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Abstract. This paper focuses on two-dimensional continuous subsonic-sonic
potential flows in a semi-infinitely long nozzle with a straight lower wall and an

upper wall which is convergent at the outlet while straight at the far fields. It

is proved that if the variation rate of the cross section of the nozzle is suitably
small, there exists a unique continuous subsonic-sonic flows in the nozzle such

that the sonic curve intersects the upper wall at a fixed point and the velocity
of the flow is along the normal direction at the sonic curve. Furthermore, the

sonic curve is free, where the flow is singular in the sense that the flow speed is

only Hölder continuous and the flow acceleration blows up. Additionally, the
asymptotic behaviors of the flow speed at the far fields is shown.

1. Introduction. The Euler system

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0,

∂

∂x
(p+ ρu2) +

∂

∂y
(ρuv) = 0,

∂

∂x
(ρuv) +

∂

∂y
(p+ ρv2) = 0

(1)

is usually used to describe the two-dimensional steady isentropic inviscid compress-
ible flow, where (u, v), p and ρ represent the velocity, pressure and density of the
flow, respectively, and p(ρ) = ργ/γ for a polytropic gas with the adiabatic exponent
γ > 1 after the nondimensionalization. Suppose that the flow is irrotational, i.e.,

∂u

∂y
=
∂v

∂x
. (2)
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Then the density ρ can be formulated as a function of the flow speed q =
√
u2 + v2

according to the Bernoulli law ([2]):

ρ(q2) =
(

1− γ − 1

2
q2
)1/(γ−1)

, 0 < q <
√

2/(γ − 1). (3)

The sound speed c is defined as c2 = p′(ρ). At the sonic state, the flow speed

is c∗ =
√

2/(γ + 1), which is critical in the sense that the flow is subsonic when
q < c∗, sonic when q = c∗, and supersonic when q > c∗. The system (1), (2) can be
transformed into the full potential equation

div(ρ(|∇ϕ|2)∇ϕ) = 0, (4)

where ϕ is the velocity potential with ∇ϕ = (u, v), ρ is the function given by (3).
It is noted that (4) is elliptic in the subsonic region, degenerate at the sonic state,
while hyperbolic in the supersonic region.

Subsonic-sonic flow is one of the most interesting aspects in the mathematical
theory of compressible flows. The related problems are usually raised in physical
experiments and engineering designs, and there are a lot of numerical simulations
and rigorous theory involved in this field (see, e.g., [2, 8, 15]). Two kinds of subsonic-
sonic flows have been intensively studied for decades: the flow past a profile and
the flow in a nozzle. The outstanding work [1] by L. Bers proved that there exists
a unique two-dimensional subsonic potential flow past a profile provided that the
freestream Mach number is less than a critical value and the maximum flow speed
tends to the sound speed as the freestream Mach number tends to the critical value.
Later, the similar results for multi-dimensional cases were established in [13, 9] by
G. Dong, R. Finn and D. Gilbarg. These three works did not cover the flow with
the critical freestream Mach number. It was shown in [3] based on a compensated
compactness framework that the two-dimensional flow with sonic points past a
profile may be realized as the weak limit of a sequence of strictly subsonic flows.
However, all the subsonic-sonic flows above are obtained in the weak sense and
their smoothness and uniqueness are unknown yet, so are the subsonic-sonic flows
in an infinitely long nozzle. For a two-dimensional infinitely long nozzle, C. Xie et
al. ([22]) proved that there exists a critical value such that a strictly subsonic flow
exists uniquely as long as the incoming mass flux is less than the critical value, and
a subsonic-sonic flow exists as the weak limit of a sequence of strictly subsonic flows.
The multi-dimensional cases were investigated in [24, 12, 14]. A typical subsonic-
sonic flow with precise regularity is a radially symmetric subsonic-sonic flow in a
convergent straight nozzle. The structural stability was initially proved in [20] for
the case of two-dimensional finitely long nozzle, and some new results can be found
in [16, 17, 18, 21, 19]. In the recent decade, there are also some studies on rotational
subsonic and subsonic-sonic flows, see [4, 6, 11, 7, 5, 23] and the references therein.

In the present paper, we would like to investigate the subsonic-sonic flow in a
class of semi-infinitely long nozzles. Assume precisely that l0, l1 > 0 and α ∈ (0, 1)
are constants, and f ∈ C2,α((−∞, 0]) satisfies

f ′(0) < f(0) = 0, (−x)−1/2f ′′ ∈ L∞((−l0, 0]), (5)

f(x) > 0 for x ∈ (−∞, 0), f ′(x) = 0 for x ∈ (−∞,−l0]. (6)

The upper and lower wall of the nozzle are described as

Γup : y = fk(x) (x ∈ (−∞, 0]), and Γlow : y = −l1 (x ∈ R),
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respectively, where k ∈ (0, 1] and

fk(x) = kf(x), x ∈ (−∞, 0].

The sonic curve of the flow is a free boundary intersecting the upper wall at the
origin, which is chosen as the outlet of the nozzle and is denoted by

Γout : x = S(y), y ∈ [−l1, 0], S(0) = 0.

It is assumed further that the subsonic-sonic flow satisfies the slip conditions at Γup

and Γlow, and its velocity is along the normal direction at Γout. See the following
figure for an intuition.

x

y

O−l0

−l1

y = f(x)

y = fk(x)

x = S(y)Ωk

As in [18, 21], the subsonic-sonic flow problem can be formulated in the physical
plane as

div(ρ(|∇ϕ|2)∇ϕ) = 0, (x, y) ∈ Ωk, (7)

∂ϕ

∂y
(x,−l1) = 0, x ∈ (−∞, S(−l1)), (8)

∂ϕ

∂y
(x, fk(x))− f ′k(x)

∂ϕ

∂x
(x, fk(x)) = 0, x ∈ (−∞, 0), (9)

|∇ϕ(S(y), y)| = c∗, ϕ(S(y), y) = 0, y ∈ (−l1, 0), (10)

where (ϕ, S) is a solution and Ωk is the semi-infinitely long nozzle bounded by Γup,
Γlow and Γout. The problem (7)–(10) is a free boundary problem of a quasilinear
degenerate elliptic equation in an unbounded domain, whose degeneracy occurs at
the free boundary and is characteristic. As mentioned in Remark 1.6 of [22], one
can not require in advance that the flow tends to be uniformly subsonic at the
far fields, otherwise, the elliptic problem may be overdetermined. In the paper,
we prove that the subsonic-sonic flow in the nozzle is uniformly subsonic at the
far fields, and the uniqueness of the flow results from this property. Similar to
[20, 18, 16, 17, 21], we still solve the problem in the potential plane for the reason
that the shape of the sonic curve is unknown in the physical plane while known in
the potential plane, and the estimates of the flow speed can be made conveniently.
In the potential plane, the subsonic-sonic flow problem (7)–(10) can be transformed
into a quasilinear degenerate elliptic problem with free parameters and nonlocal
boundary conditions in unbounded domain. The unboundedness of the domain
makes the problem more difficulty than the ones in [20, 18, 16, 17, 21]. The Schauder
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fixed point theorem is employed to prove the existence of subsonic-sonic flows. For a
given incoming mass flux and flow speed at the upper wall, we solve a fixed boundary
problem of a quasilinear degenerate elliptic equation. If the solved incoming mass
flux and flow speed at the upper wall are just the given ones, we get the solution.
Note that the problem we concerns is in unbounded domain, we get the solution to
the fixed boundary problem by taking limits of the sequences of the solutions to the
truncated problems. Like that in [21], it seems very hard to construct appropriate
super and sub solutions to prove the existence of solutions to truncated problems
without sufficiently small ‖(−x)−1/2f ′′‖L∞((−l0,0)). The method in [21] is used here:
we first solve every regularized truncated problem when the flow speed at the outlet
is suitable small and get priori estimates for the average and the derivatives of the
solution, then we show the existence of the solution to the regularized truncated
problem by use of the preliminaries obtained above, and finally we prove that their
limit as the flow speed tends to be sonic at the outlet is a desired solution to the
truncated problem. The difficulty here is that in order to get the solution to the fixed
boundary problem by taking the limit of the solutions to the truncated problems,
we must seek a suitable variation rate k0 such that the solutions to all the truncated
problems exit provided that k ∈ (0, k0]. We overcome this difficulty by constructing
complicated super and sub solutions to all the truncated problems. The Harnack’s
inequality is used to achieve the regularities and the asymptotic behaviors of the
solution to the fixed boundary problem. As to the uniqueness of the subsonic-sonic
flow, we first fix the free boundaries into fixed ones and transform the nonlocal
boundary conditions into common ones by a proper coordinates transformation,
and then we estiblish the uniqueness theorem by the energy estimates. Summing
up, it is proved in this paper that if f satisfies (5) and (6), then there exists a
unique subsonic-sonic flow to the problem (7)–(10) for suitably small k, and the
flow speed is only C1/2 Hölder continuous and the flow acceleration blows up at the
sonic curve. Furthermore, the flow is uniformly subsonic at the far fields.

The paper is arranged as follows. In Section 2, we formulate the subsonic-sonic
flow problem (7)–(10) in the potential plane. Then in Section 3, we solve the fixed
boundary problem of a quasilinear degenerate elliptic equation in an unbounded
domain. Finally in Section 4, we establish the well-posedness of the subsonic-sonic
flow, and prove that the flow is uniformly subsonic at the far fields.

2. Formulation of the subsonic-sonic flow problem in the potential plane.
Define a velocity potential ϕ and a stream function ψ, respectively, by

∂ϕ

∂x
= u = q cos θ,

∂ϕ

∂y
= v = q sin θ,

∂ψ

∂x
= −ρv = −ρq sin θ,

∂ψ

∂y
= ρu = ρq cos θ,

(11)

where θ is the flow angle. The system (1), (2) can be reduced to the Chaplygin
equations ([2]):

∂θ

∂ψ
+
ρ(q2) + 2q2ρ′(q2)

qρ2(q2)

∂q

∂ϕ
= 0,

1

q

∂q

∂ψ
− 1

ρ(q2)

∂θ

∂ϕ
= 0 (12)

in the potential-stream coordinates (ϕ,ψ). The coordinates transformation (11)
between the two coordinate systems are valid at least in the absence of stagnation
points. Eliminating θ from (12) yields the following quasilinear equation of second
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order
∂2A(q)

∂ϕ2
+
∂2B(q)

∂ψ2
= 0,

where

A(q) =

∫ q

c∗

ρ(s2) + 2s2ρ′(s2)

sρ2(s2)
ds, B(q) =

∫ q

c∗

ρ(s2)

s
ds, 0 < q <

√
2/(γ − 1).

