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ABSTRACT. This paper presents a hybridized weak Galerkin (HWGQG) finite ele-
ment method for solving the Brinkman equations. Mathematically, Brinkman
equations can model the Stokes and Darcy flows in a unified framework so
as to describe the fluid motion in porous media with fractures. Numerical
schemes for Brinkman equations, therefore, must be designed to tackle Stokes
and Darcy flows at the same time. We demonstrate that HWG is capable of
providing very accurate and stable numerical approximations for both Darcy
and Stokes. The main features of HWG is that it approximates the differential
operators by their weak forms as distributions and it introduces the Lagrange
multipliers to relax certain constraints. We establish the optimal order error
estimates for HWG solutions of Brinkman equations. We also present a Schur
complement formulation of HWG, which reduces the systems’ computational
complexity significantly. A number of numerical experiments are provided to
confirm the theoretical developments.

1. Introduction. The Brinkman equation describes the problem of fluid motion
in porous media and is an appropriate model for fluid motion in higher-order non-
uniform media. The model can also be seen as a generalization of the Stokes
equation, that is, an effective approximation of the Navier-Stokes equation at low
Reynolds numbers. Simulating fluid flow in a composite medium with multiphysics
effects has significant impacts on many industrial and environmental problems, such
as drilling, channels and fluid flow near faults. The permeability with high contrast
determines that the flow rate through porous media can vary greatly. Mathemat-
ically, the Brinkman equation can be regarded as the combination of the Stokes
equation and the Darcy equation, either of which dominantly appear in different
area of the domain depending on its characteristic. Due to the change of type, the
numerical algorithm [7] for solving the Brinkman equation must be able to handle
both the Stokes and the Darcy equation. The numerical experiments in [5, 8] show
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that when a fixed Stokes element is selected, the Brinkman equation is controlled
by Darcy and the convergence rate is reduced. Similarly, when a fixed Darcy ele-
ment is selected, the Brinkman equation becomes controlled by Stokes and the rate
of convergence will also be reduced accordingly. That is, the usual Stokes stable
elements are not suitable for Darcy fluids and vice versa. At present, the method
for solving the Brinkman equation [6, 25, 28] has a finite volume discrete method,
non-coordinated finite element method, weak Galerkin finite element method, etc.
This article will introduce a stable and accurate calculation method for the Stokes
and Darcy fluid regions, namely the hybrid weak finite element method.

In 2011, weak Galerkin finite element methods [18, 24, 26, 32|, referred to as WG
method, was proposed by Junping Wang and Xiu Ye. It is a common finite element
method for solving partial differential equations. It has played an important role
in many fields, such as physics, biology and geosciences [2]. At the same time,
the basic theory of mathematics has been improved and the method has become
the research project of many researchers and engineers of computational mathe-
matics. Its main characteristics are: (1) differential operators are approximated by
discrete weak form; (2) the weak continuity of numerical solution is achieved by
introducing stabilizer. The subdivision element of WG can be any polyhedron, and
its approximation function space is composed of discontinuous piecewise polynomi-
als. The flexibility of WG in the selection of approximation polynomials makes it
as an ideal choice for the stable numerical scheme of partial differential equations
with multiple physical properties. In addition, WG has been widely used to solve
a variety of partial differential equations, such as the second-order elliptic equation
[9, 17, 22, 21, 30], Maxwell equation [14], Stokes equation [20, 23, 27|, Brinkman
equation [11], and biharmonic equation [10, 13, 31].

In order to reduce the requirement of the continuity of numerical solution, hybrid
technique [4, 12, 29] was introduced. It has been used as an effective way to solve
partial differential equations. For example, HWG reduces the requirement of the
continuity of piecewise polynomials in the whole region in the weak finite element
method by introducing Lagrange multipliers at the boundary of each subdivision
element. As such, it makes its construction simple, highly flexible and efficient.

The aim of this paper is to apply HWG to solve the Brinkman equation, and uses
the Schur complement technique to reduce its degree of freedom, so as to improve
the calculation efficiency. We shall show that the Schur complement formulation is
well-posed. More specifically, we shall apply HWG to solve the Brinkman equation
with the following three different boundary conditions:

(1) Brinkman equation under Dirichlet boundary condition

—pAu+Vp+pustu = f in Q (1a)
V-u = 0 in Q (1b)
u = 0 on 00 (1c)

(2) Brinkman equation under Neumann boundary condition

—pAu+Vp+pustu = f in Q, (2a)
Vou = 0 in Q (2b)
Vu-n = 6 on . (2¢)
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(3) Brinkman equation under Robin boundary condition

—pAu+Vp+pus~lu = f in Q, (3a)
V-u = 0 in Q, (3b)
Vu-n+au = = on 09, (3c)

where pis the viscosity of the fluid, x represents the permeability tensor of
a polygon or polyhedron region, Q € R? with (d = 2,3), w and prepresent
the velocity and pressure of the fluid respectively, f,~ and @ are the source
terms, a > 0 is a parameter, and n is the unit outward normal vector to 0f2.

The rest of this paper is organized as follows. In Section 2, we introduce notation
for the Sobolev or broken Sobolev spaces, some inequalities, and the concepts of
weak gradient and weak divergence. In Section 3, we introduce the HWG finite
element method to solve the Brinkman equation under the Dirichlet boundary con-
dition and establish the well-posedness and stability of the numerical solution. We
also present error estimates in H' and L? norms. The Schur complement technique
is then introduced to improve the algorithm. Section 4 describes the numerical al-
gorithm and theoretical analysis of the HWG method for Brinkman equation with
Neumann boundary condition. The Robin boundary case is discussed in Section
5. Numerical experiments are then presented to confirm the theoretical analysis in
Section 6.

2. Notation. We let Q C R be polygonal for d = 2 or polyhedral domain. Let Ty,
be a finite element partition, which satisfies the shape regular assumption [21]. We
then denote all the edges of T;, by &, and all the interior edges by £ = £,\0Q. We
let h = maxrc7;, hr, where At denotes the diameter of T'.
On each T € Ty, we define the weak function spaces V(T'), V(T') by

V() = {v={vg,v}:v € [L*T)]% vy € [H%(GT)]d},

V(T) = {v={vo,v}:v € [LXT)]% v, -neH OT)},
where n is the outward normal direction to 9€2. We then define the function space
on Ty and &, denoted by V and A, respectively as follows

V=[] v(1) and A= T][HEOD)"
TETh TETh

For any e € &, we define the jump of both v = {vg, vy} and ¢ as follows
[v]. = vplorm, — Vblom,, e € &Y, with e = 9Ty N1,
Ule = 0, e C 09,
[[ ]] _ q|3T1 —q|aT2, 665}9, with e = 911 N 9Ty,
qle 0, e C 0N.
For any e € &, we now define the similarity of A € A as follows

(). = Aot + Aoy, ec 52, with e = 0T N OTx,
71 0, e C 09.

Let K be either T € T, or e € &, and denote the space of polynomial of degree less
than or equal to ¢ by P;(K). For T € Ty, we define the discrete analogue of weak
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function spaces of V(T') and V(T'), denoted by Vi(T') and Vi n(T'), respectively as
follows:

Ve(T) = {v={vo, v} : vo|r € [Pe(T)]%, v} € [Pr(e)]%, e C OT},
Vin(T) = {v={vo, v} € Vi(T),vo € [LF()]*},

where k > 1 is a constant. For T' € T, we also define Wy, (T') and A (9T), respec-
tively, by

Wi(T) = {q:q€L§(Q),qlr € P—a(T)},
Ap(OT) = {X: X €[Pele)]?ecaT).

