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Abstract. This paper presents a hybridized weak Galerkin (HWG) finite ele-
ment method for solving the Brinkman equations. Mathematically, Brinkman

equations can model the Stokes and Darcy flows in a unified framework so

as to describe the fluid motion in porous media with fractures. Numerical
schemes for Brinkman equations, therefore, must be designed to tackle Stokes

and Darcy flows at the same time. We demonstrate that HWG is capable of

providing very accurate and stable numerical approximations for both Darcy
and Stokes. The main features of HWG is that it approximates the differential

operators by their weak forms as distributions and it introduces the Lagrange

multipliers to relax certain constraints. We establish the optimal order error
estimates for HWG solutions of Brinkman equations. We also present a Schur

complement formulation of HWG, which reduces the systems’ computational
complexity significantly. A number of numerical experiments are provided to

confirm the theoretical developments.

1. Introduction. The Brinkman equation describes the problem of fluid motion
in porous media and is an appropriate model for fluid motion in higher-order non-
uniform media. The model can also be seen as a generalization of the Stokes
equation, that is, an effective approximation of the Navier-Stokes equation at low
Reynolds numbers. Simulating fluid flow in a composite medium with multiphysics
effects has significant impacts on many industrial and environmental problems, such
as drilling, channels and fluid flow near faults. The permeability with high contrast
determines that the flow rate through porous media can vary greatly. Mathemat-
ically, the Brinkman equation can be regarded as the combination of the Stokes
equation and the Darcy equation, either of which dominantly appear in different
area of the domain depending on its characteristic. Due to the change of type, the
numerical algorithm [7] for solving the Brinkman equation must be able to handle
both the Stokes and the Darcy equation. The numerical experiments in [5, 8] show
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that when a fixed Stokes element is selected, the Brinkman equation is controlled
by Darcy and the convergence rate is reduced. Similarly, when a fixed Darcy ele-
ment is selected, the Brinkman equation becomes controlled by Stokes and the rate
of convergence will also be reduced accordingly. That is, the usual Stokes stable
elements are not suitable for Darcy fluids and vice versa. At present, the method
for solving the Brinkman equation [6, 25, 28] has a finite volume discrete method,
non-coordinated finite element method, weak Galerkin finite element method, etc.
This article will introduce a stable and accurate calculation method for the Stokes
and Darcy fluid regions, namely the hybrid weak finite element method.

In 2011, weak Galerkin finite element methods [18, 24, 26, 32], referred to as WG
method, was proposed by Junping Wang and Xiu Ye. It is a common finite element
method for solving partial differential equations. It has played an important role
in many fields, such as physics, biology and geosciences [2]. At the same time,
the basic theory of mathematics has been improved and the method has become
the research project of many researchers and engineers of computational mathe-
matics. Its main characteristics are: (1) differential operators are approximated by
discrete weak form; (2) the weak continuity of numerical solution is achieved by
introducing stabilizer. The subdivision element of WG can be any polyhedron, and
its approximation function space is composed of discontinuous piecewise polynomi-
als. The flexibility of WG in the selection of approximation polynomials makes it
as an ideal choice for the stable numerical scheme of partial differential equations
with multiple physical properties. In addition, WG has been widely used to solve
a variety of partial differential equations, such as the second-order elliptic equation
[9, 17, 22, 21, 30], Maxwell equation [14], Stokes equation [20, 23, 27], Brinkman
equation [11], and biharmonic equation [10, 13, 31].

In order to reduce the requirement of the continuity of numerical solution, hybrid
technique [4, 12, 29] was introduced. It has been used as an effective way to solve
partial differential equations. For example, HWG reduces the requirement of the
continuity of piecewise polynomials in the whole region in the weak finite element
method by introducing Lagrange multipliers at the boundary of each subdivision
element. As such, it makes its construction simple, highly flexible and efficient.

The aim of this paper is to apply HWG to solve the Brinkman equation, and uses
the Schur complement technique to reduce its degree of freedom, so as to improve
the calculation efficiency. We shall show that the Schur complement formulation is
well-posed. More specifically, we shall apply HWG to solve the Brinkman equation
with the following three different boundary conditions:

(1) Brinkman equation under Dirichlet boundary condition

− µ∆u+∇p+ µκ−1u = f in Ω, (1a)

∇ · u = 0 in Ω, (1b)

u = 0 on ∂Ω. (1c)

(2) Brinkman equation under Neumann boundary condition

− µ∆u+∇p+ µκ−1u = f in Ω, (2a)

∇ · u = 0 in Ω, (2b)

∇u · n = θ on ∂Ω. (2c)
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(3) Brinkman equation under Robin boundary condition

− µ∆u+∇p+ µκ−1u = f in Ω, (3a)

∇ · u = 0 in Ω, (3b)

∇u · n+ αu = γ on ∂Ω, (3c)

where µ is the viscosity of the fluid, κ represents the permeability tensor of
a polygon or polyhedron region, Ω ∈ Rd with (d = 2, 3), u and p represent
the velocity and pressure of the fluid respectively, f ,γ and θ are the source
terms, α > 0 is a parameter, and n is the unit outward normal vector to ∂Ω.

The rest of this paper is organized as follows. In Section 2, we introduce notation
for the Sobolev or broken Sobolev spaces, some inequalities, and the concepts of
weak gradient and weak divergence. In Section 3, we introduce the HWG finite
element method to solve the Brinkman equation under the Dirichlet boundary con-
dition and establish the well-posedness and stability of the numerical solution. We
also present error estimates in H1 and L2 norms. The Schur complement technique
is then introduced to improve the algorithm. Section 4 describes the numerical al-
gorithm and theoretical analysis of the HWG method for Brinkman equation with
Neumann boundary condition. The Robin boundary case is discussed in Section
5. Numerical experiments are then presented to confirm the theoretical analysis in
Section 6.

2. Notation. We let Ω ⊂ Rd be polygonal for d = 2 or polyhedral domain. Let Th
be a finite element partition, which satisfies the shape regular assumption [21]. We
then denote all the edges of Th by Eh and all the interior edges by E0

h = Eh\∂Ω. We
let h = maxT∈Th hT , where hT denotes the diameter of T .

On each T ∈ Th, we define the weak function spaces V(T ), V (T ) by

V(T ) = {v = {v0,vb} : v0 ∈ [L2(T )]d,vb ∈ [H
1
2 (∂T )]d},

V (T ) = {v = {v0,vb} : v0 ∈ [L2(T )]d,vb · n ∈ H−
1
2 (∂T )},

where n is the outward normal direction to ∂Ω. We then define the function space
on Th and Eh, denoted by V and Λ, respectively as follows

V =
∏
T∈Th

V(T ) and Λ =
∏
T∈Th

[H
1
2 (∂T )]d.

For any e ∈ Eh, we define the jump of both v = {v0,vb} and q as follows

[[v]]e =

{
vb|∂T1

− vb|∂T2
, e ∈ E0

h, with e = ∂T1 ∩ ∂T2,
0, e ⊂ ∂Ω,

[[q]]e =

{
q|∂T1

− q|∂T2
, e ∈ E0

h, with e = ∂T1 ∩ ∂T2,
0, e ⊂ ∂Ω.

For any e ∈ Eh, we now define the similarity of λ ∈ Λ as follows

〈〈λ〉〉e =

{
λ|∂T1 + λ|∂T2 , e ∈ E0

h, with e = ∂T1 ∩ ∂T2,
0, e ⊂ ∂Ω.

Let K be either T ∈ Th or e ∈ Eh and denote the space of polynomial of degree less
than or equal to ` by P`(K). For T ∈ Th, we define the discrete analogue of weak
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function spaces of V(T ) and V (T ), denoted by Vk(T ) and Vk,N (T ), respectively as
follows:

Vk(T ) = {v = {v0,vb} : v0|T ∈ [Pk(T )]d,vb ∈ [Pk(e)]d, e ⊂ ∂T},
Vk,N (T ) = {v = {v0,vb} ∈ Vk(T ),v0 ∈ [L2

0(Ω)]d},

where k ≥ 1 is a constant. For T ∈ Th, we also define Wk(T ) and Λk(∂T ), respec-
tively, by

Wk(T ) = {q : q ∈ L2
0(Ω), q|T ∈ Pk−1(T )},

Λk(∂T ) = {λ : λ|e ∈ [Pk(e)]d, e ⊂ ∂T}.

We then define the weak finite element function spaces Vh, Λh and Wh as follows:

Vh =
∏
T∈Th

Vk(T ), Vh,N =
∏
T∈Th

Vk,N (T ),

Wh =
∏
T∈Th

Wk(T ), Λh =
∏
T∈Th

Λk(∂T ).

We shall also consider the subspaces of Vh and Λh. First, we define V 0
h ,Vh,V0

h ⊂
Vh, respectively by

V 0
h = {v = {v0,vb} ∈ Vh : vb|e = 0, e ⊂ ∂Ω},
Vh = {v ∈ Vh : [[v]]e = 0, e ∈ E0

h},
V0
h = Vh ∩ V 0

h .

Secondly, we define Ξh ⊂ Λh as follows:

Ξh = {λ ∈ Λh : 〈〈λ〉〉e = 0, e ∈ Eh}.