It is obvious that B(·) is strictly increasing in (0,
√

2/(γ − 1)), while A(·) is strictly

increasing in (0, c∗] and strictly decreasing in [c∗,
√

2/(γ − 1)). It follows from [21]
that there exist two constants 0 < N1 < N2 depending only on γ such that for
c∗/6 ≤ q ≤ c∗,

N1(c∗ − q) ≤ A′(q) ≤ N2(c∗ − q), N1 ≤ B′(q),−A′′(q),−B′′(q) ≤ N2, (13)

N1(c∗ − q) ≤ E′(B(q)) ≤ N2(c∗ − q), −N2 ≤ E′′(B(q)), E′′′(B(q)) ≤ −N1, (14)

where E = A ◦B−1 and B−1 is the inverse function of B. We use A−1(·) to denote

the inverse function of A(·)
∣∣∣
(0,c∗]

in this paper. Additionally, the flow angle at the

upper and the lower wall are

Θup(x) = arctan f ′k(x), x ∈ [−l0, 0] and Θlow(x) ≡ 0, x ∈ (−∞, 0),

respectively.
As in [18, 21], in order to describe the problem in the potential plane, we denote

the flow speed at the upper wall by

Qup(x) = q(x, fk(x)), x ∈ (−∞, 0],

then the potential function at the upper wall is expressed by

Φup(x) =

∫ x

0

Qup(s)(1 + (f ′k(s))2)1/2ds

=


∫ x

0

Qup(s)(1 + (f ′k(s))2)1/2ds, if x ∈ [−l0, 0],

ζ0 +

∫ x

−l0
Qup(s)ds, if x ∈ (−∞,−l0)

(15)

with

ζ0 =

∫ −l0
0

Qup(s)(1 + (f ′k(s))2)1/2ds.

The inverse function of Φup is denoted by Xup. The subsonic-sonic flow problem
(7)–(10) can be formulated in the potential plane as follows:

∂2A(q)

∂ϕ2
(ϕ,ψ) +

∂2B(q)

∂ψ2
(ϕ,ψ) = 0, (ϕ,ψ) ∈ (−∞, 0)× (0,m), (16)

∂q

∂ψ
(ϕ, 0) = 0, ϕ ∈ (−∞, 0), (17)

∂B(q)

∂ψ
(ϕ,m) =

f ′′k (x)

(1 + (f ′k(x))2)3/2Qup(x)

∣∣∣
x=Xup(ϕ)

,

ϕ ∈ (−∞, 0), (18)

q(0, ψ) = c∗, ψ ∈ (0,m), (19)

Qup(x) = q(ϕ,m)
∣∣∣
ϕ=Φup(x)

, x ∈ (−∞, 0], (20)
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where (q,m) is a solution with m > 0 being the incoming mass flux. Solutions to
the problem (16)–(19) are defined as follows.

Definition 2.1. For m > 0, a function q ∈ L∞((−∞, 0)×(0,m)) is called a solution
to the fixed boundary problem (16)–(19), if

0 < inf
(−∞,0)×(0,m)

q ≤ sup
(−∞,0)×(0,m)

q ≤ c∗

such that the integral equation∫ 0

−∞

∫ m

0

(
A(q(ϕ,ψ))

∂2ξ

∂ϕ2
(ϕ,ψ) +B(q(ϕ,ψ))

∂2ξ

∂ψ2
(ϕ,ψ)

)
dψdϕ

+

∫ 0

−∞

f ′′k (x)

(1 + (f ′k(x))2)3/2Qup(x)

∣∣∣
x=Xup(ϕ)

ξ(ϕ,m)dϕ = 0

holds for any ξ ∈ C2((−∞, 0)× [0,m]) which vanishes for large |ϕ| with

∂ξ

∂ψ
(·, 0)

∣∣∣
(−∞,0)

=
∂ξ

∂ψ
(·,m)

∣∣∣
(−∞,0)

= ξ(0, ·)
∣∣∣
(0,m)

= 0.

The existence of solutions to the problem (16)–(20) will be proved by a fixed
point argument. Give m and Qup in advance as follows:

δ1 ≤ m ≤ δ2 (21)

with

δ1 =
c∗ρ(c2∗/4)l1

2
, δ2 = c∗ρ(c2∗)(l1 + f(−l0)),

while Qup ∈ C1/4((−∞, 0]) satisfies

max
{c∗

2
, c∗ − k1/4

}
≤ Qup(x) ≤ c∗ for x ∈ (−∞, 0], [Qup]C1/4((−∞,0]) ≤ 1.

(22)

For such Qup, it is clear that Φup and Xup are well determined. Direct calculations
yield that

−δ4 ≤ ζ0 ≤ −δ3,
c∗
2
≤ Φ′up(x) ≤ δ5, x ∈ (−∞, 0], (23)∣∣∣∣ f ′′k (x)

(1 + (f ′k(x))2)3/2Qup(x)

∣∣∣
x=Xup(ϕ)

∣∣∣∣ ≤ kδ6(−ϕ)1/2χ[ζ0,0](ϕ), ϕ ∈ (−∞, 0], (24)

where χ[ζ0,0](ϕ) is the characteristic function of the interval [ζ0, 0], and

δ3 =
c∗l0

2
, δ4 = c∗l0

(
1 + ‖f ′‖2L∞((−l0,0))

)1/2

,

δ5 = c∗

(
1 + ‖f ′‖2L∞((−l0,0))

)1/2

, δ6 = ‖(−x)1/2f ′′‖L∞((−l0,0))

( 2

c∗

)3/2

.

For f ∈ C2,α((−∞, 0]) satisfying (5) and (6), it follows from [21] that there exists

a constant l̃0 ∈ (0, l0) depending only on f ′(0) and ‖(−x)−1/2f ′′‖L∞(−l0,0) such

that 2f ′(0) ≤ f ′(x) ≤ f ′(0)/2 for x ∈ [−l̃0, 0], and hence there exist two constants

0 < τ1 ≤ τ2 depending only on l̃0, l0, f ′(0), inf(−l0,−l̃0) f and sup(−l0,−l̃0) f such

that

−τ1x ≤ f(x) ≤ −τ2x, x ∈ [−l0, 0]. (25)
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3. Fixed boundary problem of a quasilinear degenerate elliptic equation
in an unbounded domain. In this section, we deal with the well-posedness of
the fixed boundary problem. For the given m and Qup ∈ C1/4((−∞, 0]) satisfy (21)
and (22), respectively, we solve the degenerate elliptic problem (16)–(19). Since the
problem is in an unbounded domain, we first deal with the truncated problem in
[ζ0−n, 0]× [0,m] with any sufficient large positive integer n, and make some useful
compact estimates. Then we solve the problem (16)–(19) by a limit process. The
key of the proof is seeking the variation rate k, which ensures the solutions to the
truncated problems exist, is independent of n.

3.1. Well-posedness of the truncated problem. The truncated problem is
written as

∂2A(qn)

∂ϕ2
(ϕ,ψ) +

∂2B(qn)

∂ψ2
(ϕ,ψ) = 0, (ϕ,ψ) ∈ (ζ0 − n, 0)× (0,m), (26)

∂A(qn)

∂ϕ
(ζ0 − n, ψ) = 0, ψ ∈ (0,m), (27)

∂qn
∂ψ

(ϕ, 0) = 0, ϕ ∈ (ζ0 − n, 0), (28)

∂B(qn)

∂ψ
(ϕ,m) =

f ′′k (x)

(1 + (f ′k(x))2)3/2Qup(x)

∣∣∣
x=Xup(ϕ)

,

ϕ ∈ (ζ0 − n, 0), (29)

qn(0, ψ) = c∗, ψ ∈ (0,m). (30)

Note that (26) is degenerate at qn = c∗, we replace (30) with the following boundary
condition

qn(0, ψ) = c, ψ ∈ (0,m), (31)

where c ∈ [c∗/3, c∗) is a constant, and consider the regularized truncated problem
(26)–(29), (31). Then we solve the problem (26)–(30) by a limit process.

The proof can be divided into four steps.

Step 1. Well-posedness of the problem (26)–(29), (31) for c ∈ [c∗/3, c∗/2].

Lemma 3.1. Assume that n ≥ 2δ4 + 1 and c ∈ [c∗/3, c∗/2]. There exists a
constant k1 ∈ (0, 1] depending only on γ, l0, l1, f(−l0), ‖f ′‖L∞((−l0,0)) and

‖(−x)−1/2f ′′‖L∞((−l0,0)), such that if k ∈ (0, k1], then the problem (26)–(29), (31)

admits a unique solution qn,c ∈ C∞((ζ0 − n, 0)× (0,m))∩C1([ζ0 − n, 0)× [0,m])∩
C([ζ0 − n, 0]× [0,m]). Furthermore, qn,c satisfies

c∗/6 ≤ qn,c(ϕ,ψ) < c∗, (ϕ,ψ) ∈ [ζ0 − n, 0]× [0,m], (32)

qn,c(ζ0 − n, ψ) ≤ c∗ − k3/4, ψ ∈ [0,m]. (33)

Proof. The uniqueness result follows from Proposition 3.2 in [20]. Set

k1 = min

{(c∗
6

)4/3

,
( c∗

48δ2
2δ

3
4

)2

,
( c∗

96δ3
4

)4

,
(A(c∗/4)−A(c∗/6)

8δ2
2δ

3
4

)2

,

(A(c∗/3)−A(c∗/4)

16δ3
4

)4

,
(2δ1δ

5/2
4 B′(5c∗/6)

δ6

)2

,
(2δ2δ

5/2
4 B′(c∗/6)

δ6A′(c∗/6)

)2

,( 1

δ2
2e2δ4

)4

,
( 3A′(5c∗/6)

4δ2
4e2δ4B′(5c∗/6)

)2
}
.
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For k ∈ (0, k1], define

qn,c(ϕ,ψ) =
2

3
c∗ +

(
k1/2ψ2 + k1/4(ϕ− 2)eϕ

)
Λ(ϕ),

(ϕ,ψ) ∈ [ζ0 − n, 0]× [0,m],

q
n,c

(ϕ,ψ) = A−1
(
A(c∗/4)−

(
k1/2ψ2 + k1/4(ϕ− 2)eϕ

)
Λ(ϕ)

)
,

(ϕ,ψ) ∈ [ζ0 − n, 0]× [0,m],

where

Λ(ϕ) = max{0, (ϕ+ 2δ4)3}, ϕ ∈ (−∞, 0].

