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ABSTRACT. This paper focuses on two-dimensional continuous subsonic-sonic
potential flows in a semi-infinitely long nozzle with a straight lower wall and an
upper wall which is convergent at the outlet while straight at the far fields. It
is proved that if the variation rate of the cross section of the nozzle is suitably
small, there exists a unique continuous subsonic-sonic flows in the nozzle such
that the sonic curve intersects the upper wall at a fixed point and the velocity
of the flow is along the normal direction at the sonic curve. Furthermore, the
sonic curve is free, where the flow is singular in the sense that the flow speed is
only Holder continuous and the flow acceleration blows up. Additionally, the
asymptotic behaviors of the flow speed at the far fields is shown.

1. Introduction. The Euler system

g(pu) + 2(pv) =0,

Ox Ay

9 2 9 _

5p P+ pu )+afy(puv)—0, (1)
0 0 oy

%(PUU) + @(p+ pv*) =0

is usually used to describe the two-dimensional steady isentropic inviscid compress-
ible flow, where (u,v), p and p represent the velocity, pressure and density of the
flow, respectively, and p(p) = p?/~ for a polytropic gas with the adiabatic exponent
~v > 1 after the nondimensionalization. Suppose that the flow is irrotational, i.e.,

ou  Ov
9y or (2)
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Then the density p can be formulated as a function of the flow speed ¢ = vu? + v?
according to the Bernoulli law ([2]):

pla®) = (1~ Ly

2

)" 0<q< VA 3)

The sound speed c is defined as ¢ = p/(p). At the sonic state, the flow speed
is ¢c. = v/2/(y+ 1), which is critical in the sense that the flow is subsonic when
q < ¢4, sonic when ¢ = ¢,, and supersonic when ¢ > ¢,. The system (1), (2) can be
transformed into the full potential equation

div(p(|Ve|*) V) = 0, (4)

where ¢ is the velocity potential with Vi = (u,v), p is the function given by (3).
It is noted that (4) is elliptic in the subsonic region, degenerate at the sonic state,
while hyperbolic in the supersonic region.

Subsonic-sonic flow is one of the most interesting aspects in the mathematical
theory of compressible flows. The related problems are usually raised in physical
experiments and engineering designs, and there are a lot of numerical simulations
and rigorous theory involved in this field (see, e.g., [2, 8, 15]). Two kinds of subsonic-
sonic flows have been intensively studied for decades: the flow past a profile and
the flow in a nozzle. The outstanding work [1] by L. Bers proved that there exists
a unique two-dimensional subsonic potential flow past a profile provided that the
freestream Mach number is less than a critical value and the maximum flow speed
tends to the sound speed as the freestream Mach number tends to the critical value.
Later, the similar results for multi-dimensional cases were established in [13, 9] by
G. Dong, R. Finn and D. Gilbarg. These three works did not cover the flow with
the critical freestream Mach number. It was shown in [3] based on a compensated
compactness framework that the two-dimensional flow with sonic points past a
profile may be realized as the weak limit of a sequence of strictly subsonic flows.
However, all the subsonic-sonic flows above are obtained in the weak sense and
their smoothness and uniqueness are unknown yet, so are the subsonic-sonic flows
in an infinitely long nozzle. For a two-dimensional infinitely long nozzle, C. Xie et
al. ([22]) proved that there exists a critical value such that a strictly subsonic flow
exists uniquely as long as the incoming mass flux is less than the critical value, and
a subsonic-sonic flow exists as the weak limit of a sequence of strictly subsonic flows.
The multi-dimensional cases were investigated in [24, 12, 14]. A typical subsonic-
sonic flow with precise regularity is a radially symmetric subsonic-sonic flow in a
convergent straight nozzle. The structural stability was initially proved in [20] for
the case of two-dimensional finitely long nozzle, and some new results can be found
in [16, 17, 18, 21, 19]. In the recent decade, there are also some studies on rotational
subsonic and subsonic-sonic flows, see [4, 6, 11, 7, 5, 23] and the references therein.

In the present paper, we would like to investigate the subsonic-sonic flow in a
class of semi-infinitely long nozzles. Assume precisely that lg, I; > 0 and a € (0,1)
are constants, and f € C%%((—o0,0]) satisfies

F10) < f(0)=0, (=)' 2f" € L=((~1o,0]), (5)
f(z) >0 for x € (—00,0), f'(x)=0 for x € (—o0,—lo]. (6)
The upper and lower wall of the nozzle are described as

Tup : y = fu(x) (€ (—00,0]), and Tiow: y=—l (z€R),
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respectively, where k € (0,1] and
fe(x) =kf(z), z € (—00,0].

The sonic curve of the flow is a free boundary intersecting the upper wall at the
origin, which is chosen as the outlet of the nozzle and is denoted by

Fow : x = S(y)v Yy e [_1170]7 S(O) =0.

It is assumed further that the subsonic-sonic flow satisfies the slip conditions at I'yp
and T'ow, and its velocity is along the normal direction at I'yy. See the following
figure for an intuition.

_______________ y=f(x) A/
y=fi@) |
------------ :\\ >
____________ —lo 0 T
____________ {2 x = S(y)
"""""""" -,

As in [18, 21], the subsonic-sonic flow problem can be formulated in the physical
plane as

(ol Vo) 7) =0, (.9) € 2, g
ggu_Jﬂ:o7 € (=00, 8(=h)),  (8)
oo )~ i) o fil@) =0, 2 (-0,0) )
IVe(Sw), y)l = ., @(S(y),y) =0, y € (=h,0), (10)

where (¢, S) is a solution and {2 is the semi-infinitely long nozzle bounded by I'p,,
Diow and Loyt The problem (7)—(10) is a free boundary problem of a quasilinear
degenerate elliptic equation in an unbounded domain, whose degeneracy occurs at
the free boundary and is characteristic. As mentioned in Remark 1.6 of [22], one
can not require in advance that the flow tends to be uniformly subsonic at the
far fields, otherwise, the elliptic problem may be overdetermined. In the paper,
we prove that the subsonic-sonic flow in the nozzle is uniformly subsonic at the
far fields, and the uniqueness of the flow results from this property. Similar to
[20, 18, 16, 17, 21], we still solve the problem in the potential plane for the reason
that the shape of the sonic curve is unknown in the physical plane while known in
the potential plane, and the estimates of the flow speed can be made conveniently.
In the potential plane, the subsonic-sonic flow problem (7)—(10) can be transformed
into a quasilinear degenerate elliptic problem with free parameters and nonlocal
boundary conditions in unbounded domain. The unboundedness of the domain
makes the problem more difficulty than the ones in [20, 18, 16, 17, 21]. The Schauder
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fixed point theorem is employed to prove the existence of subsonic-sonic flows. For a
given incoming mass flux and flow speed at the upper wall, we solve a fixed boundary
problem of a quasilinear degenerate elliptic equation. If the solved incoming mass
flux and flow speed at the upper wall are just the given ones, we get the solution.
Note that the problem we concerns is in unbounded domain, we get the solution to
the fixed boundary problem by taking limits of the sequences of the solutions to the
truncated problems. Like that in [21], it seems very hard to construct appropriate
super and sub solutions to prove the existence of solutions to truncated problems
without sufficiently small [|(—z) ~"/2 f"|| 1o ((~1,,0))- The method in [21] is used here:
we first solve every regularized truncated problem when the flow speed at the outlet
is suitable small and get priori estimates for the average and the derivatives of the
solution, then we show the existence of the solution to the regularized truncated
problem by use of the preliminaries obtained above, and finally we prove that their
limit as the flow speed tends to be sonic at the outlet is a desired solution to the
truncated problem. The difficulty here is that in order to get the solution to the fixed
boundary problem by taking the limit of the solutions to the truncated problems,
we must seek a suitable variation rate kg such that the solutions to all the truncated
problems exit provided that k € (0, ko). We overcome this difficulty by constructing
complicated super and sub solutions to all the truncated problems. The Harnack’s
inequality is used to achieve the regularities and the asymptotic behaviors of the
solution to the fixed boundary problem. As to the uniqueness of the subsonic-sonic
flow, we first fix the free boundaries into fixed ones and transform the nonlocal
boundary conditions into common ones by a proper coordinates transformation,
and then we estiblish the uniqueness theorem by the energy estimates. Summing
up, it is proved in this paper that if f satisfies (5) and (6), then there exists a
unique subsonic-sonic flow to the problem (7)—(10) for suitably small &, and the
flow speed is only C''/2 Holder continuous and the flow acceleration blows up at the
sonic curve. Furthermore, the flow is uniformly subsonic at the far fields.