The space Ξh will be taken as Lagrange multiplier approximation space for HWG.
For T ∈ Th, we shall let (·, ·)T and 〈·, ·〉∂T denote the standard L2 inner product on
T and ∂T , respectively. We are now in a position to introduce a couple of bilinear
forms for any given T ∈ Th: for v = {v0,vb},w = {w0,wb} ∈ Vk(T ), q ∈ Wk(T ),
λ ∈ Λk(∂T ),

sT (v,w) = h−1
T 〈v0 − vb,w0 −wb〉∂T ,

aT (v,w) = (∇wv,∇ww)T + (k−1v0,w0)T + sT (v,w),

bT (v, q) = (∇w · v, q)T ,
cT (v,λ) = 〈vb,λ〉∂T ,

aT,R(v,w) =

{
aT (v,w), ∂T ∈ E0

h,
aT (v,w) + 〈kvb,wb〉∂T , ∂T ⊂ ∂Ω.

where ∇wv and ∇w · v are weakly defined gradient and divergence operator in
Definition 2.6 and 2.7.

We then define the bilinear forms under different boundary conditions by sum-
ming bilinear forms defined locally above, by the following:

s(v,w) =
∑
T∈Th

sT (v,w), ∀v,w ∈ Vh,

a(v,w) =
∑
T∈Th

aT (v,w), ∀v,w ∈ Vh,
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aR(v,w) =
∑
T∈Th

aT,R(v,w), ∀v,w ∈ Vh,

b(v, q) =
∑
T∈Th

bT (v, q), ∀v ∈ Vh, q ∈Wh,

c(v,λ) =
∑
T∈Th

cT (v,λ), ∀v ∈ Vh,λ ∈ Λh.

We introduce a couple of norms for the space Vh, Ξh, and V 0
h as follows

Definition 2.1. ([29]) For any v ∈ Vh, we let

|||v|||2 = a(v,v) = ‖k− 1
2v0‖2 + ‖∇wv‖2 +

∑
T∈Th

h−1
T ‖v0 − vb‖2∂T ,

where ‖ · ‖ is the standard L2 norm on Ω and ‖ · ‖∂T is the L2 norm on ∂T .

Definition 2.2. ([29]) For λ ∈ Ξh, let

‖λ‖2Ξh
=
∑
e∈E0h

he‖λ‖2e,

where he is the diameter of the edge/face e ∈ Eh and ‖ · ‖e is the L2 norm on e.

Definition 2.3. ([29]) For v ∈ V 0
h , let

‖v‖2V 0
h

= |||v|||2 +
∑
e∈ε0h

h−1
e ‖[[v]]e‖2e,

|v|2h =
∑
T∈Th

h−1
T ‖v0 − vb‖2∂T .

Definition 2.4. For v ∈ Vh,N , let

‖v‖2Vh,N
= |||v|||2 +

∑
T∈Th

h−1
T ‖[[v]]∂T ‖2∂T .

Definition 2.5. For v ∈ Vh, let

‖v‖2Vh
= |||v|||2 +

∑
T∈Th

h−1
T ‖[[v]]∂T ‖2∂T .

For any given element T ∈ Th and each edge/face e ∈ Eh, let Q0 and Qb be the L2

projection operator from [L2(T )]d to [Pk(T )]d and from [L2(e)]d to [Pk(e)]d, respec-
tively. Let Qh and Qh be the orthogonal L2 projection operator from [L2(T )]d×d

to [Pk−1(T )]d×d and from L2(T ) to Pk−1(T ), respectively.
Lastly, following [17], we shall introduce discrete weak gradient and divergence.

We begin with the definition of discrete weak gradient as follows:

Definition 2.6. (Discrete weak gradient) For any v ∈ V(T ), denote the discrete
weak gradient operator ∇w,r,Tv of v as the unique polynomial in [Pr(T )]d×d such
that for any τ ∈ [Pr(T )]d×d, it satisfies

(∇w,r,Tv, τ)T = −(v0,∇ · τ)T + 〈vb, τ · n〉∂T . (4)

Definition 2.7. ([17])(Discrete weak divergence) For any v ∈ V (T ), denote the
discrete weak divergence operator ∇w,r,T ·v of v as the unique polynomial in Pr(T ),
such that for any ϕ ∈ Pr(T ), it satisfies

(∇w,r,T · v, ϕ)T = −(v0,∇ϕ)T + 〈vb · n, ϕ〉∂T . (5)
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From the definition, we notice that the following identities hold: ∀v ∈ V(T ) and
τ ∈ [Pr(T )]d×d,

(∇w,r,Tv, τ)T − (∇v0, τ)T = 〈vb − v0, τ · n〉∂T , (6)

and ∀v ∈ V (T ) and ϕ ∈ Pr(T ),

(∇w,r,T · v, ϕ)T − (∇ · v0, ϕ)T = 〈(vb − v0) · n, ϕ〉∂T . (7)

Denote by ∇w,k and ∇w,k−1· the discrete weak gradient operator and the discrete
weak divergence operator on the finite element space, which can be computed by
using (4) and (5) on each element T, respectively; i.e.,

(∇w,kv)|T = ∇w,k,T (v|T ), ∀v ∈ Vh,
(∇w,k−1 · v)|T = ∇w,k−1,T · (v|T ), ∀v ∈ Vh.

For simplicity of notation, we shall drop the subscript k and k − 1 in the notation
of ∇w,k and (∇w,k−1·), respectively.

3. HWG for Brinkman equation with Dirichlet boundary condition (1).
In this section, we present HWG algorithm to solve Brinkman equation with Dirich-
let boundary condition (1).

3.1. Algorithm. The following is the weak Galerkin (WG) finite element numerical
scheme of Brinkman first variational formulation [17],

Algorithm 3.1. We seek (ūh; p̄h) ∈ Vh ×Wh with ūb = Qbg on ∂Ω, such that

a(ūh,v)− b(v, p̄h) = (f ,v0), (8a)

b(ūh, q) = 0, (8b)

for all v = {v0,vb} ∈ Vh and q ∈Wh .

We now present the HWG method for (1). HWG method is attained by intro-
ducing the Lagrange multiplier to relax on the boundary of each inner element.
Namely, it can be formulated as follows (see [29] for Stokes equation):

Algorithm 3.2. We seek (uh; ph;λh) ∈ Vh×Wh×Ξh, with ub = Qbg on ∂Ω, such
that

a(uh,v)− b(v, ph)− c(v,λh) = (f ,v0), (9a)

b(uh, q) + c(uh,µ) = 0, (9b)

for all v = {v0,vb} ∈ V 0
h , q ∈Wh, and µ ∈ Ξh .

We shall establish that the problem (9) is well-posed.

Lemma 3.1. There exists a unique solution to (9).

Proof. Since (9) is linear, we only need to consider the uniqueness of homogeneous
equation, let f = 0, v = uh, q = ph, µ = λh, then

a(uh,uh) = 0.

With the definition of a(·, ·) , for any T ∈ Th, we have ∇wuh = 0, u0 = 0, u0 = ub
on ∂T .

Take any τ ∈ [Pk−1(T )]d×d, according to (6), we have

0 = (∇wuh, τ) = (∇u0, τ)T − 〈u0 − ub, τ · n〉∂T .
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Then for any T ∈ Th, ∇u0 = 0. That is, for any ∂T, u0 = ub = 0. Let vb = 0,
according to uh = {0,0} we have

0 = b(v, ph) = (∇w · v, ph) = −(v0,∇ph).

That is, for all T ∈ Th, ∇ph = 0.
For any two adjacent elements T1 and T2 with the common edge e, take vb|e,T1

=
[[ph]]e, vb|e,T2 = −[[ph]]e; the same, take vb|e = [[uh]]e, and in Ω , v0 = 0, we have

c(v,λh) =
∑
T∈Th

〈vb,λh〉∂T =
∑
e∈εh

〈vb, 〈〈λh〉〉e〉e = 0.

Since 0 = b(v, ph) =
∑
e∈εh ‖[[ph]]‖2e, we notice that ph is a constant. Furthermore,

since ph ∈ L2
0(Ω), ph = 0 in Ω. Lastly, let vb = λh, then

0 = c(v,λh) =
∑
T∈Th

〈v,λh〉∂T =
∑
T∈Th

‖λh‖2∂T ,

and therefore λh = 0. This completes the proof.

Theorem 3.2. We assume that uh ∈ Vh is the solution to HWG algorithm (9),
then uh is the solution of WG algorithm (8).

Proof. For e ∈ E0
h with ∂T1 ∩ ∂T2 = e, let µ = [[uh]]e on ∂T1 ∩ e , µ = −[[uh]]e on

∂T2 ∩ e, and µ = 0 elsewhere. According to (9) , we have

0 = c(uh,µ) =
∑
T∈Th

〈ub,µ〉∂T =

∫
e

[[uh]]2eds.

This leads that [[uh]]e = 0,∀e ∈ E0
h. Now, by taking µ = 0, we have b(uh, q) = 0.

For all v ∈ Vh, take [[v]]e = 0, ∀e ∈ ε0
h and v|∂Ω = 0, we derive

c(v,λh) =
∑
T∈Th

〈vb,λh〉∂T =
∑
e∈E0h

〈[[v]]e,λh〉e = 0.