Thanks to (13), (14), (23) and (24), direct calculations show that

c∗
2
≤ qn,c(ϕ,ψ) ≤ 5c∗

6
,

c∗
6
≤ q

n,c
(ϕ,ψ) ≤ c∗

3
, (ϕ,ψ) ∈ [ζ0 − n, 0]× [0,m],

∂A(qn,c)

∂ϕ
(ζ0 − n, ψ) =

∂A(q
n,c

)

∂ϕ
(ζ0 − n, ψ) = 0, ψ ∈ (0,m),

∂qn,c
∂ψ

(ϕ, 0) =
∂q

n,c

∂ψ
(ϕ, 0) = 0, ϕ ∈ (ζ0 − n, 0),

∂B(qn,c)

∂ψ
(ϕ,m) = 2k1/2mB′(qn,c(ϕ,m))Λ(ϕ)

≥ 2k1/2δ2δ
3
4B
′(5c∗/6)χ[ζ0,0](ϕ)

≥ kδ6(−ϕ)1/2χ[ζ0,0](ϕ), ϕ ∈ (ζ0 − n, 0),

∂B(q
n,c

)

∂ψ
(ϕ,m) = −2k1/2m

B′(q
n,c

(ϕ,m))

A′(q
n,c

(ϕ,m))
Λ(ϕ)

≤ −2k1/2δ2δ
3
4

B′(c∗/6)

A′(c∗/6)
χ[ζ0,0](ϕ)

≤ −kδ6(−ϕ)1/2χ[ζ0,0](ϕ), ϕ ∈ (ζ0 − n, 0),

∂2A(qn,c)

∂ϕ2
(ϕ,ψ) +

∂2B(qn,c)

∂ψ2
(ϕ,ψ)

≤B′(qn,c(ϕ,ψ))

(
A′(qn,c(ϕ,ψ))

B′(qn,c(ϕ,ψ))

∂2qn,c
∂ϕ2

(ϕ,ψ) +
∂2qn,c
∂ψ2

(ϕ,ψ)

)
≤ 2k1/4B′(qn,c(ϕ,ψ))(ϕ+ 2δ4)

×
(
A′(5c∗/6)

B′(5c∗/6)
(3k1/4δ2

2 − 6e−2δ4) + 4k1/4δ2
4

)
χ[−2δ4,0](ϕ)

≤ 2k1/4B′(qn,c(ϕ,ψ))(ϕ+ 2δ4)

×
(
− 3e−2δ4

A′(5c∗/6)

B′(5c∗/6)
+ 4k1/4δ2

4

)
χ[−2δ4,0](ϕ)

≤ 0, (ϕ,ψ) ∈ (ζ0 − n, 0)× (0,m),

and

∂2A(q
n,c

)

∂ϕ2
(ϕ,ψ) +

∂2B(q
n,c

)

∂ψ2
(ϕ,ψ)



CONTINUOUS SUBSONIC-SONIC FLOWS IN SEMI-INFINITELY LONG NOZZLE 2425

≥
∂2A(q

n,c
)

∂ϕ2
(ϕ,ψ) +

B′(q
n,c

(ϕ,ψ))

A′(q
n,c

(ϕ,ψ))

∂2A(q
n,c

)

∂ψ2
(ϕ,ψ)

≥ 2k1/4(ϕ+ 2δ4)

(
6e−2δ4 − 3k1/4δ2

2 − 4k1/4δ2
4

B′(c∗/3)

A′(c∗/3)

)
χ[−2δ4,0](ϕ)

≥ 2k1/4(ϕ+ 2δ4)

(
3e−2δ4 − 4k1/4δ2

4

B′(c∗/3)

A′(c∗/3)

)
χ[−2δ4,0](ϕ)

≥ 0, (ϕ,ψ) ∈ (ζ0 − n, 0)× (0,m),

where χ[−2δ4,0](ϕ) is the characteristic function of the interval [−2δ4, 0]. Therefore,
qn,c and q

n,c
are a supersolution and a subsolution to the problem (26)–(29), (31),

respectively. Thanks to the comparison principle (Proposition 3.2 in [20]) and a
standard argument in the classical theory for elliptic equations, one can complete
the lemma.

Step 2. A priori estimates of the average of solutions to the problem (26)–(29),
(31).

Lemma 3.2. Assume that n ≥ 2δ4 + 1, c ∈ [c∗/3, c∗) and qn,c ∈ C∞((ζ0 − n, 0)×
(0,m))∩C1([ζ0−n, 0)× [0,m])∩C([ζ0−n, 0)× [0,m]) is a solution to the problem
(26)–(29), (31). Then

1

m

∫ m

0

A(qn,c(ϕ,ψ))dψ =
1

m

∫ m

0

A(qn,c(ζ0, ψ))dψ, ϕ ∈ [ζ0 − n, ζ0]. (34)

Furthermore, there exist three constants k2 ∈ (0, 1] and 0 < σ1 ≤ σ2 depending only
on γ, τ1, τ2 and ‖f ′‖L∞((−l0,0)) such that if k ∈ (0, k2], then

A(c)− kσ2 min{−ϕ,−ζ0} ≤
1

m

∫ m

0

A(qn,c(ϕ,ψ))dψ ≤ A(c)− kσ1 min{−ϕ,−ζ0},

ϕ ∈ [ζ0 − n, 0].
(35)

Proof. The proof is similar to the proof of Lemma 3.2 in [21]. Integrating (26) over
(0,m) with respect to ψ and using (28) and (29) show that

d2

dϕ2

∫ m

0

A(qn,c(ϕ,ψ))dψ = − f ′′k (x)

(1 + (f ′k(x))2)3/2Qup(x)

∣∣∣
x=Xup(ϕ)

, ϕ ∈ (ζ0 − n, 0).

(36)

And (27) yields that

d

dϕ

∫ m

0

A(qn,c(ζ0 − n, ψ))dψ = 0. (37)

One gets from (6), (36) and (37) that

d

dϕ

∫ m

0

A(qn,c(ϕ,ψ))dψ = 0, ϕ ∈ [ζ0 − n, ζ0], (38)

and

d

dϕ

∫ m

0

A(qn,c(ϕ,ψ))dψ = −
∫ ϕ

ζ0

f ′′k (x)

(1 + (f ′k(x))2)3/2Qup(x)

∣∣∣
x=Xup(s)

ds

= −
∫ Xup(ϕ)

−l0

f ′′k (x)Φ′up(x)

(1 + (f ′k(x))2)3/2Qup(x)
dx
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= −
∫ Xup(ϕ)

−l0
(arctan f ′k(x))′dx

= − arctan f ′k(Xup(ϕ)), ϕ ∈ [ζ0, 0]. (39)

Thus (34) follows from (38). As in the proof of Lemma 3.2 in [21], it follows from
(15) and (39) that

1

m

∫ m

0

A(qn,c(ϕ,ψ))dψ

=
1

m

∫ m

0

A(qn,c(0, ψ))dψ +
1

m

∫ 0

ϕ

arctan f ′k(Xup(ϕ̃))dϕ̃

=A(c) +
1

m

∫ 0

ϕ

arctan f ′k(Xup(ϕ̃))dϕ̃

=A(c)− kc∗f(Xup(ϕ)) +O(k5/4), ϕ ∈ [ζ0, 0], (40)

where O(·) depend only on ‖f ′‖L∞((−l0,0)). Using (25), (34) and (40), we can obtain
(35).

Step 3. A priori derivative estimates of solutions to the problem (26)–(29), (31).

Lemma 3.3. Assume that n ≥ 2δ4 + 1, c ∈ [c∗/3, c∗), and qn,c ∈ C∞((ζ0 − n, 0)×
(0,m))∩C1([ζ0−n, 0)× [0,m])∩C([ζ0−n, 0)× [0,m]) is a solution to the problem
(26)–(29), (31) satisfying (32) and (33). Then for k ∈ (0, 1],∣∣∣∂qn,c

∂ψ
(ϕ,ψ)

∣∣∣ ≤ kσ3(min{−ϕ,−ζ0})1/2, (ϕ,ψ) ∈ (ζ0 − n, 0)× (0,m), (41)

|A(qn,c(ϕ1, ψ1))−A(qn,c(ϕ2, ψ2))| ≤ kσ4(|ϕ1 − ϕ2|1/2 + |ψ1 − ψ2|),
(ϕ1, ψ1), (ϕ2, ψ2) ∈ [ζ0 − n, 0]× [0,m], (42)

where σ3 and σ4 are positive constants depending only on γ, l0, l1, f(−l0),
‖f ′‖L∞((−l0,0)) and ‖(−x)−1/2f ′′‖L∞((−l0,0)).

Proof. The proof is similar to Proposition 3.2 in [20]. Set

z(ϕ,ψ) =
∂B(qn,c)

∂ψ
(ϕ,ψ), (ϕ,ψ) ∈ [ζ0 − n, 0]× [0,m].

Then z ∈ C∞((ζ0 − n, 0)× (0,m)) ∩ C([ζ0 − n, 0]× [0,m]) solves the problem

j1(ϕ,ψ)
∂2z

∂ϕ2
+
∂2z

∂ψ2
+ j2(ϕ,ψ)

∂z

∂ϕ
+ j3(ϕ,ψ)

∂z

∂ψ
+ j4(ϕ,ψ)z = 0,

(ϕ,ψ) ∈ (ζ0 − n, 0)× (0,m), (43)

∂z

∂ϕ
(ζ0 − n, ψ) = 0, ψ ∈ (0,m), (44)

z(ϕ, 0) = 0, ϕ ∈ (ζ0 − n, 0), (45)

z(ϕ,m) =
f ′′k (x)

(1 + (f ′k(x))2)3/2Qup(x)

∣∣∣
x=Xup(ϕ)

, ϕ ∈ (ζ0 − n, 0), (46)

z(0, ψ) = 0, ψ ∈ (0,m), (47)

where ji ∈ C∞((ζ0, 0)× (0,m)) (1 ≤ i ≤ 4) are defined by

j1 = E′(B(qn,c)) > 0,
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j2 =
E′′(B(qn,c))

E′(B(qn,c))

∂A(qn,c)

∂ϕ
,

j3 = −E
′′(B(qn,c))

E′(B(qn,c))

∂B(qn,c)

∂ψ
,

j4 =
( E′′′(B(qn,c))

(E′(B(qn,c)))2
− (E′′(B(qn,c)))

2

(E′(B(qn,c)))3

)(∂A(qn,c)

∂ϕ

)2

≤ − (E′′(B(qn,c)))
2

(E′(B(qn,c)))3

(∂A(qn,c)

∂ϕ

)2

≤ 0

and E satisfies (14). It is clear that

1

4
j1(ϕ,ψ)(−ϕ)−3/2 − j4(ϕ,ψ)(−ϕ)1/2

≥
√
−j1(ϕ,ψ)j4(ϕ,ψ)(−ϕ)−1/2

≥ − 1

2
j2(ϕ,ψ)(−ϕ)−1/2, (ϕ,ψ) ∈ (ζ0 − n, 0)× (0,m).