We then define the weak finite element function spaces V},, A, and W}, as follows:

V=[] %™, Van= ] Ven(D),

TETh TETh
Wi = [[ We(@), An= ] Ac(0D).
TETh T€Th

We shall also consider the subspaces of V}, and Ajy,. First, we define V;?, Vh, V,? C
V4, respectively by

Vi = {v={vo, v} € Vj:vyle =0,e C 0},
Vi = {veVy:[v]le=0e€&},
V) o= vnvd

Secondly, we define Zj, C Ay, as follows:
En={A€E AL : (M) =0,e €&}

The space =5 will be taken as Lagrange multiplier approximation space for HWG.
For T € Ty, we shall let (-, )7 and (-,-)or denote the standard L? inner product on
T and 0T, respectively. We are now in a position to introduce a couple of bilinear
forms for any given T € Tp: for v = {vg,vp}, w = {wg,wp} € Vi(T), ¢ € Wi(T),
A€ A (aT)7

sr(v,w) = hp < Vg — Vb, Wy — Wp) 9T
ar(v,w) = (Vyvu,Vyew)r + (k7 vo,wo) + s7(v, w),
bT(’Uv(I) = ( w U q)T7
CT(/UvA) = <’U 8Ta
arp(v,w) oT € &7,
ar,r(v, W) { ar(v,w) + (kvy, wp)er, OT C IN.

where V,,v and V,, - v are weakly defined gradient and divergence operator in
Definition 2.6 and 2.7.

We then define the bilinear forms under different boundary conditions by sum-
ming bilinear forms defined locally above, by the following:

s(v,w) = Z sr(v,w), Yo,w eV,
TeTh
a(v,w) = Z ar(v,w), Yv,w €V,

TeTh
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ag(v,w) = Z arr(v,w), Yv,w eV,
TETh
b('U,q) = Z bT(v7Q)a Vo € Vh7q € Wh7
TeTh
c(v,A) = Z cr(v,A), Yo eVp, A€,
TeTh

We introduce a couple of norms for the space Vy, Zp,, and V2 as follows
Definition 2.1. ([29]) For any v € V}, we let
_1 —
[vl* = a(v,v) = [k~ 2vo||* + [Vwol* + D hitllwo — vsli3r,
TETh

where || - || is the standard L? norm on Q and || - |7 is the L? norm on 7.

Definition 2.2. ([29]) For A € £, let
INIE, = D hel A2,

ecéEy)
where h, is the diameter of the edge/face e € &, and || - |, is the L? norm on e.
Definition 2.3. ([29]) For v € V)2, let
ol = loll®+ > hotlTelellZ,
ece)
i = D hplllvo —vl3r
T€ETh
Definition 2.4. For v € V}, v, let
i, » = lol®+ Y hz'lllvlor |3y
TE,]—}L
Definition 2.5. For v € V},, let
i, = ol + > hrtllvlorll3r
TE€Th

For any given element T € T, and each edge/face e € &, let Qg and @, be the L?
projection operator from [L?(T)]? to [Py (T)]% and from [L?(e)]? to [Py (e)]?, respec-
tively. Let Q; and Qj be the orthogonal L? projection operator from [L?(T)]4*¢
to [Pr—1(T)]%*¢ and from L?*(T) to Py_1(T), respectively.

Lastly, following [17], we shall introduce discrete weak gradient and divergence.
We begin with the definition of discrete weak gradient as follows:

Definition 2.6. (Discrete weak gradient) For any v € V(T'), denote the discrete
weak gradient operator V,, . 7v of v as the unique polynomial in [P,.(T)]?*¢ such
that for any 7 € [P.(T)]%¥¢, it satisfies

(Vwrrv, 7)1 = —=(v0, V- 7)1 + (06, 7 - N)or. (4)

Definition 2.7. ([17])(Discrete weak divergence) For any v € V(T), denote the
discrete weak divergence operator V,, , r-v of v as the unique polynomial in P,(T"),
such that for any ¢ € P.(T), it satisfies

(Vw,rr - v,0)7 = —(v0, Vo)1 + (v - 1, @) o1 (5)
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From the definition, we notice that the following identities hold: Vv € V(T') and
T € [P (T)) ™,

(vw,r,Tva)T - (V1)077_)T = <vb — Vo, T n>8T7 (6)
and Yv € V(T) and ¢ € P.(T),
(Vw1 v,0)7 — (V- 0, 0)7 = (V5 — v0) - 1, p) o7 (7)

Denote by V, 1, and V,, 1—1- the discrete weak gradient operator and the discrete
weak divergence operator on the finite element space, which can be computed by
using (4) and (5) on each element T, respectively; i.e.,

(Vurv)lr = Verrlr), Yv €V,
(Vuik-1-9)|r = Ve, @|r), YV € V).
For simplicity of notation, we shall drop the subscript k£ and k£ — 1 in the notation

of Vo, and (Vy k—1-), respectively.

3. HWG for Brinkman equation with Dirichlet boundary condition (1).
In this section, we present HWG algorithm to solve Brinkman equation with Dirich-
let boundary condition (1).

3.1. Algorithm. The following is the weak Galerkin (WG) finite element numerical
scheme of Brinkman first variational formulation [17],

Algorithm 3.1. We seek (up;pp) € Vi, x Wy, with @, = Qpg on 09, such that
CL(’l_Lh, 'U) - b(’vaﬁh) = (f? 'UO)a (8&)
b(un,q) = 0, (8b)
for all v ={vg,vp} €V, and g € W),

We now present the HWG method for (1). HWG method is attained by intro-
ducing the Lagrange multiplier to relax on the boundary of each inner element.
Namely, it can be formulated as follows (see [29] for Stokes equation):

Algorithm 3.2. We seek (wup;pp;An) € Vi x Wy, X B, with up = Qpg on 092, such
that

a(un,v) = b(v,pn) — (v, An) = (£, o), (9a)
b(un, q) + c(un, p) = 0, (9b)
for all v ={vg, v} €V, g€ W), and p € E,.
We shall establish that the problem (9) is well-posed.
Lemma 3.1. There exists a unique solution to (9).

Proof. Since (9) is linear, we only need to consider the uniqueness of homogeneous
equation, let f =0, v = uy, ¢ = pp, b = Ap, then

a(up, up) = 0.

With the definition of a(-,-), for any T' € Ty, we have V,u, =0, ug =0, ug = up
on J0T.
Take any 7 € [Py_1(T)]4*?, according to (6), we have

0= (Vyup,7) = (Vug,7)r — (ug — up, 7 - N)o7.



HWG FOR BRINKMAN EQUATIONS 2495

Then for any T € T, Vug = 0. That is, for any 0T, up = up, = 0. Let v, = 0,
according to up = {0,0} we have

0 =b(v,pn) = (V- v,pn) = —(vo, Vpp).

That is, for all T € T, Vpy = 0.
For any two adjacent elements 77 and T with the common edge e, take vple, 1, =

Iorle, vbler, = —[pn]e; the same, take vple = [un]e, and in Q, vg = 0, we have
(0, n) = D (v, Andor = > _ (03, (An)e)e = 0.
TETh e€ep

Since 0 = b(v,pr) = > _.c., [pr]l|?, we notice that py, is a constant. Furthermore,
since py, € LE(Q), pr = 0 in Q. Lastly, let v, = Ap, then

0=c(v,Ap) = Z (v, An)or = Z 1A 1137

TeTh TETh

and therefore A, = 0. This completes the proof. O

Theorem 3.2. We assume that u, € Vi is the solution to HWG algorithm (9),
then up, is the solution of WG algorithm (8).

