M), \alpha_M) \rtimes \sigma(\text{uce}(Q), \text{Id}_{\text{uce}(Q)}).$$

Next we define a surjective homomorphism of Hom-preLie algebras

$$\begin{aligned} \Phi := (t \circ U_\alpha^M) \rtimes (s \circ u_Q) : (\text{uce}_\alpha(M) \rtimes \text{uce}(Q), \overline{\alpha_M} \rtimes \text{Id}_{\text{uce}(Q)}) &\rightarrow (G, \alpha_G) \\ (\{\alpha_M(m_1), \alpha_M(m_2)\}, \{q_1, q_2\}) &\mapsto (t(\alpha_M(m_1) \alpha_M(m_2)), s(q_1 q_2)), \end{aligned}$$

such that the following diagram

$$\begin{array}{ccc}
 (\mathbf{uce}_\alpha(M) \rtimes \mathbf{uce}(Q), \overline{\alpha_M}) \rtimes \text{Id}_{\mathbf{uce}(Q)} & \xrightarrow{\tau \rtimes \sigma} & (\mathbf{uce}_\alpha(G), \overline{\alpha_G}) \\
 \Phi \dashrightarrow & & \swarrow U_\alpha^G \\
 & & (G, \alpha_G)
 \end{array} \tag{9}$$

is commutative. We have that

$$\mathbf{uce}(Q) \cdot \text{Ker}(U_\alpha^M) \oplus \text{Ker}(U_\alpha^M) \cdot \mathbf{uce}(Q) \subseteq \text{Ker}(\tau) \subseteq \text{Ker}(U_\alpha^M).$$

Second inclusion holds since $t \circ U_\alpha^M = U_\alpha^G \circ \tau$ and t is injective. Since the following diagram is commutative

$$\begin{array}{ccccc}
 & (\text{Ker}(U_\alpha^M), \overline{\alpha_M}) & \dashrightarrow & (\text{Ker}(U_\alpha^M), \overline{\alpha_G}) & \\
 & \downarrow & & \downarrow & \\
 \text{Ker}(\tau) & \dashrightarrow & (\mathbf{uce}_\alpha(M), \overline{\alpha_M}) & \xrightarrow{\tau} & (\mathbf{uce}_\alpha(G), \overline{\alpha_G}) \\
 & \downarrow U_\alpha^M & & \downarrow U_\alpha^G & \\
 & (M, \alpha_M) & \xrightarrow{t} & (G, \alpha_G) &
 \end{array}$$

$U_\alpha^G \circ \tau(\text{Ker}(U_\alpha^M)) = t \circ U_\alpha^M(\text{Ker}(U_\alpha^M)) = 0$, then $\tau(\text{Ker}(U_\alpha^M)) \subseteq \text{Ker}(U_\alpha^G) \subseteq Z(\mathbf{uce}_\alpha(G))$, so

$$\tau(\mathbf{uce}(Q) \cdot \text{Ker}(U_\alpha^M)) = \sigma(\mathbf{uce}(Q))\tau(\text{Ker}(U_\alpha^M)) = 0$$

and

$$\tau(\text{Ker}(U_\alpha^M) \cdot \mathbf{uce}(Q)) = \tau(\text{Ker}(U_\alpha^M))\sigma(\mathbf{uce}(Q)) = 0.$$

Consequently, $\mathbf{uce}(Q) \cdot \text{Ker}(U_\alpha^M) \oplus \text{Ker}(U_\alpha^M) \cdot \mathbf{uce}(Q) \subseteq \text{Ker}(\tau)$.

On the other side, we have that $\mathbf{uce}(Q) \cdot \text{Ker}(U_\alpha^M) \oplus \text{Ker}(U_\alpha^M) \cdot \mathbf{uce}(Q)$ is an ideal of $(\mathbf{uce}_\alpha(M), \alpha_M)$. Then the Hom-action of $(\mathbf{uce}(Q), \text{Id}_{\mathbf{uce}(Q)})$ on $(\mathbf{uce}_\alpha(M), \alpha_M)$ gives rise to a Hom-action of $(\mathbf{uce}(Q), \text{Id}_Q)$ on

$$\left(\overline{\mathbf{uce}_\alpha(M)}, \overline{\overline{\alpha_M}} \right) = \left(\frac{\mathbf{uce}_\alpha(M)}{\mathbf{uce}(Q) \cdot \text{Ker}(U_\alpha^M) \oplus \text{Ker}(U_\alpha^M) \cdot \mathbf{uce}(Q)}, \overline{\overline{\alpha_M}} \right).$$