Due to (24), one can show that

z±(ϕ,ψ) = ±kδ6(−ϕ)1/2, (ϕ,ψ) ∈ [ζ0 − n, 0]× [0,m]

are a supersolution and a subsolution to the problem (43)–(47), respectively. The
comparison principle (Proposition 3.2 in [20]) implies that

|z(ϕ,ψ)| ≤ kδ6(−ϕ)1/2, (ϕ,ψ) ∈ [ζ0 − n, 0]× [0,m]. (48)

Define

z̃±(ϕ,ψ) = ±kδ6(−ζ0)1/2, (ϕ,ψ) ∈ [ζ0 − n, ζ0]× [0,m].

It is easy to verify that z̃± are a supersolution and subsolution to the following
problem

j1(ϕ,ψ)
∂2z

∂ϕ2
+
∂2z

∂ψ2
+ j2(ϕ,ψ)

∂z

∂ϕ
+ j3(ϕ,ψ)

∂z

∂ψ
+ j4(ϕ,ψ)z = 0,

(ϕ,ψ) ∈ (ζ0 − n, ζ0)× (0,m),

∂z

∂ϕ
(ζ0 − n, ψ) = 0, ψ ∈ (0,m),

z(ϕ, 0) = 0, ϕ ∈ (ζ0 − n, ζ0),

z(ϕ,m) = 0, ϕ ∈ (ζ0 − n, ζ0),

z(ζ0, ψ) = z(ζ0, ψ), ψ ∈ (0,m),

respectively. The comparison principle shows that

|z(ϕ,ψ)| ≤ kδ6(−ζ0)1/2, (ϕ,ψ) ∈ [ζ0 − n, ζ0]× [0,m],

which, together with (48), leads to (41). Finally, (42) can be proved in the same
way as the proof of Proposition 3.2 in [20].

Step 4. Well-posedness of the truncated problem (26)–(30).

Lemma 3.4. Assume that n ≥ 2δ4 + 1. There exists a constant 0 < k3 ≤
min{k1, k2} depending only on γ, τ1, τ2, l0, l1, f(−l0), ‖f ′‖L∞((−l0,0)) and
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‖(−x)−1/2f ′′‖L∞((−l0,0)), such that if k ∈ (0, k3], then the problem (26)–(30) ad-

mits a unique solution qn ∈ C∞((ζ0 − n, 0) × (0,m)) ∩ C1([ζ0 − n, 0) × [0,m]) ∩
C([ζ0 − n, 0]× [0,m]) satisfies∣∣∣∂qn

∂ψ
(ϕ,ψ)

∣∣∣ ≤ kσ3(min{−ϕ,−ζ0})1/2, (ϕ,ψ) ∈ (ζ0 − n, 0)× (0,m), (49)

|A(qn(ϕ1, ψ1))−A(qn(ϕ2, ψ2))| ≤ kσ4(|ϕ1 − ϕ2|1/2 + |ψ1 − ψ2|),
(ϕ1, ψ1), (ϕ2, ψ2) ∈ [ζ0 − n, 0]× [0,m], (50)

c∗ − σ6k
1/2(min{−ϕ,−ζ0})1/2 ≤ qn(ϕ,ψ) ≤ c∗ − σ5k

1/2(min{−ϕ,−ζ0})1/2,

(ϕ,ψ) ∈ [ζ0 − n, 0]× [0,m], (51)

where 0 < σ5 ≤ σ6 are constants depending only on γ, τ1, τ2, l0, l1, f(−l0),
‖f ′‖L∞((−l0,0)) and ‖(−x)−1/2f ′′‖L∞((−l0,0)).

Proof. The uniqueness result follows from Proposition 3.2 in [20]. For 0 < k ≤
min{k1, k2}, set

Ck =
{
c ∈ [c∗/3, c∗) : the problem (26)–(29), (31) admits a solution

qn,c ∈ C∞((ζ0 − n, 0)× (0,m)) ∩ C1([ζ0 − n, 0]× [0,m])

with (32) and (33)
}
.

It follows from Lemma 3.1 and the comparison principle (Proposition 3.2 in [20])
that Ck is a nonempty interval. Assume that c ∈ Ck. For ϕ ∈ [ζ0 − n, 0], thanks to
c ∈ Ck, (13) and (35), there exists a number ψϕ ∈ (0,m) such that

qn,c(ϕ,ψϕ) ≤ c∗ −
(kσ1

N2

)1/2

(min{−ϕ,−ζ0})1/2,

which, together with (41), yields

qn,c(ϕ,ψ) = qn,c(ϕ,ψϕ) +

∫ ψ

ψϕ

∂qn,c
∂ψ

(ϕ, ψ̃)dψ̃

≤ c∗ −
(( σ1

N2

)1/2

− k1/2σ3δ2

)
k1/2(min{−ϕ,−ζ0})1/2,

(ϕ,ψ) ∈ [ζ0 − n, 0]× [0,m].

(52)

Choose

σ5 =
( σ1

4N2

)1/2

, k3 = min

{
k1, k2,

σ1

4σ2
3δ

2
2N2

,
σ4

5δ
2
4

16

}
.

For 0 < k ≤ k3, one gets from c ∈ Ck, (23) and (52) that

c∗/4 ≤ qn,c(ϕ,ψ) ≤ c∗ − σ5k
1/2(min{−ϕ,−ζ0})1/2, (ϕ,ψ) ∈ [ζ0 − n, 0]× [0,m],

(53)

qn,c(ζ0 − n, ψ) ≤ c∗ − 2k3/4, ψ ∈ [0,m]. (54)

It follows from c ∈ Ck, (31) and (42) that

|A(qn,c(ϕ,ψ))−A(c)| ≤ kσ4(−ϕ)1/2, ψ ∈ [0,m]. (55)

Thanks to (53)–(55), one can prove from the comparison principle (Proposition 3.2
in [20]) and the continuous dependence of solutions to the problem (26)–(29), (31)
that Ck = [c∗/3, c∗) for 0 < k ≤ k3.
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Let 0 < k ≤ k3. For c∗/3 ≤ c1 < c2 < c∗, the comparison principle (Proposition
3.2 in [20]) gives

qn,c1(ϕ,ψ) ≤ qn,c2(ϕ,ψ), (ϕ,ψ) ∈ [ζ0 − n, 0]× [0,m].

Set

qn(ϕ,ψ) = lim
c→c−∗

qn,c(ϕ,ψ), (ϕ,ψ) ∈ [ζ0 − n, 0]× [0,m].

Due to (41), (42) and (53), it is clear that qn is a solution to the problem (26)–(30),
and qn satisfies (49), (50) and the second inequality in (51). For ϕ ∈ [ζ0 − n, 0], it

follows from (35) and (13) that there exists a number ψ̃ϕ ∈ (0,m) such that

qn(ϕ, ψ̃ϕ) ≥ c∗ −
(kσ2

N1

)1/2

(min{−ϕ,−ζ0})1/2.

This estimate above and (49) yield

qn(ϕ,ψ) = qn(ϕ, ψ̃ϕ) +

∫ ψ

ψ̃ϕ

∂qn
∂ψ

(ϕ, ψ̃)dψ̃

≥ c∗ −
(( σ2

N1

)1/2

+ k1/2σ3δ2

)
k1/2(min{−ϕ,−ζ0})1/2,

(ϕ,ψ) ∈ [ζ0 − n, 0]× [0,m].

Hence the first inequality in (51) holds for σ6 = (σ2/N1)
1/2

+ σ3δ2. Finally, the
Schauder theory for elliptic equations shows that qn ∈ C∞((ζ0 − n, 0) × (0,m)) ∩
C1([ζ0 − n, 0)× [0,m]) ∩ C([ζ0 − n, 0]× [0,m]).

3.2. Well-posedness of the fixed boundary problem. Let us establish the
existence of the solution to the problem (16)–(19).

Proposition 1. Assume that k ∈ (0, k3], then the problem (16)–(19) admits a
solution q ∈ C∞((−∞, 0) × (0,m)) ∩ C1((−∞, 0) × [0,m]) ∩ C((−∞, 0] × [0,m])
satisfies ∣∣∣ ∂q

∂ψ
(ϕ,ψ)

∣∣∣ ≤ kσ3(min{−ϕ,−ζ0})1/2, (ϕ,ψ) ∈ (−∞, 0)× (0,m), (56)

|A(q(ϕ1, ψ1))−A(q(ϕ2, ψ2))| ≤ kσ4(|ϕ1 − ϕ2|1/2 + |ψ1 − ψ2|),
(ϕ1, ψ1), (ϕ2, ψ2) ∈ (−∞, 0]× [0,m], (57)

c∗ − σ6k
1/2(min{−ϕ,−ζ0})1/2 ≤ q(ϕ,ψ) ≤ c∗ − σ5k

1/2(min{−ϕ,−ζ0})1/2,

(ϕ,ψ) ∈ (−∞, 0]× [0,m], (58)

where σ3, σ4, σ5 and σ6 are given in Lemmas 3.3 and 3.4. Furthermore,

1

m

∫ m

0

A(q(ϕ,ψ))dψ = A(q∞), ϕ ∈ (−∞, ζ0], (59)

where

q∞ = A−1

(
1

m

∫ m

0

A(q(ζ0, ψ))dψ

)
∈ [c∗ − σ6k

1/2(−ζ0)1/2, c∗ − σ5k
1/2(−ζ0)1/2].

(60)

Proof. For any n > 2δ4 + 1, the truncated problem (26)–(30) admits a unique
solution

qn ∈ C∞((ζ0 − n, 0)× (0,m)) ∩ C1([ζ0 − n, 0)× [0,m]) ∩ C1/2([ζ0 − n, 0]× [0,m])
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satisfying (49)–(51). Therefore, there exists a subsequence of {qn} weakly star
convergenting to a function q in L∞((−∞, 0)×(0,m)), and q satisfies (58). It is not
hard to check that q is a solution to the problem (16)–(19), and q satisfies (56)–(58).
Finally, the Schauder theory for elliptic equations yields that

q ∈ C∞((−∞, 0)× (0,m)) ∩ C1((−∞, 0)× [0,m]) ∩ C((−∞, 0]× [0,m]).