The paper is arranged as follows. In Section 2, we formulate the subsonic-sonic
flow problem (7)—(10) in the potential plane. Then in Section 3, we solve the fixed
boundary problem of a quasilinear degenerate elliptic equation in an unbounded
domain. Finally in Section 4, we establish the well-posedness of the subsonic-sonic
flow, and prove that the flow is uniformly subsonic at the far fields.

2. Formulation of the subsonic-sonic flow problem in the potential plane.
Define a velocity potential ¢ and a stream function 1, respectively, by

¢ Iy :

— =wu=gqcosf, —— =wv =gsin¥,

Ox oy (11)
oY . o
— = —pv = —pgsinb, = pu = pqcos b,

ox By

where 0 is the flow angle. The system (1), (2) can be reduced to the Chaplygin
equations ([2]):

90 pla®) +2¢°0'(@*) Oq _\ 10q 1 00 _

o a*(®)  O0p 7 qd p(g?) dp

in the potential-stream coordinates (¢,1). The coordinates transformation (11)

between the two coordinate systems are valid at least in the absence of stagnation

points. Eliminating 6 from (12) yields the following quasilinear equation of second

(12)
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order 82A( ) 52 @
q Blg) _
R Vo R
where
q 2 2 12 q 2
_ [T p(s7) + 2570/ (%) _/ p(s?) —
A(q) - /c* Sp2(82) dS, B(q) - . s dSa O < q < 2/(7 1)

It is obvious that B(-) is strictly increasing in (0,+/2/(y — 1)), while A(-) is strictly
increasing in (0, ¢.] and strictly decreasing in [c., v/2/(y — 1)). It follows from [21]
that there exist two constants 0 < N; < Nz depending only on v such that for
/6 < g <,
Ni(ew —q) < A'(q) < Na(ex —q), N1 < B'(q),-A"(q),=B"(q) < N2, (13)
Ni(ex —q) < E'(B(q)) < Na(ex —q),  —N2 < E"(B(q)), E"(B(q)) < —Ni1, (14)
where E = Ao B~! and B~! is the inverse function of B. We use A~!(-) to denote
the inverse function of A() in this paper. Additionally, the flow angle at the

(0,cx

upper and the lower wall are
Oup(z) = arctan fi,(z), x € [-lp,0] and Oy(z) =0, z € (—o0,0),

respectively.
As in [18, 21], in order to describe the problem in the potential plane, we denote
the flow speed at the upper wall by

Qup(x) = Q(mvfk(x))v UAS (—O0,0],

then the potential function at the upper wall is expressed by

By () = / " Quo()(L+ (F1(5))*)ds
/om Qup(s) (1 + (fi(5))%)/ds, if @ € [~1o,0],

x

Co + Qup(s)ds, if © € (—o0,—lp)
lo

with

—lo

=) Qup(8) (1 + (fi(5))%)!/2ds.

The inverse function of @, is denoted by X,,. The subsonic-sonic flow problem
(7)—(10) can be formulated in the potential plane as follows:

T+ T =0 e o0 x0m), (10
3—;(%0) —0, o € (~00,0), (17)
0B . /()
oY ’ (14 (f1.(2))?)32Qup(2) la=Xup ()’
P E (—O0,0), (18
Q(O,’l/)) = Cx, TZJ S (Oam)v (19)
Qup(x) = Q(QO, m) T e (_OO’ 0]7 (20)

)
p=Pyp (x)
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where (g, m) is a solution with m > 0 being the incoming mass flux. Solutions to
the problem (16)—(19) are defined as follows.

Definition 2.1. For m > 0, a function ¢ € L>((—o00,0)x (0,m)) is called a solution
to the fixed boundary problem (16)—(19), if

0< inf q < sup q < ¢y
(=00,0)x(0,m) (—00,0)x(0,m)

such that the integral equation

0 m 825 825
/_Oo /0 (A(q(% V) g (@2 9) + Blale ) 55 (@, ¢)> dipdep

,m)dp =0
szup(‘p)E(gO ) 4

’ ;(7)
o
—oo (14 (f(2))?)*2Qup (x)
holds for any ¢ € C?((—o00,0) x [0,m]) which vanishes for large || with
9¢ 9¢
% 0| =Eim| =] =0
31/}( ) (=00,0) aw( ) (—00,0) <0, (0.m)
The existence of solutions to the problem (16)-(20) will be proved by a fixed
point argument. Give m and @)y in advance as follows:

with
(/)1
8 = %, Oy = c*p(cz)(h + f(_lo))a

while Qy, € C'/4((—00,0]) satisfies

max{%*,c* — k1/4} < Qup(z) < e for z € (—00,0],  [Qupler/a—oo,0) < 1-
(22)
For such Qp, it is clear that ®,, and X, are well determined. Direct calculations
yield that
~ <G < b
' i ()
(L + (fi(2))?)32Qup(2)

where x(¢,,0(¢) is the characteristic function of the interval [(o,0], and

<@ (z) <65, x € (—00,0], (23)

< k;(SG(_@)l/QX[CO,O]((p)) pe (—OO, O]a (24)

JC:Xup(QD)

C*lo 1/2
03 = 5 04 = el (1 + Hf’”%oc((—zo,o))) ;
1/2 2\3/2
55 = e (1H 1 e oipon) o 06 = N=2)20 I Canon (=)

For f € C%%((—o00,0]) satisfying (5) and (6), it follows from [21] that there exists
a constant Iy € (0,1y) depending only on f’(0) and (=) Y2 f"|| o (—10,0) such
that 2f7(0) < f'(z) < f/(0)/2 for = € [~Iy,0], and hence there exist two constants
0 < 71 < 7o depending only on lo, lo, 1(0), inf(_lo,_[o) f and SUD (1 i) f such
that

—nz < f(z) < —mz, x€[-ly,0]. (25)
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3. Fixed boundary problem of a quasilinear degenerate elliptic equation
in an unbounded domain. In this section, we deal with the well-posedness of
the fixed boundary problem. For the given m and Q,, € C*/*((—o0,0]) satisfy (21)
and (22), respectively, we solve the degenerate elliptic problem (16)—(19). Since the
problem is in an unbounded domain, we first deal with the truncated problem in
[Co —n, 0] x [0, m] with any sufficient large positive integer n, and make some useful
compact estimates. Then we solve the problem (16)—(19) by a limit process. The
key of the proof is seeking the variation rate k, which ensures the solutions to the
truncated problems exist, is independent of n.