Proof. For e € &) with 0Ty N 9Ty = e, let p = [up]e on 9Ty Ne, p = —[up]. on
0Tz Ne, and p = 0 elsewhere. According to (9), we have

0= clup, p) = Z (up, wYor = /[[uh]]gds
TETh ¢

This leads that [up]. = 0,Ve € &. Now, by taking p = 0, we have b(up,q) = 0.
For all v € V},, take [v]. =0, Ve € £) and v|gn = 0, we derive

(v, M) = Y (v, Andor = D ([v]e, An)e = 0.

TeTh e€Ey

This completes the proof. O

3.2. Stability analysis.

Lemma 3.3. (Boundedness) There exists a constant C > 0 such that

la(w,v)| < Clwllysllollve. Vaw,v € VY, (10)
bw,g) < Clolvollal. Vo€ Vige Wi, (11)
@A) < ClolllAllz,, Vo € Viu A€ . (12)

Proof. For (10), according to the definition of a(-,-) and Cauchy-Schwarz inequal-
ity, we can have

la(w, v)

= Z (Vw'w, Vu;U)T + Z (kil'wo, ’U())T —+ Z h;l<’UJO — Wy, Vg — 'Ub>8T

TeTh TeTh TETh
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<C ( > hptwo - wb||%T> ( > hptfwo - vb||gT)

TETh TETh
1 1
2 2
v ( > nvwwu%> (z nvwvu%)
TeThH TETh
1 1
2 2
_1 _1
+c(z n zvou%) (z n zwon%)
TeTh TeTh

<Clwllyollvl

For (11), according to the definition of b(-,-), (7), Cauchy-Schwarz inequality, and
trace inequality, we can have

0.
Vi

b, )] = | > (Vu-v,q)or
TeTh
= |_ Z (’UOaVQ)T+ Z <vbaQ'n>aT
TETh TETh
3 3
< o(x i) (X )
TETh TETh
1 1
2 2
+C ( > hptflvo — Ub||?)T> ( > hT||Q||§T>
TETh T€ETh
< Cllollvollgll.
For (12), we invoke the definition of ¢(-,-) and Cauchy-Schwarz inequality to obtain
(0, )] = | Y (on, Nor| = | D ([v]e; Ae| < Cllvllyo | All=,-
T€eTh eeel
This completes the proof. O

We now establish the coercivity:
Lemma 3.4. We have that
la(v,v)] > C’||'u||%,h97 Yv € V.

Proof. Since Vv € Vy, it holds that ||v]| [lv]|?. This completes the proof. [

2 _
Vo =
We shall now establish total three inf-sup conditions.

Lemma 3.5. (inf-sup condition 1) There is a constant [ > 0 independent of h
such that for any p € Wy, we have

b(v, p)
vev, vl
Proof. ¥p € Wy, C L2(Q), there is ¥ € [H}(2)]? and C > 0, such that
(V-0,p)

= > C|lpll.
1o/

> Bllell-
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For v = Qpo € Vi, |v| < Col|D|l1. According to the definition of norm and trace
inequality, we have

_1
> Ik 2ol

TETh
= D IF2Qu)IF<C Y (9]} < Clloh,
TETh TeTh
Z Vw7
TETh
= Y IVu@rol7 = Y IQnVoll7 < O3],
TeTh TeTh
_ - 2
> bt Qoo — Qudl5y
TeTh
_ L2 _ -2
< Z th Qoo — o537 + Z th Qb0 — |57
TETh TETh
_ _ ~ ~ 2 ~ ~\112
< ' (Z it 1Qo® —3ll7 + Y hr ||V<Qov—v>||T>
TET TETh

+ Chy! (Z hy' 1Qu® = 8ll7 + Y hr [V(Quo 17)||§>

TeThH TETh
< Cvl;.

Now due to the identity:

bo.p) = 3 (Vu- (@) pr = 3 (Qu(V-3).0)r = 3 (V-o.p)r.

TETh TeThH TeThH

We complete the proof. O

Lemma 3.6. (inf-sup condition 1°) For any p € Wy, there is a constant 3 > 0
independent of h and v € V}! such that

b(v,p)

[vllvo

= Bllpll-

Proof. ¥p € W), C L3(£2), there exists © € [H(22)]¢ and C > 0 making

[ollx

We want to prove ||v]| < Cop||0]|1 with v = Qp0 € V. It follows from the definition
of norm, trace inequality, and inverse inequality that

_1 2
> s Zwol7 S s @ed)E < Y 8l < Clg,

TeTh TeTh TeTh

> IVwolz > IVw@rdlr = Y IQnVa|7 < Cll6])1,

TET;, TET), TET,

> Clpll-
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> Qe — Qudldr < D hr'llQud —Bl3r + Y hr' Qv — Bll5r

TETy TETy TET)

< Chp' | Y2 hrlllQed —8lF + Y hr|V(Qod — oIz
TET) TETy

< Cllolh.

Then

b(v,p) = > (Va - (Qud),p)r = > (Qu(V-8),p)r = > (V-8,p)r.
TeTh TeTh TeTh
This completes the proof. O

Lemma 3.7. (inf-sup condition 2)There is a constant C > 0, for any given
T € Ep, there is v € VP vy = 0, so that

c(v,T)
[vllvo

Proof. V1 € Zp,{(T)e = 0. Let v = {0,h.7} € V), according to the definition of
bilinear form, we have

clo,7) = D (v, 7he+ (07, 7%)) =2 Y hellTllf =272,

2 Oz,

6652 66&‘2
s(v,0) = Y (hp lhem |+ b [hem?|I2) < C Y he|lTl2 = ClITI2,,
ece) ece)

where v}; and T (i = 1, 2) represent the value of vy|7, and 7|7, respectively. Using
Cauchy-Schwarz inequality, trace inequality, and inverse inequality,

Z (va,va)T = Z <’U;,Vw’l)>e

TETh ecoT
< Z he [T*[|eIVwvlle
ecoT
1
< C Y Rl Vwollr,
ecoT

where v} can be selected as vg or vf and 7* can be selected as 7! or 72, it depends

1
on the sectioning unit v, and 7 is in. As a result of ||[Vyv|lr < C Y cophE|Te,
we can get
loll* < C|irI2, -
This completes the proof. O

3.3. Error equation. The purpose of this section is to construct the error equation
[3, 19] between the numerical solution and the true solution of HWG according to
the numerical algorithm (9).

Now, we shall present the properties of projection operators without proofs: (see
[17] for proofs).

Lemma 3.8. The projection operators Qn, Qn and Qp, satisfy the following prop-
erties:

Vw(Qh'U) = Q}L(V’U), Vo € [Hl(Q)}da
V- (Qrv) = Qp(V-v), Yve H(div,Q).
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Lemma 3.9. Assume that (u;p) € [H}(Q)]? x LE(Q) is the true solution of (1),
(un;pn; An) € Vi x W)y, x By, is the solution of (9). Let A = Vu -n — pn, take
en = {Qou — ug, Qpu — up}, e = Qpp — P, O = QA — Ap. Then the error
function ep, en, and & satisfy the following equations
a’(ehvv) - b(va Eh) - C((Shv'v) = ¢u,p(v)7 NUNS V}?a (13)
b(en,q) +clen,u) = 0, Vg€ Wy, p€Ep, (14)
where

dup(v) = li(v,u) —la(v,p) + s(Qpru,v),

61 (’U, U) = Z <(V'LL - thu) ‘N, Vo — vb>6T,
TETh

bwp) = > {(p—Qup)n, v — vi)ar.
TeThH

Proof. First, we invoke the definition of discrete weak gradient (4) and partial
integral,
(Vu(Qnu), Vyv)r
(Qr(Vu),Vy,v)r
= —(V-(@QnVu),v)r +(Qn(Vu) - n,vp)or
= (QnVu, Vg, )r — (Qn(Vu) - n,v9 — vp)ar
= (Vu,Vvg,)r — (Qr(Vu) - n, vy — vp)or
= —(Au,vo)r + (Vu-n,vg — vp)ar — (Qn(Vu) - n,vg — vp)or
—(Au,vo)r + (Vu — QrVu) - n,v0 — vy)or + (Vu - n, vp)or.
By adding these for all T' € T}, we obtain