Integrating (16) over (0,m) with respect to ψ and using (6), (17) and (18) lead
to that

d2

dϕ2

∫ m

0

A(q(ϕ,ψ))dψ = 0, ϕ ∈ (−∞, ζ0),

and then there exists some constant C such that

d

dϕ

∫ m

0

A(q(ϕ,ψ))dψ = C, ϕ ∈ (−∞, ζ0), (61)

which implies that∫ m

0

A(q(ϕ,ψ))dψ =

∫ m

0

A(q(ζ0, ψ))dψ + C(ϕ− ζ0), ϕ ∈ (−∞, ζ0). (62)

It follows from (57) and (62) that

|C||ϕ− ζ0| ≤
∫ m

0

|A(q(ϕ,ψ))−A(q(ζ0, ψ))|dψ

≤ kσ4δ2|ϕ− ζ0|1/2, ϕ ∈ (−∞, ζ0),

that is,

|C| ≤ kσ4δ2|ϕ− ζ0|−1/2, ϕ ∈ (−∞, ζ0). (63)

One can get C = 0 by taking ϕ→ −∞ in (63), and then (61) implies that

1

m

∫ m

0

A(q(ϕ,ψ))dψ =
1

m

∫ m

0

A(q(ζ0, ψ))dψ, ϕ ∈ (−∞, ζ0].

Therefore, (59) holds.

The solution to the problem (16)–(19) has the following regularity and asymptotic
behavior.

Proposition 2. Assume that q is a solution to the problem (16)–(19) satisfying
Proposition 1. Then q ∈ C1/2([2ζ0, 0]× [0,m]) and∣∣∣ ∂q

∂ϕ
(ϕ,ψ)

∣∣∣ ≤ σ7k
1/4(−ϕ)−1/2, (ϕ,ψ) ∈ [2ζ0, 0)× (0,m), (64)

where σ7 is a positive constants depending only on γ, τ1, τ2, l0, l1, f(−l0),
‖f ′‖L∞((−l0,0)) and ‖(−x)−1/2f ′′‖L∞((−l0,0)). Moreover, it holds that∣∣∣ ∂q

∂ϕ
(ϕ,ψ)

∣∣∣ ≤ σ8k
1/2(−ϕ)−2,

∣∣∣ ∂q
∂ψ

(ϕ,ψ)
∣∣∣ ≤ σ8k(−ϕ)−2,

(ϕ,ψ) ∈ (−∞, 2ζ0)× (0,m),
(65)

and hence

‖q(ϕ,ψ)− q∞‖L∞((−∞,ζ)×(0,m)) ≤ σ9k(−ζ)−2, ζ ∈ (−∞, 2ζ0), (66)

where q∞ is given in (60), and σ8, σ9 > 0 depend only on γ, τ1, τ2, l0, l1, f(−l0),
‖f ′‖L∞((−l0,0)) and ‖(−x)−1/2f ′′‖L∞((−l0,0)).
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Proof. Similarly to the proof of Proposition 4.1 in [18], one can prove that q ∈
C1/2([2ζ0, 0]× [0,m]) and satisfies (64).

In the remaining of the proof, we use µi (1 ≤ i ≤ 11) to denote a generic
positive constant depending only on γ, τ1, τ2, l0, l1, f(−l0), ‖f ′‖L∞((−l0,0)) and

‖(−x)−1/2f ′′‖L∞((−l0,0)). It follows from (59) that for any ϕ ∈ (−∞, ζ0], there
exists a number ψϕ ∈ (0,m) such that

q(ϕ,ψϕ) = q∞,

which, together with (56), yields

‖q(ϕ,ψ)− q∞‖L∞((−∞,ζ0)×(0,m)) ≤
∫ m

0

∥∥∥ ∂q
∂ψ

∥∥∥
L∞((−∞,ζ0)×(0,m))

dψ ≤ µ1k. (67)

Note that q ∈ C∞((−∞, 0) × (0,m)) ∩ C1((−∞, 0) × [0,m]) ∩ C((−∞, 0] × [0,m])
solves

∂

∂ϕ

(
a(ϕ,ψ)

∂q

∂ϕ

)
+

∂

∂ψ

(
b(ϕ,ψ)

∂q

∂ψ

)
= 0, (ϕ,ψ) ∈ (−∞, ζ0)× (0,m),

∂q

∂ψ
(ϕ, 0) = 0, ϕ ∈ (−∞, ζ0),

∂q

∂ψ
(ϕ,m) = 0, ϕ ∈ (−∞, ζ0),

where

a(ϕ,ψ) = A′(q(ϕ,ψ)), b(ϕ,ψ) = B′(q(ϕ,ψ)), (ϕ,ψ) ∈ (−∞, ζ0)× (0,m).

Fix integer n ≥ 2. Introducing{
ϕ̂ = k−1/4(ϕ− nζ0)/n, ϕ ∈ [4nζ0, nζ0/2],

ψ̂ = ψ/n, ψ ∈ [0,m],

and setting

q̂(ϕ̂, ψ̂) = q(nζ0 + k1/4nϕ̂, nψ̂)− q∞, (ϕ̂, ψ̂) ∈ [3k−1/4ζ0,−k−1/4ζ0/2]× [0,m/n].

One can verify that

q̂ ∈ C∞((3k−1/4ζ0,−k−1/4ζ0/2)×(0,m/n))∩C1([3k−1/4ζ0,−k−1/4ζ0/2]× [0,m/n])

solves

∂

∂ϕ̂

(
k−1/2â(ϕ̂, ψ̂)

∂q̂

∂ϕ̂

)
+

∂

∂ψ̂

(
b̂(ϕ̂, ψ̂)

∂q̂

∂ψ̂

)
= 0,

(ϕ̂, ψ̂) ∈ (3k−1/4ζ0,−k−1/4ζ0/2)× (0,m/n), (68)

∂q̂

∂ψ̂
(ϕ̂, 0) = 0, ϕ̂ ∈ (3k−1/4ζ0,−k−1/4ζ0/2), (69)

∂q̂

∂ψ̂
(ϕ̂,m/n) = 0, ϕ̂ ∈ (3k−1/4ζ0,−k−1/4ζ0/2), (70)

where

â(ϕ̂, ψ̂) = a(nζ0 + k1/4nϕ̂, nψ̂), b̂(ϕ̂, ψ̂) = b(nζ0 + k1/4nϕ̂, nψ̂),

(ϕ̂, ψ̂) ∈ [3k−1/4ζ0,−k−1/4ζ0/2]× [0,m/n].
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Extending the problem (68)–(70) into the domain [3k−1/4ζ0,−k−1/4ζ0/2]× [0, 2m]
yields

∂

∂ϕ̌

(
k−1/2ǎ(ϕ̌, ψ̌)

∂q̌

∂ϕ̌

)
+

∂

∂ψ̌

(
b̌(ϕ̌, ψ̌)

∂q̌

∂ψ̌

)
= 0,

(ϕ̌, ψ̌) ∈ (3k−1/4ζ0,−k−1/4ζ0/2)× (0, 2m),

∂q̌

∂ψ̌
(ϕ̌, 0) = 0, ϕ̌ ∈ (3k−1/4ζ0,−k−1/4ζ0/2),

∂q̌

∂ψ̌
(ϕ̌, 2m) = 0, ϕ̌ ∈ (3k−1/4ζ0,−k−1/4ζ0/2),

where for (ϕ̌, ψ̌) ∈ [3k−1/4ζ0,−k−1/4ζ0/2]× [(i− 1)m/n, im/n] (1 ≤ i ≤ 2n),

ǎ(ϕ̌, ψ̌) =

{
â(ϕ̌, ψ̌ − (i− 1)m/n), if i is odd,

â(ϕ̌, im/n− ψ̌), if i is even,

b̌(ϕ̌, ψ̌) =

{
b̂(ϕ̌, ψ̌ − (i− 1)m/n), if i is odd,

b̂(ϕ̌, im/n− ψ̌), if i is even.

Duo to (13), (51) and (67), one gets that

µ2k
1/2 ≤ ǎ(ϕ̌, ψ̌) ≤ µ3k

1/2, µ2 ≤ b̌(ϕ̌, ψ̌) ≤ µ3,

(ϕ̌, ψ̌) ∈ [−4k−1/4, 3k−1/4ε/(4n)]× [0, 2m],

and

‖q̌‖L∞((3k−1/4ζ0,−k−1/4ζ0/2)×(0,2m)) ≤ µ1k.

It follows from the Hölder continuity estimates for uniformly elliptic equations that
there exists a number β ∈ (0, 1) such that

[q̌]β;(5k−1/4ζ0/2,−k−1/4ζ0/4)×(0,2m) ≤ µ4‖q̌‖L∞((3k−1/4ζ0,−k−1/4ζ0/2)×(0,2m)) ≤ µ5k,

which implies

[ǎ]β;(5k−1/4ζ0/2,−k−1/4ζ0/4)×(0,2m) ≤ µ6k,

[b̌]β;(5k−1/4ζ0/2,−k−1/4ζ0/4)×(0,2m) ≤ µ6k.

The Schauder estimates on uniformly elliptic equations imply that

‖q̌‖C1,β((2k−1/4ζ0,−k−1/4ζ0/8)×(0,2m)) ≤ µ7‖q̌‖L∞((5k−1/4ζ0/2,−k−1/4ζ0/4)×(0,2m))

≤ µ8k. (71)

Transforming (71) into the (ϕ,ψ) plane, one can get that∥∥∥ ∂q
∂ϕ

∥∥∥
L∞((3nζ0,3nζ0/4)×(0,m))

≤ µ9k
3/4n−1,∥∥∥ ∂q

∂ψ

∥∥∥
L∞((3nζ0,3nζ0/4)×(0,m))

≤ µ9kn
−1.

(72)

Similar to (67), we have from (72) that

‖q(ϕ,ψ)− q∞‖L∞((3nζ0,3nζ0/4)×(0,m)) ≤
∫ m

0

∥∥∥∂qn
∂ψ

∥∥∥
L∞((3nζ0,3nζ0/4)×(0,m))

dψ

≤ µ10kn
−1. (73)
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Using (73) and the same operation on q leads to that∥∥∥ ∂q
∂ϕ

∥∥∥
L∞((2nζ0,nζ0)×(0,m))

≤ µ11k
1/2n−2,∥∥∥ ∂q

∂ψ

∥∥∥
L∞((2nζ0,nζ0)×(0,m))

≤ µ11kn
−2,

Then the arbitrariness of n ≥ 2 leads to (65), and hence (66) holds.

Remark 1. Through the similar process of the proof of Proposition 2, one can
show that for any positive integer λ, it holds that∣∣∣ ∂q

∂ϕ
(ϕ,ψ)

∣∣∣ ≤ σ′8k1−λ/4(−ϕ)−λ,
∣∣∣ ∂q
∂ψ

(ϕ,ψ)
∣∣∣ ≤ σ′8k(−ϕ)−λ,

(ϕ,ψ) ∈ (−∞, 2ζ0)× (0,m)

and

‖q(ϕ,ψ)− q∞‖L∞((−∞,ζ)×(0,m)) ≤ σ′9k(−ζ)−λ, ζ ∈ (−∞, 2ζ0),

where σ′8, σ
′
9 > 0 depend only on λ, γ, l0, l1, f(−l0), ‖f ′‖L∞((−l0,0)) and

‖(−x)−1/2f ′′‖L∞((−l0,0)).