This completes the proof.

3.2. Stability analysis.

Lemma 3.3. (Boundedness) There exists a constant C > 0 such that

|a(w,v)| ≤ C‖w‖V 0
h
‖v‖V 0

h
, ∀w,v ∈ V 0

h , (10)

|b(v, q)| ≤ C‖v‖V 0
h
‖q‖, ∀v ∈ Vh, q ∈Wh, (11)

|c(v,λ)| ≤ C‖v‖V 0
h
‖λ‖Ξh

, ∀v ∈ Vh,λ ∈ Ξh. (12)

Proof. For (10), according to the definition of a(·, ·) and Cauchy-Schwarz inequal-
ity, we can have

|a(w,v)|

=

∣∣∣∣∣ ∑
T∈Th

(∇ww,∇wv)T +
∑
T∈Th

(k−1w0,v0)T +
∑
T∈Th

h−1
T 〈w0 −wb,v0 − vb〉∂T

∣∣∣∣∣
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≤C

(∑
T∈Th

h−1
T ‖w0 −wb‖2∂T

) 1
2
(∑
T∈Th

h−1
T ‖v0 − vb‖2∂T

) 1
2

+C

(∑
T∈Th

‖∇ww‖2T

) 1
2
(∑
T∈Th

‖∇wv‖2T

) 1
2

+C

(∑
T∈Th

‖k− 1
2v0‖2T

) 1
2
(∑
T∈Th

‖k− 1
2w0‖2T

) 1
2

≤C‖w‖V 0
h
‖v‖V 0

h
.

For (11), according to the definition of b(·, ·), (7), Cauchy-Schwarz inequality, and
trace inequality, we can have

|b(v, q)| =

∣∣∣∣∣ ∑
T∈Th

(∇w · v, q)∂T

∣∣∣∣∣
=

∣∣∣∣∣− ∑
T∈Th

(v0,∇q)T +
∑
T∈Th

〈vb, q · n〉∂T

∣∣∣∣∣
≤ C

(∑
T∈Th

‖∇ · v‖2T

) 1
2
(∑
T∈Th

‖q‖2T

) 1
2

+C

(∑
T∈Th

h−1
T ‖v0 − vb‖2∂T

) 1
2
(∑
T∈Th

hT ‖q‖2∂T

) 1
2

≤ C‖v‖V 0
h
‖q‖.

For (12), we invoke the definition of c(·, ·) and Cauchy-Schwarz inequality to obtain

|c(v,λ)| =

∣∣∣∣∣ ∑
T∈Th

〈vb,λ〉∂T

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
e∈ε0h

〈[[v]]e,λ〉e

∣∣∣∣∣∣ ≤ C‖v‖V 0
h
‖λ‖Ξh

.

This completes the proof.

We now establish the coercivity:

Lemma 3.4. We have that

|a(v,v)| ≥ C‖v‖2V 0
h
, ∀v ∈ Vh.

Proof. Since ∀v ∈ Vh, it holds that ‖v‖2
V 0
h

= |||v|||2. This completes the proof.

We shall now establish total three inf-sup conditions.

Lemma 3.5. (inf-sup condition 1) There is a constant β > 0 independent of h
such that for any ρ ∈Wh, we have

sup
v∈Vh

b(v, ρ)

|||v|||
≥ β‖ρ‖.

Proof. ∀ρ ∈Wh ⊂ L2
0(Ω), there is ṽ ∈ [H1

0 (Ω)]d and C > 0, such that

(∇ · ṽ, ρ)

‖ṽ‖1
≥ C‖ρ‖.
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For v = Qhṽ ∈ Vh, |||v||| ≤ C0‖ṽ‖1. According to the definition of norm and trace
inequality, we have∑

T∈Th

‖k− 1
2v0‖2T

=
∑
T∈Th

‖k− 1
2 (Q0ṽ)‖2T ≤ C

∑
T∈Th

‖ṽ‖2T ≤ C‖ṽ‖1,∑
T∈Th

‖∇wv‖2T

=
∑
T∈Th

‖∇wQhṽ‖2T =
∑
T∈Th

‖Q̃h∇ṽ‖2T ≤ C‖ṽ‖1,∑
T∈Th

h−1
T ‖Q0ṽ −Qbṽ‖2∂T

≤
∑
T∈Th

h−1
T ‖Q0ṽ − ṽ‖2∂T +

∑
T∈Th

h−1
T ‖Qbṽ − ṽ‖

2
∂T

≤ Ch−1
T

(∑
T∈Th

h−1
T ‖Q0ṽ − ṽ‖2T +

∑
T∈Th

hT ‖∇(Q0ṽ − ṽ)‖2T

)

+ Ch−1
T

(∑
T∈Th

h−1
T ‖Qbṽ − ṽ‖

2
T +

∑
T∈Th

hT ‖∇(Qbṽ − ṽ)‖2T

)
≤ C‖ṽ‖1.

Now due to the identity:

b(v, ρ) =
∑
T∈Th

(∇w · (Qhṽ), ρ)T =
∑
T∈Th

(Qh(∇ · ṽ), ρ)T =
∑
T∈Th

(∇ · ṽ, ρ)T .

We complete the proof.

Lemma 3.6. (inf-sup condition 1’) For any ρ ∈ Wh, there is a constant β > 0
independent of h and v ∈ V 0

h such that

b(v, ρ)

‖v‖V 0
h

≥ β‖ρ‖.

Proof. ∀ρ ∈Wh ⊂ L2
0(Ω), there exists ṽ ∈ [H1

0 (Ω)]d and C > 0 making

(∇ · ṽ, ρ)

‖ṽ‖1
≥ C‖ρ‖.

We want to prove |||v||| ≤ C0‖ṽ‖1 with v = Qhṽ ∈ Vh. It follows from the definition
of norm, trace inequality, and inverse inequality that∑

T∈Th

‖κ−
1
2 v0‖2T =

∑
T∈Th

‖κ−
1
2 (Q0ṽ)‖2T ≤ C

∑
T∈Th

‖ṽ‖2T ≤ C‖ṽ‖1,∑
T∈Th

‖∇wv‖2T =
∑
T∈Th

‖∇wQhṽ‖2T =
∑
T∈Th

‖Qh∇ṽ‖2T ≤ C‖ṽ‖1,
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T∈Th

h−1
T ‖Q0ṽ −Qbṽ‖2∂T ≤

∑
T∈Th

h−1
T ‖Q0ṽ − ṽ‖2∂T +

∑
T∈Th

h−1
T ‖Qbṽ − ṽ‖2∂T

≤ Ch−1
T

 ∑
T∈Th

h−1
T ‖Q0ṽ − ṽ‖2T +

∑
T∈Th

hT ‖∇(Q0ṽ − ṽ‖2T


≤ C‖ṽ‖1.

Then

b(v, ρ) =
∑
T∈Th

(∇w · (Qhṽ), ρ)T =
∑
T∈Th

(Qh(∇ · ṽ), ρ)T =
∑
T∈Th

(∇ · ṽ, ρ)T .

This completes the proof.

Lemma 3.7. (inf-sup condition 2)There is a constant C > 0, for any given
τ ∈ Ξh, there is v ∈ V 0

h ,v0 = 0, so that

c(v, τ )

‖v‖V 0
h

≥ C‖τ‖Ξh
.

Proof. ∀τ ∈ Ξh, 〈〈τ 〉〉e = 0. Let v = {0, heτ} ∈ V 0
h , according to the definition of

bilinear form, we have

c(v, τ ) =
∑
e∈ε0h

(
〈v1
b , τ

1〉e + 〈v2
b , τ

2〉e
)

= 2
∑
e∈ε0h

he‖τ‖2e = 2‖τ‖2Ξh
,

s(v,v) =
∑
e∈ε0h

(
h−1
T1
‖heτ 1‖2e + h−1

T2
‖heτ 2‖2e

)
≤ C

∑
e∈ε0h

he‖τ‖2e = C‖τ‖2Ξh
,

where vib and τ i (i = 1, 2) represent the value of vb|Ti and τ |Ti , respectively. Using
Cauchy-Schwarz inequality, trace inequality, and inverse inequality,∑

T∈Th

(∇wv,∇wv)T =
∑
e∈∂T

〈v∗b ,∇wv〉e

≤
∑
e∈∂T

he‖τ ∗‖e‖∇wv‖e

≤ C
∑
e∈∂T

h
1
2
e ‖τ ∗‖e‖∇wv‖T ,

where v∗b can be selected as v1
b or v2

b and τ ∗ can be selected as τ 1 or τ 2, it depends

on the sectioning unit vb and τ is in. As a result of ‖∇wv‖T ≤ C
∑
e∈∂T h

1
2
e ‖τ ∗‖e ,

we can get
|||v|||2 ≤ C‖τ‖2Ξh

.

This completes the proof.

3.3. Error equation. The purpose of this section is to construct the error equation
[3, 19] between the numerical solution and the true solution of HWG according to
the numerical algorithm (9).

Now, we shall present the properties of projection operators without proofs: (see
[17] for proofs).