—(Au,vg) =(V(Qpru), Vyv) — Z ((Vu — QrVu) - n,vy — vp)ar
TeTh

- Z <VU 'n, vb>3T-
TETh

Similarly, from (5) and partial integral, we have that

(Vw-v,Qup)r = —(vo, V(Qup))1r + (vs, (Qup)1) o,

(V- v0,Qnp)r — (vo — v, (Qup)n)or

(V- vo,p)r — (vo — vy, (Qup)n)or

—(vo, Vp)1 + (vo,p - n)ar — (vo — vy, (Qrp)n)or

= —(vo, Vp)r + (vo — vp, (p — Qup)n)or + (vp, pr)or.

Hence,
(v0, Vp) = —(Vu - 0,Qup) + > (vo — vy, (p — Qup)n)or + > (v, pn)or.
T€7-h T67-h
Testing vy for both sides of (1), we obtain
7(Aua UO) + (H71u7v0) + (VP, 'l)o) - (fa UO)'
Now, from the identity:

Z (vp, Vu - n — pnjor = c(v, A), (15)
TeTh
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we can have
a(v,Qpu) — b(v,Qpp) — c(v,A) = (Ff,v0) + Pup(v).
By combining these with (9), we have that
a(v,un) = b(v,pn) = ¢(v, A) = (f,v0),
which then results in
a(en, v) = b(v,en) = c(0n,v) = Pup(v).

From Theorem 3.2, [en]. = 0, we can get c(ep,pu) =0, Vi € Ep,.
Now, for any g € W}, b(ep,q) =0 and we can get

blen,q) +clen,u) = 0, Vge Wy, p€Ep.

This completes the proof. O

3.4. Error estimation. In this section, we establish the H' and L? norm error
estimates using the error equations (13)-(14). To do so, we first provide some simple,
but useful lemmas.

Lemma 3.10. If (u;p) € [HE(2)]? x L2(2) is the true solution to the problem (1),
there is a constant C such that

[bup®)] < CR* ([ullisr + Iple) 0] (16)

Proof. Using Cauchy-Schwarz inequality, trace inequality, and inverse inequality,
we have

161 (v, w)| (17)
1 1
2 2
< C| D> hr|Vu—QuVulr > hrtllvo — voll3r
TEThH TET
3 3
< O Y IVu—QuVulf +h7||V(Vu — QuVu)7|| > bt llvo — v
TEThH TEThH

} %
< ¢ ( > W llulEe + hz’“IIVUIi) ( > ha'llvo — vbll)

TeTy TETh

< Ch|[ullks1v]n.

Same as the proof of (17), according to Cauchy-Schwarz inequality and trace in-
equality, we have

[l2(v,p)| = Z (vo — b, (p — Qnp) - M)or

TeTh
Ch¥[|p|lx v

IN
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By the nature of @, Cauchy-Schwarz inequality, trace inequality, and inverse in-
equality, we can get

5(Qru,v)| = Z hr' (Qou — Qyu, vo — vi)ar

T€7—h
= Z h3' {Qou — u, vg — vp)ar

TeTh

%
< C < > (h7lQou — 17 + [ V(Qou — U)II2T)> [v[n
TE7-h
< Cllullps1|v]n.
The theorem is proved. O

Theorem 3.11. Assume that (u;p) € {[H*1(Q)]4N[HE(Q)]9} x LE(Q) is the true
solution satisfying (1), (wp;pn; An) € Vi X Wy, X Zj, is the solution of (9), then

1Qnu — wnllvo + [Qup = prll + QoA = Anllz, < CR* (Jullesr + [lp]lx) -
Proof. In the error equation (13)-(14), taking v = ey, u = dp,q = €5, , we have
lenll* = alen, en) = dup(en).
In (16), let v = e, we have
|buplen)) < CR* (|ufers +[Ipllk) lenln.
According to |ep|n < Cllen]l, we can further obtain
lenll < CR* (1l + llpllx) -

There are the following facts [len|| = [[enllyo, so

lenllve < CR* (lwllisr + lIple) -

According to Lemma 3.5, by taking v* = {0, v,}, we have

C('l)*, 5h) = Z <’Ub7 6h>8T

TeTh

= Z ([vle, On)e

0
ecey,

= 0.

According to (16), error equation (13), and boundedness of bilinear form (10)-(11),
we can get

b('U*, Eh) a(eha U*) - ¢u,p(v*) (18)
la(en, v*)] + [¢up(v")]
Clleallllo* + Cn* (||ulls+1 + llpll)lv* |

Ch* (|lwllsr + [Iplli) llo*

And because b(v*,ep,) > Bllen||z, |lv*|l, we have

lenllz, < Ch*(lwflisr + lIple)-

INIA TN
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Taking v = {0, v}, same as the proof of (18), we can get

|c(v, 0n)| [b(v; en)| + [alen, V)] + [Du,p(v)]
Clivllllerllz, + Ch (lullisr + Iplle) vl
CR* ([[ulli+1 + [Ipll) o]

And because c(v,dy,) > C||dy]|=, |v||, we have

ININA A

I18nll=, < Ch*(Jlwllers + Ilpllx)-

This completes the proof. O

Finally, the dual technique is used to derive the optimal order error estimates of
the WG scheme under L? norm. Consider the following dual problems

— A+ kKT +VE=¢p, inQ, (19a)
V=0, in, (19b)
=0, on 09, (19¢)

with (1;€) € [H?(2)]? x H*(Q). Assume that the dual problem is H? -regular, that
is, the constant C' makes
[l + 1€l < Clleoll- (20)
Theorem 3.12. Suppose (u;p) € {[H*T1(Q)]? N [HE(Q)]4} x LE(Q) is the true
solution to the problem (1), (up;pn; An) € Vi, x Wy, X Ey, is the solution of (9), then
1Qow — uoll < CR ! (lulluss + [Ipllx) + Chllenl.
Proof. Multiplying ey to both sides of (19) gives

Heo||2 = _(Awa eO) + (H’ilwa eO) + (vf, 60).

Take u = v, vg = ey, p = £ in the above formula, from the error equation

leol> = (Vau(Qnt), Vuwen) = > (eo — ew, (V& — QuVY) - n)or

TETh
- Z (en, V- n)or — (Vi - en, Qné) + (€0 — e, (§ — Qné)n)or
TeTh
+ <eba€'n>0T+ (ﬁ_1¢7€0)
= a(en, Qny) — blen, Qng) — ¢y c(en)
a(en, Qn) — b(Qnip,en) — dycen)
= (0, QnY) + up(Qny) — dy.clen).