Since τ vanishes on $\mathbf{uce}(Q) \cdot \text{Ker}(U_\alpha^M) \oplus \text{Ker}(U_\alpha^M) \cdot \mathbf{uce}(Q)$, it gives rise to $\bar{\tau} : \overline{\mathbf{uce}_\alpha(M)} \rightarrow \tau(\mathbf{uce}_\alpha(M))$. Put $I = \mathbf{uce}(Q) \cdot \text{Ker}(U_\alpha^M) \oplus \text{Ker}(U_\alpha^M) \cdot \mathbf{uce}(Q)$, we have the following diagram

$$\begin{array}{ccccc}
 & (I, \overline{\alpha_M}) & & & \\
 & \downarrow & & & \\
 & (\mathbf{uce}_\alpha(M), \overline{\alpha_M}) & \xrightarrow{\tau} & (\mathbf{uce}_\alpha(G), \overline{\alpha_G}) & \\
 & \downarrow & \searrow 0 & & \\
 & & \tau(\mathbf{uce}_\alpha(M), \overline{\alpha_M}) & & \\
 & \downarrow & \searrow \bar{\tau} & & \\
 & \left(\overline{\mathbf{uce}_\alpha(M)}, \overline{\overline{\alpha_M}} \right) & & &
 \end{array}$$

We obtain the following commutative diagram:

$$\begin{array}{ccccccc}
 & I & \rightarrow & I \rtimes 0 & \rightarrow & 0 \\
 \downarrow & & & \downarrow & & \downarrow \\
 \text{Ker}(\tau \rtimes \sigma) & \longrightarrow & (\text{uce}_\alpha(M) \rtimes \text{uce}(Q), \overline{\alpha_M} \rtimes \text{Id}_{\text{uce}(Q)}) & \xrightarrow{\tau \rtimes \sigma} & (\text{uce}_\alpha(G), \overline{\alpha_G}) \\
 \downarrow & & \downarrow & & \parallel \\
 \frac{\text{Ker}(\tau \rtimes \sigma)}{I} & \longrightarrow & \left(\overline{\text{uce}_\alpha(M)} \rtimes \text{uce}(Q), \overline{\alpha_M} \rtimes \text{Id}_{\text{uce}(Q)} \right) & \xrightarrow{\Psi} & (\text{uce}_\alpha(G), \overline{\alpha_G}),
 \end{array}$$

whose bottom row is a central extension. Since $(\text{uce}_\alpha(G), \overline{\alpha_G})$ is an α -perfect Hom-preLie algebra, by Theorem 4.19 in [13], it has a universal α -central extension. So $\text{uce}_\alpha(G)$ is centrally closed by Corollary 2, that is, $\text{uce}(\text{uce}_\alpha(G)) \cong \text{uce}_\alpha(G)$. Hence, we have the following diagram

$$\begin{array}{ccc}
 \left(\overline{\text{uce}_\alpha(M)} \rtimes \text{uce}(Q), \overline{\alpha_M} \rtimes \text{Id}_{\text{uce}(Q)} \right) & \xrightarrow{\Psi} & (\text{uce}_\alpha(G), \overline{\alpha_G}) \\
 \downarrow \Psi & & \parallel \\
 (\text{uce}_\alpha(G), \overline{\alpha_G}) & \xrightarrow{\text{Id}} & (\text{uce}_\alpha(G), \overline{\alpha_G}) \\
 \downarrow \mu & & \parallel \\
 \left(\overline{\text{uce}_\alpha(M)} \rtimes \text{uce}(Q), \overline{\alpha_M} \rtimes \text{Id}_{\text{uce}(Q)} \right) & \xrightarrow{\Psi} & (\text{uce}_\alpha(G), \overline{\alpha_G}).
 \end{array}$$