Lemma 3.8. The projection operators Qh, Qh and Qh satisfy the following prop-
erties:

∇w(Qhv) = Qh(∇v), ∀v ∈ [H1(Ω)]d,

∇w · (Qhv) = Qh(∇ · v), ∀v ∈ H(div,Ω).
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Lemma 3.9. Assume that (u; p) ∈ [H1
0 (Ω)]d × L2

0(Ω) is the true solution of (1),
(uh; ph;λh) ∈ Vh ×Wh × Ξh is the solution of (9). Let λ = ∇u · n − pn, take
eh = {Q0u − u0, Qbu − ub}, εh = Qhp − ph, δh = Qbλ − λh. Then the error
function eh, εh, and δh satisfy the following equations

a(eh,v)− b(v, εh)− c(δh,v) = φu,p(v), ∀v ∈ V 0
h , (13)

b(eh, q) + c(eh,µ) = 0, ∀q ∈Wh, µ ∈ Ξh, (14)

where

φu,p(v) = `1(v,u)− `2(v, p) + s(Qhu,v),

`1(v,u) =
∑
T∈Th

〈(∇u−Qh∇u) · n,v0 − vb〉∂T ,

`2(v, p) =
∑
T∈Th

〈(p−Qhp)n,v0 − vb〉∂T .

Proof. First, we invoke the definition of discrete weak gradient (4) and partial
integral,

(∇w(Qhu),∇wv)T

= (Qh(∇u),∇wv)T

= −(∇ · (Qh∇u),v0)T + 〈Qh(∇u) · n,vb〉∂T
= (Qh∇u,∇v0, )T − 〈Qh(∇u) · n,v0 − vb〉∂T
= (∇u,∇v0, )T − 〈Qh(∇u) · n,v0 − vb〉∂T
= −(∆u,v0)T + 〈∇u · n,v0 − vb〉∂T − 〈Qh(∇u) · n,v0 − vb〉∂T
= −(∆u,v0)T + 〈(∇u−Qh∇u) · n,v0 − vb〉∂T + 〈∇u · n,vb〉∂T .

By adding these for all T ∈ Th, we obtain

−(∆u,v0) =(∇w(Qhu),∇wv)−
∑
T∈Th

〈(∇u−Qh∇u) · n,v0 − vb〉∂T

−
∑
T∈Th

〈∇u · n,vb〉∂T .

Similarly, from (5) and partial integral, we have that

(∇w · v,Qhp)T = −(v0,∇(Qhp))T + 〈vb, (Qhp)n〉∂T
= (∇ · v0,Qhp)T − 〈v0 − vb, (Qhp)n〉∂T
= (∇ · v0, p)T − 〈v0 − vb, (Qhp)n〉∂T
= −(v0,∇p)T + 〈v0, p · n〉∂T − 〈v0 − vb, (Qhp)n〉∂T
= −(v0,∇p)T + 〈v0 − vb, (p−Qhp)n〉∂T + 〈vb, pn〉∂T .

Hence,

(v0,∇p) = −(∇w · v,Qhp) +
∑
T∈Th

〈v0 − vb, (p−Qhp)n〉∂T +
∑
T∈Th

〈vb, pn〉∂T .

Testing v0 for both sides of (1), we obtain

−(∆u,v0) + (κ−1u,v0) + (∇p,v0) = (f ,v0).

Now, from the identity:∑
T∈Th

〈vb,∇u · n− pn〉∂T = c(v,λ), (15)
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we can have

a(v, Qhu)− b(v,Qhp)− c(v,λ) = (f ,v0) + φu,p(v).

By combining these with (9), we have that

a(v,uh)− b(v, ph)− c(v,λ) = (f ,v0),

which then results in

a(eh,v)− b(v, εh)− c(δh,v) = φu,p(v).

From Theorem 3.2, [[eh]]e = 0, we can get c(eh,µ) = 0, ∀µ ∈ Ξh.
Now, for any q ∈Wh, b(eh, q) = 0 and we can get

b(eh, q) + c(eh,µ) = 0, ∀q ∈Wh, µ ∈ Ξh.

This completes the proof.

3.4. Error estimation. In this section, we establish the H1 and L2 norm error
estimates using the error equations (13)-(14). To do so, we first provide some simple,
but useful lemmas.

Lemma 3.10. If (u; p) ∈ [H1
0 (Ω)]d×L2

0(Ω) is the true solution to the problem (1),
there is a constant C such that

|φu,p(v)| ≤ Chk (‖u‖k+1 + ‖p‖k) |v|h. (16)

Proof. Using Cauchy-Schwarz inequality, trace inequality, and inverse inequality,
we have

|`1(v,u)| (17)

≤ C

 ∑
T∈Th

hT ‖∇u−Qh∇u‖2∂T

 1
2
 ∑

T∈Th

h−1
T ‖v0 − vb‖2∂T

 1
2

≤ C

 ∑
T∈Th

‖∇u−Qh∇u‖2T + h2
T ‖∇(∇u−Qh∇u)2T ‖

 1
2
 ∑

T∈Th

h−1
T ‖v0 − vb‖

 1
2

≤ C

 ∑
T∈Th

h2k‖u‖2k+1 + h2k‖∇u‖2k

 1
2
 ∑

T∈Th

h−1
T ‖v0 − vb‖

 1
2

≤ Chk‖u‖k+1|v|h.

Same as the proof of (17), according to Cauchy-Schwarz inequality and trace in-
equality, we have

|`2(v, p)| =

∣∣∣∣∣ ∑
T∈Th

〈v0 − vb, (p−Qhp) · n〉∂T

∣∣∣∣∣
≤ Chk‖p‖k|v|h.
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By the nature of Qb , Cauchy-Schwarz inequality, trace inequality, and inverse in-
equality, we can get

|s(Qhu,v)| =

∣∣∣∣∣ ∑
T∈Th

h−1
T 〈Q0u−Qbu,v0 − vb〉∂T

∣∣∣∣∣
=

∣∣∣∣∣ ∑
T∈Th

h−1
T 〈Q0u− u,v0 − vb〉∂T

∣∣∣∣∣
≤ C

(∑
T∈Th

(h2
T ‖Q0u− ‖2

T + ‖∇(Q0u− u)‖2T )

) 1
2

|v|h

≤ C‖u‖k+1|v|h.

The theorem is proved.

Theorem 3.11. Assume that (u; p) ∈ {[Hk+1(Ω)]d∩ [H1
0 (Ω)]d}×L2

0(Ω) is the true
solution satisfying (1), (uh; ph;λh) ∈ Vh ×Wh × Ξh is the solution of (9), then

‖Qhu− uh‖V 0
h

+ ‖Qhp− ph‖+ ‖Qbλ− λh‖Ξh
≤ Chk (‖u‖k+1 + ‖p‖k) .

Proof. In the error equation (13)-(14), taking v = eh,µ = δh, q = εh , we have

|||eh|||2 = a(eh, eh) = φu,p(eh).

In (16), let v = eh, we have

|φu,p(eh)| ≤ Chk (‖u‖k+1 + ‖p‖k) |eh|h.

According to |eh|h ≤ C|||eh|||, we can further obtain

|||eh||| ≤ Chk (‖u‖k+1 + ‖p‖k) .

There are the following facts |||eh||| = ‖eh‖V 0
h

, so

‖eh‖V 0
h
≤ Chk (‖u‖k+1 + ‖p‖k) .

According to Lemma 3.5, by taking v∗ = {0,vb}, we have

c(v∗, δh) =
∑
T∈Th

〈vb, δh〉∂T

=
∑
e∈ε0h

〈[[v]]e, δh〉e

= 0.

According to (16), error equation (13), and boundedness of bilinear form (10)-(11),
we can get

b(v∗, εh) = a(eh, v
∗)− φu,p(v∗) (18)

≤ |a(eh, v
∗)|+ |φu,p(v∗)|

≤ C|||eh||||||v∗|||+ Chk(‖u‖k+1 + ‖p‖k)|||v∗|||
≤ Chk(‖u‖k+1 + ‖p‖k)|||v∗|||.

And because b(v∗, εh) ≥ β‖εh‖Ξh
|||v∗||| , we have

‖εh‖Ξh
≤ Chk(‖u‖k+1 + ‖p‖k).
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Taking v = {0,vb} , same as the proof of (18 ), we can get

|c(v, δh)| ≤ |b(v, εh)|+ |a(eh,v)|+ |φu,p(v)|
≤ C|||v|||‖εh‖Ξh

+ Chk(‖u‖k+1 + ‖p‖k)|||v|||
≤ Chk(‖u‖k+1 + ‖p‖k)|||v|||.

And because c(v, δh) ≥ C‖δh‖Ξh
|||v||| , we have

‖δh‖Ξh
≤ Chk(‖u‖k+1 + ‖p‖k).

This completes the proof.

Finally, the dual technique is used to derive the optimal order error estimates of
the WG scheme under L2 norm. Consider the following dual problems

−∆ψ + κ−1ψ +∇ξ = e0, in Ω, (19a)

∇ · ψ = 0, in Ω, (19b)

ψ = 0, on ∂Ω, (19c)

with (ψ; ξ) ∈ [H2(Ω)]d×H1(Ω). Assume that the dual problem is H2 -regular, that
is, the constant C makes

‖ψ‖2 + ‖ξ‖1 ≤ C‖e0‖. (20)

Theorem 3.12. Suppose (u; p) ∈ {[Hk+1(Ω)]d ∩ [H1
0 (Ω)]d} × L2

0(Ω) is the true
solution to the problem (1), (uh; ph;λh) ∈ Vh×Wh×Ξh is the solution of (9), then

‖Q0u− u0‖ ≤ Chk+1(‖u‖k+1 + ‖p‖k) + Ch|||eh|||.