The solution to the problem (16)–(19) is also unique for small k.

Proposition 3. There exists a constant k4 ∈ (0, 1] depending only on γ, τ1, τ2,
l0, l1, f(−l0), ‖f ′‖L∞((−l0,0)) and ‖(−x)−1/2f ′′‖L∞((−l0,0)), such that if k ∈ (0, k4],
then the problem (16)–(19) admits at most one solution q ∈ C∞((−∞, 0)×(0,m))∩
C1((−∞, 0)× [0,m]) ∩ C((−∞, 0]× [0,m]) satisfying (58).

Proof. In the proof, we use νi (1 ≤ i ≤ 5) to denote a generic positive constant de-
pending only on γ, τ1, τ2, l0, l1, f(−l0), ‖f ′‖L∞((−l0,0)) and ‖(−x)−1/2f ′′‖L∞((−l0,0)).

Let q(1), q(2) ∈ C∞((−∞, 0)× (0,m)) ∩C1((−∞, 0)× [0,m]) ∩C((−∞, 0]× [0,m])
be two solution to the problem (16)–(19) satisfying (58). Define

wi(ϕ,ψ) = A(q(i)(ϕ,ψ)), (ϕ,ψ) ∈ (−∞, 0]× [0,m], i = 1, 2.

Then wi (i = 1, 2) solves

∂2wi
∂ϕ2

+
∂2B(A−1(wi))

∂ψ2
= 0, (ϕ,ψ) ∈ (−∞, 0)× (0,m),

∂wi
∂ψ

(ϕ, 0) = 0, ϕ ∈ (−∞, 0),

∂B(A−1(wi))

∂ψ
(ϕ,m) =

f ′′k (x)

(1 + (f ′k(x))2)3/2Qup(x)

∣∣∣
x=Xup(ϕ)

,

ϕ ∈ (−∞, 0),

wi(0, ψ) = 0, ψ ∈ (0,m).

Set

w(ϕ,ψ) = w1(ϕ,ψ)− w2(ϕ,ψ), (ϕ,ψ) ∈ (−∞, 0]× [0,m].

It is easy to show that w solves

∂2w

∂ϕ2
+

∂2

∂ψ2
(h(ϕ,ψ)w) = 0, (ϕ,ψ) ∈ (−∞, 0)× (0,m), (74)

∂w

∂ψ
(ϕ, 0) = 0, ϕ ∈ (−∞, 0), (75)
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∂(hw)

∂ψ
(ϕ,m) = 0, ϕ ∈ (−∞, 0), (76)

w(0, ψ) = 0, ψ ∈ (0,m), (77)

where

h(ϕ,ψ) =

∫ 1

0

B′(A−1(ηw1(ϕ,ψ) + (1− η)w2((ϕ,ψ))))

A′(A−1(ηw1(ϕ,ψ) + (1− η)w2((ϕ,ψ))))
dη,

(ϕ,ψ) ∈ (−∞, 0)× (0,m).

Thanks to (56), (58), (64) and (65), direct calculations yield

ν1k
1/2〈−ϕ〉1/2 ≤ h(ϕ,ψ) ≤ ν1k

1/2〈−ϕ〉1/2, (ϕ,ψ) ∈ (−∞, 0)× (0,m), (78)∣∣∣ ∂h
∂ψ

(ϕ,ψ)
∣∣∣ ≤ { ν2(−ϕ)−1/2, (ϕ,ψ) ∈ [2ζ0, 0)× (0,m),

ν2(−ϕ)−2, (ϕ,ψ) ∈ (−∞, 2ζ0)× (0,m),
(79)

∣∣∣∂w
∂ϕ

(ϕ,ψ)
∣∣∣ ≤ ν2k(−ϕ)−2, (ϕ,ψ) ∈ (−∞, 2ζ0)× (0,m), (80)

where 〈−ϕ〉 = min{−ϕ,−2ζ0}. Fix ζ < 2ζ0 − 1. Multiplying (74) by −w, then
integrating over (ζ, 0)× (0,m) by parts and using (75)–(77), we have∫ 0

ζ

∫ m

0

(∂w
∂ϕ

)2

dψdϕ+

∫ 0

ζ

∫ m

0

h(ϕ,ψ)
(∂w
∂ψ

)2

dψdϕ

= −
∫ 0

ζ

∫ m

0

∂h

∂ψ
(ϕ,ψ)w

∂w

∂ψ
dψdϕ−

∫ m

0

w(ζ, ψ)
∂w

∂ϕ
(ζ, ψ)dψ,

which, together with (78)–(80), yields∫ 0

ζ

∫ m

0

(∂w
∂ϕ

)2

dψdϕ+ k−1/2

∫ 0

ζ

∫ m

0

〈−ϕ〉1/2
(∂w
∂ψ

)2

dψdϕ

≤ ν3

∫ 0

2ζ0

∫ m

0

(−ϕ)−1/2
∣∣∣w∂w
∂ψ

∣∣∣dψdϕ+ ν3

∫ 2ζ0

ζ

∫ m

0

(−ϕ)−2
∣∣∣w∂w
∂ψ

∣∣∣dψdϕ

+ ν3k(−ζ)−2

∫ m

0

|w(ζ, ψ)|dψ.

Then the Hölder’s inequality gives∫ 0

ζ

∫ m

0

(∂w
∂ϕ

)2

dψdϕ+ k−1/2

∫ 0

ζ

∫ m

0

〈−ϕ〉1/2
(∂w
∂ψ

)2

dψdϕ

≤ ν4k
1/2

∫ 0

2ζ0

∫ m

0

(−ϕ)−1/2w2dψdϕ+ ν4k
1/2

∫ 2ζ0

ζ

∫ m

0

(−ϕ)−4w2dψdϕ

+ ν4k(−ζ)−2

∫ m

0

|w(ζ, ψ)|dψ. (81)

It follows from the Hölder’s inequality and Cauchy inequality that∫ 0

2ζ0

∫ m

0

(−ϕ)−1/2w2dψdϕ ≤
∫ 0

2ζ0

∫ m

0

(−ϕ)−1/2

(∫ 0

ϕ

∂w

∂ϕ
(s, ψ)ds

)2

dψdϕ

≤
∫ 0

2ζ0

(−ϕ)1/2dϕ

∫ 0

ζ0

∫ m

0

(∂w
∂ϕ

)2

dϕdψ

≤ (−2ζ0)3/2

∫ 0

ζ

∫ m

0

(∂w
∂ϕ

)2

dϕdψ, (82)
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ζ

∫ m

0

(−ϕ)−4w2dψdϕ ≤
∫ 2ζ0

ζ

∫ m

0

(−ϕ)−4

(∫ 0

ϕ

∂w

∂ϕ
(s, ψ)ds

)2

dψdϕ

≤
∫ 2ζ0

ζ

(−ϕ)−3dϕ

∫ 0

ζ

∫ m

0

(∂w
∂ϕ

)2

dψdϕ

≤ (−2ζ0)−2

∫ 0

ζ

∫ m

0

(∂w
∂ϕ

)2

dψdϕ, (83)

and ∫ m

0

|w(ζ, ψ)|dψ ≤ m

2
+

1

2

∫ m

0

w2(ζ, ψ)dψ

≤ δ2
2

+

∫ m

0

(∫ 0

ζ

∣∣∣∂w
∂ϕ

∣∣∣dϕ)2

dψ

≤ δ2
2

+ (−ζ)

∫ 0

ζ

∫ m

0

(∂w
∂ϕ

)2

dϕdψ. (84)

Substituting (82)–(84) into (81) to get∫ 0

ζ

∫ m

0

(∂w
∂ϕ

)2

dψdϕ+ k−1/2

∫ 0

ζ

∫ m

0

〈−ϕ〉1/2
(∂w
∂ψ

)2

dψdϕ

≤ ν5k
1/2

∫ 0

ζ

∫ m

0

(∂w
∂ϕ

)2

dψdϕ+ ν5k(−ζ)−2 + ν5k(−ζ)−1

∫ 0

ζ

∫ m

0

(∂w
∂ϕ

)2

dϕdψ

≤ 2ν5k
1/2

∫ 0

ζ

∫ m

0

(∂w
∂ϕ

)2

dψdϕ+ ν5k(−ζ)−2. (85)

Choose k4 = 1/(16ν2
5 + 1). For any k ∈ (0, k4], (85) implies∫ 0

ζ

∫ m

0

(∂w
∂ϕ

)2

dψdϕ+ k−1/2

∫ 0

ζ

∫ m

0

〈−ϕ〉1/2
(∂w
∂ψ

)2

dψdϕ ≤ 2ν5k
1/2(−ζ)−2.

(86)

Taking ζ → −∞ in (86) to get∫ 0

−∞

∫ m

0

(∂w
∂ϕ

)2

dψdϕ+ k−1/2

∫ 0

−∞

∫ m

0

〈−ϕ〉1/2
(∂w
∂ψ

)2

dψdϕ ≤ 0,

which implies

∂w

∂ϕ
(ϕ,ψ) =

∂w

∂ψ
(ϕ,ψ) = 0, (ϕ,ψ) ∈ (−∞, 0)× (0,m). (87)

It follows (77) and (87) that

w(ϕ,ψ) = 0, (ϕ,ψ) ∈ (−∞, 0]× [0,m].

Therefore, q(1) = q(2).

4. Well-posedness of the subsonic-sonic flow problem. First we prove the
existence of the solution to the problem (16)–(20) by a fixed point argument.