3.1. Well-posedness of the truncated problem. The truncated problem is
written as

T )+ T2 ) =0, (e e @m0 x Om),  (26)
9A(gn) _

84,0 (C() —n, ¢) - 07 ¢ € (01 m)a (27)
T p.0) =0, o€ (Co—m0), (28)
0Ba) ()

86 P = U ()2 (@) =X

¢ € (G0 —n,0), (29)
qn(0,9) = c., P € (0,m). (30)

Note that (26) is degenerate at g, = ¢, we replace (30) with the following boundary
condition

QH(va) =c, Y€ (O’ m)’ (31)

where ¢ € [c,/3,¢s) is a constant, and consider the regularized truncated problem
(26)—(29), (31). Then we solve the problem (26)—(30) by a limit process.
The proof can be divided into four steps.

Step 1. Well-posedness of the problem (26)—(29), (31) for ¢ € [c./3, c./2].

Lemma 3.1. Assume that n > 264 + 1 and ¢ € [c./3,¢./2]. There exists a

constant k1 € (0,1] depending only on v, lo, i, f(=lo), ||f'[lLec((~10,0)) and

(=) Y2 || oo ((~10,0)) Such that if k € (0, k], then the problem (26)(29), (31)

admits a unique solution g, . € C*(({o —n,0) x (0,m)) N C*([¢o —n,0) x [0,m]) N
C([¢o — n,0] x [0,m]). Furthermore, qn . satisfies

C*/G < Qn,c(sﬁad}) < Cx, (‘pvd)) € [CO - n,O] X [0, m]7 (32)

Gn.e(Co=mw) <o =K% € [0,m). (33)

Proof. The uniqueness result follows from Proposition 3.2 in [20]. Set

ko min{(c*)él/?), ( Cy )2, ( Cs )4’ (A(C*/4)*A(c*/6)>2,

6 4852653 ) " \ 9663 85263
(A(c*/3)—A(c*/4))4 <25152/23'(5c*/6))2 (25252/23'(0*/6))2
16(52 ’ 66 ’ 5614/(6*/6) ’

( 55;54 )4’ (45;34(;?2;2 /6) )2 }
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For k € (0, k1], define

Tocl0:0) = Seu+ (K297 4 114 — 2)07) Afg),
(0, ) € [Co — 7, 0] x [0,m)],
6, () = A7 (Ale./4) = (K202 4+ k(6 = 2)e%) Alp))
(0 0) € [Co — 7, 0] x [0,m],
where
A(p) = max{0, (¢ +261)°}, € (—00,0].
Thanks to (13), (14), (23) and (24), direct calculations show that

* — 5 * * *
Shle) ST T <q, () ST () €6 —n,0] x [0,
0A(q 8A(q )
gZL’C)(Co—n ) = — (¢ —n,¥) =0, ¢ e (0,m),
aQn,c agn c .
aw (9070) - a¢ (507 0) - 07 2 S (CO —n, O)a
0B(q,..)

(p,m) = 2k">mB'(q,, .(p,m))Alp)
> 2k1/26,05 B (5¢./6) X (0.0 ()

> kdg(—p)"/ *Xico,0) (), © € (Co — n,0),
9B(q, ) B'(q, (p,m))

o

g (o) = S A
< —2k1/25,53 i,gc*?gxmo 0 (%)
< —kSo(—2) *Xico01(0), @ € (Go —n,0),
?A(T,.,) 0*B(@,c)
I el W R (L)
_ 9%a 62
< B0 o) G e e+ o)
<2k B! (G, (0, ) (0 + 204)
O N
<2k B'(q,. (¢, w))@ + 204)
O
<0, 4,071/) CO —-n, 0) (0 m)7
and
%A >B(g, )
4. (0, 0) + 7*“(@, ¥)

oyY?
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P B L) A,
ST T U D) BT

3 3
Z 2]{71/4(90 + 254) (66 264 — 3]{;1/452 4]’{?1/46514/5;?))([—254,0](@)
B'(c./3)

c /3))X[254,0] (¥)

> 2k (p + 264) (3 — 4152 7

Zoa (%Qﬁ) € (CO - ’I’L,O) X (07m)7

where x[_25,,0/(¢) is the characteristic function of the interval [—2dy4, 0]. Therefore,
G and g are a supersolution and a subsolution to the problem (26)-(29), (31),
respectlvely Thanks to the comparison principle (Proposition 3.2 in [20]) and a
standard argument in the classical theory for elliptic equations, one can complete
the lemma. O

Step 2. A priori estimates of the average of solutions to the problem (26)—(29),
(31).

Lemma 3.2. Assume that n > 204 + 1, ¢ € [¢4/3,¢.) and ¢ € C((¢o — n,0) X
(0,m)) NC([¢o —n,0) x [0,m]) NC([{o —n,0) x [0,m]) is a solution to the problem
(26)—(29), (31). Then

Alnclod0 = o [ Ao clCo )b, o€ fo—nal. (39

Furthermore, there exist three constants ko € (0,1] and 0 < 01 < g9 depending only
on vy, 11, 7o and || f'||Lee((—i,,0)) such that if k € (0, ks], then

m Jo

A(c) — kogmin{—p,—(p} < %/ A(gn,c(p,¥))dy < A(e) — ko min{—p, —(o},
0

® S [CO —n, O]
(35)

Proof. The proof is similar to the proof of Lemma 3.2 in [21]. Integrating (26) over
(0,m) with respect to ¢ and using (28) and (29) show that

@ - (@) _
T A e e e L n(?@
And (27) yields that

d m

@ A(qn,c(go —n,1))dy = 0. (37)
One gets from (6), (36) and (37) that

% /Om A(Qn,c(@a ¢))d1/1 = Oa 2 € [C() —n, CO]? (38)
d
T | Atnctoonas=- [ k(@) s
dp Jy e T o (U1 (@)D P2Qup(@) L= (s)

B (Y -
)

o, (f;;(x))?’/QQ p(%)
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Xup(‘P)

__ / (arctan fL(z))'dz

—lo
= —arctan fllc(Xup(@)% (ZS [COv 0] (39)

Thus (34) follows from (38). As in the proof of Lemma 3.2 in [21], it follows from
(15) and (39) that

L Ao
0

= / (Gn,c(0,7))dy + — / arctan fi,(Xup(@))de
©

=AW+ / arctan f{(X.p($))d5
@

= A(c) — keu f(Xup(9) + O(K*4), ¢ € [0, 0], (40)
where O(-) depend only on || f'[| oo ((—1,,0))- Using (25), (34) and (40), we can obtain
(35). O

Step 3. A priori derivative estimates of solutions to the problem (26)—(29), (31).