Since $(\text{uce}_\alpha(G), \overline{\alpha_G})$ is centrally closed and Ψ is a central extension, $\text{Id} : (\text{uce}_\alpha(G), \overline{\alpha_G}) \rightarrow (\text{uce}_\alpha(G), \overline{\alpha_G})$ is a universal central extension. Then there is a unique homomorphism of Hom-preLie algebras $\mu : (\text{uce}_\alpha(G), \overline{\alpha_G}) \rightarrow \left(\overline{\text{uce}_\alpha(M)} \rtimes \text{uce}(Q), \overline{\alpha_M} \rtimes \text{Id}_{\text{uce}(Q)} \right)$ satisfies $\Psi \circ \mu = \text{Id}$. Since $\Psi \circ \mu \circ \Psi = \text{Id} \circ \Psi = \Psi \circ \text{Id}$ and $\left(\overline{\text{uce}_\alpha(M)} \rtimes \text{uce}(Q), \overline{\alpha_M} \rtimes \text{Id}_{\text{uce}(Q)} \right)$ is α -perfect, then $\mu \circ \Psi = \text{Id}$ follows from Lemma 4.18 in [13]. Hence, Ψ is an isomorphism, then $\text{Ker}(\Psi) = \frac{\text{Ker}(\tau \rtimes \sigma)}{I} = 0$. Consequently, $\text{Ker}(\tau \rtimes \sigma) \subseteq I$.

The above discussion can be summarized in:

$$\text{Ker}(\tau \rtimes \sigma) \cong \text{uce}(Q) \cdot \text{Ker}(U_\alpha^M) \oplus \text{Ker}(U_\alpha^M) \cdot \text{uce}(Q).$$

We can obtain the following theorem from the above results.

Theorem 5.3. *Let the Hom-action of (Q, Id_Q) on (M, α_M) be uce -associative and the extension*

$$0 \longrightarrow (M, \alpha_M) \xrightarrow{t} (G, \alpha_G) \xrightleftharpoons[s]{p} (Q, \text{Id}_Q) \longrightarrow 0$$

split. Then the following conditions hold

1) *The homomorphism of Hom-preLie algebras*

$$\Phi : (\text{uce}_\alpha(M) \rtimes \text{uce}(Q), \overline{\alpha_M} \rtimes \text{Id}_{\text{uce}(Q)}) \rightarrow (G, \alpha_G)$$

defined by $\Phi(\{\alpha_M(m_1), \alpha_M(m_2)\}, \{q_1, q_2\}) = (t(\alpha_M(m_1)\alpha_M(m_2)), s(q_1q_2))$ is an epimorphism whose kernel is $\text{Ker}(U_\alpha^M) \oplus \text{HL}_2(Q)$. Moreover, diagram (9) is commutative.

2) $\text{Ker}(\tau \rtimes \sigma) \cong \text{uce}(Q) \cdot \text{Ker}(U_\alpha^M) \oplus \text{Ker}(U_\alpha^M) \cdot \text{uce}(Q)$.

Theorem 5.4. *The following statements are equivalent:*

- a) $\Phi := (t \circ U_\alpha^M) \rtimes (s \circ u_Q) : (\text{uce}_\alpha(M) \rtimes \text{uce}(Q), \overline{\alpha_M} \rtimes \text{Id}_{\text{uce}(Q)}) \rightarrow (G, \alpha_G)$ is a central extension. So it is an α -cover.
- b) The Hom-action of $(\text{uce}(Q), \text{Id}_{\text{uce}(Q)})$ on $(\text{Ker}(U_\alpha^M), \overline{\alpha_M})$ is trivial.
- c) $\tau \rtimes \sigma$ is an isomorphism. Hence $\text{uce}_\alpha(M) \rtimes \text{uce}(Q)$ is the universal α -central extension of (G, α_G) .
- d) τ is injective. In particular,

$$(\text{uce}_\alpha(M \times Q), \overline{\alpha_M \times \text{Id}_Q}) \cong (\text{uce}_\alpha(M) \times \text{uce}(Q), \overline{\alpha_M} \times \text{Id}_{\text{uce}(Q)}).$$

Proof. a) \Leftrightarrow b) If $\Phi := (t \circ U_\alpha^M) \rtimes (s \circ u_Q) : (\text{uce}_\alpha(M) \rtimes \text{uce}(Q), \overline{\alpha_M} \rtimes \text{Id}_{\text{uce}(Q)}) \rightarrow (G, \alpha_G)$ is a central extension and $\text{Ker}(\Phi) = \text{Ker}(U_\alpha^M) \oplus \text{HL}_2(Q)$, then the Hom-action of $(\text{uce}(Q), \text{Id}_{\text{uce}(Q)})$ on $(\text{Ker}(U_\alpha^M), \overline{\alpha_M})$ is trivial. It is easy to prove the converse. Furthermore, the Hom-action is trivial, we have $(\text{uce}_\alpha(M) \rtimes \text{uce}(Q), \overline{\alpha_M} \rtimes \text{Id}_{\text{uce}(Q)})$ is α -perfect. Consequently, the extension is an α -cover.

b) \Leftrightarrow c) By Theorem 5.3, we have that $\text{Ker}(\tau \rtimes \sigma) \cong \text{uce}(Q) \cdot \text{Ker}(U_\alpha^M) \oplus \text{Ker}(U_\alpha^M) \cdot \text{uce}(Q)$, then $\tau \circ \sigma$ is injective if and only if the Hom-action is trivial.