Proof. Multiplying e0 to both sides of (19) gives

‖e0‖2 = −(∆ψ, e0) + (κ−1ψ, e0) + (∇ξ, e0).

Take u = ψ, v0 = e0, p = ξ in the above formula, from the error equation

‖e0‖2 = (∇w(Qhψ),∇weh)−
∑
T∈Th

〈e0 − eb, (∇ψ −Qh∇ψ) · n〉∂T

−
∑
T∈Th

〈eb,∇ψ · n〉∂T − (∇w · eh,Qhξ) + 〈e0 − eb, (ξ −Qhξ)n〉∂T

+ 〈eb, ξ · n〉∂T + (κ−1ψ, e0)

= a(eh, Qhψ)− b(eh,Qhξ)− φψ,ξ(eh)

= a(eh, Qhψ)− b(Qhψ, εh)− φψ,ξ(eh)

= c(δh, Qhψ) + φu,p(Qhψ)− φψ,ξ(eh).

The following estimates the above formula item by item

|c(δh, Qhψ)| = |c(Qhψ,Qbλ− λh)|
= |c(Qhψ − ψ,Qbλ− λh)|
≤ C‖Qhψ − ψ‖‖Qbλ− λh‖Ξh

≤ Chk+ 3
2 (‖u‖k+1 + ‖p‖k)‖ψ‖2,

|φu,p(Qhψ)| ≤ Chk(‖u‖k+1 + ‖p‖k)|Qhψ|.
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Because of the following fact

|Qhψ|2h =
∑
T∈Th

h−1
T ‖Q0ψ −Qbψ‖2∂T

≤
∑
T∈Th

h−1
T ‖Q0ψ − ψ‖2∂T +

∑
T∈Th

h−1
T ‖ψ −Qbψ‖

2
∂T

≤ C
∑
T∈Th

h−1
T ‖Q0ψ − ψ‖2∂T

≤ Ch2‖ψ‖22,

we can get |φu,p(Qhψ)| ≤ Chk+1(‖u‖k+1 + ‖p‖k)‖ψ‖2 .
In (16), by taking u = ψ,v = eh, p = ξ, we can get

|φψ,ξ(eh)| ≤ Chk(‖ψ‖k+1 + ‖ξ‖k)|eh|h
≤ Chk(‖ψ‖k+1 + ‖ξ‖k)|||eh|||
≤ Ch(‖ψ‖2 + ‖ξ‖1)|||eh|||.

Then

‖e0‖2 ≤ Chk+1(‖u‖k+1 + ‖p‖k)‖ψ‖2 + Ch(‖ψ‖2 + ‖ξ‖1)|||eh|||.

From regularity (20), we have

‖e0‖ ≤ Chk+1(‖u‖k+1 + ‖p‖k) + Ch|||eh|||.

This completes the proof.

Note that Under the condition of Dirichlet boundary value, change the space of
Lagrange multiplier and redefine it as

Λ̃k(∂T ) = {λ : λ|e ∈ [Pk−1(e)]d, e ⊂ ∂T}, Λ̃h =
∏
T∈Th

Λ̃k(∂T ).

Denote Q̃b the L2 projection operator from [L2(e)]d to [Pk−1(e)]d . Then from
(15), we can get ∑

T∈Th

〈vb,∇u · n− pn〉∂T

=
∑
T∈Th

〈vb,∇u · n− pn〉∂T +
∑
T∈Th

〈vb, Q̃b(∇u · n− pn)〉∂T

−
∑
T∈Th

〈vb, Q̃b(∇u · n− pn)〉∂T

=
∑
T∈Th

〈vb,∇u · n− pn〉∂T + c(v, Q̃bλ)− c(v, Q̃bλ).

The error equation is

a(eh,v)− b(v, εh)− c(δh,v) = φu,p(v)− c(v, Q̃bλ− λ), ∀v ∈ V 0
h ,

b(eh, q) + c(eh,µ) = 0, ∀q ∈Wh, µ ∈ Ξh,

and c(v, Q̃bλ − λ) = 〈vb, (∇u · n − pn) − Q̃b(∇u · n − pn)〉∂T = 0 , so the error
equation is the same as Theorem 3.9, we can get the same error estimates.
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3.5. Theoretical analysis of Schur complement method. Due to the intro-
duction of Lagrange multipliers, the number of unknowns to be solved is increased
in HWG method. The purpose of this section is to apply Schur complement
technique [24, 29] to reduce degrees of freedom, based on the numerical scheme
constructed by HWG method. That is, boundary function ub is used to express
internal function u0 and Lagrange multiplier λh.

First, we define the boundary finite element space Bh as follows

Bh = {v = {µ; p} : µ ∈ [Pk−1(e)]d, p|e ∈ Pk−1(e), e ∈ εh}.

For Hilbert space Bh, we define inner product as follows

〈ωb, qb〉εh =
∑
e∈εh

〈ωb, qb〉e, ∀ωb, qb ∈ Bh.

B0
h is a subspace of Bh, consisting of functions in Bh, with zero boundary value.

Obviously, Bh is isomorphic to Ξh. In order to eliminate Lagrange multiplier λh
and interior unknowns u0 by Schur complement technique, we introduce mapping
Sf : Bh → B0

h.
For a fixed function ph and any given function ωb ∈ Bh, we shall define Sf (ωb; ph)

by the following three steps:

Step 1: On each element T ∈ Th, ω0 is represented by ωb and ph through the
following equation:

aT (ωh,v)− bT (v, ph) = (f ,v0)T , ∀v = {v0,0} ∈ Vk(T ), (21)

where ωh = {ω0,ωb} ∈ Vk(T ), ph ∈ Wk(T ). Then we can work out ω0 =
Df (ωb; ph) from (21).

Step 2: On each element T ∈ Th, we represent ζh,T ∈ Λk(∂T ) by ωh =
{ω0,ωb} ∈ Vk(T ) and ph

cT (v, ζh,T ) = aT (ωh,v)− bT (v, ph), ∀v = {0,vb} ∈ Vk(T ). (22)

Then we can work out ζh,T ∈ Λh, ζh,T = Lf (ωb; ph) from (22).
Step 3: We then define Sf (ωb; ph) by the following: the similarity of ζh on the

inner boundary and 0 on the outer boundary, that is

Sf (ωb; ph) = 〈〈ζh,T 〉〉e. (23)

We observe that by (23), Sf (ωb; ph) ∈ B0
h. Furthermore, the operator Sf has the

following properties:
(1) Summing (21) and (22), we obtain that

cT (v, ζh,T ) = aT (ωh,v)− bT (v, ph)− (f ,v0)T , ∀v = {v0,vb} ∈ Vk(T ). (24)

(2) From the superposition principle, we have that

Sf (ωb; ph) = S0(ωb; ph) + Sf (0; 0), ∀ωb ∈ Bh, ph ∈Wh,

where S0 corresponds to the operator of f = 0.

Lemma 3.13. For operator S0, the following equation holds true

〈S0(ωb; ph), qb〉εh = a(ωh, qh)− b(qh, ph), ∀ωb, qb ∈ B0
h,

where ωh = {D0(ωb; ph),ωb}, qh = {D0(qb; ph), qb}, D0 and L0 correspond to the
operator of f = 0.
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Proof. For anyωb, qb ∈ B0
h. From the definition of operator Sf , we obtain

ωh = {D0(ωb; ph),ωb}, ζh = L0(ωb; ph), qh = {D0(qb; ph), qb}.

Let f = 0 in (23), we have

〈S0(ωb; ph), qb〉εh =
∑
e∈ε0h

〈〈〈ζh〉〉e, qb〉e =
∑
T∈Th

〈ζh,T , qb〉∂T

=
∑
T∈Th

cT (qh, ζh,T ) =
∑
T∈Th

aT (ωh, qh)− bT (qh, ph).

We complete the proof.

Lemma 3.14. Assume that (uh; ph;λh) ∈ Vh ×Wh × Ξh is the only solution of
HWG algorithm (9), we have that uh ∈ Vh and ub ∈ Bh are well defined functions
and Sf (ub; ph) = 〈〈ζh〉〉e = 0.

Proof. Because (uh; ph;λh) ∈ Vh×Wh×Ξh is the only solution of HWG algorithm
(9). Then by Theorem 3.2, we obtain that for any e ∈ E0

h, [[uh]]e = 0, and ub = Qbg
on ∂Ω , so uh ∈ Vh and ub ∈ Bh are well defined. v = {v0,0} ∈ Vk(T ) on T , and
v = 0 elsewhere. Substituting (9), we obtain

aT (uh,v)− bT (v, ph) = (f ,v0), ∀v = {v0,0} ∈ Vk(T ),

where v = {0,vb} ∈ Vk(T ) on the element T , and elsewhere v = 0. Substituting
(9), then λh satisfies the following equation

cT (v,λh,T ) = aT (uh,v)− bT (v, ph), ∀v = {0,vb} ∈ Vk(T ),

where λh,T is the limit of λh on ∂T . From the definition of operator Sf , we obtain

Sf (ub; ph) = 〈〈λh〉〉, ∀λh ∈ Ξh.