Theorem 4.1. Assume that f ∈ C2,α([−l0, 0]) satisfies (5) and (6). There exists
a constant k0 ∈ (0, 1] depending only on γ, τ1, τ2, l0, l1, f(−l0), ‖f ′‖L∞((−l0,0))
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and ‖(−x)−1/2f ′′‖L∞((−l0,0)), such that if k ∈ (0, k0], then the problem (16)–(20)
admits a solution (q,m) satisfying

q ∈ C∞((−∞, 0)× (0,m)) ∩ C1((−∞, 0)× [0,m]) ∩ C1/2((−∞, 0]× [0,m])∣∣∣ ∂q
∂ψ

(ϕ,ψ)
∣∣∣ ≤ kσ3(min{−ϕ,−ζ0})1/2, (ϕ,ψ) ∈ (−∞, 0)× (0,m), (88)

|A(q(ϕ1, ψ1))−A(q(ϕ2, ψ2))| ≤ kσ4(|ϕ1 − ϕ2|1/2 + |ψ1 − ψ2|),
(ϕ1, ψ1), (ϕ2, ψ2) ∈ (−∞, 0]× [0,m], (89)

c∗ − σ6k
1/2(min{−ϕ,−ζ0})1/2 ≤ q(ϕ,ψ) ≤ c∗ − σ5k

1/2(min{−ϕ,−ζ0})1/2,

(ϕ,ψ) ∈ (−∞, 0]× [0,m], (90)

where

m = q∞ρ(q2
∞)(fk(−l0) + l1), c∗ − σ6k

1/2(−ζ0)1/2 ≤ q∞ ≤ c∗ − σ5k
1/2(−ζ0)1/2,

(91)

and σ3, σ4, σ5, σ6 are given in Lemmas 3.3 and 3.4. Furthermore,∣∣∣ ∂q
∂ϕ

(ϕ,ψ)
∣∣∣ ≤ σ7k

1/4(−ϕ)−1/2, (ϕ,ψ) ∈ [2ζ0, 0)× (0,m), (92)

and for any positive integer λ, it holds that∣∣∣ ∂q
∂ϕ

(ϕ,ψ)
∣∣∣ ≤ σ′8k1−λ/4(−ϕ)−λ,

∣∣∣ ∂q
∂ψ

(ϕ,ψ)
∣∣∣ ≤ σ′8k(−ϕ)−λ,

(ϕ,ψ) ∈ (−∞, 2ζ0)× (0,m),
(93)

and

‖q(ϕ,ψ)− q∞‖L∞((−∞,ζ)×(0,m)) ≤ σ′9k(−ζ)−λ, ζ ∈ (−∞, 2ζ0), (94)

where σ7, σ′8 and σ′9 are given in Proposition 2 and Remark 1. Therefore, the flow
is uniformly subsonic at the far fields.

Proof. Choose

k0 = min

{
k3, k4,

c2∗
4σ2

6δ4
,

1

σ4
6δ

2
4

,
N1

2σ4δ
1/2
5

}
.

For k ∈ (0, k0], set

Q =
{

(m,Qup) ∈ [δ1, δ2]× C1/4((−∞, 0]) : Qup satisfies (22)
}

with the norm
‖(m,Qup)‖Q = max

{
m, ‖Qup‖L∞(−∞,0)

}
.

For a given (m,Qup) ∈ Q, it is clear that Φup, Xup and q∞ are well determined,
and it follows from Propositions 1–3 that the problem (16)–(19) admits a unique
solution q ∈ C∞((−∞, 0) × (0,m)) ∩ C1((−∞, 0) × [0,m]) ∩ C((−∞, 0] × [0,m])
satisfying (56)–(58) and (66). Set

m̂ = q∞ρ(q2
∞)(fk(−l0) + l1), Q̂up(x) = q(Φup(x),m), x ∈ (−∞, 0].

From (56)–(58), (66) and the choice of k0, it is easy to verify that (m̂, Q̂up) ∈ Q
and

K : Q → Q, (m,Qup) 7→ (m̂, Q̂up).

is a self-mapping. Furthermore, one can prove the compactness of K by using (56)–
(58), and the continuity of K by using its compactness and the uniqueness result for
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the problem (16)–(19). Therefore, the Schauder fixed point theorem shows that the
problem (16)–(20) admits a solution (q,m) such that q ∈ C∞((−∞, 0) × (0,m)) ∩
C1((−∞, 0)× [0,m]) ∩ C1/2((−∞, 0]× [0,m]) satisfies (88)–(94).

From Theorem 4.1, for k ∈ (0, k0], the problem (16)–(20) admits a solution (q,m)
satisfying q ∈ C∞((−∞, 0)×(0,m))∩C1((−∞, 0)× [0,m])∩C1/2((−∞, 0]× [0,m]),

max
{c∗

2
, c∗ −M1k

1/2(min{−ϕ,−ζ0})1/2
}

≤ q(ϕ,ψ) ≤ c∗ −M2k
1/2(min{−ϕ,−ζ0})1/2,

(ϕ,ψ) ∈ (−∞, 0)× (0,m)

(95)

and
‖q(ϕ,ψ)− q∞‖L∞((−∞,ζ)×(0,m) ≤M3k(−ζ)−2, ζ < 2ζ0,

where

m = q∞ρ(q2
∞)(fk(−l0) + l1),

max
{c∗

2
, c∗ −M1k

1/2(−ζ0)1/2
}
≤ q∞ ≤ c∗ −M2k

1/2(−ζ0)1/2,

and M1, M2, M3 are positive constants. Indeed, this solution is also unique if k is
suitably small.

Theorem 4.2. Assume that f ∈ C2,α([−l0, 0]) satisfies (5) and (6). There ex-
ists a constant k′0 ∈ (0, 1] depending only on γ, l0, l1, f(−l0), ‖f ′‖L∞((−l0,0)),

‖(−x)−1/2f ′′‖L∞((−l0,0)), M1 and M2, such that if k ∈ (0, k′0], then there is at most
one solution (q,m) to the problem (16)–(20) such that q ∈ C∞((−∞, 0)× (0,m))∩
C1((−∞, 0)× [0,m]) ∩ C((−∞, 0]× [0,m]) and q satisfies (95).

Proof. In the proof, we use Ci (1 ≤ i ≤ 5) to denote a generic positive constant
depending only on γ, l0, l1, f(−l0), ‖f ′‖L∞((−l0,0)), ‖(−x)−1/2f ′′‖L∞((−l0,0)), M1

and M2. Let (q(1),m(1)) and (q(2),m(2)) be two solutions to the problem (16)–(20)
such that q(i) ∈ C∞((−∞, 0) × (0,m(i))) ∩ C1((−∞, 0) × [0,m(i)]) ∩ C((−∞, 0] ×
[0,m(i)]) and satisfies (95) for i = 1, 2. Denote Φup,i and Xup,i to be the associated

functions defined in Section 2 corresponding to q(i) for i = 1, 2. For i = 1, 2,
introduce the new coordinates transformations x = Xup,i(ϕ), ϕ ∈ (−∞, 0],

y =
ψ

m(i)
, ψ ∈ [0,m(i)],

{
ϕ = Φup,i(x), x ∈ (−∞, 0],

ψ = m(i)y, y ∈ [0, 1].

Define

Wi(x, y) = A(q(i)(Φup,i(x),m(i)y)), (x, y) ∈ (−∞, 0]× [0, 1], i = 1, 2.

Then Wi satisfies

∂

∂x

(
m(i)Xi(x)

∂Wi

∂x

)
+

∂

∂y

( 1

m(i)Xi(x)

∂B(A−1(Wi))

∂y

)
= 0,

(x, y) ∈ (−∞, 0)× (0, 1), (96)

∂Wi

∂y
(x, 0) = 0, x ∈ (−∞, 0), (97)

1

m(i)Xi(x)

∂B(A−1(Wi))

∂y
(x, 1) =

f ′′k (x)

1 + (f ′k(x))2
, x ∈ (−∞, 0), (98)

Wi(0, y) = 0, y ∈ (0, 1), (99)
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where

Xi(x) =
1

(1 + (f ′k(x))2)1/2A−1(Wi(x, fk(−L0)))
, x ∈ (−∞, 0].

Set

W (x, y) = W1(x, y)−W2(x, y), (x, y) ∈ (−∞, 0]× [0, 1].

One can verify from that W satisfies

∂

∂x

(
m(1)X1(x)

∂W

∂x

)
+

∂

∂y

( 1

m(1)X1(x)
H(x, y)

∂W

∂y

)
+

∂

∂x

(
m(1)X(x)

∂W2

∂x

)
+

∂

∂x

(
mX2(x)

∂W2

∂x

)
+

∂

∂y

( 1

m(1)X1(x)

∂Z

∂y
(x, y)W

)
− ∂

∂y

( m

m(1)m(2)X1(x)

∂B(A−1(W2))

∂y

)
− ∂

∂y

( X(x)

m(2)X1(x)X2(x)

∂B(A−1(W2))

∂y

)
= 0, (x, y) ∈ (−∞, 0)× (0, 1),

(100)

where

m = m(1) −m(2),

X(x) = X1(x)−X2(x), x ∈ (−∞, 0],

H(x, y) =

∫ 1

0

B′(A−1(ηW1(x, y) + (1− η)W2(x, y)))

A′(A−1(ηW1(x, y) + (1− η)W2(x, y)))
dη, (x, y) ∈ (−∞, 0)× (0, 1).

It follows from (13), (59), (88) and (90)–(93) that

C1k
−1/2〈−x〉−1/2 ≤ H(x, y) ≤ C2k

−1/2〈−x〉−1/2, (x, y) ∈ (−∞, 0)× (0, 1),
(101)∣∣∣∂H

∂y
(x, y)

∣∣∣ ≤ { C2(−x)−1/2, (x, y) ∈ [−L0, 0)× (0, 1),
C2(−x)−2, (x, y) ∈ (−∞,−L0)× (0, 1),

(102)

∣∣∣∂Wi

∂x
(x, y)

∣∣∣ ≤ { C2k
3/4, (x, y) ∈ [−L0, 0)× (0, 1),

C2k(−x)−2, (x, y) ∈ (−∞,−L0)× (0, 1),
i = 1, 2, (103)

∣∣∣∂B(A−1(W2))

∂y
(x, y)

∣∣∣ ≤ { C2k(−x)1/2, (x, y) ∈ [−L0, 0)× (0, 1),
C2k(−x)−2, (x, y) ∈ (−∞,−L0)× (0, 1),

(104)

|X(x)| ≤
{
C2k

−1/2(−x)−1/2|W (x, 1)|, (x, y) ∈ [−L0, 0)× (0, 1),
C2k

−1/2|W (x, 1)|, (x, y) ∈ (−∞,−L0)× (0, 1),
(105)

|m| ≤ C2

(∫ 0

−L0

∫ 1

0

(∂W
∂x

)2

dydx

)1/2

, (106)

where

〈−x〉 = min{−x, L0}, L0 = 3l0

(
1 + ‖f ′‖2L∞((−l0,0))

)1/2

.