Lemma 3.3. Assume that n > 204 + 1, ¢ € [e/3,¢i), and gn,c € C(({o — n,0) X
(0,m))NC([¢o —n,0) x [0,m]) N C([¢o —n,0) x [0,m]) is a solution to the problem
(26)—(29), (31) satisfying (32) and (33). Then for k € (0,1],

a n,c .
B (0 0)] < hos(min{—p,~))'?, (p.9) € (G —m0)x (O,m),  (41)
|A(gn.c(p1,%1)) = Aln,e(p2,9))| < koa(lor — @al/? + |v1 — ¥a)),

(‘pl?d}l)a (90271/)2) € [CO - TL,O} X [O,TTL], (42)
where o3 and o4 are positive constants depending only on vy, ly, l1, f(=lo),

1| s ((—t0,0) and (=)™ 2 £ | Lo ((—10,00) -
Proof. The proof is similar to Proposition 3.2 in [20]. Set

(o) = ) (o), (00 € =m0 x 0,1
Then z € C“((Co —n,0) x (0,m))NC([{o —n 0] x [0, m]) solves the problem
J1(es 1//) ng +Jz(%¢)§(p+ys(<p L o0 ® 4 ja(p, )z =0,

(90,’(/)) € (CO -n, O) X (O’m)’ (43)
o= ¥) =0, b e (0,m), (44)
2(4107 0) =0, p e (CO —-n, O)a (45)

_ k (2) .

) = (i @)P P Qup@) =y 07O (46)
Z(wa) =0, v e (07m)7 (47)

where j; € COO((CO7O) (0,m)) (1 <i<4) are defined by
= E'(B(gn.c)) > 0,
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iy = E"(B(qn,c)) 0A(gn,c)
E'(B(gne)) ¢
J E"(B(gn.c)) 9B(qn.c)
E'(B(qn,e)) O

L E"(Blane)  (B"(B(gne))? (0A(n)\?
“*(<<wmm2 mﬂmwmﬂ( g )
(E"(B(qn,)))? (0A(gn,c) \?
FEarae) <0

and F satisfies (14). It is clear that

TG ™2 = sl 9) ()

> /= 51(p, ¥)ja(, ) (—p) ~L/2

> — Sl D0 (,0) € (G = n,0) x (0,m)

Due to (24), one can show that
22 (0 9) = Fhs(=0)'/%, (p,0) € [0 = n, 0] x [0,m

are a supersolution and a subsolution to the problem (43)—(47), respectively. The
comparison principle (Proposition 3.2 in [20]) implies that

12(0, )| < kbs(—0)' 2, (,9) € [Co — n,0] x [0,m]. (48)

Define
Zi(%w) = ik(sG(_CO)l/Qa (SD?’(/)) € [CO —-—n, CO] X [07m]

It is easy to verify that Zy are a supersolution and subsolution to the following
problem

822'

62
jl(%l/))a + o902 + ja(¢p, w) +Js(¢ w> 90 " 1 jule, )z =0,
(907’(/}) € (CO - TL7C0) X (07m)7

%(Co—n,d)):& € (0,m),
2(p,0) =0 € (Co —n,Co),
z(p,m) =0, € (o —n, <o),
2(Co,¥) = 2(Co, ¥), € (0,m),

respectively. The comparison principle shows that

[2(p, )| < kdo(—C0)"/%, (,) € [Co = 1, Go] x [0,m),
which, together with (48), leads to (41). Finally, (42) can be proved in the same
way as the proof of Proposition 3.2 in [20]. O
Step 4. Well-posedness of the truncated problem (26)—(30).

Lemma 3.4. Assume that n > 264 + 1. There exists a constant 0 < ks <
min{ky, ko} depending only on v, 1, T2, lo, l1, f(=lo), [[f'lle((=10,0)) and
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||(—:c)*l/Qf”HLoo((_lo,o)), such that if k € (0, k3], then the problem (26)—(30) ad-
mits a unique solution ¢, € C*(({o — n,0) x (0,m)) N C*([{p — n,0) x [0,m]) N
C([¢o — n,0] x [0,m]) satisfies

0 (o, 0)] < kos(mint =g, ~G)M () € (G0 —n,0) x (O,m),  (49)

oY
| Aan(p1, 1)) = Alan(p2, ¥2))| < kou(lor — @al /2 + 1h1 — ¢a]),
(1, 1), (p2,92) € [Co — 1, 0] x [0,m],  (50)
¢e — o6k (min{—¢, = })"? < gn(p, ¥) < e — o5k (min{—p, —Go})'/?,
(v, ¥) € [Co =7, 0] x [0,m], (51)
where 0 < o5 < 0g are constants depending only on vy, T, T2, lo, l1, f(—lo),
1/ |2 ((~10,0) and [[(=2) 2 f" | Lo ((~10,0))-

Proof. The uniqueness result follows from Proposition 3.2 in [20]. For 0 < k& <
min{kl, k2}7 set

¢, = {c € [c./3,c,) : the problem (26)-(29), (31) admits a solution
Adn,c € COO((CO —-n, 0) X (Oam)) N Cl([CO - ’I’L,O} X [Ovm])
with (32) and (33)}.

It follows from Lemma 3.1 and the comparison principle (Proposition 3.2 in [20])
that €} is a nonempty interval. Assume that ¢ € €. For ¢ € [(y — n, 0], thanks to
¢ € Gk, (13) and (35), there exists a number 1, € (0,m) such that

k 1/2
Gnelpvp) e = (7)) (min{p.~Go )72,

which, together with (41), yields

¥ aqn c 7 7
Qn,c(@,w) = Qn,c(soa'l/}@) + W(@vw)dw
Yo
/ 52
<c— ((;12)1 c k1/20352> k2 (min{—¢p, —o})'/?, (52

(90,1/)) € [CO —n, O] X [Oa m}
Choose

o1 \1/2 . o1 0?52
— (2L kg = Ky, by, —aL :
5 <4N2> o mm{ b o252, 16

For 0 < k < ks, one gets from ¢ € %, (23) and (52) that
€[4 < anelp, ) < 0n = o5k (min{—, =G}, (,0) € [Co = n, 0] x [0,m],
(53)
n.e(Co—n, ) < ¢ — 26%7%, 4 €[0,m]. (54)
It follows from ¢ € %}, (31) and (42) that
| Algn.c(,9) = AlO)] < kou(=0)'/2, ¥ € [0,m]. (55)

Thanks to (53)—(55), one can prove from the comparison principle (Proposition 3.2
in [20]) and the continuous dependence of solutions to the problem (26)—(29), (31)
that €% = [c«/3,cx) for 0 < k < k3.
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Let 0 < k < k3. For ¢,/3 < ¢1 < ¢a < ¢4, the comparison principle (Proposition
3.2 in [20]) gives

Tner (0, 0) < noer (050),  (9,9) € [Go —n, 0] x [0, m].

Set
an(ps) = lim gnc(p,¥), (@) € [Co —n, 0] x [0,m].

c—cy
Due to (41), (42) and (53), it is clear that ¢, is a solution to the problem (26)—(30),
and gy, satisfies (49), (50) and the second inequality in (51). For ¢ € [(o — n, 0], it
follows from (35) and (13) that there exists a number ¢, € (0, m) such that
- koo\1/2
qn(@7¢tp) Z Cyx — (Tf) (mm{*% 7(0})1/2-
This estimate above and (49) yield

8Qn TN AT
3 = (P )dy
o9\ 1/2
> Cy — <(ZV21)1 + ]{1/20352) kl/Q(min{iga 7(0})1/27
(¢,) € [Co —n,0] x [0,m].