The following estimates the above formula item by item

|c(0n, Qrb)| = [c(Qnp, QpA — An)|

lc(Qry — ¥, Qe — Ap)|
CllQryY — Y[[|QeA — Arllz,
CR** 5 (||wllers + 2l 112,

IN

IN

|bup(@r)l < CR*(Julliss + llpllk)|@n¥l-



HWG FOR BRINKMAN EQUATIONS 2503

Because of the following fact

Quelr = Y hr'llQuv — Qutll3r

TEThH
< > hpMQov — vlEr+ Y hrtllv — Quylldr
TeThH TETh
< O hp'lQov — ¢y
TETh
< CR*|y]3,

we can get [du,p(Qni)] < CRF([[ullirr + [[pllw) |92 -
In (16), by taking u = ¢, v = ep,p = &, we can get
|dy.¢(en)] CR* (|9 llk+1 + [1€]1%) en]n
CR*([9ll+1 + [I€l) lenl
Ch([[¥ll2 + [[€l)Nexll-

IA AN IA

Then
leol* < CRE ([l + IO 19112 + Chll9 ]2 + 1€l llenll-
From regularity (20), we have
leoll < CR** Y (l[wllks1 + [Ipllx) + Chllen]-

This completes the proof. O

Note that Under the condition of Dirichlet boundary value, change the space of
Lagrange multiplier and redefine it as

AR(OT) = {X: Al € [Peoi(e))) e cOT}, An= ] Aw(0D).
TeTh

Denote @Qp the L2 projection operator from [L2(e)]? to [Pr_1(e)]* . Then from
(15), we can get

Z (vp, Vu-n —pn)sr

TeTh
= > (o, Vu-n—pn)or+ > (v, Qu(Vu-n—pn))or
TeTh TeTh
- Z (05, Qu(Vu - — pn))or
TeTh
= Z (vp, Vo - — pnor + c(v, QuA) — c(v, Qu ).
TET

The error equation is
alen,v) —b(v,en) — c(0n,v) = Gup(®) —c(v, QA —N), Yo e VL,
b(en,q) +clen,p) = 0, Vge Wy, p€Zy,

and c(v, QA — A) = (vp, (Vu -1 — pn) — Qy(Vu - n — pn))ar = 0, so the error
equation is the same as Theorem 3.9, we can get the same error estimates.
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3.5. Theoretical analysis of Schur complement method. Due to the intro-
duction of Lagrange multipliers, the number of unknowns to be solved is increased
in HWG method. The purpose of this section is to apply Schur complement
technique [24, 29] to reduce degrees of freedom, based on the numerical scheme
constructed by HWG method. That is, boundary function w;, is used to express
internal function wg and Lagrange multiplier Aj,.

First, we define the boundary finite element space B, as follows

By, = {v={mwp}:pelPi(e)’pl € Pia(e)ecen}.
For Hilbert space Bj,, we define inner product as follows
(Wor @)z, = > (Wb, @)er  Ywb, @y € B
ecep

BY is a subspace of By, consisting of functions in By, with zero boundary value.
Obviously, By, is isomorphic to Z,. In order to eliminate Lagrange multiplier Ay,
and interior unknowns g by Schur complement technique, we introduce mapping
Sf : By, — Bg

For a fixed function pj and any given function wy, € By, we shall define S¢(wp; pr)
by the following three steps:

Step 1: On each element T € Ty, wy is represented by w;, and pj through the
following equation:

ar(wp,v) —br(v,pr) = (f,vo)r, Yo ={vy,0} € Vi(T), (21)

where wy, = {wo,wp} € Vi(T), pr € Wi(T). Then we can work out wg =
Dy (wp;pp) from (21).

Step 2: On each element T € 7Tp, we represent ¢ € Ag(0T) by wp =
{wo,wp} € Vi(T') and py,

cr(v,$nr) = ap(wn,v) —br(v,pp), Yo ={0,v,} € Vi(T). (22)

Then we can work out 7 € Ap, Cnr = Lg(wp; pp) from (22).
Step 3: We then define S¢(wy;pr) by the following: the similarity of {5 on the
inner boundary and 0 on the outer boundary, that is

Sg(ws;pn) = (Cnr))e (23)

We observe that by (23), Sg(wp;pr) € BY. Furthermore, the operator Sy has the
following properties:
(1) Summing (21) and (22), we obtain that

cr(v,Cpr) = ar(wn,v) — br(v,pn) — (F,vo)r, Yo ={vo, v} € Vi(T). (24)
(2) From the superposition principle, we have that
S¢(wpspn) = So(ws;pn) + S§(0;0), Vwy, € By, pp € W,
where Sy corresponds to the operator of f = 0.
Lemma 3.13. For operator Sy, the following equation holds true
(So(wb;pn), @b)e,, = a(wn, qn) = b(qn,pn);  Vwr, qy € By,

where wy, = {Do(wp; pr), wb}, qn = {Do(qv; Pr), @}, Do and Lo correspond to the
operator of f = 0.
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Proof. For any wy, gy € Bj). From the definition of operator Sg, we obtain
wp, = {Do(wp; pr), wb}, Chn = Lo(wb;pr), qn = {Do(qv;pn), qv}-
Let f =0 in (23), we have

(So(whipn) @)er = D ((Chher@v)e = Y (Cnrav)or

668% TETh
= Y cr(gn Cur) = Y ar(wn qn) — br(qn, pn)-
TeTh TeTh
We complete the proof. O

Lemma 3.14. Assume that (wp;pp;An) € Vi X Wi X Zy, is the only solution of
HWG algorithm (9), we have that w, € Vy, and uy, € By, are well defined functions

and Sg(us;pr) = {(Cn))e = 0.

Proof. Because (up;pr; An) € Vi, x Wy, X Ey, is the only solution of HWG algorithm
(9). Then by Theorem 3.2, we obtain that for any e € &7, [up]. = 0, and u;, = Qpg
on 09, so up, € Vy, and uy, € By, are well defined. v = {vg,0} € V;(T) on T, and
v = 0 elsewhere. Substituting (9), we obtain

ar(up,v) —br(v,pr) = (f,v0), Vv = {vg,0} € Vi(T),

where v = {0,v,} € Vi(T) on the element T, and elsewhere v = 0. Substituting
(9), then A, satisfies the following equation

cr(v, Ap,r) = ar(up,v) —br(v,pr), Yo ={0,v,} € Vi(T),
where Ay, 7 is the limit of Aj on 7. From the definition of operator S¢, we obtain
S¢(up;pn) = (An), VA, € Ep.
So {(An))e = 0, that is Sy (up; pr) = (Cnh)e = 0. O

Lemma 3.15. Assume that u, € By is a function satisfying uy, = Qpg on 0SY,
and ay and py, satisfy the following operator equations:

Sy (uy;pr) = 0.

Then (up;pr) € Vi X Wy, is the solution of the WG algorithm (8), where wq is the
solution of the following problem on each element T € Tp,.

ar(tp,v) —br(v,pp) = (fyv0), Vo ={vy,0} € Vi(T). (25)

Proof. For each element T € Tp, Xh,T € Ay (9T) can be solved from the following
equation

CT(’U, Xh,T) = a’T(ﬁha ’U) - bT('U,ph), Vo = {Ovvb} € Vk(T) (26)

Define A\, € Ay, as Aplor = S\h,T. Because (up;pn) € B x W), satisfies Lemma
3.15, uy satisfies the boundary condition and wg satisfies (25), then

Sy (i pn) = (An)e = 0. (27)
Using (25) subtract (26), we have
ar(tp,v) — br(v,pr) — cr(v, An1) = (F,v0)r, Yo = {vo, v} € Vi(T).
Adding up all T" on T}, so that
a(n,v) —b(v,pn) — c(v,An) = (f,v0), Yo ={vo,vp} € V.
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Limiting v in weak function space V), and using (27), it is easy to get
c(v, M) = > (0, Anor = D (p, (An)e)e = 0.
TeT SGS’?
Then
a(tin, v) — b(v,pn) = (f,v0), Vo ={vg, v} € V).
According to the assumption up|s0 = @Q»g and Theorem 3.2, u;, € V}, is the solution
of WG method (8). O

From the above lemma, it is not difficult to prove the following theorem.