So 〈〈λh〉〉e = 0, that isSf (ub; ph) = 〈〈ζh〉〉e = 0.

Lemma 3.15. Assume that ūb ∈ Bh is a function satisfying ūb = Qbg on ∂Ω ,
and ūb and ph satisfy the following operator equations:

Sf (ūb; ph) = 0.

Then (ūh; ph) ∈ Vh ×Wh is the solution of the WG algorithm (8), where ū0 is the
solution of the following problem on each element T ∈ Th.

aT (ūh,v)− bT (v, ph) = (f ,v0), ∀v = {v0,0} ∈ Vk(T ). (25)

Proof. For each element T ∈ Th, λ̄h,T ∈ Λk(∂T ) can be solved from the following
equation

cT (v, λ̄h,T ) = aT (ūh,v)− bT (v, ph), ∀v = {0,vb} ∈ Vk(T ). (26)

Define λ̄h ∈ Λh as λ̄h|∂T = λ̄h,T . Because (ūb; ph) ∈ Bh ×Wh satisfies Lemma
3.15, ūb satisfies the boundary condition and ū0 satisfies (25), then

Sf (ūb; ph) = 〈〈λ̄h〉〉e = 0. (27)

Using (25) subtract (26), we have

aT (ūh,v)− bT (v, ph)− cT (v, λ̄h,T ) = (f ,v0)T , ∀v = {v0,vb} ∈ Vk(T ).

Adding up all T on Th so that

a(ūh,v)− b(v, ph)− c(v, λ̄h) = (f ,v0), ∀v = {v0,vb} ∈ Vh.
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Limiting v in weak function space V 0
h , and using (27), it is easy to get

c(v, λ̄h) =
∑
T∈T
〈vb, λ̄h〉∂T =

∑
e∈E0h

〈vb, 〈〈λ̄h〉〉e〉e = 0.

Then

a(ūh,v)− b(v, ph) = (f ,v0), ∀v = {v0,vb} ∈ V 0
h .

According to the assumption ūb|∂Ω = Qbg and Theorem 3.2, ūh ∈ Vh is the solution
of WG method (8).

From the above lemma, it is not difficult to prove the following theorem.

Theorem 3.16. Assume that ūb ∈ Bh is a function satisfying that ub = Qbg on
∂Ω , ū0 is the solution to (25).Then (ūh; ph) ∈ Vh × Wh is the solution of WG
problem (8) if and only if ūb satisfies the following operator equation

Sf (ūb; ph) = 0. (28)

By (24) and (28), we have

S0(ūb; ph) = −Sf (0; 0), (29)

Seeking the finite element Gh ∈ Bh satisfying: Gb = Qbg on ∂Ω , and 0 elsewhere.
Since S0 is a linear operator, we obtain

S0(ūb; ph) = S0(ūb −Gb; ph) + S0(Gb; ph).

Substituting the above equation in (29) gives

S0(ūb −Gb; ph) = −Sf (0; 0)− S0(Gb; ph).

We define Hb = ūb−Gb such thatHb = 0 on ∂Ω . Let rb = −Sf (0; 0)−S0(Gb; ph),
then

S0(Hb; ph) = rb. (30)

Subtraction algorithm 1 The solution (uh; ph) of the WG algorithm (8) can be
obtained by the following steps
Step 1: On each element T ∈ Th, rb can be solved by the following equation

rb = −Sf (0; 0)− S0(Gb; ph).

Step 2: Solving {Hb; ph} through (30).
Step 3: Calculating ub = Gb +Hb, we get the solution on the element boundary,
and then on each element T ∈ Th, we calculate u0 = Df (ub, ph) through (21).

4. HWG for Brinkman equation with Neumann boundary condition (2).
In this section, we present HWG algorithm for Brinkman equation with Neumann
boundary condition.

4.1. Algorithm. First we present the WG numerical scheme of Brinkman first
variational formulation.

Algorithm 4.1. ([17]) Find (ūh; p̄h) ∈ Vh ×Wh such that ∇ūb · n = Qbθ on ∂Ω
and the following equation holds true:

a(ūh,v)− b(v, p̄h) = (f ,v0) + 〈θ,vb〉∂Ω,

b(ūh, q) = 0,

for all v = {v0,vb} ∈ Vh,N and q ∈Wh.
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Similarly to the case of Dirichlet boundary condition, by introducing Lagrange
multipliers, we introduce HWG method:

Algorithm 4.2. ([29]) Find (uh; ph;λh) ∈ Vh×Wh×Ξh such that ∇ub ·n = Qbθ
on ∂Ω and satisfying the following equations:

a(uh,v)− b(v, ph)− c(v,λh) = (f ,v0) + 〈θ,vb〉∂Ω, (31a)

b(uh, q) + c(uh,µ) = 0, (31b)

for any v = {v0,vb} ∈ Vh,N , q ∈Wh and µ ∈ Ξh.

Lemma 4.1. The problem (31) is well-posed.

Proof. The argument is similar to that for the Lemma 3.1. This completes the
proof.

4.2. Stability analysis. The proofs of the following lemmas are the same as
Lemma 3.3 - 3.7.

Lemma 4.2. (Boundedness) There exists a constant C > 0 such that

|a(w,v)| ≤ C‖w‖Vh,N
‖v‖Vh,N

, ∀w,v ∈ Vh,N ,
|b(v, q)| ≤ C‖v‖Vh,N

‖q‖, ∀v ∈ Vh,N , q ∈Wh,

|c(v,λ)| ≤ C‖v‖Vh,N
‖λ‖Ξh

, ∀v ∈ Vh,N ,λ ∈ Ξh.

Lemma 4.3. (Positivity) For any v ∈ Vh, we have ‖v‖2Vh,N
= |||v|||2, then

|a(v,v)| ≥ C‖v‖2Vh,N
.

Lemma 4.4. (inf-sup condition 1) There exists a constant β > 0 independent of
h, for any ρ ∈Wh, we have

sup
v∈Vh

b(v, ρ)

|||v|||
≥ β‖ρ‖.

Lemma 4.5. (inf-sup condition 1’) For any ρ ∈Wh, there exists a constant β > 0
independent of h and v ∈ Vh,N , we have

b(v, ρ)

‖v‖Vh,N

≥ β‖ρ‖.

Lemma 4.6. (inf-sup condition 2) For any τ ∈ Ξh, there exists v ∈ Vh,N satisfying
v0 = 0, such that

c(v, τ )

‖v‖Vh,N

≥ C‖τ‖Ξh
,

where C > 0 is a constant independent of h.

4.3. Error equation. The purpose of this section is to construct the error equation
between the numerical solution and the true solution for HWG according to the
numerical solution algorithm (31).

Lemma 4.7. Assume that (u; p) ∈ [H1
0 (Ω)]d × L2

0(Ω) is the true solution of (2),
(uh; ph;λh) ∈ Vh ×Wh × Ξh is the solution of (31). Let λ = ∇u · n − pn, take
eh = {Q0u − u0, Qbu − ub}, εh = Qhp − ph, δh = Qbλ − λh. Error function eh,
εh, and δh satisfy the following equation

a(eh,v)− b(v, εh)− c(δh,v) = φNu,p(v), ∀v ∈ Vh,N ,
b(eh, q) + c(eh,µ) = 0, ∀q ∈Wh, µ ∈ Ξh,



2508 JIWEI JIA, YOUNG-JU LEE, YUE FENG, ZICHAN WANG AND ZHONGSHU ZHAO

where

φNu,p(v) = `N1 (v,u)− `N2 (v, p) + s(Qhu,v),

`N1 (v,u) = `1(v,u),

`N2 (v, p) = `2(v, p).

Proof. By Lemma 3.9, we obtain

a(v, Qhu)− b(v,Qhp)− c(v,λ) = (f ,v0) + φNu,p(v) + 〈θ,vb〉∂Ω.

By combining with (31), we obtain

a(eh,v)− b(v, εh)− c(δh,v) = φNu,p(v).

Now, from Theorem 3.2 and Lemma 3.9, we have

b(eh, q) + c(eh,µ) = 0, ∀q ∈Wh, µ ∈ Ξh.

We complete the proof.

4.4. Error estimation. In this section, we first give the following lemmas to make
the corresponding H1 and L2 error estimates for the error equation.

Lemma 4.8. Assume that (u; p) ∈ [H1(Ω)]d × L2
0(Ω) is the true solution to the

problem (2). Then, there exists a constant C such that

|φNu,p(v)| ≤ Chk (‖u‖k+1 + ‖p‖k) |v|h.

Proof. By Lemma 3.10, we obtain∣∣`N1 (v,u)
∣∣ ≤ Chk‖u‖k+1|v|h,∣∣`N2 (v, p)
∣∣ ≤ Chk‖p‖k|v|h,

|s(Qhu,v)| ≤ C‖u‖k+1|v|h.

This completes the proof.