Hence the first inequality in (51) holds for o = (02/N1)1/2 + 0302. Finally, the
Schauder theory for elliptic equations shows that ¢, € C*(({y — n,0) x (0,m)) N
C*([¢o — n,0) x [0,m]) N C([¢o — n,0] x [0,m]). O

4n(9,0) = qn(p, V) +

3.2. Well-posedness of the fixed boundary problem. Let us establish the
existence of the solution to the problem (16)—(19).

Proposition 1. Assume that k € (0,ks], then the problem (16)—(19) admits a
solution q € C°°((—o0,0) x (0,m)) N C*((—00,0) x [0,m]) N C((—o0,0] x [0,m])
satisfies

Sh (o 0)] < hos(min{—p, =G )'2, (9. 0) € (<00,0) x Q). (50
[Alaer. ) = Ala(pa. ¥2))| < kouller = ol /2 + 91 = val),
(<P1,¢1)7 (@2,1#2) € <_OO’0] X [OJTL], (57)
e — ok (min{—¢, —G}'? < q(p,¥) < cu — o5k (min{—p, —C})"/2,
() € (=00,0] x [0,m],  (58)

where o3, g4, 05 and og are given in Lemmas 3.3 and 3.4. Furthermore,

E / 2o )Y = Algne), ¢ € (—00, o, (59)
where
oo = A7 (1 / A(q(Go, w»dw) € [en — a6k (=Go)/?, e — o5k 2 (— o).
m.Jo
(60)

Proof. For any n > 204 + 1, the truncated problem (26)—(30) admits a unique
solution

4n € C%((Co —n,0) x (0,m)) N C([¢o — n,0) x [0,m]) N C2([¢o — n,0] x [0,m])
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satisfying (49)—(51). Therefore, there exists a subsequence of {g,} weakly star
convergenting to a function ¢ in L ((—o0,0) x (0,m)), and ¢ satisfies (58). It is not
hard to check that g is a solution to the problem (16)—(19), and ¢ satisfies (56)—(58).
Finally, the Schauder theory for elliptic equations yields that

q € C®((—00,0) x (0,m)) N C*((—o0,0) x [0,m]) N C((—o0,0] x [0,m]).

Integrating (16) over (0, m) with respect to ¢ and using (6), (17) and (18) lead

to that
2

/0 " Alglp))dp =0, ¢ € (=00, ),

dp?
and then there exists some constant C' such that
d m
e Alq(p,v))dyy = C, ¢ € (—00,(), (61)
0

which implies that

/0 " Alalp.))dw = / " Ao, )Y+ Clo—Go)s p e (=s0iGo).  (62)

It follows from (57) and (62) that

Clie - Gol < / " Alalor ) — Alg(Gor))|de

< kosbole — Gol'/?, ¢ € (—00, (o),
that is,
|C| < kaubal — Go| M2, ¢ € (=00, 60)- (63)
One can get C' = 0 by taking ¢ — —oo in (63), and then (61) implies that

1 m 1 m
%/O Alq(p,¥))dep = E/o A(q(Co, ¥))dp, @ € (—00,Go]-
Therefore, (59) holds. O

The solution to the problem (16)—(19) has the following regularity and asymptotic
behavior.

Proposition 2. Assume that q is a solution to the problem (16)—(19) satisfying
Proposition 1. Then q € C*/%([2y,0] x [0,m]) and
9
g
where o7 is a positive constants depending only on v, 11, T2, lo, 11, f(—lo),
£/l Lo ((—10,0y) and [|[(=2) Y2 f" || oo ((~10,0))- Moreover, it holds that

(p.0)] < ork 4 (=) 2 (p,10) € [260,0) x (0,m), (64)

o a
’%(wﬁ)‘ < osk'/?(—p) 72, ‘ﬁ(wﬁ)‘ < ogk(—¢) 2,
(o, 1) € (—=00,2p) x (0,m),

(65)

and hence

||Q(90,¢) - QOOHL”((foo,C)X(O,m)) < U9k(_<)_2’ C € (_007 QCO)’ (66)
where oo s given in (60), and og, 09 > 0 depend only on vy, 11, T2, lo, l1, f(—lo),
1/ |2 ((—10,0) and [[(=2) 2 f" || Lo ((—10,0))-
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Proof. Similarly to the proof of Proposition 4.1 in [18], one can prove that ¢ €
C'/2([2¢,0] x [0,m]) and satisfies (64).

In the remaining of the proof, we use p; (1 < i < 11) to denote a generic
positive constant depending only on v, 71, T2, lo, l1, f(—lo), [[f'l|ze((=i,0)) and
[(=2) Y2 f"|| Lo ((~19.0))- It follows from (59) that for any ¢ € (—o0,(o], there
exists a number ¢, € (0, m) such that

(1) = doos
which, together with (56), yields

lo6o,0) = trclim(mecorsom) < [ |Gl oeiomy @ S 1k (67

Note that ¢ € C°°((—00,0) x (0,m)) N C*((—o0,0) x [0,m]) N C((—o0,0] x [0,m])

solves

0 dq 0 dq
9 (ele0)52) + 55 (Mewigr) =0 (e0) € (o0.G0) x (0m),
0
£(¢7 0) = 07 2 S (_OO,CO)7
0
ﬁ(@‘% m) =0, p e (_OO,CO)7
where

a(p, ) = A'(a(p, ), blep,¥) = B'(a(e,¥)),  (p,9) € (—00,{o) x (0,m).
Fix integer n > 2. Introducing

¢ =k~ (p —nlo)/n, ¢ € [4ngo, nCo/2],

b= /n, ¢ € [0,m],

and setting

Q(,9) = a(nGo + k1o, 1) —goo,  (9,9) € B0, =k 71/1G0/2] x [0,m/n)].
One can verify that

G € C®((3k™*¢o, =k~ 4¢0/2) x (0,m/n))NCM([3k™/*Co, =k~ /*¢o /2] x [0, m/n])

solves
O (rjass 204N O po 0 OGN
(9,9) € (3k~Y4¢o, —k~14¢0/2) x (0,m/n), (68)
SZ, (,0) =0, ¢ € (340, —k 4G /2), (69)
S (m/m) =0 b € (3K, —k MGy 2), (70)
where

a(@,¥) = a(nCo + k' *ng,n), b(p,1) = b(nlo + kM ng, nip),
(,1) € [Bk™/4Co, —k/4¢o /2] x [0,m/n).
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Extending the problem (68)—(70) into the domain [3k~/4(y, —k~1/%¢y/2] x [0,2m)]
yields

o (a0 50) + (b5 9) 51) =,

@ oo/ o o
(@,9) € (3k™Y4¢o, —k~4¢o/2) x (0,2m),
Si (5,0) =0, 5 € (3k 1o, —k1/¢y)2),
((31% (@’ 2m) = Oa @ € (31{771/4(07 _k71/4CO/2)a

where for (¢,1) € [3k~1/%¢y, =k~ 140 /2] x [(i — 1)m/n,im/n] (1 < i < 2n),

o [ a(g, — (i — 1)m/n), if 7 is odd,
) = { a(@,im/n — ), if 4 is even,
b(5,D) = { b(@, 9 — (i — Dym/n),  ifiis odd,

N l;(gb, im/n — 1), if 7 is even.