Theorem 3.16. Assume that a, € By, is a function satisfying that uy, = Qpg on
00, ug is the solution to (25).Then (@p;pn) € Vi x Wy is the solution of WG
problem (8) if and only if uy satisfies the following operator equation
Sf(’l_l,b;ph) =0. (28)
By (24) and (28), we have
So(wy; pn) = —=S¢(0;0), (29)
Seeking the finite element G, € By, satisfying: G = Qpg on 02, and 0 elsewhere.
Since Sy is a linear operator, we obtain

So(up;pn) = So(y — Gv; pr) + So(Gv; pr)-
Substituting the above equation in (29) gives

So(ay — Gv;pn) = —=55(0;0) — So(Gv; pn)-
We define H}, = 4, — Gy such that Hy = 0 on 2. Let r, = —S¢(0;0)—So(Gw; ph),
then

So(Hb;ph) =Tp. (30)
Subtraction algorithm 1 The solution (up;pp) of the WG algorithm (8) can be
obtained by the following steps
Step 1: On each element T € T, 7, can be solved by the following equation
Ty = —Sf(O; 0) — So(Gb;ph).

Step 2: Solving {Hjp;pp} through (30).
Step 3: Calculating u, = Gy + H, we get the solution on the element boundary,
and then on each element T € 7, we calculate wy = Dg(up, pp,) through (21).

4. HWG for Brinkman equation with Neumann boundary condition (2).
In this section, we present HWG algorithm for Brinkman equation with Neumann
boundary condition.

4.1. Algorithm. First we present the WG numerical scheme of Brinkman first
variational formulation.

Algorithm 4.1. ([17]) Find (@n;pp) € Vi X Wy, such that Vay, - n = Q0 on 09
and the following equation holds true:
a(ﬂ;“’l)) - b(val_)h) = (f,’l)o) + <07vb>3Qa
b('ELh, q) Oa
for all v = {vg, v} € Vj, v and g € W),
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Similarly to the case of Dirichlet boundary condition, by introducing Lagrange
multipliers, we introduce HWG method:

Algorithm 4.2. ([29]) Find (up;pp; An) € Vi, x Wy, x Zj, such that Vuy, -n = Q,0
on Jf) and satisfying the following equations:

a(up,v) —b(v,pp) —c(v,An) = (f,v0)+ (0,vp)00, (31a)
b(un,q) + c(up, p) = 0, (31b)
for any v = {vo, v} € Vi v, ¢ € W), and p € Ep,.
Lemma 4.1. The problem (31) is well-posed.

Proof. The argument is similar to that for the Lemma 3.1. This completes the
proof. O

4.2. Stability analysis. The proofs of the following lemmas are the same as
Lemma 3.3 - 3.7.

Lemma 4.2. (Boundedness) There exists a constant C > 0 such that

la(w,v)| < Cllwllv, y[[vllv, x, Yw,v€Vin,

bv,q)l < Clollv, vl Vo € VN, q € Wh,

lc(v, A)] < Clvllv, yIAz,, Yv € Vin,AEE,.
Lemma 4.3. (Positivity) For any v € Vi, we have ||[v||3, = |[v]|?, then

la(v,v)] > Clvlf3, -
Lemma 4.4. (inf-sup condition 1) There exists a constant 8 > 0 independent of
h, for any p € Wy, we have

b
sup (v,p)
veEV, |||U Hl

> Bllpll-

Lemma 4.5. (inf-sup condition 1°) For any p € Wy, there exists a constant 5 > 0
independent of h and v € V}, n, we have

b(v,p)
> flpl.
011V v

Lemma 4.6. (inf-sup condition 2) For any T € By, there exists v € Vi, n satisfying
vg = 0, such that
c(v, 1)
T 2 Cl7ll=,,
o]V x

where C' > 0 is a constant independent of h.

4.3. Error equation. The purpose of this section is to construct the error equation
between the numerical solution and the true solution for HWG according to the
numerical solution algorithm (31).

Lemma 4.7. Assume that (u;p) € [HE(Q)]? x LE(Q) is the true solution of (2),
(wn;pn; An) € Vip x Wiy, X Zp, is the solution of (31). Let X = Vu -n — pn, take
en, = {Qou — ug, Qpu — up}, €, = Qup — pp, 0n = Qe — M. Error function ey,
en, and Oy satisfy the following equation
alep,v) —b(v,ep) — c(dp,v) = ﬁp(v), Yv € Vi N,
b(Eh, q) + c(eha IJ’)

0, VqEWhaHEEha
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where
Sup(v) = 0 (v,u) =6 (v,p) + 5(Qnu,v),
Z{V(’U,u) = gl(vau)a
gév(’l)?p) = EQ(Uap)'

Proof. By Lemma 3.9, we obtain
a(v, Qru) — b(v,Qrp) — c(v, A) = (£, v0) + ¢h ,(v) + (6, vs)aq.
By combining with (31), we obtain
a(ep,v) —b(v,ep) — c(dp,v) = gbﬁp(v).
Now, from Theorem 3.2 and Lemma 3.9, we have
blep,q) +clep,u) = 0, Yge Wy, p€E.
We complete the proof. O

4.4. Error estimation. In this section, we first give the following lemmas to make
the corresponding H' and L? error estimates for the error equation.

Lemma 4.8. Assume that (u;p) € [H'(Q)]? x L3(Q) is the true solution to the
problem (2). Then, there exists a constant C' such that

[up@| < R (llullsr + Ipllx) [v]n-

Proof. By Lemma 3.10, we obtain

14 (w,u)] < CR¥|lufletafv]n,
15 (v, p)| < CRF|pllx|vln,
s(Qnu, )| < Cllullgga|v]n.
This completes the proof. O

The proofs of the following Theorems are similar to those of Theorem 3.11 and
Theorem 3.12. Therefore, we only state the the conclusion without proofs.

Theorem 4.9. Assume that (u;p) € {[H*TH(Q)]4 N [HL(Q)]4} x LE(Q) is the true
solution to the problem (2), and (wp;pr; An) € Va,n X Wy X Zj, is the solution of
(31). We have

1Qnu — v, + 1Qup = pull + 1QeX = Anllz, < CRF ([fullksr + [Ipllx) -

Finally, the dual technique is used to derive the optimal order error estimates
of the weak finite element scheme under L2 norm. We consider the following dual
problems

A+ KM+ VE=¢ey, inQ,
V-¢=0, in§,
(Vi) - m =0, ondQ.
where (¢;€) € [H3(Q)]¢ x H'(2). Assume that the above dual problem has H?2-
regularity, that is, there is a constant C', which makes

¥l + 1€l < Clleoll.
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Theorem 4.10. Assume that (uw;p) € {[H*TH(Q)]4N[HE(Q)]4} x LE(Q) is the true
solution to the problem (2), and (wp;pn;An) € Van X Wy, X By, is the solution of
(31). We have

1Qow — woll < CH**([w]lis1 + IIpllx) + Chllenll-
5. HWG for Brinkman problem with Robin boundary condition (3). In

this section, we present HWG for Brinkman equation with Robin boundary condi-
tion.