By diagram (9), we have that $\text{uce}_\alpha(M) \rtimes \text{uce}(Q)$ is the universal α -central extension of (G, α_G) .

c) \Leftrightarrow d) It suffices to verify that $\tau\{\alpha_M(m_1), \alpha_M(m_2)\} = (\tau \circ \sigma)(\{\alpha_M(m_1), \alpha_M(m_2)\})$, 0, since $\text{Ker}(\tau) = \text{Ker}(\tau \circ \sigma)$. So the conclusion holds.

Since the Hom-action of (Q, Id_Q) on (M, α_M) is trivial, the Hom-action of $(\text{uce}(Q), \text{Id}_{\text{uce}(Q)})$ on $(\text{uce}_\alpha(M), \overline{\alpha_M})$ is also trivial. Consequently, $(\text{uce}_\alpha(M) \times \text{uce}(Q), \overline{\alpha_M} \times \text{Id}_{\text{uce}(Q)}) = (\text{uce}_\alpha(M) \rtimes \text{uce}(Q), \overline{\alpha_M} \times \text{Id}_{\text{uce}(Q)})$. The proof of the particular case is completed by statement c). \square

Acknowledgments. The authors would like to thank the referee for valuable comments and suggestions on this article.

REFERENCES

- [1] J. M. Casas and N. Corral, **On universal central extensions of Leibniz algebras**, *Comm. Algebra*, **37** (2009), 2104–2120.
- [2] J. M. Casas and M. Ladra, Stem extensions and stem covers of Leibniz algebras, *Georgian Math. J.*, **9** (2002), 659–669.
- [3] J. M. Casas and M. Ladra, Computing low dimensional Leibniz homology of some perfect Leibniz algebras, *Southeast Asian Bull. Math.*, **31** (2007), 683–690.
- [4] J. M. Casas, M. A. Insua and N. P. Rego, **On universal central extensions of Hom-Leibniz algebras**, *J. Algebra Appl.*, **13** (2014), 1450053, 22pp.
- [5] J. M. Casas and N. P. Rego, **On the universal α -central extension of the semi-direct product of Hom-Leibniz algebras**, *Bull. Malays. Math. Sci. Soc.*, **39** (2016), 1579–1602.
- [6] J. M. Casas and A. M. Vieites, Central extensions of perfect of Leibniz algebras, *Recent Advances in Lie Theory*, **25** (2002), 189–196.
- [7] X. García-Martínez, E. Khmaladze and M. Ladra, **Non-abelian tensor product and homology of Lie superalgebras**, *J. Algebra*, **440** (2015), 464–488.
- [8] A. V. Gnedbaye, Third homology groups of universal central extensions of a Lie algebra, *Afrika Mat.*, **10** (1999), 46–63.
- [9] A. V. Gnedbaye, **A non-abelian tensor product of Leibniz algebras**, *Ann. Inst. Fourier (Grenoble)*, **49** (1999), 1149–1177.
- [10] R. Kurdiani and T. Pirashvili, A Leibniz algebra structure on the second tensor power, *J. Lie Theory*, **12** (2002), 583–596.
- [11] A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, *J. Gen. Lie Theory Appl.*, **2** (2008), 51–64.
- [12] Y. Sheng, **Representations of hom-Lie algebras**, *Algebr. Represent. Theory*, **15** (2012), 1081–1098.

- [13] B. Sun, L. Y. Chen and X. Zhou, On universal α -central extensions of Hom-preLie algebras, [arXiv:1810.09848](https://arxiv.org/abs/1810.09848).
- [14] D. Yau, Hom-Novikov algebras, *J. Phys. A*, **44** (2011), 085202, 20 pp.

Received October 2020; revised November 2020.

E-mail address: sunb427@nenu.edu.cn

E-mail address: chenly640@nenu.edu.cn

E-mail address: 48069607@qq.com