Duo to (13), (51) and (67), one gets that
H2k1/2 < d(¢71[)) < .u3k1/27 H2 < b(@vd)) < M3,
(3, 0) € [—4k~ Y4 3k~ /42 /(4n)] x [0,2m],
and
||q||L‘X’((3k_1/4<07—k—1/4<0/2)><(O,Qm)) < ,Lle~

It follows from the Holder continuity estimates for uniformly elliptic equations that
there exists a number 8 € (0,1) such that

[‘ﬂB;(%’)k*1/4<o/2,—k*1/4<o/4)x(0,2m) < M4HqHLW((3k*1/4§0,—k*1/4g0/2)><(O,2m)) < psk,
which implies

[a] gy(5k-1/2¢0 /2,—k—1/2¢0 /4)x (0,2m) < M6k,
[

The Schauder estimates on uniformly elliptic equations imply that

¢

18:(5k-1/4¢0 /2.~ k=1/4¢o /2) x (0,2m) < HK-

Gllcrs (2r-1/2¢0,—k=174¢0 /8) x (0,2m)) < BNl Gl Loo ((5K=172¢0 /2, k=174¢0 /1) % (0,2m))
< pgk. (71)

Transforming (71) into the (p,) plane, one can get that

H \\ Sl
L0 ((3nCo,3n¢0/4) % (0,m)) (72)

< pokn™?

Similar to (67), we have from (72) that
Iqn

lla(p,v) — QOOHLOO((SnCO,SnCO/4)><(O m)) = / H Lo (3nCo.3nCo/4) X (0.m)
S ,ulokn . (73)
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Using (73) and the same operation on ¢ leads to that

¢! < k!
L= (2o,nGo) X (0,m))

] < akn ™,
Lo ((2nCo,n0) % (0,m))
Then the arbitrariness of n > 2 leads to (65), and hence (66) holds. O

Remark 1. Through the similar process of the proof of Proposition 2, one can
show that for any positive integer A\, it holds that

0
V)| < ok M) |50 < olk(—o)
(i0,) € (—00,260) x (0,m)

‘£(<P

and
||Q(<Pa¢) - QOOHL"O((foo,C)X(O,m)) < Uék(_C)_)\a C € (—OO, 2<0)a
where og, 05 > 0 depend only on A, v, lo, l1, f(=lo), |f'llzee((=10,0)) and
(=)= 2 | oo ((1,0))-
The solution to the problem (16)—(19) is also unique for small k.

Proposition 3. There exists a constant ky € (0,1] depending only on vy, 11, T2,
lo, ll, f(—lo), ||f/||Loo((,l(]70)) and ||(—.’13)_1/2f//||Loo((,lo’0)), such that Zf]{) S (0, ]{)4],
then the problem (16)—(19) admits at most one solution ¢ € C*°((—00,0) x (0,m))N
C1((—00,0) x [0,m]) N C((—00,0] x [0,m]) satisfying (58).

Proof. In the proof, we use v; (1 <1i < 5) to denote a generic positive constant de-
pending only on vy, 71, 72, lo, l1, f(=lo), |/l Lo ((~10,0)) and || (=)~ 1/2f”HLoo((,loﬁo)).
Let ¢V, ¢ € C*((~00,0) x (0,m)) N C"((~00,0) x [0,m]) N C((~00,0] x [0,m])
be two solution to the problem (1()) (19) satisfying (58). Define
wi(p,9) = AW (e.9),  (9,9) € (00,01 x [0,m], i=1,2.
Then w; (i = 1, 2) solves
0%w; 82B(A Lwy))

&pz )2 =0, (¢, 9) € (=00,0) x (0,m),
(Z\UJ(%O) =0, ¢ € (—00,0),
OB Mw) L)
O 7 (1+ (fr(2))2)?2Qup () lo=Xup(¢)’
¢ € (—00,0),
w;(0,9) =0, ¥ € (0,m).
Set

w(%w = wl(@aw) - w2(507w)1 (%Q/J) € (—O0,0] X [Ovm]

It is easy to show that w solves

Ow (%Q(h(@, Y)w) =0, (,¥) € (=00,0) x (0,m),  (74)
aw((p, 0) =0, ¢ € (—00,0), (75)

o
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‘%(%m) —0, ¢ € (—00,0), (76)

w(07 11’) =0, Y e (Oa m)v (77)

where
_ [T BAT (qun (e, 9) + (1= n)wa((¢,4))))
o) = [ T anter) £ (st
() € (=00,0) x (0,m).
Thanks to (56), (58), (64) and (65), direct calculations yield
vk (=0)/2 < hip, ) S kA=) 2, (0,9) € (—00,0) x (0,m),  (78)

oh va(—9) 12, (,) € [260,0) x (0,m),
(80»1/})‘ = { vo(—p)72,  (p,1) € (—0,2) x (0,m),
ow

9,V S k(=) (p0) € (~00,260) x (0,m) (80)

where (—¢) = min{—p,—2¢(}. Fix ¢ < 2(yp — 1. Multiplying (74) by —w, then
integrating over (¢,0) x (0,m) by parts and using (70) (77) we have

// (%) dwdw// ) (57 ) dude
/ | GtesmGiavde - [ uic g,

which, together with (78) ( 0), yields

// 8w dwd ko 1/2// 1/2 dwd
<y3/2€/ (= 1/2‘11) ’dwdgo—kug/%/ ]dwdw

gk~ / (¢, ).

Then the Holder’s mequahty gives

// dwd +k” 1/2// 1/2 dwdw

2¢o
gml/?/ / (—<p)*1/2w2d¢d<p+y4k1/2/ / (—¢) " *widyde
2Co ¢ 0

+vah(— / (¢, ). (81)

It follows from the Hoélder’s inequality and Cauchy inequality that

/2: /Om(— “PuPdgde < %/ ‘1/2( : 8w(s zp)ds>2dwd@
< / () / 0 / " (54) apa

(~26))%/? / / ) dedy. (s2)

(79)
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/:40 /Om(—go)4w2dwdsog/2<o /m(—¢)4( :gw(s,wds)zdwdgo
o [ [ G

m a
(—2G0) 2 /C /O % dipdep, (83)

and

| i < 5+ 5 [ wtconaw

2+/”</°izzidw>2dw

/ / dgodz/J (84)
Substituting (82)—(84) into (81) to get

//n 3(,0 Ao +k1/2// 1/2 )di/)dap

§u5k1/2// ‘l“’ dwd<p+u5k(—§) + vsk(— // d@dw

< 20kl /? / / d1/1d<p+1/5k( )2 (85)

Choose ky = 1/(1612 + 1). For any k € (0, k4], (85) implies

// 8w dwd e 1/2// o )dwd“z’“km( o~

(86)
Taking { — —o0 in (86) to get
/ / dwd +k1/2/ / 1/2 )dwd¢<o
which implies
8

(90 V) = w(s@ ¥) =0, (p,9) € (-00,0) x (0,m). (87)

It follows (77) and (87) that
w(p,¥) =0, (p,9) € (—00,0] x [0,m].

Therefore, ¢V = ¢(2). O

4. Well-posedness of the subsonic-sonic flow problem. First we prove the
existence of the solution to the problem (16)—(20) by a fixed point argument.