5.1. Algorithm. We, first give a weak Galerkin finite element numerical scheme of
Brinkman first variational formulation under Robin boundary condition as follows:

Algorithm 5.1. ([17]) Find (ap;pn) € Vi, x W), such that Vg, - n + aty, = v on
09 and the following equations hold true
ar(tn,v) —b(v,pr) = (f,v0) + (7, )00,
b(ﬁ/fw q) Oa
for any v = {vg,vp} € V}, and q € Wy,

Similar to the other two boundary cases, by introducing Lagrange multipliers,
we introduce the HWG method for Robin boundary case as follows:

Algorithm 5.2. ([29]) Find (wp; pr; An) € Vi x Wy, XZ), such that Vuy, - n+auy, = v
on Jf) and the following equations hold true:

ar(up,v) —b(v,pn) —c(v,An) = (F,v0) + (7, )00, (32a)
b(un,q) + c(up,p) = 0, (32b)
for any v = {vg,vp} € Vi, ¢ € W}, and p € Ep,.
We can easily establish the following well-posedness of the problem (32).
Lemma 5.1. The problem (32) is well-posed.
5.2. Stability analysis.

Lemma 5.2. (Boundedness) There exists a constant C > 0 such that

lar(w,v)| < Cllwlv,|lvllv,, Yw,v €V,
|b(vvq)| < C”’Ul Vi QH, Vv € Vi, q € Wh,
lc(v, M) < Cllollv, [Allz,, Vv € Vi, A € Ep.

Lemma 5.3. (Positivity) For any v € Vy,, we have ||[v||}, = |[v[|?, then
lar(v,v)] = Clvl3,.
Lemma 5.4. (inf-sup condition 1) There exists a constant B > 0 independent of
h, for any p € Wy, we have
b(v
sup (v, p)
vev, vl

> Bllpll-

Lemma 5.5. (inf-sup condition 1°) For any p € W}, there exists a constant 5 > 0
and v € Vi, independent of h, we have

b(v, p)
[v]lv,,

> Bllpl|-
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Lemma 5.6. (inf-sup condition 2) For any T € =, there exists v € Vi, n satisfying
vg = 0, such that

C\v
.7 5 O,
ol

where C' > 0 is a constant independent of h.

5.3. Error equation. The purpose of this section is to construct the error equa-
tions between the numerical solution and the true solution for HWG, according to
the numerical solution algorithm (32).

Lemma 5.7. Assume that (u;p) € [HE(Q)]4 x L3(Y) is the true solution to the
problem (3), and (wp;pp; An) € Vi x Wiy, X Ey, is the solution of (32). Let A =
Vu-n —pn, take e, = {Qou — uo, Qpu — up}, e = Qup — pn, 0 = QuA — Ap.
Error function ey, €r, and 8y, satisfy the following equation ey, satisfy the following
equation

ar(en,v) —b(v,ep) — c(0p,v) = 5@(1}), Vv € Vi N,
blen,q) +clep,u) = 0, Vg€ Wy, p€Zy,
where
Sup(®) = ((v.u) =45 (v,p) — (5 (u,v) + s(Qnu,v),
ER('U u) = {1(v,u),
p) = La(v,p),
53 (u,v) = (a(Qpu —u),vp)s0.
Proof. Similar to the Lemma 3.9, we have that
ar(v,Qnu) — b(v,Qup) — c(v,A) = (f,v0) + ¢t ,(v) + (7, vp)00
By combining it with (32), we obtain that
ar(v,up) —b(v,pn) — c(v,A) = (f,v0) + (7, Vb)00,
which gives
ar(en,v) —b(v,en) — c(dp,v) = ¢5,p(1’)-
From Theorem 3.2 and Lemma 3.9, we obtain
blen,q) +clep,u) = 0, Vge Wy, ues,.
This completes the proof. O

5.4. Error estimation. In this section, we want to give the H' and L? error
estimates, so the following lemmas are given first.

Lemma 5.8. Assume that (u;p) € [HE(Q)]4 x L3(2) is the true solution to the
problem (3). There exists constant C satisfying

up@)] < CBF ([uflers + [Iplk) [0]n-
Proof. From Lemma 3.10, we have
(v, w)] < ORF|[ufira vl
05 (v, )] < CR*|pllx|vln,
s(Qnu,v)| <

Cllullgr1]v]n-
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From Cauchy-Schwarz inequality and trace inequality, we obtain

163 )] = [((a— &) (Quu —u), vp)a0]|
< Chlla—al1,00 <Z |Qbuu||3> lvslloe
ecep

< Ch Y (hpM|Quu — ullF + hr | V(Quu — w)[|3) % vl
TETh

< Ch¥||lullesr|v]n,

we complete the proof. O

The proofs of the following Theorems are similar to that of Theorem 3.11.

Theorem 5.9. Assume that (u;p) € {[H*TH(Q)]4 N [HE(Q)]4} x LE(Q) is the true
solution which satisfies the problem (3), and (up;pp;An) € Vi, X Wy, X Ep, is the
solution of (32). We have

1Qnw — wallv;, + 1Qup = prll + QoA = Anllz, < Ch* (Juflesr + Iplli) -

Finally, the dual technique is used to derive the optimal order error estimates
of the weak Galerkin finite element scheme under L? norm. Consider the following
dual problem:

A+ KM+ VE=e, inQ, (33)
V-¢=0, inQQ, (34)
(V) -n+ap =0, on dQ, (35)

with (1;€) € [H?()]? x H'(Q). Assume that the above dual problem has H?-
regularity, that is, there is a constant C', which makes

vl + 1€l < Clleo]|.

Theorem 5.10. Assume that (w;p) € {[H*TH(Q)]4N[HZ(Q)]4} x LE(Q) is the true
solution to the problem (3), (un;pn;An) € Vi, x Wi, x Zj is the solution of (32).
When k > 2, we have

[Qow — woll < CR* |1
Proof. Using eg to act on both ends of (33), we obtain
leoll® = = (Av, e0) + (579, €0) + (VE, €0)-

Take u = ¥, vg = ey, p = £ in the above formula. From the error equation, we
obtain

leol> = (Vu(Qnt), Vwen) = Y (eo — s, (Vi) — QuVY) - m)or

TETh
= > en, Vi n)or — (V- en, Qué) + Y (€0 — en, (§ — Qué)n)or
TET TeT
+ Z <eb7£ : n>3T + (’%711/}7 60)

TEThH
= ar(en, QnyY) — blen, Qné) — dyelen) — (ep, A(Qvp — P))on
ar(en, Qn) — b(Qn,en) — Py c(en) — (e, a(Qvth — ¥))on
= c(0n, Qn) + dup(Qnd) — by c(en) — (en, a(Qv) — ¥))aq.
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Using Theorem 3.12, we have

lc(0n, Q)|
|¢w,£(eh)\

CR** 3 (lulligr + [lplle) 1]z,
Ch(|9ll2 + €l llenl-

IAIA

Since we have

|{es, a(QuY — 1)) aql

< Clesloalla(Quy — )|l
< Chlenllle = all1,00 <Z Qvy) — ¢II§>
ecey,
< Chllenll Y- (hz'a(@Qu — )13 + hrl|V(a(Quv — ))II3)?
TeTh

< Chllenllll¥ll2

we obtain
leoll < CR* ™ (Jlwllisr + Ipllk) + Chllenll.

This completes the proof. O

6. Numerical experiments. In this section, we consider Brinkman problem (1)
on the partition region € = (0,1)2, where we consider different y and & given as
follows:

k! = a(sin(2rz) + 1.1),

where a is a constant and a number of different values of a have been tested.
Our results show that the proposed method produce robust numerical solutions for
varying parameters u and a.