Fix L > L0. Multiplying (100) by −W and then integrating by parts over
(−L, 0)× (0, 1), one gets from (96)–(99) that∫ 0

−L

∫ 1

0

m(1)X1(x)
(∂W
∂x

)2

dydx+

∫ 0

−L

∫ 1

0

1

m(1)X1(x)
H(x, y)

(∂W
∂y

)2

dydx
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= −
∫ 0

−L

∫ 1

0

m(1)X(x)
∂W

∂x

∂W2

∂x
dydx−

∫ 0

−L

∫ 1

0

mX2(x)
∂W

∂x

∂W2

∂x
dydx

−
∫ 0

−L

∫ 1

0

1

m(1)X1(x)

∂H

∂y
(x, y)W

∂W

∂y
dydx

+

∫ 0

−L

∫ 1

0

m

m(1)m(2)X1(x)

∂B(A−1(W2))

∂y

∂W

∂y
dydx

+

∫ 0

−L

∫ 1

0

X(x)

m(2)X1(x)X2(x)

∂B(A−1(W2))

∂y

∂W

∂y
dydx

+

∫ 1

0

W (−L, y)
(
m(1)X1(−L)

∂W1

∂x
(−L, y)−m(2)X2(−L)

∂W2

∂x
(−L, y)

)
dy,

which, together with (23), (90), (101) and (103), yields∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx+ k−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx

≤C3

∫ 0

−L

∫ 1

0

∣∣∣X(x)
∂W

∂x

∂W2

∂x

∣∣∣dydx︸ ︷︷ ︸
J1

+C3

∫ 0

−L

∫ 1

0

∣∣∣m∂W

∂x

∂W2

∂x

∣∣∣dydx︸ ︷︷ ︸
J2

+ C3

∫ 0

−L

∫ 1

0

∣∣∣∂H
∂y

(x, y)W
∂W

∂y

∣∣∣dydx︸ ︷︷ ︸
J3

+ C3

∫ 0

−L

∫ 1

0

∣∣∣m∂B(A−1(W2))

∂y

∂W

∂y

∣∣∣dydx︸ ︷︷ ︸
J4

+ C3

∫ 0

−L

∫ 1

0

∣∣∣X(x)
∂B(A−1(W2))

∂y

∂W

∂y

∣∣∣dydx︸ ︷︷ ︸
J5

+ C3k(−L)−2

∫ 1

0

|W (−L, y)|dy︸ ︷︷ ︸
IL

.

(107)

Below, let us make estimates on Ji (1 ≤ i ≤ 5) and IL in (107). The following five
inequalities are necessary. From the Hölder’s inequality and (99), it follows∫ 0

−L0

∫ 1

0

(−x)−ϑ1W 2dydx

≤
∫ 0

−L0

∫ 1

0

(−x)−ϑ1

(∫ 0

x

∣∣∣∣∂W∂x (s, y)

∣∣∣∣ds)2

dydx

≤
∫ 0

−L0

(−x)1−ϑ1dx

∫ 0

−L0

∫ 1

0

(
∂w

∂x

)2

dydx

≤ L2−ϑ1
0

2− ϑ1

∫ 0

−L

∫ 1

0

(
∂W

∂x

)2

dydx, ϑ1 ∈ [0, 2), (108)
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and ∫ −L0

−L

∫ 1

0

(−x)−ϑ2W 2dydx

≤
∫ −L0

−L

∫ 1

0

(−x)−ϑ2

(∫ 0

x

∣∣∣∂W
∂x

(s, y)
∣∣∣ds)2

dydx

≤
∫ −L0

−L
(−x)1−ϑ2dx

∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx

≤ L2−ϑ2
0

ϑ2 − 2

∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx, ϑ2 ∈ (2,+∞). (109)

Then from the Cauchy’s inequality, (108) and (109), we have∫ 0

−L0

W 2(x, 1)dx

≤
∫ 0

−L0

∫ 1

0

W 2dydx+ 2

∫ 0

−L0

∫ 1

0

∣∣∣W ∂W

∂y

∣∣∣dydx

≤L2
0

∫ 0

−L

∫ 1

0

(
∂W

∂x

)2

dydx+ k1/2L
1/2
0

∫ 0

−L0

∫ 1

0

W 2dydx

+ k−1/2

∫ 0

−L0

∫ 1

0

(−x)−1/2
(∂W
∂y

)2

dydx

≤ (L2
0 + L

5/2
0 )

∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx

+ k−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx, (110)∫ 0

−L0

(−x)−1W 2(x, 1)dx

≤
∫ 0

−L0

∫ 1

0

(−x)−1W 2dydx+ 2

∫ 0

−L0

∫ 1

0

(−x)−1
∣∣∣W ∂W

∂y

∣∣∣dydx

≤L0

∫ 0

−L0

∫ 1

0

(∂W
∂x

)2

dydx+ k1/2

∫ 0

−L0

∫ 1

0

(−x)−3/2W 2dydx

+ k−1/2

∫ 0

−L0

∫ 1

0

(−x)−1/2
(∂W
∂y

)2

dydx

≤ (L0 + 2L
1/2
0 )

∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx

+ k−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx, (111)

and ∫ −L0

−L
(−x)−4W 2(x, 1)dx

≤
∫ −L0

−L

∫ 1

0

(−x)−4W 2dydx+ 2

∫ −L0

−L

∫ 1

0

(−x)−4
∣∣∣W ∂W

∂y

∣∣∣dydx
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≤L−2
0

∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx+ k1/2L
1/2
0

∫ −L0

−L

∫ 1

0

(−x)−8W 2dydx

+ k−1/2L
−1/2
0

∫ −L0

−L

∫ 1

0

(∂W
∂y

)2

dydx

≤ (L−2
0 + L

−5/2
0 )

∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx

+ k−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx. (112)

It follows from Cauchy’s inequality with ε, (102)–(106) and (108)–(112) that

J1 ≤ ε
∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx+
1

ε

∫ 0

−L

∫ 1

0

|X(x)|2
∣∣∣∂W2

∂x

∣∣∣2dydx

≤ ε
∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx+
C2

2k
1/2

ε

∫ 0

−L0

(−x)−1W 2(x, 1)dydx

+
C2

2k

ε

∫ −L0

−L
(−x)−4W 2(x, 1)dydx

≤ C4

(
ε+

k1/2

ε

)∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx

+
C4k

1/2

ε
· k−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx, (113)

J2 ≤ ε
∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx+
1

ε

∫ 0

−L

∫ 1

0

m2
(∂W2

∂x

)2
dydx

≤ ε
∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx+
C2

2

ε
m2

(
k3/2 + L0k

2

∫ −L0

−L
(−x)−4dx

)
≤ C4

(
ε+

k1/2

ε

)∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx, (114)

J3 ≤ C2

∫ 0

−L0

∫ 1

0

(−x)−1/2
∣∣∣W ∂W

∂y

∣∣∣dydx+ C2

∫ −L0

−L

∫ 1

0

(−x)−2
∣∣∣W ∂W

∂y

∣∣∣dydx

≤ C2k
1/2

ε

∫ 0

−L0

∫ 1

0

(−x)−1/2W 2dydx+
C2L

1/2
0 k1/2

ε

∫ −L0

−L

∫ 1

0

(−x)−4W 2dydx

+ C2εk
−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx

≤ C4k
1/2

ε

∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx+ C4εk
−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx,

(115)

J4 ≤ C2k

∫ 0

−L0

∫ 1

0

(−x)1/2
∣∣∣m∂W

∂y

∣∣∣dydx+ C2k

∫ −L0

−L

∫ 1

0

(−x)−2
∣∣∣m∂W

∂y

∣∣∣dydx

≤ C2k
5/2

ε
m2

(∫ 0

−L0

(−x)3/2dx+

∫ −L0

−L
(−x)−4dx

)
+ C2εk

−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx
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≤ C4k
1/2

ε

∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx+ C4εk
−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx,

(116)

and

J5 ≤ C2
2k

1/2

∫ 0

−L0

∫ 1

0

∣∣∣W (x, 1)
∂W

∂y

∣∣∣dydx

+ C2
2k

1/2

∫ −L0

−L

∫ 1

0

(−x)−2
∣∣∣W (x, 1)

∂W

∂y

∣∣∣dydx

≤ C2
2L

1/2
0 k3/2

ε

∫ 0

−L0

W 2(x, 1)dx+
C2

2L
1/2
0 k3/2

ε

∫ −L0

−L
(−x)−4W 2(x, 1)dx

+ C2
2εk
−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx

≤ C4k
1/2

ε

∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx

+ C4

(
ε+

k1/2

ε

)
k−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx, (117)

where ε > 0 is to be determined. Additionally,

IL ≤ 1 +

∫ 1

0

W 2(−L, y)dy

≤ 1 +

∫ 1

0

(∫ 0

−L

∣∣∣∂W
∂x

∣∣∣dx)2

dy

≤ 1 + (−L)

∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx. (118)

Substituting (113)–(118) into (107) to get∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx+ k−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx

≤C5

(
ε+

k1/2

ε

)(∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx+ k−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx

)
+ C5(−L)−1 + C5k

∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx. (119)

Choose ε = (4C5)−1 and k′0 = min{(16C2
5 +1)−1, (4C5 +1)−1}. For any k ∈ (0, k′0],

(119) implies∫ 0

−L

∫ 1

0

(∂W
∂x

)2

dydx+ k−1/2

∫ 0

−L

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx ≤ 2C5(−L)−1.

(120)

Taking L→ +∞ in (120), we obtain that∫ 0

−∞

∫ 1

0

(∂W
∂x

)2

dydx+ k−1/2

∫ 0

−∞

∫ 1

0

〈−x〉−1/2
(∂W
∂y

)2

dydx ≤ 0,
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which shows that

∂W

∂x
(x, y) =

∂W

∂y
(x, y) = 0, (x, y) ∈ (−∞, 0)× (0, 1).

Then W (x, y) = 0 follows from (99), and hence (q(1),m(1)) = (q(2),m(2)).

In terms of the physical variables, Theorems 4.1 and 4.2 can be transformed as

Theorem 4.3. Assume that f ∈ C2,α([−l0, 0]) satisfies (5) and (6). There exist

four constants k̃0 ∈ (0, 1] and M̃1, M̃2 > 0 depending only on γ, τ1, τ2, l0, l1,

f(−l0), ‖f ′‖L∞((−l0,0)) and ‖(−x)−1/2f ′′‖L∞((−l0,0)), such that if k ∈ (0, k̃0] then

the problem (7)–(10) admits a unique solution (ϕ, S,m) satisfying ϕ ∈ C3(Ωk) ∩
C2(Ωk \ S) ∩ C1(Ωk), S ∈ C1([−l1, 0]),

max
{c∗

2
, c∗ − M̃2(k distS(〈x〉, y))1/2

}
≤ |∇ϕ(x, y)| ≤ c∗ − M̃1(k distS(〈x〉, y))1/2,

(x, y) ∈ Ωk,
where distS(x, y) is the distance from (x, y) to S and 〈x〉 = max{x, −l0}. Moreover,

for any positive integer λ, there exists a constant M̃3 > 0 depending only on λ, γ,
τ1, τ2, l0, l1, f(−l0), ‖f ′‖L∞((−l0,0)) and ‖(−x)−1/2f ′′‖L∞((−l0,0)), such that

‖ϕ(x, y)− q∞x‖C1(Ωk∩{x<−R}) ≤ M̃3kR
−λ, R > l0,

where

max
{c∗

2
, c∗ − M̃2(kl0)1/2

}
≤ q∞ ≤ c∗ − M̃1(kl0)1/2.

Therefore, the flow is uniformly subsonic at the far fields.
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