Theorem 4.1. Assume that f € C*([~lo,0]) satisfies (5) and (6). There exists
a constant ko € (0,1] depending only on v, 11, T2, lo, l1, f(=lo), |f'lLoo((~10,0))
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and H(—x)fl/zf”||Loo((_lo70)), such that if k € (0, ko], then the problem (16)—(20)

admits a solution (q,m) satisfying
q € C%((—00,0) x (0,m)) N C*((—o0,0) x [0,m]) N CY?((—00,0] x [0,m])
[T 0| < horamin{ o, ~G)2, (00) € (~00,0) x Oum). (85)
|A(g(e1,91)) — Ala(pz, ¥))| < koa(ler — @al 2 + 11 — 1o,
(p1,91), (p2,92) € (—00,0] x [0,m], (89)
Cx — Ule/Z(min{7@a 7(0})1/2 < Q(%w < cw — GSkl/Z(min{i()% 7<0})1/25
(p,9) € (—00,0] x [0,m], ~ (90)
where

m = qoop(0%) (fr(—lo) + 1),  cx — 06k (—C0)"? < goo < cx — 05k (=) V2,
(91)

and o3, 04, 05, 0¢ are given in Lemmas 3.3 and 3.4. Furthermore,

%w\ <ork! (=) (p,0) € [260,0) x (0,m), (92)

and for any positive integer X\, it holds that
9q - x| 9 _
|50 0] < oW V)[R0 < otk(—)
(QO;w) € (_OOaQCO) X (Oam)a

(93)

and
(0, %) = Goo |l Lo ((—00,0)x (0,m)) < T6k(—=C) ™, ¢ € (—00,2), (94)

where o7, o and o§y are given in Proposition 2 and Remark 1. Therefore, the flow
s uniformly subsonic at the far fields.

Proof. Choose

2 1 N
]{30 min{kg, k4, S ! }

1351 75 200
For k € (0, ko], set
2= {(m7Qup) € [61,02) x CY*((—=00,0]) : Qup satisfies (22)}

with the norm

[1(m, Qup)ll.2 = max {m, [|QupllL=(-cc,0)} -
For a given (m,Qup) € £, it is clear that ®,,, Xy, and g are well determined,
and it follows from Propositions 1-3 that the problem (16)—(19) admits a unique
solution ¢ € C*°((—00,0) x (0,m)) N C1((—00,0) x [0,m]) N C((—o00,0] x [0,m])
satisfying (56)—(58) and (66). Set

1 = 4oop(a3) (Fr(—lo) + 1), Qup(@) = q(Rup(),m), @ € (—00,0].

From (56)—(58), (66) and the choice of kg, it is easy to verify that (7, @up) €2
and R

K:2—2 (mQu)— (M, Qup)-
is a self-mapping. Furthermore, one can prove the compactness of K by using (56)—
(58), and the continuity of K by using its compactness and the uniqueness result for
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the problem (16)—(19). Therefore, the Schauder fixed point theorem shows that the
problem (16)—(20) admits a solution (g, m) such that ¢ € C*°((—00,0) x (0,m)) N
C'((—00,0) x [0,m]) N CY2?((—00,0] x [0,m]) satisfies (88)—(94). O

From Theorem 4.1, for k € (0, ko], the problem (16)—(20) admits a solution (g, m)
satisfying ¢ € C™((—00,0) x (0,m))NC*((—00,0) x [0, m])NC/?((—o0, 0] x [0,m]),

max { &, e, = Muk!/2(min{—p, ~Go})"/ |
< q(p, ) < cx — Mok ?(min{—p, —¢o})"/2, (95)
(%W € (_OO,O) X (O,m)
and

14(0,%) = Goc || Lo ((—00,0)x (0,m) < M3k(—C) 72, { < 2(o,
where

m = qoop(q2) (fr(~lo) + 1),
max {%7 Cyx — M1k1/2(_<0)1/2} < Qoo S Gk — MZkl/Q(_<0)1/27

and My, My, M3 are positive constants. Indeed, this solution is also unique if k is
suitably small.

Theorem 4.2. Assume that f € C*%([—lo,0]) satisfies (5) and (6). There ex-
ists a constant ky € (0,1] depending only on vy, lo, 1, f(=lo), IIf lze((=10,0);
(=) =22 || Lo ((<10,0))» M1 and Ms, such that if k € (0, k)], then there is at most
one solution (q,m) to the problem (16)—(20) such that ¢ € C*°((—o0,0) x (0,m)) N
C1((—=00,0) x [0,m]) N C((—0o0,0] x [0,m]) and q satisfies (95).

Proof. In the proof, we use C; (1 < ¢ < 5) to denote a generic positive constant
depending only on 7, lo, I, f(—lo), |f'llLo((~t0,00)> I(=2) "2 f" || L ((=10,0))> M
and My. Let (¢, m™M) and (¢, m®) be two solutions to the problem (16)—(20)
such that ¢ € C®((—00,0) x (0,m®)) N C*((—00,0) x [0,mD]) N C((—o0,0] x
[0,m")]) and satisfies (95) for i = 1, 2. Denote ®,,; and X, ; to be the associated
functions defined in Section 2 corresponding to ¢ for i = 1,2. For i = 1, 2,
introduce the new coordinates transformations

7= Xupile), @ € (~00.0) { @ = Bupilw), @ € (~00,0],

y=2 ¥ € [0,m], G=mdy,  yeo1].

T om@”
Define
Wi(z,y) = A(qW (Pup,i(z),mDy)), (2,y) € (00,01 x [0,1], i=1,2.

Then W; satisfies

. -1 .
%(mu)Xi(x)aavZZ) +88y(m(i);(i(:1z) aB(Aay(WZ))> o
(z,y) € (—00,0) x (0,1), (96)
Bgzi (2,0) =0, z € (—00,0), (97)
1 9B(A~'(W) @)
X, (1) o (z,1) = H(’}W z € (—00,0), (98)

Wi(oa y) =0, Y€ (07 1)7 (99)
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where
1

M) T G A G B

x € (—00,0].

Set
W(xvy) = Wl(xay) - WQ(xvy)v (xay) € (_0070] X [Oa 1]
One can verify from that W satisfies
0 ow 0 1 ow
mM - - hAd
g (X G )+8y(m(1X1() )

+5%(m( )X(x)ag;2> —l—%(ng( )%)

Kl 1 0z o) ( m 3B(A_1(W2)))

+ oy o oy @)~ 5 e o

B g( X(x) 8B(A”(Wz)))
Iy \mP X, (x) Xz (z) Ay

=0, (z,y) € (—00,0) x (0,1),
(100)
where
m = m® - m®
X(z) = X1(z) — Xa(z), € (-00,0],
Hiz) = | L B(A (Wi (o, y) + (( — ) Wa(2,9))
(

= o A(AT (W (z,y) + nWal(z, y)))dn, (z,y) € (—00,0) x (0,1).

It follows from (13), (59), (88) and (90)—(93) that
Cik™ V2 ()12 < H(w,y) < Cok ™2 (=2) 712, (2,y) € (—00,0) x (0,1),

(101)
S <{ Gon Bemd O,
el Ghcom, CRECm iy, o o
2P | < { G o SOy, oo
o= { G CDECR TR o, 09
Im| <c2(/LO/ 85—) dydx)1/2, (106)

where

| 1/2
(=z) =min{—=, Lo}, Lo=3lo (1 + Hf/H%"o((—lOvo))) ’

Fix L > Lg. Multiplying (100) by —W and then integrating by parts over
(—L (0,1), one gets from (96)—(99) that

8W oW\ 2
€]
/ / m'Y X (x dydw+/ / 1) i x,y)( y) dydx
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aW OW. ot OW OW.
mW X (z 24 _/ / X 772
/ / o dydx ) mXs(z) 9 O dydz
8H oW

OB(A=Y(Wy)) OW
/ /m(”m@)Xl €9 dy Tydydx

/ X(z) OB(A™(W3)) OW

2V dyd
m® X, (2)Xa(z) By gy I

oW,

+/ W<7L,y> m<l>X1<—L> oW
0 83?