We shall take the following analytical solution:

u:< sin(2mz) cos(2my) ) 1

_ .22 1
—cos(2mx) sin(2wy) /) p=%y —y

According to (1), we can get the exact f and let h denote the grid size. For
simplicity, we choose the polynomial degree k£ = 1. We shall set e;, = Qru — up,
en = Qup — pn, and dp, = QuA — Ap.

h lllenlll | order | |len|| | order llen ] order |6n] | order
1/4 5.63 1.06 4.67e-01 1.85
1/8 2.87 0.97 | 1.81e-01 | 2.55 | 2.70e-01 | 0.79 1.09 0.76
1/16 1.43 1.00 | 3.30e-02 | 245 | 1.39e-01 | 0.95 | 5.75e-01 | 0.93
1/32 | 6.89¢-01 | 1.00 | 7.17e-03 | 2.20 | 7.01e-02 | 0.99 | 2.93e-01 | 0.97
1/64 | 7.17e-01 | 1.00 | 1.71e-03 | 2.06 | 3.51e-02 | 1.00 | 1.47e-01 | 0.99

TABLE 1. p = 1,a = 1 Error and convergence order of velocity
function w and pressure function p.
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h llen]ll | order llenll order llenl order | ||| order
1/4 4.03 1.16e-01 9.05e-01 3.89
1/8 2.24 0.85 | 1.94e-02 | 2.59 | 7.38¢e-01 | 0.29 2.18 0.84
1/16 1.30 0.79 | 7.38¢-03 | 1.39 | 4.46e-01 | 0.73 1.08 1.01
1/32 1 6.89¢-01 | 0.91 | 3.07e-03 | 1.27 | 2.37e-01 | 0.91 | 5.36e-01 | 1.01
1/64 | 3.53e-01 | 0.96 | 1.06e-03 | 1.53 | 1.09e-01 | 1.13 | 2.50e-01 | 1.10
TABLE 2. p = 1,a = 10* Error and convergence order of velocity
function w and pressure function p.
h llenlll | order llen]] order llen ]| order |0n]l | order
1/4 | 9.87e-01 6.02e-01 7.87e-02 1.82e-01
1/8 | 5.06e-01 | 0.96 | 1.63e-01 1.88 | 5.84e-02 | 0.43 | 1.25e-01 | 0.54
1/16 | 2.47e-01 1.03 | 3.63e-02 | 2.17 | 3.56e-02 | 0.71 | 7.54e-02 | 0.73
1/32] 1.22e-01 1.02 | 8.08e-03 | 2.17 | 1.92e-02 | 0.89 | 4.04e-02 | 0.90
1/64 | 6.06e-02 | 1.01 | 1.92e-03 | 2.07 | 9.80e-03 | 0.97 | 2.07e-02 | 0.97
TABLE 3. p = 0.01,a = 1 Error and convergence order of velocity
function w and pressure function p.
h llenlll | order llen]] order llen ]| order |0n]l | order
1/4 | 7.33e-01 8.32e-02 1.20e-01 4.07e-01
1/8 | 4.41e-01 | 0.73 | 3.38-02 | 1.30 | 9.01e-02 | 0.42 | 2.07e-01 | 0.98
1/16 | 2.36e-01 | 0.90 | 1.02e-02 | 1.73 | 4.70e-02 | 0.94 | 9.96e-02 | 1.06
1/32| 1.20e-01 | 0.97 | 2.63e-03 | 1.96 | 2.15e-02 | 1.13 | 4.52e-02 | 1.14
1/64 | 6.04e-02 | 0.99 | 6.56e-03 | 2.00 | 1.01e-02 | 1.09 | 2.14e-02 | 1.08
TABLE 4. p = 0.01,a = 10* Error and convergence order of veloc-
ity function uw and pressure function p.
h dof dof schur
1/4 | 8.32e4+02 | 6.40e+02
1/8 | 3.26e+03 | 2.50e+03
1/16 | 1.29e+03 | 9.86e+03
1/32 | 5.15e+04 | 3.92e+04
1/64 | 2.05e+05 | 1.56e+05
TABLE 5. Comparison of the degrees of freedom between the
weak Galerkin finite element method based on gradient divergence
and Schur complement method.
h lllenlll | order | |len|| | order llenl order | [|dp] | order
1/4 5.79 1.21 5.54e-01 8.08e-01
1/8 2.93 0.98 | 2.23e-01 | 2.44 | 3.00e-01 | 0.89 | 3.08e-01 | 1.39
1/16 1.46 1.40 | 4.74e-02 | 2.24 1.48e-01 1.02 | 9.44e-02 | 1.71
1/32 | 7.32e-01 | 1.00 | 1.13e-03 | 2.07 | 7.33e-02 | 1.02 | 2.64e-02 | 1.84
1/64 | 3.66e-01 | 1.00 | 2.80e-03 | 1.92 | 3.65e-02 | 1.01 | 7.19e-03 | 1.87
TABLE 6. p = 1,a = 1 Error and convergence order of velocity

function w and pressure function p.
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h llen]ll | order llenll order llenl order |6n]] | order
1/4 3.51 1.90e-01 8.61e-01 3.14
1/8 2.36 0.57 | 6.20e-02 | 1.62 | 6.87e-01 | 0.33 1.70 0.89
1/16 1.35 0.80 | 2.45e-02 | 1.34 | 3.76e-01 | 0.87 | 7.73e-01 | 1.14
1/32 | 7.14e-01 | 0.92 | 8.46e-03 | 1.54 | 1.59e-01 | 1.24 | 2.97e-01 | 1.38
1/64 | 3.64e-01 | 0.97 | 2.44e-03 | 1.79 | 5.76e-02 | 1.47 | 9.30e-02 | 1.68
TABLE 7. gt = 1,a = 10® Error and convergence order of velocity
function w and pressure function p.
h lllerlll | order llexrl order llenl order l6n] | order
1/4 1.14 6.87e-01 3.45e-02 1.02e-01
1/8 | 6.46e-01 | 0.82 | 2.31e-01 | 1.57 | 1.70e-02 | 1.02 | 5.39e-02 | 0.92
1/16 | 3.41e-01 | 0.92 | 7.23e-02 | 1.67 | 7.52-03 1.18 | 2.28e-02 | 1.24
1/32 | 1.75e-01 | 0.96 | 2.05e-02 | 1.82 | 2.85e-02 | 1.40 | 8.34e-03 | 1.45
1/64 | 8.83e-02 | 0.98 | 5.46e-03 | 1.91 | 1.01e-03 | 1.50 | 2.82e-03 | 1.57
TABLE 8. p = 0.01,a = 1 Error and convergence order of velocity
function u and pressure function p.
h llenlll | order llexl order llenl order |6n]] | order
1/4 1.06 3.22¢-01 7.91e-02 4.07e-01
1/8 | 6.21e-01 | 0.78 | 1.41e-02 | 1.19 | 5.52¢-02 | 0.51 | 1.60e-01 | 0.44
1/16 | 3.33e-01 | 0.90 | 5.74e-02 | 1.30 | 2.97e-02 | 0.90 | 1.18e-01 | 0.89
1/32 1 1.73e-01 | 0.94 | 1.88¢-02 | 1.61 | 1.14e-02 | 1.38 | 6.36e-02 | 1.37
1/64 | 8.81e-02 | 0.95 | 5.29e-03 | 1.91 | 3.47e-03 | 1.93 | 7.56e-02 | 1.51

TABLE 9. u = 0.01,a = 10% Error and convergence order of veloc-

ity function uw and pressure function p.

TABLE 10. Comparison of the degrees of freedom between the
weak Galerkin finite element method based on gradient divergence

h dof dof Schur
1/4 | 7.20e+02 5.28e+402
1/8 | 2.85e+03 2.08e+403
1/16 | 1.33e+03 8.26e+03
1/32 | 4.52e+04 3.29e+4-04
1/64 | 1.80e+05 1.31e+05

and Schur complement method.
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