The proofs of the following Theorems are similar to those of Theorem 3.11 and
Theorem 3.12. Therefore, we only state the the conclusion without proofs.

Theorem 4.9. Assume that (u; p) ∈ {[Hk+1(Ω)]d ∩ [H1
0 (Ω)]d} × L2

0(Ω) is the true
solution to the problem (2), and (uh; ph;λh) ∈ Vh,N ×Wh × Ξh is the solution of
(31). We have

‖Qhu− uh‖Vh,N
+ ‖Qhp− ph‖+ ‖Qbλ− λh‖Ξh

≤ Chk (‖u‖k+1 + ‖p‖k) .

Finally, the dual technique is used to derive the optimal order error estimates
of the weak finite element scheme under L2 norm. We consider the following dual
problems

−∆ψ + κ−1ψ +∇ξ = e0, in Ω,

∇ · ψ = 0, in Ω,

(∇ψ) · n = 0, on ∂Ω.

where (ψ; ξ) ∈ [H2(Ω)]d × H1(Ω). Assume that the above dual problem has H2 -
regularity, that is, there is a constant C, which makes

‖ψ‖2 + ‖ξ‖1 ≤ C‖e0‖.
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Theorem 4.10. Assume that (u; p) ∈ {[Hk+1(Ω)]d∩ [H1
0 (Ω)]d}×L2

0(Ω) is the true
solution to the problem (2), and (uh; ph;λh) ∈ Vh,N ×Wh × Ξh is the solution of
(31). We have

‖Q0u− u0‖ ≤ Chk+1(‖u‖k+1 + ‖p‖k) + Ch|||eh|||.

5. HWG for Brinkman problem with Robin boundary condition (3). In
this section, we present HWG for Brinkman equation with Robin boundary condi-
tion.

5.1. Algorithm. We, first give a weak Galerkin finite element numerical scheme of
Brinkman first variational formulation under Robin boundary condition as follows:

Algorithm 5.1. ([17]) Find (ūh; p̄h) ∈ Vh ×Wh such that ∇ūb · n+ αūb = γ on
∂Ω and the following equations hold true

aR(ūh,v)− b(v, p̄h) = (f ,v0) + 〈γ,vb〉∂Ω,

b(ūh, q) = 0,

for any v = {v0,vb} ∈ Vh and q ∈Wh.

Similar to the other two boundary cases, by introducing Lagrange multipliers,
we introduce the HWG method for Robin boundary case as follows:

Algorithm 5.2. ([29]) Find (uh; ph;λh) ∈ Vh×Wh×Ξh such that∇ub·n+αub = γ
on ∂Ω and the following equations hold true:

aR(uh,v)− b(v, ph)− c(v,λh) = (f ,v0) + 〈γ,vb〉∂Ω, (32a)

b(uh, q) + c(uh,µ) = 0, (32b)

for any v = {v0,vb} ∈ Vh, q ∈Wh and µ ∈ Ξh.

We can easily establish the following well-posedness of the problem (32).

Lemma 5.1. The problem (32) is well-posed.

5.2. Stability analysis.

Lemma 5.2. (Boundedness) There exists a constant C > 0 such that

|aR(w,v)| ≤ C‖w‖Vh
‖v‖Vh

, ∀w,v ∈ Vh,
|b(v, q)| ≤ C‖v‖Vh

‖q‖, ∀v ∈ Vh, q ∈Wh,

|c(v,λ)| ≤ C‖v‖Vh
‖λ‖Ξh

, ∀v ∈ Vh,λ ∈ Ξh.

Lemma 5.3. (Positivity) For any v ∈ Vh, we have ‖v‖2Vh
= |||v|||2, then

|aR(v,v)| ≥ C‖v‖2Vh
.

Lemma 5.4. (inf-sup condition 1) There exists a constant β > 0 independent of
h, for any ρ ∈Wh, we have

sup
v∈Vh

b(v, ρ)

|||v|||
≥ β‖ρ‖.

Lemma 5.5. (inf-sup condition 1’) For any ρ ∈Wh, there exists a constant β > 0
and v ∈ Vh independent of h, we have

b(v, ρ)

‖v‖Vh

≥ β‖ρ‖.
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Lemma 5.6. (inf-sup condition 2) For any τ ∈ Ξh, there exists v ∈ Vh,N satisfying
v0 = 0, such that

c(v, τ )

‖v‖Vh

≥ C‖τ‖Ξh
,

where C > 0 is a constant independent of h.

5.3. Error equation. The purpose of this section is to construct the error equa-
tions between the numerical solution and the true solution for HWG, according to
the numerical solution algorithm (32).

Lemma 5.7. Assume that (u; p) ∈ [H1
0 (Ω)]d × L2

0(Ω) is the true solution to the
problem (3), and (uh; ph;λh) ∈ Vh ×Wh × Ξh is the solution of (32). Let λ =
∇u · n − pn, take eh = {Q0u − u0, Qbu − ub}, εh = Qhp − ph, δh = Qbλ − λh.
Error function eh, εh, and δh satisfy the following equation εh satisfy the following
equation

aR(eh,v)− b(v, εh)− c(δh,v) = φRu,p(v), ∀v ∈ Vh,N ,
b(eh, q) + c(eh,µ) = 0, ∀q ∈Wh, µ ∈ Ξh,

where

φRu,p(v) = `R1 (v,u)− `R2 (v, p)− `R3 (u,v) + s(Qhu,v),

`R1 (v,u) = `1(v,u),

`R2 (v, p) = `2(v, p),

`R3 (u,v) = 〈α(Qbu− u),vb〉∂Ω.

Proof. Similar to the Lemma 3.9, we have that

aR(v, Qhu)− b(v,Qhp)− c(v,λ) = (f ,v0) + φRu,p(v) + 〈γ,vb〉∂Ω.

By combining it with (32), we obtain that

aR(v,uh)− b(v, ph)− c(v,λ) = (f ,v0) + 〈γ,vb〉∂Ω,

which gives

aR(eh,v)− b(v, εh)− c(δh,v) = φRu,p(v).

From Theorem 3.2 and Lemma 3.9, we obtain

b(eh, q) + c(eh,µ) = 0, ∀q ∈Wh, µ ∈ Ξh.

This completes the proof.

5.4. Error estimation. In this section, we want to give the H1 and L2 error
estimates, so the following lemmas are given first.

Lemma 5.8. Assume that (u; p) ∈ [H1
0 (Ω)]d × L2

0(Ω) is the true solution to the
problem (3). There exists constant C satisfying

|φu,p(v)| ≤ Chk (‖u‖k+1 + ‖p‖k) |v|h.

Proof. From Lemma 3.10, we have∣∣`R1 (v,u)
∣∣ ≤ Chk‖u‖k+1|v|h,∣∣`R2 (v, p)
∣∣ ≤ Chk‖p‖k|v|h,

|s(Qhu,v)| ≤ C‖u‖k+1|v|h.
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From Cauchy-Schwarz inequality and trace inequality, we obtain∣∣`3u,R(v)
∣∣ = |〈(α− ᾱ)(Qbu− u),vb〉∂Ω|

≤ Ch‖α− ᾱ‖1,∞

(∑
e∈εh

‖Qbu− u‖2e

) 1
2

‖vb‖∂Ω

≤ Ch
∑
T∈Th

(h−1
T ‖Qbu− u‖

2
T + hT ‖∇(Qbu− u)‖2T )

1
2 |v|h

≤ Chk‖u‖k+1|v|h,
we complete the proof.

The proofs of the following Theorems are similar to that of Theorem 3.11.

Theorem 5.9. Assume that (u; p) ∈ {[Hk+1(Ω)]d ∩ [H1
0 (Ω)]d} × L2

0(Ω) is the true
solution which satisfies the problem (3), and (uh; ph;λh) ∈ Vh ×Wh × Ξh is the
solution of (32). We have

‖Qhu− uh‖Vh
+ ‖Qhp− ph‖+ ‖Qbλ− λh‖Ξh

≤ Chk (‖u‖k+1 + ‖p‖k) .

Finally, the dual technique is used to derive the optimal order error estimates
of the weak Galerkin finite element scheme under L2 norm. Consider the following
dual problem:

−∆ψ + κ−1ψ +∇ξ = e0, in Ω, (33)

∇ · ψ = 0, in Ω, (34)

(∇ψ) · n+ αψ = 0, on ∂Ω, (35)

with (ψ; ξ) ∈ [H2(Ω)]d × H1(Ω). Assume that the above dual problem has H2 -
regularity, that is, there is a constant C, which makes

‖ψ‖2 + ‖ξ‖1 ≤ C‖e0‖.

Theorem 5.10. Assume that (u; p) ∈ {[Hk+1(Ω)]d∩ [H1
0 (Ω)]d}×L2

0(Ω) is the true
solution to the problem (3), (uh; ph;λh) ∈ Vh ×Wh × Ξh is the solution of (32).
When k ≥ 2, we have

‖Q0u− u0‖ ≤ Chk+1‖u‖k+1.

Proof. Using e0 to act on both ends of (33), we obtain

‖e0‖2 = −(∆ψ, e0) + (κ−1ψ, e0) + (∇ξ, e0).