(~L,y) —m® Xp(~L)

(~L.y) ) dy,

which, together with (23), (90), (101) and (103), yields

/ / aW dyd +k 1/2/ / 1/2 )dydx

<03/ /]X 8W6W2)dd +03/ /‘ awav? dydz

0 OH
+C/ / —(z,y)W——|dyd
[ |G o G
J3

0 1 -1 107
v [ [ nBA o, (107)
—rJo dy dy

JrC'g/OL /01 X(x)aB(Al(VVQ))aVZ‘dyd:c

Js

+ /|W (—L.y)ldy.

I,

Below, let us make estimates on J; (1 < ¢ < 5) and I, in (107). The following five
inequalities are necessary. From the Holder’s inequality and (99), it follows

0 1
/ / (=) W2dyda
—Lo Jo
0 1 g 2
< —gz) " -
/_LO/O( z) ( arr (s,9) dS) dydx
0 0 L/ w2
< —x 1ﬂ%dm/ / () dydzx
/Lo( ) —LoJo \ 0z
L27’l91 0 1 8W 2
< 0 A
<3 [L/O (ax) dydz, 0, € [0,2), (108)
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—Lo g1
/ /(f:r)*%W?dydx
- Jo
— Lo 1
S/ / (—x)_ﬁz( 8W (s,y ‘ds) dydz
-L
—LU
S/ %24y / / dydx
L

and

L2 o
< 19 2/ / dydx Vg € (2, +00).
Y —

Then from the Cauchy’s inequality, (108) and (109), we have

0
WQ(x 1)dx

//Wzdydx+2/ /’W ’dydx
L(] LO

(109)

0
<L / / — dydx + /451/2L(1)/2 / / W3dydz
ax Lo Jo

+ k- 1/2/ / 1/2 ) dydx
Lo
LQ—&-LE)/2 / / dydx
kT 1/2/ / *1/2 ) dydz,

0
/ (=)' W2(z,1)dx

/ / 1W2dydx+2/ /
Lo Lo

(110)

ow
W ——|dyd
3y‘y$

SLO/ / a—w dydz+k1/2/ /(71:)73/2W2dyd:c
Lo /0

+ k- 1/2/ / _1/2 ) dydx
Lo
< (Lo +2LY?) / / = dydm
2
+ k- 1/2/ / 1/2 ) dydzx,

[ _LLO(—;C)‘*W?(% 1)de
/

and

<

(111)

—Lo 1 —Log 1
/(—x)*‘*w"‘dydxw/ /(—z)*‘*‘wa—w‘dydm
—L 0 -L 0 dy
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<Ly / / aW dydx+k1/2L1/2/ / )W 2dyd
+k—1/2L51/2/ / a—W) dydz
<(Lg —|—L 5/2 / / dydx
kT 1/2/ / 1/2 ) dyda. (112)

It follows from Cauchy’s inequality with €, (102)-(106) and (108)—(112) that

J1<5// dyder / /\X |’6W2’dydz

27.1/2
/ / d dz + CQ]; / (—2) " 'W?2(z,1)dyda
—Lo

—Lo
(=)~ W2(z,1)dydz

k1/2
< C'4 5—1— —_— / / dydx
/
C4k 1/2/ / 1/2 ) dydz, (113)
Jy < 5/ / dydx—!— / / 8W2 dyd;l:
C3 —Lo
<5/ / d ydo + =2 2<k3/2+L0k2/ (—x)4dx>
—L

k1/2
<C 5+— / / dydx (114)
“Lo gt oW
J3§02/ /(—x)’l/QIW—’dyderCz/ /(ﬂp)”’W—’dydx
—Lo JoO Jy
1/2 0 1 1/2 1/2 Lo
< Czk / /(fx)’l/QWQdyder i / / )W dyda
Lo

+ Coek™ 1/2/ / 1/2 ) dydx
1/2 2
O4k / / 8W dydx+c4€k 1/2/ / 1/2 ) dydz,

(115)

ot oW Lo 1 oW

Jng/ /—ml/gm—ddx—i—Ck/ /—x—2m—ddx
ss o | [ P dde ok | [ )

5/2 0 —Lo

< Csok m2(/ ( )3/2(137—1—/ (—.13)_4(1]))
13 L
2
+ Cock™ 1/2/ / ’1/2 ) dydx
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1/2 2
C4k // aW dydx+c4€k 1/2// _1/2 )dyd%

(116)

and

0 1
Js < C’%kl/z/ / ’W(w, 1)88—W‘dydx
—L Y

~Lo 1
+022k1/2/ / (—33)_2‘W(x, 1)8—W‘dydx
- Jo

271/2,3/2 0 271/213/2

< CLik Wz(x 1)dz CY?L%/ ()4 W2(z,1)dz
L

+ 2k 1/2/ / —1/2 ) dydz

1/2
O4k / / dydx
+O4<a+ 1/2/ / *1/2 ) dydz, (117)
0

where € > 0 is to be determined. Additionally,

1
I, <1 +/ W?(—L,y)dy
0

§1+/01(/0 W‘dx)Qdy
<14(- / / dydx (118)

Substituting (113)—(118) into (107) to get

/ / dydz + k- 1/2/ / 1/2 ) dyda
63:
1/2
<Cs €+L (/ / dyderk 1/2/ / *1/2 ) dydx)

+ Cs(—L)"' + Csk / / dydm (119)

Choose € = (4C5) ™! and k{ = min{(16CZ +1)~1, (4C5+1)~'}. For any k € (0, k{],
(119) implies

1/2 1/2 1
// ax *dyde + k- // )dydx<2C’5( L)~

(120)

Taking L — +o0 in (120), we obtain that

/ / 3W dyd + k= 1/2/ / 1/2 ) dydz <0,
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which shows that

) = @) =0, (@) € (00,0) X O,1)

Then W (x,y) = 0 follows from (99), and hence (¢(1), m™M)) = (¢, m?). O
In terms of the physical variables, Theorems 4.1 and 4.2 can be transformed as

Theorem 4.3. Assume that f € C*([—lo,0]) satisfies (5) and (6). There exist
four constants ko € (0,1] and Ml, M, >0 depending only on v, 71, T2, lo, l1,
F(=10)s 1/l ((—10.0y) and (=) Y2 " || oo ((—1,0))+ such that if k € (0,ko] then
the problem (7)—(10) admits a unique solution (¢, S,m) satisfying o € C3(2) N
C2(2\ S)NCH2), S € CH[~11,0)),

mase { &, e, — My(k dists (). )2} < [Vio(a.9)| < . — Ny (kdists((x). )"/
(LL', y) € Qk:a

where distg(z,y) is the distance from (x,y) to S and (z) = max{x, —ly}. Moreover,

for any positive integer X\, there exists a constant M3 > 0 depending only on A, v,
1, 72, o, L, F(=lo), 1/ e ((—t0,0)) and [|(—=2) Y2 || Loo((—10,0))» Such that

lp(@,y) — gootllcr (annfac—rY) < MskR™, R >,
where .
max{g*, Cx — MQ(klO)1/2} < oo < ¢ — My (Klg)'/2.

Therefore, the flow is uniformly subsonic at the far fields.
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