Take u = ψ, v0 = e0, p = ξ in the above formula. From the error equation, we
obtain

‖e0‖2 = (∇w(Qhψ),∇weh)−
∑
T∈Th

〈e0 − eb, (∇ψ −Qh∇ψ) · n〉∂T

−
∑
T∈Th

〈eb,∇ψ · n〉∂T − (∇w · eh,Qhξ) +
∑
T∈Th

〈e0 − eb, (ξ −Qhξ)n〉∂T

+
∑
T∈Th

〈eb, ξ · n〉∂T + (κ−1ψ, e0)

= aR(eh, Qhψ)− b(eh,Qhξ)− φψ,ξ(eh)− 〈eb, α(Qbψ − ψ)〉∂Ω

= aR(eh, Qhψ)− b(Qhψ, εh)− φψ,ξ(eh)− 〈eb, α(Qbψ − ψ)〉∂Ω

= c(δh, Qhψ) + φu,p(Qhψ)− φψ,ξ(eh)− 〈eb, α(Qbψ − ψ)〉∂Ω.
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Using Theorem 3.12, we have

|c(δh, Qhψ)| ≤ Chk+ 3
2 (‖u‖k+1 + ‖p‖k)‖ψ‖2,

|φψ,ξ(eh)| ≤ Ch(‖ψ‖2 + ‖ξ‖1)|||eh|||.

Since we have

|〈eb, α(Qbψ − ψ)〉∂Ω|
≤ C‖eb‖∂Ω‖α(Qbψ − ψ)‖

≤ Ch|||eh|||‖α− ᾱ‖1,∞

(∑
e∈εh

‖Qbψ − ψ‖2e

) 1
2

≤ Ch|||eh|||
∑
T∈Th

(h−1
T ‖α(Qbψ − ψ)‖2T + hT ‖∇(α(Qbψ − ψ))‖2T )

1
2

≤ Ch|||eh|||‖ψ‖2,

we obtain

‖e0‖ ≤ Chk+1(‖u‖k+1 + ‖p‖k) + Ch|||eh|||.

This completes the proof.

6. Numerical experiments. In this section, we consider Brinkman problem (1)
on the partition region Ω = (0, 1)2, where we consider different µ and κ given as
follows:

κ−1 = a(sin(2πx) + 1.1),

where a is a constant and a number of different values of a have been tested.
Our results show that the proposed method produce robust numerical solutions for
varying parameters µ and a.

We shall take the following analytical solution:

u =

(
sin(2πx) cos(2πy)
− cos(2πx) sin(2πy)

)
, p = x2y2 − 1

9
.

According to (1), we can get the exact f and let h denote the grid size. For
simplicity, we choose the polynomial degree k = 1. We shall set eh = Qhu − uh,
εh = Qhp− ph, and δh = Qbλ− λh.

h 9eh9 order ‖eh‖ order ‖εh‖ order ‖δh‖ order
1/4 5.63 1.06 4.67e-01 1.85
1/8 2.87 0.97 1.81e-01 2.55 2.70e-01 0.79 1.09 0.76
1/16 1.43 1.00 3.30e-02 2.45 1.39e-01 0.95 5.75e-01 0.93
1/32 6.89e-01 1.00 7.17e-03 2.20 7.01e-02 0.99 2.93e-01 0.97
1/64 7.17e-01 1.00 1.71e-03 2.06 3.51e-02 1.00 1.47e-01 0.99

Table 1. µ = 1, a = 1 Error and convergence order of velocity
function u and pressure function p.
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h 9eh9 order ‖eh‖ order ‖εh‖ order ‖δh‖ order
1/4 4.03 1.16e-01 9.05e-01 3.89
1/8 2.24 0.85 1.94e-02 2.59 7.38e-01 0.29 2.18 0.84
1/16 1.30 0.79 7.38e-03 1.39 4.46e-01 0.73 1.08 1.01
1/32 6.89e-01 0.91 3.07e-03 1.27 2.37e-01 0.91 5.36e-01 1.01
1/64 3.53e-01 0.96 1.06e-03 1.53 1.09e-01 1.13 2.50e-01 1.10

Table 2. µ = 1, a = 104 Error and convergence order of velocity
function u and pressure function p.

h 9eh9 order ‖eh‖ order ‖εh‖ order ‖δh‖ order
1/4 9.87e-01 6.02e-01 7.87e-02 1.82e-01
1/8 5.06e-01 0.96 1.63e-01 1.88 5.84e-02 0.43 1.25e-01 0.54
1/16 2.47e-01 1.03 3.63e-02 2.17 3.56e-02 0.71 7.54e-02 0.73
1/32 1.22e-01 1.02 8.08e-03 2.17 1.92e-02 0.89 4.04e-02 0.90
1/64 6.06e-02 1.01 1.92e-03 2.07 9.80e-03 0.97 2.07e-02 0.97

Table 3. µ = 0.01, a = 1 Error and convergence order of velocity
function u and pressure function p.

h 9eh9 order ‖eh‖ order ‖εh‖ order ‖δh‖ order
1/4 7.33e-01 8.32e-02 1.20e-01 4.07e-01
1/8 4.41e-01 0.73 3.38e-02 1.30 9.01e-02 0.42 2.07e-01 0.98
1/16 2.36e-01 0.90 1.02e-02 1.73 4.70e-02 0.94 9.96e-02 1.06
1/32 1.20e-01 0.97 2.63e-03 1.96 2.15e-02 1.13 4.52e-02 1.14
1/64 6.04e-02 0.99 6.56e-03 2.00 1.01e-02 1.09 2.14e-02 1.08

Table 4. µ = 0.01, a = 104 Error and convergence order of veloc-
ity function u and pressure function p.

h dof dof schur
1/4 8.32e+02 6.40e+02
1/8 3.26e+03 2.50e+03
1/16 1.29e+03 9.86e+03
1/32 5.15e+04 3.92e+04
1/64 2.05e+05 1.56e+05

Table 5. Comparison of the degrees of freedom between the
weak Galerkin finite element method based on gradient divergence
and Schur complement method.

h 9eh9 order ‖eh‖ order ‖εh‖ order ‖δh‖ order
1/4 5.79 1.21 5.54e-01 8.08e-01
1/8 2.93 0.98 2.23e-01 2.44 3.00e-01 0.89 3.08e-01 1.39
1/16 1.46 1.40 4.74e-02 2.24 1.48e-01 1.02 9.44e-02 1.71
1/32 7.32e-01 1.00 1.13e-03 2.07 7.33e-02 1.02 2.64e-02 1.84
1/64 3.66e-01 1.00 2.80e-03 1.92 3.65e-02 1.01 7.19e-03 1.87

Table 6. µ = 1, a = 1 Error and convergence order of velocity
function u and pressure function p.
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h 9eh9 order ‖eh‖ order ‖εh‖ order ‖δh‖ order
1/4 3.51 1.90e-01 8.61e-01 3.14
1/8 2.36 0.57 6.20e-02 1.62 6.87e-01 0.33 1.70 0.89
1/16 1.35 0.80 2.45e-02 1.34 3.76e-01 0.87 7.73e-01 1.14
1/32 7.14e-01 0.92 8.46e-03 1.54 1.59e-01 1.24 2.97e-01 1.38
1/64 3.64e-01 0.97 2.44e-03 1.79 5.76e-02 1.47 9.30e-02 1.68

Table 7. µ = 1, a = 103 Error and convergence order of velocity
function u and pressure function p.

h 9eh9 order ‖eh‖ order ‖εh‖ order ‖δh‖ order
1/4 1.14 6.87e-01 3.45e-02 1.02e-01
1/8 6.46e-01 0.82 2.31e-01 1.57 1.70e-02 1.02 5.39e-02 0.92
1/16 3.41e-01 0.92 7.23e-02 1.67 7.52-03 1.18 2.28e-02 1.24
1/32 1.75e-01 0.96 2.05e-02 1.82 2.85e-02 1.40 8.34e-03 1.45
1/64 8.83e-02 0.98 5.46e-03 1.91 1.01e-03 1.50 2.82e-03 1.57

Table 8. µ = 0.01, a = 1 Error and convergence order of velocity
function u and pressure function p.

h 9eh9 order ‖eh‖ order ‖εh‖ order ‖δh‖ order
1/4 1.06 3.22e-01 7.91e-02 4.07e-01
1/8 6.21e-01 0.78 1.41e-02 1.19 5.52e-02 0.51 1.60e-01 0.44
1/16 3.33e-01 0.90 5.74e-02 1.30 2.97e-02 0.90 1.18e-01 0.89
1/32 1.73e-01 0.94 1.88e-02 1.61 1.14e-02 1.38 6.36e-02 1.37
1/64 8.81e-02 0.95 5.29e-03 1.91 3.47e-03 1.93 7.56e-02 1.51

Table 9. µ = 0.01, a = 103 Error and convergence order of veloc-
ity function u and pressure function p.

h dof dof Schur
1/4 7.20e+02 5.28e+02
1/8 2.85e+03 2.08e+03
1/16 1.33e+03 8.26e+03
1/32 4.52e+04 3.29e+04
1/64 1.80e+05 1.31e+05

Table 10. Comparison of the degrees of freedom between the
weak Galerkin finite element method based on gradient divergence
and Schur complement method.
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